-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
182 lines (142 loc) · 7.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)
import os
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
from torch.utils.data import DataLoader
from tqdm import tqdm
import argparse
import json
import os
import torch
# Importing from local modules
from tools import write2csv, setup_paths, setup_seed, log_metrics, Logger
from dataset import get_data
from method import AdaCLIP_Trainer
setup_seed(111)
def train(args):
# Configurations
epochs = args.epoch
learning_rate = args.learning_rate
batch_size = args.batch_size
image_size = args.image_size
device = 'cuda' if torch.cuda.is_available() else 'cpu'
save_fig = args.save_fig
# Set up paths
model_name, image_dir, csv_path, log_path, ckp_path, tensorboard_logger = setup_paths(args)
# Logger
logger = Logger(log_path)
# Print basic information
for key, value in sorted(vars(args).items()):
logger.info(f'{key} = {value}')
logger.info('Model name: {:}'.format(model_name))
config_path = os.path.join('./model_configs', f'{args.model}.json')
# Prepare model
with open(config_path, 'r') as f:
model_configs = json.load(f)
# Set up the feature hierarchy
n_layers = model_configs['vision_cfg']['layers']
substage = n_layers // 4
features_list = [substage, substage * 2, substage * 3, substage * 4]
model = AdaCLIP_Trainer(
backbone=args.model,
feat_list=features_list,
input_dim=model_configs['vision_cfg']['width'],
output_dim=model_configs['embed_dim'],
learning_rate=learning_rate,
device=device,
image_size=image_size,
prompting_depth=args.prompting_depth,
prompting_length=args.prompting_length,
prompting_branch=args.prompting_branch,
prompting_type=args.prompting_type,
use_hsf=args.use_hsf,
k_clusters=args.k_clusters
).to(device)
train_data_cls_names, train_data, train_data_root = get_data(
dataset_type_list=args.training_data,
transform=model.preprocess,
target_transform=model.transform,
training=True)
test_data_cls_names, test_data, test_data_root = get_data(
dataset_type_list=args.testing_data,
transform=model.preprocess,
target_transform=model.transform,
training=False)
logger.info('Data Root: training, {:}; testing, {:}'.format(train_data_root, test_data_root))
train_dataloader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False)
# Typically, we use MVTec or VisA as the validation set. The best model from this validation
# process is then used for zero-shot anomaly detection on novel categories.
best_f1 = -1e1
for epoch in tqdm(range(epochs)):
loss = model.train_epoch(train_dataloader)
# Logs
if (epoch + 1) % args.print_freq == 0:
logger.info('epoch [{}/{}], loss:{:.4f}'.format(epoch + 1, epochs, loss))
tensorboard_logger.add_scalar('loss', loss, epoch)
# Validation
if (epoch + 1) % args.valid_freq == 0 or (epoch == epochs - 1):
if epoch == epochs - 1:
save_fig_flag = save_fig
else:
save_fig_flag = False
logger.info('=============================Testing ====================================')
metric_dict = model.evaluation(
test_dataloader,
test_data_cls_names,
save_fig_flag,
image_dir,
)
log_metrics(
metric_dict,
logger,
tensorboard_logger,
epoch
)
f1_px = metric_dict['Average']['f1_px']
# Save best
if f1_px > best_f1:
for k in metric_dict.keys():
write2csv(metric_dict[k], test_data_cls_names, k, csv_path)
ckp_path_best = ckp_path + '_best.pth'
model.save(ckp_path_best)
best_f1 = f1_px
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
if __name__ == '__main__':
parser = argparse.ArgumentParser("AdaCLIP", add_help=True)
# Paths and configurations
parser.add_argument("--training_data", type=str, default=["mvtec", "colondb"], nargs='+',
help="Datasets for training (default: ['mvtec', 'colondb'])")
parser.add_argument("--testing_data", type=str, default="visa", help="Dataset for testing (default: 'visa')")
parser.add_argument("--save_path", type=str, default='./workspaces',
help="Directory to save results (default: './workspaces')")
parser.add_argument("--model", type=str, default="ViT-L-14-336",
choices=["ViT-B-16", "ViT-B-32", "ViT-L-14", "ViT-L-14-336"],
help="The CLIP model to be used (default: 'ViT-L-14-336')")
parser.add_argument("--save_fig", type=str2bool, default=False,
help="Save figures for visualizations (default: False)")
parser.add_argument("--ckt_path", type=str, default='', help="Path to the pre-trained model (default: '')")
# Hyper-parameters
parser.add_argument("--exp_indx", type=int, default=0, help="Index of the experiment (default: 0)")
parser.add_argument("--epoch", type=int, default=5, help="Number of epochs (default: 5)")
parser.add_argument("--learning_rate", type=float, default=0.01, help="Learning rate (default: 0.01)")
parser.add_argument("--batch_size", type=int, default=1, help="Batch size (default: 1)")
parser.add_argument("--image_size", type=int, default=518, help="Size of the input images (default: 518)")
parser.add_argument("--print_freq", type=int, default=1, help="Frequency of print statements (default: 1)")
parser.add_argument("--valid_freq", type=int, default=1, help="Frequency of validation (default: 1)")
# Prompting parameters
parser.add_argument("--prompting_depth", type=int, default=4, help="Depth of prompting (default: 4)")
parser.add_argument("--prompting_length", type=int, default=5, help="Length of prompting (default: 5)")
parser.add_argument("--prompting_type", type=str, default='SD', choices=['', 'S', 'D', 'SD'],
help="Type of prompting. 'S' for Static, 'D' for Dynamic, 'SD' for both (default: 'SD')")
parser.add_argument("--prompting_branch", type=str, default='VL', choices=['', 'V', 'L', 'VL'],
help="Branch of prompting. 'V' for Visual, 'L' for Language, 'VL' for both (default: 'VL')")
parser.add_argument("--use_hsf", type=str2bool, default=True,
help="Use HSF for aggregation. If False, original class embedding is used (default: True)")
parser.add_argument("--k_clusters", type=int, default=20, help="Number of clusters (default: 20)")
args = parser.parse_args()
if args.batch_size != 1:
raise NotImplementedError(
"Currently, only batch size of 1 is supported due to unresolved bugs. Please set --batch_size to 1.")
train(args)