-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgenerate_data.py
376 lines (316 loc) · 12.9 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import os
import random
import collections
import tensorflow.compat.v1 as tf
import numpy as np
from bert import tokenization
from utils import file_operation, relevance_info
from utils.fold_config import FOLD_CONFIG_DICT
random.seed(118)
tf.random.set_random_seed(118)
flags = tf.flags
FLAGS = flags.FLAGS
## Required parameters
flags.DEFINE_string(
"trec_run_filename", None,
"where the trec run file (e.g. produced by BM25) is"
)
flags.DEFINE_string(
"qrels_filename", None,
"where the qrels file is"
)
flags.DEFINE_string(
"query_field", 'title',
"None if no field, else title, desc, narr, question")
flags.DEFINE_string(
"query_filename", None,
"where the query file is. support TREC file now")
flags.DEFINE_string(
"corpus_filename", None,
"where the corpus file is. format: docno \t content")
flags.DEFINE_string(
"dataset", None,
"which dataset to run on. it would correspond to the fold config of qids"
)
flags.DEFINE_integer(
"fold", 3,
"run fold")
flags.DEFINE_integer(
"plen", 150,
"length of segmented passage"
)
flags.DEFINE_integer(
"overlap", 50,
"overlap between continuous segmented passages"
)
flags.DEFINE_integer(
"max_num_train_instance_perquery", 1000,
"The maximum number of training instances utilized from initial ranking"
)
flags.DEFINE_integer(
"rerank_threshold", 100,
"the maximum number of top documents to be reranked"
)
flags.DEFINE_string(
"data_dir", None,
"The input data dir. Should contain the .tsv files (or other data files) "
"for the task.")
flags.DEFINE_string(
"bert_config_filename", None,
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_string("vocab_filename", None,
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_string(
"output_dir", None,
"The output directory where the model checkpoints will be written.")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_integer(
"max_num_segments_perdoc", 8,
"The maximum number of segments for each document"
)
class PointwiseInstance(object):
"""A single training instance (sentence pair)."""
def __init__(self, exampleid, tokens_a, tokens_b_list, relation_label):
self.exampleid = exampleid
self.tokens_a = tokens_a
self.tokens_b_list = tokens_b_list
self.relation_label = relation_label
def __str__(self):
s = ""
s += "example id: %s\n" % self.exampleid
s += "tokens a: %s\n" % (" ".join(
[tokenization.printable_text(x) for x in self.tokens_a]))
s += "tokens b: %s\n" % (" ".join(
[tokenization.printable_text(x) for x in self.tokens_b_list]))
s += "relation label: %s\n" % self.relation_label
s += "\n"
return s
def __repr__(self):
return self.__str__()
def create_int_feature(values):
feature = tf.train.Feature(int64_list=tf.train.Int64List(value=values))
return feature
def convert_data_pointwise(writer, tokenizer, qid_list, relevance_dict, corpus_dict, query_dict, is_eval=False):
if is_eval:
max_num_example = FLAGS.rerank_threshold
else:
max_num_example = FLAGS.max_num_train_instance_perquery
instances = []
idx = 0
for qid in qid_list:
tf.logging.info("Generating data for query {}".format(qid))
relevance = relevance_dict.get(qid)
judged_docno_list = relevance.get_judged_docno_list()
supervised_docno_list = relevance.get_supervised_docno_list() # initial ranking
# training data from the judged docno, built from bm25 top1000 result
relevant_docno_list = set()
if judged_docno_list is not None:
relevant_docno_list = judged_docno_list[1] + judged_docno_list[2]
relevant_docno_list = set(relevant_docno_list)
for docno in supervised_docno_list[:max_num_example]:
relation_label = 1 if docno in relevant_docno_list else 0
query = query_dict[qid]
doc = corpus_dict[docno]
instance = create_instance_pointwise(tokenizer, FLAGS.max_seq_length, qid, docno, query, doc, relation_label)
# append and shuffle on training set
if not is_eval:
instances.append(instance)
else:
write_instance_to_example_files(writer, tokenizer, instance, idx)
idx += 1
tf.logging.info("Totally {} examples".format(len(instances)))
if not is_eval:
random.shuffle(instances)
for idx, instance in enumerate(instances):
write_instance_to_example_files(writer, tokenizer, instance, idx)
if is_eval:
write_padding_instance_to_example_files(writer)
writer.close()
print("Distribution of length. Key is length, Val is count.")
for key, val in stats.items():
print("{}\t{}".format(key, val))
def create_instance_pointwise(tokenizer, max_seq_length, qid, docno, query, doc, label):
query = tokenization.convert_to_unicode(query)
doc = tokenization.convert_to_unicode(doc)
passages = get_passages(doc, FLAGS.plen, FLAGS.overlap)
if len(passages) == 0:
tf.logging.warn("Passage length is 0 in qid {} docno {}".format(qid, docno))
query = tokenization.convert_to_bert_input(
text=query,
max_seq_length=64,
tokenizer=tokenizer,
add_cls=True,
convert_to_id=False
)
passages = [tokenization.convert_to_bert_input(
text=p,
max_seq_length=max_seq_length-len(query),
tokenizer=tokenizer,
add_cls=False,
convert_to_id=False
) for p in passages]
instance = PointwiseInstance(
exampleid="{}-{}".format(qid, docno),
tokens_a=query,
tokens_b_list=passages,
relation_label=label
)
return instance
def write_padding_instance_to_example_files(writer, num_examples=50):
# 1-d arrays
input_ids = np.zeros((FLAGS.max_seq_length * FLAGS.max_num_segments_perdoc), dtype=np.int)
num_segments = FLAGS.max_num_segments_perdoc
label = 0
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(input_ids)
features["tokens_a_len"] = create_int_feature([3])
features["tokens_ids_lens"] = create_int_feature([24] * FLAGS.max_num_segments_perdoc)
features["num_segments"] = create_int_feature([num_segments])
features["label"] = create_int_feature([label])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
for _ in range(num_examples):
writer.write(tf_example.SerializeToString())
tf.logging.info("write {} padding instances successfully".format(num_examples))
def write_instance_to_example_files(writer, tokenizer, instance, instance_idx):
def padding_2d(ids_list, num_tokens_per_segment, padding_value=0):
_len = len(ids_list)
if padding_value == 0:
matrix = np.zeros((_len, num_tokens_per_segment), dtype=np.int)
elif padding_value == 1:
matrix = np.ones((_len, num_tokens_per_segment), dtype=np.int)
else:
raise ValueError("Unsupport padding value")
for i, _list in enumerate(ids_list):
matrix[i, :len(_list)] = _list
return matrix.flatten()
tokens_a = instance.tokens_a
tokens_b_list = instance.tokens_b_list
tokens_a_ids = tokenizer.convert_tokens_to_ids(tokens_a)
tokens_b_list = [tokenizer.convert_tokens_to_ids(p) for p in tokens_b_list]
label = instance.relation_label
assert len(tokens_b_list) <= FLAGS.max_num_segments_perdoc
num_segments = len(tokens_b_list)
input_ids = [tokens_a_ids + tokens_b_passage_ids for tokens_b_passage_ids in tokens_b_list]
tokens_a_len = len(tokens_a_ids) # helpful for segment ids
input_ids_lens = [len(input_id) for input_id in input_ids] # helpful for input mask
input_ids_lens = input_ids_lens + [FLAGS.max_seq_length] * (FLAGS.max_num_segments_perdoc - len(input_ids_lens))
input_ids = padding_2d(input_ids,FLAGS.max_seq_length, padding_value=0)
# write to tfrecord
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(input_ids)
features["tokens_a_len"] = create_int_feature([tokens_a_len])
features["tokens_ids_lens"] = create_int_feature(input_ids_lens)
features["num_segments"] = create_int_feature([num_segments])
features["label"] = create_int_feature([label])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
if instance_idx < 5:
tf.logging.info("*** Example ***")
tf.logging.info("tokens_a: %s" % " ".join(
[tokenization.printable_text(x) for x in instance.tokens_a]))
tf.logging.info("tokens_b_list: {}".format(instance.tokens_b_list))
for feature_name in features.keys():
feature = features[feature_name]
values = []
if feature.int64_list.value:
values = feature.int64_list.value
elif feature.float_list.value:
values = feature.float_list.value
tf.logging.info(
"%s: %s" % (feature_name, " ".join([str(x) for x in values])))
stats = collections.defaultdict(int)
def get_passages(text, plen, overlap):
""" Modified from https://github.com/AdeDZY/SIGIR19-BERT-IR/blob/master/tools/gen_passages.py
:param text:
:param plen:
:param overlap:
:return:
"""
words = text.strip().split(' ')
s, e = 0, 0
passages = []
while s < len(words):
e = s + plen
if e >= len(words):
e = len(words)
# if the last one is shorter than 'overlap', it is already in the previous passage.
if len(passages) > 0 and e - s <= overlap:
break
p = ' '.join(words[s:e])
passages.append(p)
s = s + plen - overlap
if len(passages) > FLAGS.max_num_segments_perdoc:
chosen_ids = sorted(random.sample(range(1, len(passages) - 1), FLAGS.max_num_segments_perdoc - 2))
chosen_ids = [0] + chosen_ids + [len(passages) - 1]
passages = [passages[id] for id in chosen_ids]
global stats
stats[len(passages)] += 1
return passages
def main(_):
# training config
qid_list = FOLD_CONFIG_DICT[FLAGS.dataset]
qid_list = collections.deque(qid_list)
rotate = FLAGS.fold - 1
map(qid_list.rotate(rotate), qid_list)
# currently, we just set up the training step. No support for model selection now.
# train_qid_list, valid_qid_list, test_qid_list = qid_list[0] + qid_list[1] + qid_list[2], qid_list[3], qid_list[4]
train_qid_list, test_qid_list = qid_list[0] + qid_list[1] + qid_list[2] + qid_list[3], qid_list[4]
train_qid_list, test_qid_list = sorted(train_qid_list), sorted(test_qid_list)
tf.logging.info("Running on dataset: {0}, on fold {1}".format(FLAGS.dataset, FLAGS.fold))
tf.logging.info("Traing on following qid: {0}\n".format(train_qid_list))
# tf.logging.info("Validating on following qid: {0}\n".format(valid_qid_list))
tf.logging.info("Testing on following qid: {0}\n".format(test_qid_list))
relevance_dict = relevance_info.create_relevance(FLAGS.trec_run_filename, FLAGS.qrels_filename)
corpus_dict = file_operation.key_value_from_file(FLAGS.corpus_filename)
query_dict = file_operation.load_trec_topics(FLAGS.query_filename)[FLAGS.query_field]
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_filename,
do_lower_case=FLAGS.do_lower_case
)
# begin data convertion to TFrecord
output_path = os.path.join(FLAGS.output_dir, "dataset_train.tfrecord")
tf.logging.info("Writing data into {}".format(output_path))
writer = tf.python_io.TFRecordWriter(output_path)
convert_data_pointwise(
writer=writer,
tokenizer=tokenizer,
qid_list=train_qid_list,
relevance_dict=relevance_dict,
corpus_dict=corpus_dict,
query_dict=query_dict,
is_eval=False
)
output_path = os.path.join(FLAGS.output_dir, "dataset_test.tfrecord")
tf.logging.info("Writing data into {}".format(output_path))
writer = tf.python_io.TFRecordWriter(output_path)
convert_data_pointwise(
writer=writer,
tokenizer=tokenizer,
qid_list=test_qid_list,
relevance_dict=relevance_dict,
corpus_dict=corpus_dict,
query_dict=query_dict,
is_eval=True
)
if __name__ == '__main__':
flags.mark_flag_as_required("trec_run_filename")
flags.mark_flag_as_required("qrels_filename")
flags.mark_flag_as_required("query_field")
flags.mark_flag_as_required("query_filename")
flags.mark_flag_as_required("corpus_filename")
flags.mark_flag_as_required("dataset")
flags.mark_flag_as_required("fold")
flags.mark_flag_as_required("vocab_filename")
flags.mark_flag_as_required("output_dir")
flags.mark_flag_as_required("plen")
flags.mark_flag_as_required("overlap")
tf.app.run()