-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathkernels.py
executable file
·184 lines (147 loc) · 5.77 KB
/
kernels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from param import Param
import tensorflow as tf
from gpflow import transforms
float_type = tf.float64
jitter_level = 1e-6
class Kernel:
def __init__(self,sf0,ell0,name="kernel",learning_rate=0.01,
summ=False,fix_sf=False,fix_ell=False):
with tf.name_scope(name):
sf = Param(sf0,
transform=transforms.Log1pe(),
name="sf",
learning_rate = learning_rate,
summ = summ,
fixed = fix_sf)
ell = Param(ell0,
transform=transforms.Log1pe(),
name="ell",
learning_rate = learning_rate,
summ = summ,
fixed = fix_ell)
self.sf = sf()
self.ell = ell()
self.fix_sf = fix_sf
self.fix_ell = fix_ell
def square_dist(self,X,X2=None):
X = X / self.ell
Xs = tf.reduce_sum(tf.square(X), 1)
if X2 is None:
return -2 * tf.matmul(X, X, transpose_b=True) + \
tf.reshape(Xs, (-1, 1)) + tf.reshape(Xs, (1, -1))
else:
X2 = X2 / self.ell
X2s = tf.reduce_sum(tf.square(X2), 1)
return -2 * tf.matmul(X, X2, transpose_b=True) + \
tf.reshape(Xs, (-1, 1)) + tf.reshape(X2s, (1, -1))
class OperatorKernel(Kernel):
def __init__(self,sf0,ell0,ktype="id",learning_rate=0.01,
summ=False,block=True,name="OperatorKernel",fix_sf=False,
fix_ell=False):
super().__init__(sf0 = sf0,
ell0 = ell0,
name = name,
learning_rate = learning_rate,
summ = summ,
fix_sf = fix_sf,
fix_ell = fix_ell)
self.ndims = len(ell0)
self.ktype=ktype
self.block = block
def RBF(self,X,X2=None):
if X2 is None:
return self.sf**2 * tf.exp(-self.square_dist(X) / 2)
else:
return self.sf**2 * tf.exp(-self.square_dist(X, X2) / 2)
def HessianDivergenceFree(self,X,X2=None):
D = tf.shape(X)[1]
N = tf.shape(X)[0]
M = tf.shape(X2)[0]
X_expd = tf.expand_dims(X,-1) / self.ell
X2_expd = tf.transpose(tf.expand_dims(X2,-1),perm=[2,1,0])/ self.ell
diff = tf.subtract(X_expd,X2_expd)
diff1 = tf.transpose(tf.expand_dims(diff,-1),perm=[0,2,1,3])
diff2 = tf.transpose(tf.expand_dims(diff,-1),perm=[0,2,3,1])
term1 = tf.multiply(diff1,diff2)
term2 = tf.multiply(
tf.expand_dims(tf.expand_dims(tf.cast(D,dtype=float_type) - 1.0 - self.square_dist(X, X2),-1),-1),
tf.eye(D, batch_shape=[N,M],dtype=float_type))
H = term1 + term2
return H
def HessianCurlFree(self,X,X2=None):
D = tf.shape(X)[1]
N = tf.shape(X)[0]
M = tf.shape(X2)[0]
X = X / self.ell
X2 = X2 / self.ell
X_expd = tf.expand_dims(X,-1)
X2_expd = tf.transpose(tf.expand_dims(X2,-1),perm=[2,1,0])
diff = tf.subtract(X_expd,X2_expd)
diff1 = tf.transpose(tf.expand_dims(diff,-1),perm=[0,2,1,3])
diff2 = tf.transpose(tf.expand_dims(diff,-1),perm=[0,2,3,1])
term1 = tf.multiply(diff1,diff2)
H = tf.eye(D, batch_shape=[N,M],dtype=float_type) - term1
return H
def HessianIdentity(self,X,X2=None):
D = tf.shape(X)[1]
N = tf.shape(X)[0]
M = tf.shape(X2)[0]
H = tf.ones([N,M,D,D],dtype=float_type)
return H
def K(self,X,X2=None):
if X2 is None:
rbf_term = self.RBF(X)
X2 = X
else:
rbf_term = self.RBF(X,X2)
if self.ktype == "id":
# hes_term = self.HessianIdentity(X,X2)
return rbf_term
elif self.ktype == "df":
hes_term = self.HessianDivergenceFree(X,X2)
elif self.ktype == "cf":
hes_term = self.HessianCurlFree(X,X2)
else:
raise ValueError("Bad kernel type passed to `ktype`")
rbf_term = tf.expand_dims(tf.expand_dims(rbf_term,-1),-1)
K = rbf_term * hes_term / tf.square(self.ell)
if self.block:
K = self.tfblock(K)
return K
def Ksymm(self,X):
raise NotImplementedError()
def Kdiag(self,X):
raise NotImplementedError()
def tfblock(self,tensor):
'''
input : tensor of shape NxM,DxD
returns : tensor of shape (ND)x(MD)
'''
N = tf.shape(tensor)[0]
M = tf.shape(tensor)[1]
D = self.ndims
stacked_list = []
for d in range(D):
t = tf.stack([tf.reshape(tensor[:,:,p,d],[N,M]) for p in range(D)],axis=1)
t = tf.transpose(tf.reshape(t,[N*D,M]))
stacked_list.append(t)
reshaped = tf.stack(stacked_list,axis=1)
reshaped = tf.transpose(tf.reshape(reshaped,[M*D,N*D]))
return reshaped
class RBF(Kernel):
'''
Taken from GPFlow
'''
def __init__(self,sf0,ell0,name="RBFKernel",eta=0.01,summ=False,
fix_sf=False,fix_ell=False):
super().__init__(sf0,ell0,name=name,learning_rate=eta,summ=summ,
fix_sf=fix_sf,fix_ell=fix_ell)
def K(self,X,X2=None):
if X2 is None:
return self.sf**2 * tf.exp(-self.square_dist(X) / 2)
else:
return self.sf**2 * tf.exp(-self.square_dist(X, X2) / 2)
def Ksymm(self,X):
return self.sf**2 * tf.exp(-self.square_dist(X) / 2)
def Kdiag(self,X):
return tf.fill(tf.stack([tf.shape(X)[0]]), tf.squeeze(self.sf**2))