forked from tpruvot/ccminer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblake2b.cu
273 lines (221 loc) · 7.53 KB
/
blake2b.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/**
* Blake2-B CUDA Implementation
*
* tpruvot@github July 2016
*
*/
#include <miner.h>
#include <string.h>
#include <stdint.h>
#include <sph/blake2b.h>
#include <cuda_helper.h>
#include <cuda_vector_uint2x4.h>
#define TPB 512
#define NBN 2
static uint32_t *d_resNonces[MAX_GPUS];
__device__ uint64_t d_data[10];
static __constant__ const int8_t blake2b_sigma[12][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } ,
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } ,
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } ,
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } ,
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } ,
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } ,
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } ,
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } ,
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 } ,
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
};
// host mem align
#define A 64
extern "C" void blake2b_hash(void *output, const void *input)
{
uint8_t _ALIGN(A) hash[32];
blake2b_ctx ctx;
blake2b_init(&ctx, 32, NULL, 0);
blake2b_update(&ctx, input, 80);
blake2b_final(&ctx, hash);
memcpy(output, hash, 32);
}
// ----------------------------------------------------------------
__device__ __forceinline__
static void G(const int r, const int i, uint64_t &a, uint64_t &b, uint64_t &c, uint64_t &d, uint64_t const m[16])
{
a = a + b + m[ blake2b_sigma[r][2*i] ];
((uint2*)&d)[0] = SWAPUINT2( ((uint2*)&d)[0] ^ ((uint2*)&a)[0] );
c = c + d;
((uint2*)&b)[0] = ROR24( ((uint2*)&b)[0] ^ ((uint2*)&c)[0] );
a = a + b + m[ blake2b_sigma[r][2*i+1] ];
((uint2*)&d)[0] = ROR16( ((uint2*)&d)[0] ^ ((uint2*)&a)[0] );
c = c + d;
((uint2*)&b)[0] = ROR2( ((uint2*)&b)[0] ^ ((uint2*)&c)[0], 63U);
}
#define ROUND(r) \
G(r, 0, v[0], v[4], v[ 8], v[12], m); \
G(r, 1, v[1], v[5], v[ 9], v[13], m); \
G(r, 2, v[2], v[6], v[10], v[14], m); \
G(r, 3, v[3], v[7], v[11], v[15], m); \
G(r, 4, v[0], v[5], v[10], v[15], m); \
G(r, 5, v[1], v[6], v[11], v[12], m); \
G(r, 6, v[2], v[7], v[ 8], v[13], m); \
G(r, 7, v[3], v[4], v[ 9], v[14], m);
__global__
//__launch_bounds__(128, 8) /* to force 64 regs */
void blake2b_gpu_hash(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint2 target2)
{
const uint32_t nonce = (blockDim.x * blockIdx.x + threadIdx.x) + startNonce;
uint64_t m[16];
m[0] = d_data[0];
m[1] = d_data[1];
m[2] = d_data[2];
m[3] = d_data[3];
m[4] = d_data[4];
m[5] = d_data[5];
m[6] = d_data[6];
m[7] = d_data[7];
m[8] = d_data[8];
((uint32_t*)m)[18] = AS_U32(&d_data[9]);
((uint32_t*)m)[19] = nonce;
m[10] = m[11] = 0;
m[12] = m[13] = 0;
m[14] = m[15] = 0;
uint64_t v[16] = {
0x6a09e667f2bdc928, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179,
0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
0x510e527fade68281, 0x9b05688c2b3e6c1f, 0xe07c265404be4294, 0x5be0cd19137e2179
};
ROUND( 0);
ROUND( 1);
ROUND( 2);
ROUND( 3);
ROUND( 4);
ROUND( 5);
ROUND( 6);
ROUND( 7);
ROUND( 8);
ROUND( 9);
ROUND(10);
ROUND(11);
uint2 last = vectorize(v[3] ^ v[11] ^ 0xa54ff53a5f1d36f1);
if (last.y <= target2.y && last.x <= target2.x) {
resNonce[1] = resNonce[0];
resNonce[0] = nonce;
}
}
__host__
uint32_t blake2b_hash_cuda(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint2 target2, uint32_t &secNonce)
{
uint32_t resNonces[NBN] = { UINT32_MAX, UINT32_MAX };
uint32_t result = UINT32_MAX;
dim3 grid((threads + TPB-1)/TPB);
dim3 block(TPB);
/* Check error on Ctrl+C or kill to prevent segfaults on exit */
if (cudaMemset(d_resNonces[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess)
return result;
blake2b_gpu_hash <<<grid, block, 8>>> (threads, startNonce, d_resNonces[thr_id], target2);
cudaThreadSynchronize();
if (cudaSuccess == cudaMemcpy(resNonces, d_resNonces[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
result = resNonces[0];
secNonce = resNonces[1];
if (secNonce == result) secNonce = UINT32_MAX;
}
return result;
}
__host__
void blake2b_setBlock(uint32_t *data)
{
CUDA_SAFE_CALL(cudaMemcpyToSymbol(d_data, data, 80, 0, cudaMemcpyHostToDevice));
}
static bool init[MAX_GPUS] = { 0 };
int scanhash_blake2b(int thr_id, struct work *work, uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t _ALIGN(A) endiandata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
int dev_id = device_map[thr_id];
int intensity = (device_sm[dev_id] >= 500 && !is_windows()) ? 28 : 25;
if (device_sm[dev_id] >= 520 && is_windows()) intensity = 26;
if (device_sm[dev_id] < 350) intensity = 22;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
if (!init[thr_id])
{
cudaSetDevice(dev_id);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage (linux)
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
CUDA_LOG_ERROR();
}
gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput);
CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonces[thr_id], NBN * sizeof(uint32_t)), -1);
init[thr_id] = true;
}
for (int i=0; i < 20; i++)
be32enc(&endiandata[i], pdata[i]);
const uint2 target = make_uint2(ptarget[6], ptarget[7]);
blake2b_setBlock(endiandata);
do {
work->nonces[0] = blake2b_hash_cuda(thr_id, throughput, pdata[19], target, work->nonces[1]);
*hashes_done = pdata[19] - first_nonce + throughput;
if (work->nonces[0] != UINT32_MAX)
{
const uint32_t Htarg = ptarget[7];
uint32_t _ALIGN(A) vhash[8];
work->valid_nonces = 0;
endiandata[19] = work->nonces[0];
blake2b_hash(vhash, endiandata);
if (vhash[7] <= Htarg && fulltest(vhash, ptarget)) {
work_set_target_ratio(work, vhash);
work->valid_nonces++;
pdata[19] = work->nonces[0] + 1;
} else {
gpu_increment_reject(thr_id);
}
if (work->nonces[1] != UINT32_MAX) {
endiandata[19] = work->nonces[1];
blake2b_hash(vhash, endiandata);
if (vhash[7] <= Htarg && fulltest(vhash, ptarget)) {
if (bn_hash_target_ratio(vhash, ptarget) > work->shareratio[0]) {
work->sharediff[1] = work->sharediff[0];
work->shareratio[1] = work->shareratio[0];
xchg(work->nonces[1], work->nonces[0]);
work_set_target_ratio(work, vhash);
} else {
bn_set_target_ratio(work, vhash, 1);
}
work->valid_nonces++;
pdata[19] = max(work->nonces[0], work->nonces[1]) + 1; // next scan start
} else {
gpu_increment_reject(thr_id);
}
}
if (work->valid_nonces) {
work->nonces[0] = cuda_swab32(work->nonces[0]);
work->nonces[1] = cuda_swab32(work->nonces[1]);
return work->valid_nonces;
}
}
if ((uint64_t) throughput + pdata[19] >= max_nonce) {
pdata[19] = max_nonce;
break;
}
pdata[19] += throughput;
} while (!work_restart[thr_id].restart);
*hashes_done = pdata[19] - first_nonce;
return 0;
}
// cleanup
extern "C" void free_blake2b(int thr_id)
{
if (!init[thr_id])
return;
//cudaThreadSynchronize();
cudaFree(d_resNonces[thr_id]);
init[thr_id] = false;
cudaDeviceSynchronize();
}