-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathtranslate.rs
951 lines (876 loc) · 39.9 KB
/
translate.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
use crate::component::*;
use crate::ScopeVec;
use crate::{
EntityIndex, ModuleEnvironment, ModuleTranslation, ModuleTypesBuilder, PrimaryMap,
SignatureIndex, Tunables, TypeConvert, WasmHeapType, WasmType,
};
use anyhow::{bail, Result};
use indexmap::IndexMap;
use std::collections::HashMap;
use std::mem;
use wasmparser::types::{
AliasableResourceId, ComponentEntityType, ComponentFuncTypeId, ComponentInstanceTypeId, Types,
};
use wasmparser::{Chunk, ComponentImportName, Encoding, Parser, Payload, Validator};
mod adapt;
pub use self::adapt::*;
mod inline;
/// Structure used to translate a component and parse it.
pub struct Translator<'a, 'data> {
/// The current component being translated.
///
/// This will get swapped out as translation traverses the body of a
/// component and a sub-component is entered or left.
result: Translation<'data>,
/// Current state of parsing a binary component. Note that like `result`
/// this will change as the component is traversed.
parser: Parser,
/// Stack of lexical scopes that are in-progress but not finished yet.
///
/// This is pushed to whenever a component is entered and popped from
/// whenever a component is left. Each lexical scope also contains
/// information about the variables that it is currently required to close
/// over which is threaded into the current in-progress translation of
/// the sub-component which pushed a scope here.
lexical_scopes: Vec<LexicalScope<'data>>,
/// The validator in use to verify that the raw input binary is a valid
/// component.
validator: &'a mut Validator,
/// Type information shared for the entire component.
///
/// This builder is also used for all core wasm modules found to intern
/// signatures across all modules.
types: PreInliningComponentTypes<'a>,
/// The compiler configuration provided by the embedder.
tunables: &'a Tunables,
/// Auxiliary location to push generated adapter modules onto.
scope_vec: &'data ScopeVec<u8>,
/// Completely translated core wasm modules that have been found so far.
///
/// Note that this translation only involves learning about type
/// information and functions are not actually compiled here.
static_modules: PrimaryMap<StaticModuleIndex, ModuleTranslation<'data>>,
/// Completely translated components that have been found so far.
///
/// As frames are popped from `lexical_scopes` their completed component
/// will be pushed onto this list.
static_components: PrimaryMap<StaticComponentIndex, Translation<'data>>,
}
/// Representation of the syntactic scope of a component meaning where it is
/// and what its state is at in the binary format.
///
/// These scopes are pushed and popped when a sub-component starts being
/// parsed and finishes being parsed. The main purpose of this frame is to
/// have a `ClosedOverVars` field which encapsulates data that is inherited
/// from the scope specified into the component being translated just beneath
/// it.
///
/// This structure exists to implement outer aliases to components and modules.
/// When a component or module is closed over then that means it needs to be
/// inherited in a sense to the component which actually had the alias. This is
/// achieved with a deceptively simple scheme where each parent of the
/// component with the alias will inherit the component from the desired
/// location.
///
/// For example with a component structure that looks like:
///
/// ```wasm
/// (component $A
/// (core module $M)
/// (component $B
/// (component $C
/// (alias outer $A $M (core module))
/// )
/// )
/// )
/// ```
///
/// here the `C` component is closing over `M` located in the root component
/// `A`. When `C` is being translated the `lexical_scopes` field will look like
/// `[A, B]`. When the alias is encountered (for module index 0) this will
/// place a `ClosedOverModule::Local(0)` entry into the `closure_args` field of
/// `A`'s frame. This will in turn give a `ModuleUpvarIndex` which is then
/// inserted into `closure_args` in `B`'s frame. This produces yet another
/// `ModuleUpvarIndex` which is finally inserted into `C`'s module index space
/// via `LocalInitializer::AliasModuleUpvar` with the last index.
///
/// All of these upvar indices and such are interpreted in the "inline" phase
/// of compilation and not at runtime. This means that when `A` is being
/// instantiated one of its initializers will be
/// `LocalInitializer::ComponentStatic`. This starts to create `B` and the
/// variables captured for `B` are listed as local module 0, or `M`. This list
/// is then preserved in the definition of the component `B` and later reused
/// by `C` again to finally get access to the closed over component.
///
/// Effectively the scopes are managed hierarchically where a reference to an
/// outer variable automatically injects references into all parents up to
/// where the reference is. This variable scopes are the processed during
/// inlining where a component definition is a reference to the static
/// component information (`Translation`) plus closed over variables
/// (`ComponentClosure` during inlining).
struct LexicalScope<'data> {
/// Current state of translating the `translation` below.
parser: Parser,
/// Current state of the component's translation as found so far.
translation: Translation<'data>,
/// List of captures that `translation` will need to process to create the
/// sub-component which is directly beneath this lexical scope.
closure_args: ClosedOverVars,
}
/// A "local" translation of a component.
///
/// This structure is used as a sort of in-progress translation of a component.
/// This is not `Component` which is the final form as consumed by Wasmtime
/// at runtime. Instead this is a fairly simple representation of a component
/// where almost everything is ordered as a list of initializers. The binary
/// format is translated to a list of initializers here which is later processed
/// during "inlining" to produce a final component with the final set of
/// initializers.
#[derive(Default)]
struct Translation<'data> {
/// Instructions which form this component.
///
/// There is one initializer for all members of each index space, and all
/// index spaces are incrementally built here as the initializer list is
/// processed.
initializers: Vec<LocalInitializer<'data>>,
/// The list of exports from this component, as pairs of names and an
/// index into an index space of what's being exported.
exports: IndexMap<&'data str, ComponentItem>,
/// Type information produced by `wasmparser` for this component.
///
/// This type information is available after the translation of the entire
/// component has finished, e.g. for the `inline` pass, but beforehand this
/// is set to `None`.
types: Option<Types>,
}
// NB: the type information contained in `LocalInitializer` should always point
// to `wasmparser`'s type information, not Wasmtime's. Component types cannot be
// fully determined due to resources until instantiations are known which is
// tracked during the inlining phase. This means that all type information below
// is straight from `wasmparser`'s passes.
#[allow(missing_docs)]
enum LocalInitializer<'data> {
// imports
Import(ComponentImportName<'data>, ComponentEntityType),
// canonical function sections
Lower {
func: ComponentFuncIndex,
lower_ty: ComponentFuncTypeId,
canonical_abi: SignatureIndex,
options: LocalCanonicalOptions,
},
Lift(ComponentFuncTypeId, FuncIndex, LocalCanonicalOptions),
// resources
Resource(AliasableResourceId, WasmType, Option<FuncIndex>),
ResourceNew(AliasableResourceId, SignatureIndex),
ResourceRep(AliasableResourceId, SignatureIndex),
ResourceDrop(AliasableResourceId, SignatureIndex),
// core wasm modules
ModuleStatic(StaticModuleIndex),
// core wasm module instances
ModuleInstantiate(ModuleIndex, HashMap<&'data str, ModuleInstanceIndex>),
ModuleSynthetic(HashMap<&'data str, EntityIndex>),
// components
ComponentStatic(StaticComponentIndex, ClosedOverVars),
// component instances
ComponentInstantiate(
ComponentIndex,
HashMap<&'data str, ComponentItem>,
ComponentInstanceTypeId,
),
ComponentSynthetic(HashMap<&'data str, ComponentItem>),
// alias section
AliasExportFunc(ModuleInstanceIndex, &'data str),
AliasExportTable(ModuleInstanceIndex, &'data str),
AliasExportGlobal(ModuleInstanceIndex, &'data str),
AliasExportMemory(ModuleInstanceIndex, &'data str),
AliasComponentExport(ComponentInstanceIndex, &'data str),
AliasModule(ClosedOverModule),
AliasComponent(ClosedOverComponent),
// export section
Export(ComponentItem),
}
/// The "closure environment" of components themselves.
///
/// For more information see `LexicalScope`.
#[derive(Default)]
struct ClosedOverVars {
components: PrimaryMap<ComponentUpvarIndex, ClosedOverComponent>,
modules: PrimaryMap<ModuleUpvarIndex, ClosedOverModule>,
}
/// Description how a component is closed over when the closure variables for
/// a component are being created.
///
/// For more information see `LexicalScope`.
enum ClosedOverComponent {
/// A closed over component is coming from the local component's index
/// space, meaning a previously defined component is being captured.
Local(ComponentIndex),
/// A closed over component is coming from our own component's list of
/// upvars. This list was passed to us by our enclosing component, which
/// will eventually have bottomed out in closing over a `Local` component
/// index for some parent component.
Upvar(ComponentUpvarIndex),
}
/// Same as `ClosedOverComponent`, but for modules.
enum ClosedOverModule {
Local(ModuleIndex),
Upvar(ModuleUpvarIndex),
}
/// Representation of canonical ABI options.
struct LocalCanonicalOptions {
string_encoding: StringEncoding,
memory: Option<MemoryIndex>,
realloc: Option<FuncIndex>,
post_return: Option<FuncIndex>,
}
enum Action {
KeepGoing,
Skip(usize),
Done,
}
impl<'a, 'data> Translator<'a, 'data> {
/// Creates a new translation state ready to translate a component.
pub fn new(
tunables: &'a Tunables,
validator: &'a mut Validator,
types: &'a mut ComponentTypesBuilder,
scope_vec: &'data ScopeVec<u8>,
) -> Self {
Self {
result: Translation::default(),
tunables,
validator,
types: PreInliningComponentTypes::new(types),
parser: Parser::new(0),
lexical_scopes: Vec::new(),
static_components: Default::default(),
static_modules: Default::default(),
scope_vec,
}
}
/// Translates the binary `component`.
///
/// This is the workhorse of compilation which will parse all of
/// `component` and create type information for Wasmtime and such. The
/// `component` does not have to be valid and it will be validated during
/// compilation.
///
/// The result of this function is a tuple of the final component's
/// description plus a list of core wasm modules found within the
/// component. The component's description actually erases internal
/// components, instances, etc, as much as it can. Instead `Component`
/// retains a flat list of initializers (no nesting) which was created
/// as part of compilation from the nested structure of the original
/// component.
///
/// The list of core wasm modules found is provided to allow compiling
/// modules externally in parallel. Additionally initializers in
/// `Component` may refer to the modules in the map returned by index.
///
/// # Errors
///
/// This function will return an error if the `component` provided is
/// invalid.
pub fn translate(
mut self,
component: &'data [u8],
) -> Result<(
ComponentTranslation,
PrimaryMap<StaticModuleIndex, ModuleTranslation<'data>>,
)> {
// First up wasmparser is used to actually perform the translation and
// validation of this component. This will produce a list of core wasm
// modules in addition to components which are found during the
// translation process. When doing this only a `Translation` is created
// which is a simple representation of a component.
let mut remaining = component;
loop {
let payload = match self.parser.parse(remaining, true)? {
Chunk::Parsed { payload, consumed } => {
remaining = &remaining[consumed..];
payload
}
Chunk::NeedMoreData(_) => unreachable!(),
};
match self.translate_payload(payload, component)? {
Action::KeepGoing => {}
Action::Skip(n) => remaining = &remaining[n..],
Action::Done => break,
}
}
assert!(remaining.is_empty());
assert!(self.lexical_scopes.is_empty());
// ... after translation initially finishes the next pass is performed
// which we're calling "inlining". This will "instantiate" the root
// component, following nested component instantiations, creating a
// global list of initializers along the way. This phase uses the simple
// initializers in each component to track dataflow of host imports and
// internal references to items throughout a component at compile-time.
// The produce initializers in the final `Component` are intended to be
// much simpler than the original component and more efficient for
// Wasmtime to process at runtime as well (e.g. no string lookups as
// most everything is done through indices instead).
let mut component = inline::run(
self.types.types_mut_for_inlining(),
&self.result,
&self.static_modules,
&self.static_components,
)?;
self.partition_adapter_modules(&mut component);
Ok((component.finish(), self.static_modules))
}
fn translate_payload(
&mut self,
payload: Payload<'data>,
component: &'data [u8],
) -> Result<Action> {
match payload {
Payload::Version {
num,
encoding,
range,
} => {
self.validator.version(num, encoding, &range)?;
match encoding {
Encoding::Component => {}
Encoding::Module => {
bail!("attempted to parse a wasm module with a component parser");
}
}
}
Payload::End(offset) => {
assert!(self.result.types.is_none());
self.result.types = Some(self.validator.end(offset)?);
// Exit the current lexical scope. If there is no parent (no
// frame currently on the stack) then translation is finished.
// Otherwise that means that a nested component has been
// completed and is recorded as such.
let LexicalScope {
parser,
translation,
closure_args,
} = match self.lexical_scopes.pop() {
Some(frame) => frame,
None => return Ok(Action::Done),
};
self.parser = parser;
let component = mem::replace(&mut self.result, translation);
let static_idx = self.static_components.push(component);
self.result
.initializers
.push(LocalInitializer::ComponentStatic(static_idx, closure_args));
}
// When we see a type section the types are validated and then
// translated into Wasmtime's representation. Each active type
// definition is recorded in the `ComponentTypesBuilder` tables, or
// this component's active scope.
//
// Note that the push/pop of the component types scope happens above
// in `Version` and `End` since multiple type sections can appear
// within a component.
Payload::ComponentTypeSection(s) => {
let mut component_type_index =
self.validator.types(0).unwrap().component_type_count();
self.validator.component_type_section(&s)?;
// Look for resource types and if a local resource is defined
// then an initializer is added to define that resource type and
// reference its destructor.
let types = self.validator.types(0).unwrap();
for ty in s {
match ty? {
wasmparser::ComponentType::Resource { rep, dtor } => {
let rep = self.types.convert_valtype(rep);
let id = types
.component_any_type_at(component_type_index)
.unwrap_resource();
let dtor = dtor.map(FuncIndex::from_u32);
self.result
.initializers
.push(LocalInitializer::Resource(id, rep, dtor));
}
// no extra processing needed
wasmparser::ComponentType::Defined(_)
| wasmparser::ComponentType::Func(_)
| wasmparser::ComponentType::Instance(_)
| wasmparser::ComponentType::Component(_) => {}
}
component_type_index += 1;
}
}
Payload::CoreTypeSection(s) => {
self.validator.core_type_section(&s)?;
}
// Processing the import section at this point is relatively simple
// which is to simply record the name of the import and the type
// information associated with it.
Payload::ComponentImportSection(s) => {
self.validator.component_import_section(&s)?;
for import in s {
let import = import?;
let types = self.validator.types(0).unwrap();
let ty = types
.component_entity_type_of_import(import.name.0)
.unwrap();
self.result
.initializers
.push(LocalInitializer::Import(import.name, ty));
}
}
// Entries in the canonical section will get initializers recorded
// with the listed options for lifting/lowering.
Payload::ComponentCanonicalSection(s) => {
let mut core_func_index = self.validator.types(0).unwrap().function_count();
self.validator.component_canonical_section(&s)?;
for func in s {
let types = self.validator.types(0).unwrap();
let init = match func? {
wasmparser::CanonicalFunction::Lift {
type_index,
core_func_index,
options,
} => {
let ty = types.component_any_type_at(type_index).unwrap_func();
let func = FuncIndex::from_u32(core_func_index);
let options = self.canonical_options(&options);
LocalInitializer::Lift(ty, func, options)
}
wasmparser::CanonicalFunction::Lower {
func_index,
options,
} => {
let lower_ty = types.component_function_at(func_index);
let func = ComponentFuncIndex::from_u32(func_index);
let options = self.canonical_options(&options);
let canonical_abi = self.core_func_signature(core_func_index);
core_func_index += 1;
LocalInitializer::Lower {
func,
options,
canonical_abi,
lower_ty,
}
}
wasmparser::CanonicalFunction::ResourceNew { resource } => {
let resource = types.component_any_type_at(resource).unwrap_resource();
let ty = self.core_func_signature(core_func_index);
core_func_index += 1;
LocalInitializer::ResourceNew(resource, ty)
}
wasmparser::CanonicalFunction::ResourceDrop { resource } => {
let resource = types.component_any_type_at(resource).unwrap_resource();
let ty = self.core_func_signature(core_func_index);
core_func_index += 1;
LocalInitializer::ResourceDrop(resource, ty)
}
wasmparser::CanonicalFunction::ResourceRep { resource } => {
let resource = types.component_any_type_at(resource).unwrap_resource();
let ty = self.core_func_signature(core_func_index);
core_func_index += 1;
LocalInitializer::ResourceRep(resource, ty)
}
};
self.result.initializers.push(init);
}
}
// Core wasm modules are translated inline directly here with the
// `ModuleEnvironment` from core wasm compilation. This will return
// to the caller the size of the module so it knows how many bytes
// of the input are skipped.
//
// Note that this is just initial type translation of the core wasm
// module and actual function compilation is deferred until this
// entire process has completed.
Payload::ModuleSection { parser, range } => {
self.validator.module_section(&range)?;
let translation = ModuleEnvironment::new(
self.tunables,
self.validator,
self.types.module_types_builder(),
)
.translate(parser, &component[range.start..range.end])?;
let static_idx = self.static_modules.push(translation);
self.result
.initializers
.push(LocalInitializer::ModuleStatic(static_idx));
return Ok(Action::Skip(range.end - range.start));
}
// When a sub-component is found then the current translation state
// is pushed onto the `lexical_scopes` stack. This will subsequently
// get popped as part of `Payload::End` processing above.
//
// Note that the set of closure args for this new lexical scope
// starts empty since it will only get populated if translation of
// the nested component ends up aliasing some outer module or
// component.
Payload::ComponentSection { parser, range } => {
self.validator.component_section(&range)?;
self.lexical_scopes.push(LexicalScope {
parser: mem::replace(&mut self.parser, parser),
translation: mem::take(&mut self.result),
closure_args: ClosedOverVars::default(),
});
}
// Both core wasm instances and component instances record
// initializers of what form of instantiation is performed which
// largely just records the arguments given from wasmparser into a
// `HashMap` for processing later during inlining.
Payload::InstanceSection(s) => {
self.validator.instance_section(&s)?;
for instance in s {
let init = match instance? {
wasmparser::Instance::Instantiate { module_index, args } => {
let index = ModuleIndex::from_u32(module_index);
self.instantiate_module(index, &args)
}
wasmparser::Instance::FromExports(exports) => {
self.instantiate_module_from_exports(&exports)
}
};
self.result.initializers.push(init);
}
}
Payload::ComponentInstanceSection(s) => {
let mut index = self.validator.types(0).unwrap().component_instance_count();
self.validator.component_instance_section(&s)?;
for instance in s {
let init = match instance? {
wasmparser::ComponentInstance::Instantiate {
component_index,
args,
} => {
let types = self.validator.types(0).unwrap();
let ty = types.component_instance_at(index);
let index = ComponentIndex::from_u32(component_index);
self.instantiate_component(index, &args, ty)?
}
wasmparser::ComponentInstance::FromExports(exports) => {
self.instantiate_component_from_exports(&exports)?
}
};
self.result.initializers.push(init);
index += 1;
}
}
// Exports don't actually fill out the `initializers` array but
// instead fill out the one other field in a `Translation`, the
// `exports` field (as one might imagine). This for now simply
// records the index of what's exported and that's tracked further
// later during inlining.
Payload::ComponentExportSection(s) => {
self.validator.component_export_section(&s)?;
for export in s {
let export = export?;
let item = self.kind_to_item(export.kind, export.index)?;
let prev = self.result.exports.insert(export.name.0, item);
assert!(prev.is_none());
self.result
.initializers
.push(LocalInitializer::Export(item));
}
}
Payload::ComponentStartSection { start, range } => {
self.validator.component_start_section(&start, &range)?;
unimplemented!("component start section");
}
// Aliases of instance exports (either core or component) will be
// recorded as an initializer of the appropriate type with outer
// aliases handled specially via upvars and type processing.
Payload::ComponentAliasSection(s) => {
self.validator.component_alias_section(&s)?;
for alias in s {
let init = match alias? {
wasmparser::ComponentAlias::InstanceExport {
kind: _,
instance_index,
name,
} => {
let instance = ComponentInstanceIndex::from_u32(instance_index);
LocalInitializer::AliasComponentExport(instance, name)
}
wasmparser::ComponentAlias::Outer { kind, count, index } => {
self.alias_component_outer(kind, count, index);
continue;
}
wasmparser::ComponentAlias::CoreInstanceExport {
kind,
instance_index,
name,
} => {
let instance = ModuleInstanceIndex::from_u32(instance_index);
self.alias_module_instance_export(kind, instance, name)
}
};
self.result.initializers.push(init);
}
}
// All custom sections are ignored by Wasmtime at this time.
//
// FIXME(WebAssembly/component-model#14): probably want to specify
// and parse a `name` section here.
Payload::CustomSection { .. } => {}
// Anything else is either not reachable since we never enable the
// feature in Wasmtime or we do enable it and it's a bug we don't
// implement it, so let validation take care of most errors here and
// if it gets past validation provide a helpful error message to
// debug.
other => {
self.validator.payload(&other)?;
panic!("unimplemented section {other:?}");
}
}
Ok(Action::KeepGoing)
}
fn instantiate_module(
&mut self,
module: ModuleIndex,
raw_args: &[wasmparser::InstantiationArg<'data>],
) -> LocalInitializer<'data> {
let mut args = HashMap::with_capacity(raw_args.len());
for arg in raw_args {
match arg.kind {
wasmparser::InstantiationArgKind::Instance => {
let idx = ModuleInstanceIndex::from_u32(arg.index);
args.insert(arg.name, idx);
}
}
}
LocalInitializer::ModuleInstantiate(module, args)
}
/// Creates a synthetic module from the list of items currently in the
/// module and their given names.
fn instantiate_module_from_exports(
&mut self,
exports: &[wasmparser::Export<'data>],
) -> LocalInitializer<'data> {
let mut map = HashMap::with_capacity(exports.len());
for export in exports {
let idx = match export.kind {
wasmparser::ExternalKind::Func => {
let index = FuncIndex::from_u32(export.index);
EntityIndex::Function(index)
}
wasmparser::ExternalKind::Table => {
let index = TableIndex::from_u32(export.index);
EntityIndex::Table(index)
}
wasmparser::ExternalKind::Memory => {
let index = MemoryIndex::from_u32(export.index);
EntityIndex::Memory(index)
}
wasmparser::ExternalKind::Global => {
let index = GlobalIndex::from_u32(export.index);
EntityIndex::Global(index)
}
// doesn't get past validation
wasmparser::ExternalKind::Tag => unimplemented!("wasm exceptions"),
};
map.insert(export.name, idx);
}
LocalInitializer::ModuleSynthetic(map)
}
fn instantiate_component(
&mut self,
component: ComponentIndex,
raw_args: &[wasmparser::ComponentInstantiationArg<'data>],
ty: ComponentInstanceTypeId,
) -> Result<LocalInitializer<'data>> {
let mut args = HashMap::with_capacity(raw_args.len());
for arg in raw_args {
let idx = self.kind_to_item(arg.kind, arg.index)?;
args.insert(arg.name, idx);
}
Ok(LocalInitializer::ComponentInstantiate(component, args, ty))
}
/// Creates a synthetic module from the list of items currently in the
/// module and their given names.
fn instantiate_component_from_exports(
&mut self,
exports: &[wasmparser::ComponentExport<'data>],
) -> Result<LocalInitializer<'data>> {
let mut map = HashMap::with_capacity(exports.len());
for export in exports {
let idx = self.kind_to_item(export.kind, export.index)?;
map.insert(export.name.0, idx);
}
Ok(LocalInitializer::ComponentSynthetic(map))
}
fn kind_to_item(
&mut self,
kind: wasmparser::ComponentExternalKind,
index: u32,
) -> Result<ComponentItem> {
Ok(match kind {
wasmparser::ComponentExternalKind::Func => {
let index = ComponentFuncIndex::from_u32(index);
ComponentItem::Func(index)
}
wasmparser::ComponentExternalKind::Module => {
let index = ModuleIndex::from_u32(index);
ComponentItem::Module(index)
}
wasmparser::ComponentExternalKind::Instance => {
let index = ComponentInstanceIndex::from_u32(index);
ComponentItem::ComponentInstance(index)
}
wasmparser::ComponentExternalKind::Component => {
let index = ComponentIndex::from_u32(index);
ComponentItem::Component(index)
}
wasmparser::ComponentExternalKind::Value => {
unimplemented!("component values");
}
wasmparser::ComponentExternalKind::Type => {
let types = self.validator.types(0).unwrap();
let ty = types.component_any_type_at(index);
ComponentItem::Type(ty)
}
})
}
fn alias_module_instance_export(
&mut self,
kind: wasmparser::ExternalKind,
instance: ModuleInstanceIndex,
name: &'data str,
) -> LocalInitializer<'data> {
match kind {
wasmparser::ExternalKind::Func => LocalInitializer::AliasExportFunc(instance, name),
wasmparser::ExternalKind::Memory => LocalInitializer::AliasExportMemory(instance, name),
wasmparser::ExternalKind::Table => LocalInitializer::AliasExportTable(instance, name),
wasmparser::ExternalKind::Global => LocalInitializer::AliasExportGlobal(instance, name),
wasmparser::ExternalKind::Tag => {
unimplemented!("wasm exceptions");
}
}
}
fn alias_component_outer(
&mut self,
kind: wasmparser::ComponentOuterAliasKind,
count: u32,
index: u32,
) {
match kind {
wasmparser::ComponentOuterAliasKind::CoreType
| wasmparser::ComponentOuterAliasKind::Type => {}
// For more information about the implementation of outer aliases
// see the documentation of `LexicalScope`. Otherwise though the
// main idea here is that the data to close over starts as `Local`
// and then transitions to `Upvar` as its inserted into the parents
// in order from target we're aliasing back to the current
// component.
wasmparser::ComponentOuterAliasKind::CoreModule => {
let index = ModuleIndex::from_u32(index);
let mut module = ClosedOverModule::Local(index);
let depth = self.lexical_scopes.len() - (count as usize);
for frame in self.lexical_scopes[depth..].iter_mut() {
module = ClosedOverModule::Upvar(frame.closure_args.modules.push(module));
}
// If the `module` is still `Local` then the `depth` was 0 and
// it's an alias into our own space. Otherwise it's switched to
// an upvar and will index into the upvar space. Either way
// it's just plumbed directly into the initializer.
self.result
.initializers
.push(LocalInitializer::AliasModule(module));
}
wasmparser::ComponentOuterAliasKind::Component => {
let index = ComponentIndex::from_u32(index);
let mut component = ClosedOverComponent::Local(index);
let depth = self.lexical_scopes.len() - (count as usize);
for frame in self.lexical_scopes[depth..].iter_mut() {
component =
ClosedOverComponent::Upvar(frame.closure_args.components.push(component));
}
self.result
.initializers
.push(LocalInitializer::AliasComponent(component));
}
}
}
fn canonical_options(&self, opts: &[wasmparser::CanonicalOption]) -> LocalCanonicalOptions {
let mut ret = LocalCanonicalOptions {
string_encoding: StringEncoding::Utf8,
memory: None,
realloc: None,
post_return: None,
};
for opt in opts {
match opt {
wasmparser::CanonicalOption::UTF8 => {
ret.string_encoding = StringEncoding::Utf8;
}
wasmparser::CanonicalOption::UTF16 => {
ret.string_encoding = StringEncoding::Utf16;
}
wasmparser::CanonicalOption::CompactUTF16 => {
ret.string_encoding = StringEncoding::CompactUtf16;
}
wasmparser::CanonicalOption::Memory(idx) => {
let idx = MemoryIndex::from_u32(*idx);
ret.memory = Some(idx);
}
wasmparser::CanonicalOption::Realloc(idx) => {
let idx = FuncIndex::from_u32(*idx);
ret.realloc = Some(idx);
}
wasmparser::CanonicalOption::PostReturn(idx) => {
let idx = FuncIndex::from_u32(*idx);
ret.post_return = Some(idx);
}
}
}
return ret;
}
fn core_func_signature(&mut self, idx: u32) -> SignatureIndex {
let types = self.validator.types(0).unwrap();
let id = types.core_function_at(idx);
let ty = types[id].unwrap_func();
let ty = self.types.convert_func_type(ty);
self.types.module_types_builder().wasm_func_type(id, ty)
}
}
impl Translation<'_> {
fn types_ref(&self) -> wasmparser::types::TypesRef<'_> {
self.types.as_ref().unwrap().as_ref()
}
}
/// A small helper module which wraps a `ComponentTypesBuilder` and attempts
/// to disallow access to mutable access to the builder before the inlining
/// pass.
///
/// Type information in this translation pass must be preserved at the
/// wasmparser layer of abstraction rather than being lowered into Wasmtime's
/// own type system. Only during inlining are types fully assigned because
/// that's when resource types become available as it's known which instance
/// defines which resource, or more concretely the same component instantiated
/// twice will produce two unique resource types unlike one as seen by
/// wasmparser within the component.
mod pre_inlining {
use super::*;
pub struct PreInliningComponentTypes<'a> {
types: &'a mut ComponentTypesBuilder,
}
impl<'a> PreInliningComponentTypes<'a> {
pub fn new(types: &'a mut ComponentTypesBuilder) -> Self {
Self { types }
}
pub fn module_types_builder(&mut self) -> &mut ModuleTypesBuilder {
self.types.module_types_builder_mut()
}
pub fn types(&self) -> &ComponentTypesBuilder {
self.types
}
// NB: this should in theory only be used for the `inline` phase of
// translation.
pub fn types_mut_for_inlining(&mut self) -> &mut ComponentTypesBuilder {
self.types
}
}
impl TypeConvert for PreInliningComponentTypes<'_> {
fn lookup_heap_type(&self, index: wasmparser::UnpackedIndex) -> WasmHeapType {
self.types.lookup_heap_type(index)
}
}
}
use pre_inlining::PreInliningComponentTypes;