-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_test.py
136 lines (114 loc) · 3.69 KB
/
gen_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python3
import argparse
from random import randint, seed, shuffle
def gen_stations(stations: "list[str]", max_line_len: int) -> "list[str]":
stns = list(stations)
max_line_len = min(max_line_len, len(stns))
r = randint(max(max_line_len - 3, 2), max(max_line_len, 2))
shuffle(stns)
return stns[:r]
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Generate test cases for the metro problem."
)
parser.add_argument("S", type=int, help="metro stations in the network (max 17576)")
parser.add_argument(
"max_popularity", type=int, help="greatest possible popularity to be generated"
)
parser.add_argument(
"max_link_weight",
type=int,
help="greatest possible link weight to be generated",
)
parser.add_argument(
"max_num_trains",
type=int,
help="maximum no. of trains per line to be generated",
)
parser.add_argument(
"max_line_len",
type=int,
help="maximum no. of stations per line to be generated",
)
parser.add_argument("N", type=int, help="ticks to run for the simulation")
parser.add_argument(
"--seed", type=int, default=42069, help="seed to feed random generator"
)
parser.add_argument(
"--num_ticks_to_print",
type=int,
default=5,
help="number of ticks (from the end) to output simulation state",
)
parser.add_argument(
"--num_train_lines",
type=int,
default=3,
help="no. of train lines to be generated",
)
return parser.parse_args()
def main() -> None:
args = parse_args()
seed(args.seed)
S = min(17576, args.S)
print(S)
print(args.num_train_lines)
Smap = {}
# stations
stations = [""] * S
for i in range(S):
if i:
print(" ", end="")
vs = []
x = i
# assume extreme upper bound of 17576 stations, but our actual testcases will be nowhere near it xD
# just note that the testcases we will be using to test will execute on bench_seq within 1.5 minutes on a i7-7700 machine.
for _ in range(3):
vs.append(x % 26)
x //= 26
vs.reverse()
for v in vs:
stations[i] += chr(97 + v)
print(stations[i], end="")
Smap[stations[i]] = i
print()
# popularities
for i in range(S):
if i:
print(" ", end="")
print(randint(1, args.max_popularity), end="")
print()
# adjacency matrix
mat = [[0] * S for _ in range(S)]
for i in range(S):
for j in range(S):
mat[i][j] = randint(1, args.max_link_weight) if i < j else mat[j][i]
# lines and bitmap for whether links should exist
bitmap = [[0] * S for _ in range(S)]
lines = ""
for i in range(args.num_train_lines):
currline = gen_stations(stations, args.max_line_len)
prev = -1
for s in currline:
if prev != -1:
bitmap[Smap[s]][prev] = 1
bitmap[prev][Smap[s]] = 1
prev = Smap[s]
lines += " ".join(currline) + "\n"
# printing adjacency matrix
for i in range(S):
for j in range(S):
if j:
print(" ", end="")
if bitmap[i][j]:
print(mat[i][j], end="")
else:
print(0, end="")
print()
print(lines, end="")
def ml(): return randint(max(0, args.max_num_trains - args.num_train_lines), args.max_num_trains)
print(args.N)
print(' '.join([str(ml()) for _ in range(args.num_train_lines)]))
print(args.num_ticks_to_print)
if __name__ == "__main__":
main()