-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha2c_approach.py
261 lines (197 loc) · 10.5 KB
/
a2c_approach.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
####################
# IMPORTS
####################
from tensorflow.contrib.layers import *
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import datetime
import time
import sys
from osim.env import *
from osim.http.client import Client
import argparse
import math
####################
# SOME FUNCTIONS
####################
def safe_entropy(logits): # function copied from openai baselines
a0 = logits - tf.reduce_max(logits, axis=-1, keepdims=True)
ea0 = tf.exp(a0)
z0 = tf.reduce_sum(ea0, axis=-1, keepdims=True)
p0 = ea0 / z0
return tf.reduce_sum(p0 * (tf.log(z0) - a0), axis=-1)
def visualize_layer_responses(what_to_plot, title):
plt.hist(what_to_plot.flatten(), 50, density=True, facecolor='g', alpha=0.75)
plt.title(title)
plt.show()
def transform_obs(obs_value, separate_tgtvelocity_field=False):
obs_value_transformed = np.asarray(obs_value)
if separate_tgtvelocity_field:
corr_shape_vel_tgtfield = np.reshape(obs_value_transformed[:242], (2, 11, 11))
center_value = corr_shape_vel_tgtfield[:, 5, 5]
center_value_normalized = center_value/(np.sqrt(center_value[0]*center_value[0] + center_value[1]*center_value[1])*2)
obs_value_transformed = np.hstack([obs_value_transformed[242:]/10, center_value_normalized[0], center_value_normalized[1]])
else:
obs_value_transformed[242:] = obs_value_transformed[242:]/5
obs_value_transformed = obs_value_transformed/10
return obs_value_transformed
####################
# INITIAL SETUP
####################
# Command line parameters
parser = argparse.ArgumentParser(description='Train or test neural net motor controller')
parser.add_argument('--log_path', action='store', default=".")
args = parser.parse_args()
# Load walking environment
env = L2M2019Env(visualize=False, difficulty=0)
env.reset()
nb_actions = env.action_space.shape[0]
separate_tgtvelocity_field = True
num_options = 2
####################
# NETWORK CREATION
####################
if separate_tgtvelocity_field:
x = tf.placeholder(tf.float32, shape=(None, 99), name='x')
env_obs_shape = 99
else:
x = tf.placeholder(tf.float32, shape=(None, 339), name='x')
env_obs_shape = 339
weights_init = tf.contrib.layers.variance_scaling_initializer()
bias_init = tf.constant_initializer(0.0)
# ACTOR(s)
a_h1 = fully_connected(inputs=x, num_outputs=444, activation_fn=tf.nn.relu, weights_initializer=weights_init, weights_regularizer=None, biases_initializer=bias_init, scope='a_h1')
a_h2 = fully_connected(inputs=a_h1, num_outputs=444, activation_fn=tf.nn.relu, weights_initializer=weights_init, weights_regularizer=None, biases_initializer=bias_init, scope='a_h2')
a_h3 = fully_connected(inputs=a_h2, num_outputs=444, activation_fn=tf.nn.relu, weights_initializer=weights_init, weights_regularizer=None, biases_initializer=bias_init, scope='a_h3')
actor_heads = []
actor_heads_logits = []
action_choices = np.arange(num_options)/(num_options - 1)
for i in range(nb_actions):
if num_options == 2:
actor_heads_logits.append(tf.concat([fully_connected(inputs=a_h3, num_outputs=1, activation_fn=None, weights_initializer=weights_init, weights_regularizer=None, biases_initializer=bias_init, scope='a' + str(i)), tf.zeros((tf.shape(x)[0], 1))], axis=1))
else:
actor_heads_logits.append(fully_connected(inputs=a_h3, num_outputs=num_options, activation_fn=None, weights_initializer=weights_init, weights_regularizer=None, biases_initializer=bias_init, scope='a' + str(i)))
actor_heads.append(tf.nn.softmax(actor_heads_logits[-1]))
# CRITIC
v_h1 = fully_connected(inputs=x, num_outputs=444, activation_fn=tf.nn.relu, weights_initializer=weights_init, weights_regularizer=None, biases_initializer=bias_init, scope='v_h1')
v_h2 = fully_connected(inputs=v_h1, num_outputs=444, activation_fn=tf.nn.relu, weights_initializer=weights_init, weights_regularizer=None, biases_initializer=bias_init, scope='v_h2')
v_h3 = fully_connected(inputs=v_h2, num_outputs=444, activation_fn=tf.nn.relu, weights_initializer=weights_init, weights_regularizer=None, biases_initializer=bias_init, scope='v_h3')
critic = fully_connected(inputs=v_h3, num_outputs=1, activation_fn=None, weights_initializer=weights_init, weights_regularizer=None, biases_initializer=bias_init, scope='vf')
####################
# NETWORK TRAINING
####################
lr = 1e-4
gamma = 0.99
vf_coeff = 0.5
adv_lambda = 0.97
max_grad_norm = 0.5
entropy_coeff = 0.01
num_training_steps = 5500
num_rollout_steps = 100
reward_avg_num = 10
log_interval = 100
ADV = tf.placeholder(tf.float32, shape=(None, 1), name='adv')
TARG = tf.placeholder(tf.float32, shape=(None, 1), name='targ')
A = [tf.placeholder(tf.int32, shape=(None, 1), name='a'+str(i)) for i in range(nb_actions)]
pg_loss = tf.reduce_mean([tf.expand_dims(tf.nn.softmax_cross_entropy_with_logits_v2(logits=actor_heads_logits[i], labels=tf.one_hot(A[i], num_options)), axis=1)*ADV for i in range(nb_actions)])
entropy_loss = tf.reduce_mean([safe_entropy(actor_heads_logits[i]) for i in range(nb_actions)])
critic_loss = tf.reduce_mean(tf.square(critic - TARG))
total_loss = pg_loss + vf_coeff*critic_loss - entropy_coeff*entropy_loss
params = tf.trainable_variables()
grads = tf.gradients(total_loss, params)
grads, grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
grads = list(zip(grads, params))
trainer = tf.train.AdamOptimizer(learning_rate=lr)
_train = trainer.apply_gradients(grads)
saver = tf.train.Saver()
learning_batch_actions = [np.zeros((num_rollout_steps, 1)) for i in range(nb_actions)]
learning_batch_input = np.zeros((num_rollout_steps, env_obs_shape))
learning_batch_delta_values = np.zeros((num_rollout_steps, 1))
learning_batch_adv_values = np.zeros((num_rollout_steps, 1))
learning_batch_targets = np.zeros((num_rollout_steps, 1))
helper_batch_dones = np.zeros((num_rollout_steps, 1))
episode_count = 0
ep_reward_count = 0
max_action_prob = 0
ep_rewards_list = []
ep_rewards_avged = []
timeout_fraction_list = []
timeout_fraction_avged = []
max_probability_stats2plot = []
obs = env.reset(obs_as_dict=False)
obs = transform_obs(obs, separate_tgtvelocity_field=separate_tgtvelocity_field)
action_supplier = np.zeros(nb_actions)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
state_value = sess.run(critic, feed_dict={x: np.reshape(obs, (1, env_obs_shape))})[0][0]
t_i = time.time()
t_interim = time.time()
for i in range(num_training_steps):
if i%log_interval == 0:
max_action_prob = 0
print("-------------------")
print("Training round %d"%i)
for j in range(num_rollout_steps):
all_actions_probs = sess.run(actor_heads, feed_dict={x: np.reshape(obs, (1, env_obs_shape))})
action_supplier = np.zeros(nb_actions)
for h in range(nb_actions):
action_supplier[h] = np.random.choice(action_choices, p=all_actions_probs[h][0])
for h in range(nb_actions):
learning_batch_actions[h][j, 0] = action_supplier[h]
learning_batch_input[j] = obs
obs, reward, done, info = env.step(action_supplier, obs_as_dict=False)
obs = transform_obs(obs, separate_tgtvelocity_field=separate_tgtvelocity_field)
ep_reward_count += reward
all_actions_probs_numpified = np.reshape(np.asarray(all_actions_probs), (22, 2))
max_action_prob += np.amin(np.amax(all_actions_probs_numpified, axis=1))
if done:
helper_batch_dones[j, 0] = 1
ep_rewards_list.append(ep_reward_count)
ep_reward_count = 0
episode_count += 1
if env.is_done():
timeout_fraction_list.append(0)
else:
timeout_fraction_list.append(1)
one_step_target = reward
obs = env.reset(obs_as_dict=False)
obs = transform_obs(obs, separate_tgtvelocity_field=separate_tgtvelocity_field)
new_state_value = sess.run(critic, feed_dict={x: np.reshape(obs, (1, env_obs_shape))})[0][0]
else:
helper_batch_dones[j, 0] = 0
new_state_value = sess.run(critic, feed_dict={x: np.reshape(obs, (1, env_obs_shape))})[0][0]
one_step_target = reward + gamma*new_state_value
learning_batch_delta_values[j, 0] = one_step_target - state_value
learning_batch_targets[j, 0] = state_value
state_value = new_state_value
if i%log_interval == 0:
timeout_fraction_avged.append(np.mean(timeout_fraction_list[-reward_avg_num:]))
max_probability_stats2plot.append(max_action_prob/num_rollout_steps)
ep_rewards_avged.append(np.mean(ep_rewards_list[-reward_avg_num:]))
print("Time for most current batch: " + str(datetime.timedelta(seconds=(time.time() - t_interim))))
print("Timeout fraction over last %d episodes: %0.2f"%(reward_avg_num, timeout_fraction_avged[-1]))
print("Average reward over last %d episodes: %0.2f"%(reward_avg_num, ep_rewards_avged[-1]))
print("Average max probability in current rollout: %0.2f"%(max_probability_stats2plot[-1]))
t_interim = time.time()
sys.stdout.flush()
# GAE (in PPO if less than 200 timesteps are remaining, just break out of the loop. lambda^200 will be close enought to 0)
running_total = 0
for j in range(num_rollout_steps):
if helper_batch_dones[num_rollout_steps-1-j, 0] == 1: # after the episode has finished, deltas will all be zero
running_total = 0
running_total = learning_batch_delta_values[num_rollout_steps-1-j, 0]*(1-np.power(adv_lambda, j+1)) + gamma*adv_lambda*running_total
learning_batch_adv_values[num_rollout_steps-1-j, 0] = running_total/(1-np.power(adv_lambda, j+1))
learning_batch_targets[num_rollout_steps-1-j, 0] += learning_batch_adv_values[num_rollout_steps-1-j, 0]
training_feeddict = {i:d for i, d in zip(A, learning_batch_actions)}
training_feeddict[ADV] = learning_batch_adv_values
training_feeddict[TARG] = learning_batch_targets
training_feeddict[x] = learning_batch_input
sess.run(_train, feed_dict=training_feeddict)
timeout_fraction_avged.append(np.mean(timeout_fraction_list[-reward_avg_num:]))
ep_rewards_avged.append(np.mean(ep_rewards_list[-reward_avg_num:]))
np.save(args.log_path + "/max_probability_stats2plot", np.asarray(max_probability_stats2plot))
np.save(args.log_path + "/timeout_fraction_avged", np.asarray(timeout_fraction_avged))
np.save(args.log_path + "/ep_rewards_avged", np.asarray(ep_rewards_avged))
saver.save(sess, args.log_path + "/model.ckpt")
print("Time for training to complete: " + str(datetime.timedelta(seconds=(time.time() - t_i))))