-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsample_similarity.py
61 lines (58 loc) · 2.12 KB
/
sample_similarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
from dl_simulation import random_phi, get_observations
from union_of_transforms import random_submatrix
from analyze_predictions import *
from scipy.spatial import distance
from scipy.stats import spearmanr
from sklearn.manifold import Isomap,MDS
import glob,os
import sys
fp,snr = sys.argv[1:]
snr = float(snr)
iters = 10
M = [10,25,50,100,200,400]
prefix = fp[:fp.rfind('/')]
X = np.load(fp)
thresh = np.percentile(X,99.5)
X[(X > thresh)] = thresh
for m in M:
Pearson = []
Spearman = []
Pearson_p = []
Spearman_p = []
Pearson_MDS = []
Pearson_Iso = []
Pearson_MDS_p = []
Pearson_Iso_p = []
Pearson_svd = []
Spearman_svd = []
Cluster = []
Cluster_svd = []
for _ in range(iters):
Phi = random_phi(m,X.shape[0])
Y,noise = get_observations(X,Phi,snr=snr,return_noise=True)
pearson_dist,spearman_dist = compare_distances(X,Y,pvalues=True)
cluster_similarity = compare_clusters(X,Y)
Pearson.append(pearson_dist[0])
Spearman.append(spearman_dist[0])
Pearson_p.append(pearson_dist[1])
Spearman_p.append(spearman_dist[1])
Cluster.append(cluster_similarity)
X_mds = MDS().fit_transform(X.T).T
Y_mds = MDS().fit_transform(Y.T).T
X_iso = Isomap().fit_transform(X.T).T
Y_iso = Isomap().fit_transform(Y.T).T
pearson_mds,spearman_mds = compare_distances(X_mds,Y_mds,pvalues=True)
pearson_iso,spearman_iso = compare_distances(X_iso,Y_iso,pvalues=True)
Pearson_MDS.append(pearson_mds[0])
Pearson_Iso.append(pearson_iso[0])
Pearson_MDS_p.append(pearson_mds[1])
Pearson_Iso_p.append(pearson_mds[1])
ua,sa,vta = np.linalg.svd(X+noise,full_matrices=False)
Vt = np.diag(sa).dot(vta)
pearson_svd,spearman_svd = compare_distances(Vt[:m],Y,pvalues=False)
cluster_similarity_svd = compare_clusters(Vt[:m],Y)
Pearson_svd.append(pearson_svd)
Spearman_svd.append(spearman_svd)
Cluster_svd.append(cluster_similarity_svd)
print prefix,m,np.average(Pearson),np.average(Pearson_p),np.average(Spearman),np.average(Spearman_p),np.average(Pearson_MDS),np.average(Pearson_MDS_p),np.average(Pearson_Iso),np.average(Pearson_Iso_p),np.average(Cluster),np.average(Pearson_svd),np.average(Spearman_svd),np.average(Cluster_svd)