-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDiagonalise.m
137 lines (110 loc) · 3 KB
/
Diagonalise.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
% This script calculates the two eigenstates of the effective fermionic
% Hamiltonian of the Kitaev Honeycomb model for a specified
% vortex/homology sector that are nearest to zero energy and then plots
% them
clear;
% set the parameters of the system
Nx = 30; Ny = 30;
Jx = 1; Jy = 1; Jz = 1;
lx = -1; ly = -1; k = 0.1;
% set the location of the defect (a,b) and length Ld
a = 10; b = 10; Ld = 10;
% Calculate the total number of site on the lattice
if Ld > 0
N = Nx*Ny-Ld;
else
N = Nx*Ny;
end
% set vortex configuration
V = [];
%V = [[10,20]',[30,20]']';
% construct Hamiltonian building blocks and the Hamiltonian
[delta_x,delta_y,Del_z,P] = HamiltonianDelta(Nx,Ny,a,b,Ld);
[delta_x,delta_y] = printVortexConfig(delta_x,delta_y,Nx,Ny,lx,ly,V);
H = constructHamiltonian(Jx,Jy,Jz,k,Nx,Ny,delta_x,delta_y,Del_z,a,b,Ld,P);
% diagonalise the Hamiltonain
[U,EH] = eig(full(H));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% plotting the first mode
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% replace the degrees of freedom that were projected out when the defect
% was introduced with zeros
NN = size(P);
Z = spalloc(NN(1),NN(2),1);
W = U(:,N);
W = [[P',Z']',[Z',P']']*W;
% reshape array to match dimensions of the model's lattice
Psi = reshape(W(1:Nx*Ny),[Nx,Ny]);
% set colors to be used to represent complex phase
Ac = [0 0 1]; Bc = [0 1 0]; Cc = [1 0 0]; Dc = [1 1 0];
Psi = Psi.'; % get correct orientation of matrix
%allocate memory to color map
NN = size(Psi);
C = zeros(NN(1),NN(2),3);
% Fill color map with colors determined by complex phase
for x = 1:NN(1)
for y = 1:NN(2)
u = cos(angle(Psi(x,y))); v = sin(angle(Psi(x,y)));
if u >= 0
c = u*Ac;
else
c = -u*Cc;
end
if v >= 0
c = c + v*Bc;
else
c = c - v*Dc;
end
C(x,y,:) = c;
end
end
% Plot the wave function
figure(1);
surface(abs(Psi),C);
shading interp;
view(20,35)
xlabel('X')
ylabel('Y')
zlim([0 0.3])
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% plotting the second mode
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% replace the degrees of freedom that were projected out when the defect
% was introduced with zeros
NN = size(P);
Z = spalloc(NN(1),NN(2),1);
W = U(:,N+1);
W = [[P',Z']',[Z',P']']*W;
% reshape array to match dimensions of the model's lattice
Psi = reshape(W(1:Nx*Ny),[Nx,Ny]);
% set colors to be used to represent complex phase
Ac = [0 0 1]; Bc = [0 1 0]; Cc = [1 0 0]; Dc = [1 1 0];
Psi = Psi.'; % get correct orientation of matrix
%allocate memory to color map
NN = size(Psi);
C = zeros(NN(1),NN(2),3);
% Fill color map with colors determined by complex phase
for x = 1:NN(1)
for y = 1:NN(2)
u = cos(angle(Psi(x,y))); v = sin(angle(Psi(x,y)));
if u >= 0
c = u*Ac;
else
c = -u*Cc;
end
if v >= 0
c = c + v*Bc;
else
c = c - v*Dc;
end
C(x,y,:) = c;
end
end
% Plot the wave function
figure(2);
surface(abs(Psi),C);
shading interp;
view(20,35)
xlabel('X')
ylabel('Y')
zlim([0 0.3])