forked from ronghanghu/moco_v3_tpu
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_simclr_vit_profiler_fakewithdataloader.py
271 lines (237 loc) · 9.19 KB
/
run_simclr_vit_profiler_fakewithdataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import pprint
import time
import torch
import torchvision
import torchvision.transforms as T
import config
from losses import SimCLRLoss
from models import SimCLRViTModel
from distributed import (
get_world_size,
get_rank,
is_master,
is_xla,
broadcast_xla_master_model_param,
infer_init_method,
distributed_init,
master_print,
synchronize,
reduce_tensor,
save_ckpt,
load_ckpt,
)
from schedulers import get_warmup_cosine_scheduler
from transforms import ImgPilColorDistortion, ImgPilGaussianBlur, MultiViewGenerator
from utils import SmoothedValue
try:
import torch_xla.core.xla_model as xm
import torch_xla.distributed.xla_multiprocessing as xmp
import torch_xla.distributed.parallel_loader as pl
import torch_xla.utils.utils as xu
import torch_xla.debug.profiler as xp
except ImportError:
xm = xmp = pl = xu = xp = None
class FakeDataset:
def __getitem__(self, idx):
return ([torch.zeros(3, 224, 224), torch.zeros(3, 224, 224)], 0)
def __len__(self):
return 1281167
def load_training_data():
world_size = get_world_size()
local_batch_size = cfg.batch_size // world_size
if cfg.fake_data:
train_dataset = FakeDataset()
else:
master_print(f"loading images from disk folder: {cfg.data_dir}")
simclr_transform = MultiViewGenerator(
T.Compose(
[
T.RandomResizedCrop(size=224),
T.RandomHorizontalFlip(p=0.5),
ImgPilColorDistortion(strength=0.5),
ImgPilGaussianBlur(p=0.5, radius_min=0.1, radius_max=2.0),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
),
n_views=2,
)
train_dataset = torchvision.datasets.ImageFolder(
os.path.join(cfg.data_dir, "train"), simclr_transform
)
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset,
num_replicas=world_size,
rank=get_rank(),
drop_last=cfg.drop_last,
shuffle=True,
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=local_batch_size,
sampler=train_sampler,
drop_last=cfg.drop_last,
collate_fn=collate_fn,
shuffle=False if train_sampler else True,
num_workers=cfg.num_workers,
pin_memory=True,
persistent_workers=True,
)
synchronize()
master_print("data loading done!")
return train_dataset, train_loader, train_sampler
def collate_fn(multi_view_img_list):
"""
For N images with 2 views, it returns (2*N, C, H, W) shape, arranged as
[img_1_view_1, ..., img_N_view_1, img_1_view_1, ..., img_N_view_1]
and can be reshaped to (2, N, C, H, W) for loss computation
"""
img_list = []
for n_view in range(2):
img_list.extend(views[n_view] for views, _ in multi_view_img_list)
label_list = [label for _, label in multi_view_img_list]
return torch.stack(img_list), torch.tensor(label_list, dtype=torch.long)
def train():
batch_size = cfg.batch_size
num_epochs = cfg.num_epochs
assert batch_size % get_world_size() == 0
train_dataset, train_loader, train_sampler = load_training_data()
model = SimCLRViTModel(
cfg.vit_model_class, cfg.freeze_patch_embed, cfg.simclr_embed_dim
)
if is_xla():
device = xm.xla_device()
train_loader = pl.MpDeviceLoader(train_loader, device)
model = model.to(device)
broadcast_xla_master_model_param(model)
else:
device = torch.device(f"cuda:{cfg.device_id}")
model = model.to(device)
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[cfg.device_id], output_device=cfg.device_id
)
optimizer = torch.optim.AdamW(
model.parameters(), lr=cfg.lr, weight_decay=cfg.weight_decay
)
iters_per_epoch = len(train_dataset) / batch_size
lr_scheduler = get_warmup_cosine_scheduler(
optimizer,
warmup_iteration=int(iters_per_epoch * cfg.warmup_epochs),
max_iteration=int(iters_per_epoch * num_epochs),
)
scaler = None
if cfg.use_pytorch_amp:
scaler = torch.cuda.amp.GradScaler()
loss_fn = SimCLRLoss(temperature=cfg.simclr_loss_temperature)
# if is_master():
# os.makedirs(cfg.ckpt_dir, exist_ok=True)
master_print("\nmodel:")
master_print(model, end="\n\n")
resume_ckpt_path = None
# if cfg.resume_training:
# if cfg.resume_ckpt_path == "<auto-resume-latest>":
# # find the lastest checkpoint file
# for e in range(1, num_epochs + 1):
# try_path = os.path.join(
# cfg.ckpt_dir, f"{cfg.ckpt_prefix}_epoch_{e}.ckpt"
# )
# if os.path.exists(try_path):
# resume_ckpt_path = try_path
# else:
# assert os.path.exists(cfg.resume_ckpt_file)
# resume_ckpt_path = cfg.resume_ckpt_file
if resume_ckpt_path is not None:
meta_data = load_ckpt(resume_ckpt_path, model, optimizer, lr_scheduler, scaler)
last_ckpt_epoch = meta_data["epoch"]
else:
last_ckpt_epoch = 0
synchronize()
# smoothed_loss = SmoothedValue(window_size=20)
model.train()
master_print(
"training begins (note that the first few XLA iterations "
"are very slow due to compilation)"
)
global_step = 0
for epoch in range(last_ckpt_epoch + 1, num_epochs + 1):
master_print(f"starting epoch {epoch}")
time_b = time.time()
if train_sampler is not None:
train_sampler.set_epoch(epoch)
for step, (data, target) in enumerate(train_loader):
global_step += 1
with xp.StepTrace("Training_Step", step_num=global_step):
# forward pass
with xp.Trace("Forward-backward"):
with xp.Trace("Forward"):
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=scaler is not None):
with xp.Trace("Forward model"):
output = model(data)
with xp.Trace("Forward loss"):
loss = loss_fn(output)
with xp.Trace("Backward"):
# backward pass
if scaler is not None:
scaler.scale(loss).backward()
else:
loss.backward()
if is_xla():
# PyTorch XLA requires manually reducing gradients
xm.reduce_gradients(optimizer)
with xp.Trace("Param update"):
# param update
if scaler is not None:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
lr_scheduler.step()
if global_step == 1 or global_step % 10 == 0:
master_print(f"global_step {global_step} done")
# if (step + 1) % cfg.log_step_interval == 0:
# lr = optimizer.param_groups[0]["lr"]
# reduced_loss = reduce_tensor(loss, average=True).item()
# smoothed_loss.update(reduced_loss, batch_size=target.size(0))
# master_print(
# f"epoch {epoch} step {(step + 1)}, lr: {lr:.4f}, "
# f"loss: {reduced_loss:.4f}, "
# f"loss (avg): {smoothed_loss.avg:.4f}, "
# f"loss (median): {smoothed_loss.median:.4f}"
# )
time_elapsed = time.time() - time_b
master_print(f"epoch {epoch} done ({time_elapsed:.2f} sec)")
# if epoch % cfg.ckpt_epoch_interval == 0 or epoch == num_epochs:
# ckpt_path = os.path.join(
# cfg.ckpt_dir, f"{cfg.ckpt_prefix}_epoch_{epoch}.ckpt"
# )
# meta_data = {"cfg": cfg, "epoch": epoch}
# save_ckpt(ckpt_path, model, optimizer, lr_scheduler, scaler, meta_data)
master_print("training completed")
def main(device_id, configuration):
config.cfg = configuration
distributed_init(configuration, device_id)
global cfg
cfg = configuration
# the output of `xp.start_server` needs to be assigned to a variable
# to make the server persistent
server = xp.start_server(3294)
synchronize()
master_print("\nconfig:")
master_print(pprint.pformat(cfg), end="\n\n")
train()
if __name__ == "__main__":
config.cfg = config.build_cfg_from_argparse()
if is_xla():
tpu_cores_per_node = 8
xmp.spawn(main, args=(config.cfg,), nprocs=tpu_cores_per_node)
else:
infer_init_method(config.cfg)
if config.cfg.no_spawn:
assert config.cfg.device_id >= 0
main(config.cfg.device_id, config.cfg)
else:
torch.multiprocessing.spawn(
main, nprocs=torch.cuda.device_count(), args=(config.cfg,)
)