-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChapter_17.html
1004 lines (917 loc) · 96.5 KB
/
Chapter_17.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<title>Chapter 17 Practical. Probability and simulation | Fundamental statistical concepts and techniques in the biological and environmental sciences: With jamovi</title>
<meta name="description" content="This is an introductory statistics textbook for students in the biological and environmental sciences with examples using jamovi statistical software." />
<meta name="generator" content="bookdown 0.39 and GitBook 2.6.7" />
<meta property="og:title" content="Chapter 17 Practical. Probability and simulation | Fundamental statistical concepts and techniques in the biological and environmental sciences: With jamovi" />
<meta property="og:type" content="book" />
<meta property="og:image" content="/img/cover.png" />
<meta property="og:description" content="This is an introductory statistics textbook for students in the biological and environmental sciences with examples using jamovi statistical software." />
<meta name="github-repo" content="bradduthie/stats" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="Chapter 17 Practical. Probability and simulation | Fundamental statistical concepts and techniques in the biological and environmental sciences: With jamovi" />
<meta name="twitter:description" content="This is an introductory statistics textbook for students in the biological and environmental sciences with examples using jamovi statistical software." />
<meta name="twitter:image" content="/img/cover.png" />
<meta name="author" content="A. Bradley Duthie" />
<meta name="date" content="2024-08-06" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black" />
<link rel="prev" href="Chapter_16.html"/>
<link rel="next" href="Chapter_18.html"/>
<script src="libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/fuse.js@6.4.6/dist/fuse.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-table.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-clipboard.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections-hash.css" rel="stylesheet" />
<script src="libs/anchor-sections-1.1.0/anchor-sections.js"></script>
<style type="text/css">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { font-weight: bold; } /* Alert */
code span.an { font-style: italic; } /* Annotation */
code span.cf { font-weight: bold; } /* ControlFlow */
code span.co { font-style: italic; } /* Comment */
code span.cv { font-style: italic; } /* CommentVar */
code span.do { font-style: italic; } /* Documentation */
code span.dt { text-decoration: underline; } /* DataType */
code span.er { font-weight: bold; } /* Error */
code span.in { font-style: italic; } /* Information */
code span.kw { font-weight: bold; } /* Keyword */
code span.pp { font-weight: bold; } /* Preprocessor */
code span.wa { font-style: italic; } /* Warning */
</style>
<style type="text/css">
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
</style>
<style type="text/css">
/* Used with Pandoc 2.11+ new --citeproc when CSL is used */
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}
</style>
<link rel="stylesheet" href="style.css" type="text/css" />
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<li><a href="./">Statistics with jamovi</a></li>
<li class="divider"></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html"><i class="fa fa-check"></i>Preface</a>
<ul>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#structure"><i class="fa fa-check"></i>How this book is structured</a></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#datasets"><i class="fa fa-check"></i>Datasets used in this book</a></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#acknowledgements"><i class="fa fa-check"></i>Acknowledgements</a></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#author"><i class="fa fa-check"></i>About the author</a></li>
</ul></li>
<li class="chapter" data-level="1" data-path="Chapter_1.html"><a href="Chapter_1.html"><i class="fa fa-check"></i><b>1</b> Background mathematics</a>
<ul>
<li class="chapter" data-level="1.1" data-path="Chapter_1.html"><a href="Chapter_1.html#numbers-and-operations"><i class="fa fa-check"></i><b>1.1</b> Numbers and operations</a></li>
<li class="chapter" data-level="1.2" data-path="Chapter_1.html"><a href="Chapter_1.html#logarithms"><i class="fa fa-check"></i><b>1.2</b> Logarithms</a></li>
<li class="chapter" data-level="1.3" data-path="Chapter_1.html"><a href="Chapter_1.html#order-of-operations"><i class="fa fa-check"></i><b>1.3</b> Order of operations</a></li>
</ul></li>
<li class="chapter" data-level="2" data-path="Chapter_2.html"><a href="Chapter_2.html"><i class="fa fa-check"></i><b>2</b> Data organisation</a>
<ul>
<li class="chapter" data-level="2.1" data-path="Chapter_2.html"><a href="Chapter_2.html#tidy-data"><i class="fa fa-check"></i><b>2.1</b> Tidy data</a></li>
<li class="chapter" data-level="2.2" data-path="Chapter_2.html"><a href="Chapter_2.html#data-files"><i class="fa fa-check"></i><b>2.2</b> Data files</a></li>
<li class="chapter" data-level="2.3" data-path="Chapter_2.html"><a href="Chapter_2.html#managing-data-files"><i class="fa fa-check"></i><b>2.3</b> Managing data files</a></li>
</ul></li>
<li class="chapter" data-level="3" data-path="Chapter_3.html"><a href="Chapter_3.html"><i class="fa fa-check"></i><b>3</b> <em>Practical</em>. Preparing data</a>
<ul>
<li class="chapter" data-level="3.1" data-path="Chapter_3.html"><a href="Chapter_3.html#transferring-data-to-a-spreadsheet"><i class="fa fa-check"></i><b>3.1</b> Transferring data to a spreadsheet</a></li>
<li class="chapter" data-level="3.2" data-path="Chapter_3.html"><a href="Chapter_3.html#making-spreadsheet-data-tidy"><i class="fa fa-check"></i><b>3.2</b> Making spreadsheet data tidy</a></li>
<li class="chapter" data-level="3.3" data-path="Chapter_3.html"><a href="Chapter_3.html#making-data-tidy-again"><i class="fa fa-check"></i><b>3.3</b> Making data tidy again</a></li>
<li class="chapter" data-level="3.4" data-path="Chapter_3.html"><a href="Chapter_3.html#tidy-data-and-spreadsheet-calculations"><i class="fa fa-check"></i><b>3.4</b> Tidy data and spreadsheet calculations</a></li>
<li class="chapter" data-level="3.5" data-path="Chapter_3.html"><a href="Chapter_3.html#summary"><i class="fa fa-check"></i><b>3.5</b> Summary</a></li>
</ul></li>
<li class="chapter" data-level="4" data-path="Chapter_4.html"><a href="Chapter_4.html"><i class="fa fa-check"></i><b>4</b> Populations and samples</a></li>
<li class="chapter" data-level="5" data-path="Chapter_5.html"><a href="Chapter_5.html"><i class="fa fa-check"></i><b>5</b> Types of variables</a></li>
<li class="chapter" data-level="6" data-path="Chapter_6.html"><a href="Chapter_6.html"><i class="fa fa-check"></i><b>6</b> Accuracy, precision, and units</a>
<ul>
<li class="chapter" data-level="6.1" data-path="Chapter_6.html"><a href="Chapter_6.html#accuracy"><i class="fa fa-check"></i><b>6.1</b> Accuracy</a></li>
<li class="chapter" data-level="6.2" data-path="Chapter_6.html"><a href="Chapter_6.html#precision"><i class="fa fa-check"></i><b>6.2</b> Precision</a></li>
<li class="chapter" data-level="6.3" data-path="Chapter_6.html"><a href="Chapter_6.html#systems-of-units"><i class="fa fa-check"></i><b>6.3</b> Systems of units</a></li>
</ul></li>
<li class="chapter" data-level="7" data-path="Chapter_7.html"><a href="Chapter_7.html"><i class="fa fa-check"></i><b>7</b> Uncertainty propagation</a>
<ul>
<li class="chapter" data-level="7.1" data-path="Chapter_7.html"><a href="Chapter_7.html#adding-or-subtracting-errors"><i class="fa fa-check"></i><b>7.1</b> Adding or subtracting errors</a></li>
<li class="chapter" data-level="7.2" data-path="Chapter_7.html"><a href="Chapter_7.html#multiplying-or-dividing-errors"><i class="fa fa-check"></i><b>7.2</b> Multiplying or dividing errors</a></li>
</ul></li>
<li class="chapter" data-level="8" data-path="Chapter_8.html"><a href="Chapter_8.html"><i class="fa fa-check"></i><b>8</b> <em>Practical</em>. Introduction to jamovi</a>
<ul>
<li class="chapter" data-level="8.1" data-path="Chapter_8.html"><a href="Chapter_8.html#summary_statistics_02"><i class="fa fa-check"></i><b>8.1</b> Summary statistics</a></li>
<li class="chapter" data-level="8.2" data-path="Chapter_8.html"><a href="Chapter_8.html#transforming_variables_02"><i class="fa fa-check"></i><b>8.2</b> Transforming variables</a></li>
<li class="chapter" data-level="8.3" data-path="Chapter_8.html"><a href="Chapter_8.html#computing_variables_02"><i class="fa fa-check"></i><b>8.3</b> Computing variables</a></li>
<li class="chapter" data-level="8.4" data-path="Chapter_8.html"><a href="Chapter_8.html#summary-1"><i class="fa fa-check"></i><b>8.4</b> Summary</a></li>
</ul></li>
<li class="chapter" data-level="9" data-path="Chapter_9.html"><a href="Chapter_9.html"><i class="fa fa-check"></i><b>9</b> Decimal places, significant figures, and rounding</a>
<ul>
<li class="chapter" data-level="9.1" data-path="Chapter_9.html"><a href="Chapter_9.html#decimal-places-and-significant-figures"><i class="fa fa-check"></i><b>9.1</b> Decimal places and significant figures</a></li>
<li class="chapter" data-level="9.2" data-path="Chapter_9.html"><a href="Chapter_9.html#rounding"><i class="fa fa-check"></i><b>9.2</b> Rounding</a></li>
</ul></li>
<li class="chapter" data-level="10" data-path="Chapter_10.html"><a href="Chapter_10.html"><i class="fa fa-check"></i><b>10</b> Graphs</a>
<ul>
<li class="chapter" data-level="10.1" data-path="Chapter_10.html"><a href="Chapter_10.html#histograms"><i class="fa fa-check"></i><b>10.1</b> Histograms</a></li>
<li class="chapter" data-level="10.2" data-path="Chapter_10.html"><a href="Chapter_10.html#barplots-and-pie-charts"><i class="fa fa-check"></i><b>10.2</b> Barplots and pie charts</a></li>
<li class="chapter" data-level="10.3" data-path="Chapter_10.html"><a href="Chapter_10.html#box-whisker-plots"><i class="fa fa-check"></i><b>10.3</b> Box-whisker plots</a></li>
</ul></li>
<li class="chapter" data-level="11" data-path="Chapter_11.html"><a href="Chapter_11.html"><i class="fa fa-check"></i><b>11</b> Measures of central tendency</a>
<ul>
<li class="chapter" data-level="11.1" data-path="Chapter_11.html"><a href="Chapter_11.html#the-mean"><i class="fa fa-check"></i><b>11.1</b> The mean</a></li>
<li class="chapter" data-level="11.2" data-path="Chapter_11.html"><a href="Chapter_11.html#the-mode"><i class="fa fa-check"></i><b>11.2</b> The mode</a></li>
<li class="chapter" data-level="11.3" data-path="Chapter_11.html"><a href="Chapter_11.html#the-median-and-quantiles"><i class="fa fa-check"></i><b>11.3</b> The median and quantiles</a></li>
</ul></li>
<li class="chapter" data-level="12" data-path="Chapter_12.html"><a href="Chapter_12.html"><i class="fa fa-check"></i><b>12</b> Measures of spread</a>
<ul>
<li class="chapter" data-level="12.1" data-path="Chapter_12.html"><a href="Chapter_12.html#the-range"><i class="fa fa-check"></i><b>12.1</b> The range</a></li>
<li class="chapter" data-level="12.2" data-path="Chapter_12.html"><a href="Chapter_12.html#the-inter-quartile-range"><i class="fa fa-check"></i><b>12.2</b> The inter-quartile range</a></li>
<li class="chapter" data-level="12.3" data-path="Chapter_12.html"><a href="Chapter_12.html#the-variance"><i class="fa fa-check"></i><b>12.3</b> The variance</a></li>
<li class="chapter" data-level="12.4" data-path="Chapter_12.html"><a href="Chapter_12.html#the-standard-deviation"><i class="fa fa-check"></i><b>12.4</b> The standard deviation</a></li>
<li class="chapter" data-level="12.5" data-path="Chapter_12.html"><a href="Chapter_12.html#the-coefficient-of-variation"><i class="fa fa-check"></i><b>12.5</b> The coefficient of variation</a></li>
<li class="chapter" data-level="12.6" data-path="Chapter_12.html"><a href="Chapter_12.html#the-standard-error"><i class="fa fa-check"></i><b>12.6</b> The standard error</a></li>
</ul></li>
<li class="chapter" data-level="13" data-path="Chapter_13.html"><a href="Chapter_13.html"><i class="fa fa-check"></i><b>13</b> Skew and kurtosis</a>
<ul>
<li class="chapter" data-level="13.1" data-path="Chapter_13.html"><a href="Chapter_13.html#skew"><i class="fa fa-check"></i><b>13.1</b> Skew</a></li>
<li class="chapter" data-level="13.2" data-path="Chapter_13.html"><a href="Chapter_13.html#kurtosis"><i class="fa fa-check"></i><b>13.2</b> Kurtosis</a></li>
<li class="chapter" data-level="13.3" data-path="Chapter_13.html"><a href="Chapter_13.html#moments"><i class="fa fa-check"></i><b>13.3</b> Moments</a></li>
</ul></li>
<li class="chapter" data-level="14" data-path="Chapter_14.html"><a href="Chapter_14.html"><i class="fa fa-check"></i><b>14</b> <em>Practical</em>. Plotting and statistical summaries in jamovi</a>
<ul>
<li class="chapter" data-level="14.1" data-path="Chapter_14.html"><a href="Chapter_14.html#reorganise-the-dataset-into-a-tidy-format"><i class="fa fa-check"></i><b>14.1</b> Reorganise the dataset into a tidy format</a></li>
<li class="chapter" data-level="14.2" data-path="Chapter_14.html"><a href="Chapter_14.html#histograms-and-box-whisker-plots"><i class="fa fa-check"></i><b>14.2</b> Histograms and box-whisker plots</a></li>
<li class="chapter" data-level="14.3" data-path="Chapter_14.html"><a href="Chapter_14.html#calculate-summary-statistics"><i class="fa fa-check"></i><b>14.3</b> Calculate summary statistics</a></li>
<li class="chapter" data-level="14.4" data-path="Chapter_14.html"><a href="Chapter_14.html#reporting-decimals-and-significant-figures"><i class="fa fa-check"></i><b>14.4</b> Reporting decimals and significant figures</a></li>
<li class="chapter" data-level="14.5" data-path="Chapter_14.html"><a href="Chapter_14.html#comparing-across-sites"><i class="fa fa-check"></i><b>14.5</b> Comparing across sites</a></li>
</ul></li>
<li class="chapter" data-level="15" data-path="Chapter_15.html"><a href="Chapter_15.html"><i class="fa fa-check"></i><b>15</b> Introduction to probability models</a>
<ul>
<li class="chapter" data-level="15.1" data-path="Chapter_15.html"><a href="Chapter_15.html#instructive-example"><i class="fa fa-check"></i><b>15.1</b> Instructive example</a></li>
<li class="chapter" data-level="15.2" data-path="Chapter_15.html"><a href="Chapter_15.html#biological-applications"><i class="fa fa-check"></i><b>15.2</b> Biological applications</a></li>
<li class="chapter" data-level="15.3" data-path="Chapter_15.html"><a href="Chapter_15.html#sampling-with-and-without-replacement"><i class="fa fa-check"></i><b>15.3</b> Sampling with and without replacement</a></li>
<li class="chapter" data-level="15.4" data-path="Chapter_15.html"><a href="Chapter_15.html#probability-distributions"><i class="fa fa-check"></i><b>15.4</b> Probability distributions</a>
<ul>
<li class="chapter" data-level="15.4.1" data-path="Chapter_15.html"><a href="Chapter_15.html#binomial-distribution"><i class="fa fa-check"></i><b>15.4.1</b> Binomial distribution</a></li>
<li class="chapter" data-level="15.4.2" data-path="Chapter_15.html"><a href="Chapter_15.html#poisson-distribution"><i class="fa fa-check"></i><b>15.4.2</b> Poisson distribution</a></li>
<li class="chapter" data-level="15.4.3" data-path="Chapter_15.html"><a href="Chapter_15.html#uniform-distribution"><i class="fa fa-check"></i><b>15.4.3</b> Uniform distribution</a></li>
<li class="chapter" data-level="15.4.4" data-path="Chapter_15.html"><a href="Chapter_15.html#normal-distribution"><i class="fa fa-check"></i><b>15.4.4</b> Normal distribution</a></li>
</ul></li>
<li class="chapter" data-level="15.5" data-path="Chapter_15.html"><a href="Chapter_15.html#summary-2"><i class="fa fa-check"></i><b>15.5</b> Summary</a></li>
</ul></li>
<li class="chapter" data-level="16" data-path="Chapter_16.html"><a href="Chapter_16.html"><i class="fa fa-check"></i><b>16</b> Central Limit Theorem</a>
<ul>
<li class="chapter" data-level="16.1" data-path="Chapter_16.html"><a href="Chapter_16.html#the-distribution-of-means-is-normal"><i class="fa fa-check"></i><b>16.1</b> The distribution of means is normal</a></li>
<li class="chapter" data-level="16.2" data-path="Chapter_16.html"><a href="Chapter_16.html#probability-and-z-scores"><i class="fa fa-check"></i><b>16.2</b> Probability and z-scores</a></li>
</ul></li>
<li class="chapter" data-level="17" data-path="Chapter_17.html"><a href="Chapter_17.html"><i class="fa fa-check"></i><b>17</b> <em>Practical</em>. Probability and simulation</a>
<ul>
<li class="chapter" data-level="17.1" data-path="Chapter_17.html"><a href="Chapter_17.html#probabilities-from-a-dataset"><i class="fa fa-check"></i><b>17.1</b> Probabilities from a dataset</a></li>
<li class="chapter" data-level="17.2" data-path="Chapter_17.html"><a href="Chapter_17.html#probabilities-from-a-normal-distribution"><i class="fa fa-check"></i><b>17.2</b> Probabilities from a normal distribution</a></li>
<li class="chapter" data-level="17.3" data-path="Chapter_17.html"><a href="Chapter_17.html#central-limit-theorem"><i class="fa fa-check"></i><b>17.3</b> Central limit theorem</a></li>
</ul></li>
<li class="chapter" data-level="18" data-path="Chapter_18.html"><a href="Chapter_18.html"><i class="fa fa-check"></i><b>18</b> Confidence intervals</a>
<ul>
<li class="chapter" data-level="18.1" data-path="Chapter_18.html"><a href="Chapter_18.html#normal-distribution-cis"><i class="fa fa-check"></i><b>18.1</b> Normal distribution CIs</a></li>
<li class="chapter" data-level="18.2" data-path="Chapter_18.html"><a href="Chapter_18.html#binomial-distribution-cis"><i class="fa fa-check"></i><b>18.2</b> Binomial distribution CIs</a></li>
</ul></li>
<li class="chapter" data-level="19" data-path="Chapter_19.html"><a href="Chapter_19.html"><i class="fa fa-check"></i><b>19</b> The t-interval</a></li>
<li class="chapter" data-level="20" data-path="Chapter_20.html"><a href="Chapter_20.html"><i class="fa fa-check"></i><b>20</b> <em>Practical</em>. z- and t-intervals</a>
<ul>
<li class="chapter" data-level="20.1" data-path="Chapter_20.html"><a href="Chapter_20.html#confidence-intervals-with-distraction"><i class="fa fa-check"></i><b>20.1</b> Confidence intervals with distrACTION</a></li>
<li class="chapter" data-level="20.2" data-path="Chapter_20.html"><a href="Chapter_20.html#confidence-intervals-from-z--and-t-scores"><i class="fa fa-check"></i><b>20.2</b> Confidence intervals from z- and t-scores</a></li>
<li class="chapter" data-level="20.3" data-path="Chapter_20.html"><a href="Chapter_20.html#confidence-intervals-for-different-sample-sizes"><i class="fa fa-check"></i><b>20.3</b> Confidence intervals for different sample sizes</a></li>
<li class="chapter" data-level="20.4" data-path="Chapter_20.html"><a href="Chapter_20.html#proportion-confidence-intervals"><i class="fa fa-check"></i><b>20.4</b> Proportion confidence intervals</a></li>
<li class="chapter" data-level="20.5" data-path="Chapter_20.html"><a href="Chapter_20.html#another-proportion-confidence-interval"><i class="fa fa-check"></i><b>20.5</b> Another proportion confidence interval</a></li>
</ul></li>
<li class="chapter" data-level="21" data-path="Chapter_21.html"><a href="Chapter_21.html"><i class="fa fa-check"></i><b>21</b> What is hypothesis testing?</a>
<ul>
<li class="chapter" data-level="21.1" data-path="Chapter_21.html"><a href="Chapter_21.html#how-ridiculous-is-our-hypothesis"><i class="fa fa-check"></i><b>21.1</b> How ridiculous is our hypothesis?</a></li>
<li class="chapter" data-level="21.2" data-path="Chapter_21.html"><a href="Chapter_21.html#statistical-hypothesis-testing"><i class="fa fa-check"></i><b>21.2</b> Statistical hypothesis testing</a></li>
<li class="chapter" data-level="21.3" data-path="Chapter_21.html"><a href="Chapter_21.html#p-values-false-positives-and-power"><i class="fa fa-check"></i><b>21.3</b> P-values, false positives, and power</a></li>
</ul></li>
<li class="chapter" data-level="22" data-path="Chapter_22.html"><a href="Chapter_22.html"><i class="fa fa-check"></i><b>22</b> The t-test</a>
<ul>
<li class="chapter" data-level="22.1" data-path="Chapter_22.html"><a href="Chapter_22.html#one-sample-t-test"><i class="fa fa-check"></i><b>22.1</b> One sample t-test</a></li>
<li class="chapter" data-level="22.2" data-path="Chapter_22.html"><a href="Chapter_22.html#independent-samples-t-test"><i class="fa fa-check"></i><b>22.2</b> Independent samples t-test</a></li>
<li class="chapter" data-level="22.3" data-path="Chapter_22.html"><a href="Chapter_22.html#paired-samples-t-test"><i class="fa fa-check"></i><b>22.3</b> Paired samples t-test</a></li>
<li class="chapter" data-level="22.4" data-path="Chapter_22.html"><a href="Chapter_22.html#assumptions-of-t-tests"><i class="fa fa-check"></i><b>22.4</b> Assumptions of t-tests</a></li>
<li class="chapter" data-level="22.5" data-path="Chapter_22.html"><a href="Chapter_22.html#non-parametric-alternatives"><i class="fa fa-check"></i><b>22.5</b> Non-parametric alternatives</a>
<ul>
<li class="chapter" data-level="22.5.1" data-path="Chapter_22.html"><a href="Chapter_22.html#wilcoxon-test"><i class="fa fa-check"></i><b>22.5.1</b> Wilcoxon test</a></li>
<li class="chapter" data-level="22.5.2" data-path="Chapter_22.html"><a href="Chapter_22.html#mann-whitney-u-test"><i class="fa fa-check"></i><b>22.5.2</b> Mann-Whitney U test</a></li>
</ul></li>
<li class="chapter" data-level="22.6" data-path="Chapter_22.html"><a href="Chapter_22.html#summary-3"><i class="fa fa-check"></i><b>22.6</b> Summary</a></li>
</ul></li>
<li class="chapter" data-level="23" data-path="Chapter_23.html"><a href="Chapter_23.html"><i class="fa fa-check"></i><b>23</b> <em>Practical</em>. Hypothesis testing and t-tests</a>
<ul>
<li class="chapter" data-level="23.1" data-path="Chapter_23.html"><a href="Chapter_23.html#one-sample-t-test-1"><i class="fa fa-check"></i><b>23.1</b> One sample t-test</a></li>
<li class="chapter" data-level="23.2" data-path="Chapter_23.html"><a href="Chapter_23.html#paired-t-test"><i class="fa fa-check"></i><b>23.2</b> Paired t-test</a></li>
<li class="chapter" data-level="23.3" data-path="Chapter_23.html"><a href="Chapter_23.html#wilcoxon-test-1"><i class="fa fa-check"></i><b>23.3</b> Wilcoxon test</a></li>
<li class="chapter" data-level="23.4" data-path="Chapter_23.html"><a href="Chapter_23.html#independent-samples-t-test-1"><i class="fa fa-check"></i><b>23.4</b> Independent samples t-test</a></li>
<li class="chapter" data-level="23.5" data-path="Chapter_23.html"><a href="Chapter_23.html#mann-whitney-u-test-1"><i class="fa fa-check"></i><b>23.5</b> Mann-Whitney U Test</a></li>
</ul></li>
<li class="chapter" data-level="24" data-path="Chapter_24.html"><a href="Chapter_24.html"><i class="fa fa-check"></i><b>24</b> Analysis of variance</a>
<ul>
<li class="chapter" data-level="24.1" data-path="Chapter_24.html"><a href="Chapter_24.html#f-distribution"><i class="fa fa-check"></i><b>24.1</b> F-distribution</a></li>
<li class="chapter" data-level="24.2" data-path="Chapter_24.html"><a href="Chapter_24.html#one-way-anova"><i class="fa fa-check"></i><b>24.2</b> One-way ANOVA</a>
<ul>
<li class="chapter" data-level="24.2.1" data-path="Chapter_24.html"><a href="Chapter_24.html#anova-mean-variance-among-groups"><i class="fa fa-check"></i><b>24.2.1</b> ANOVA mean variance among groups</a></li>
<li class="chapter" data-level="24.2.2" data-path="Chapter_24.html"><a href="Chapter_24.html#anova-mean-variance-within-groups"><i class="fa fa-check"></i><b>24.2.2</b> ANOVA mean variance within groups</a></li>
<li class="chapter" data-level="24.2.3" data-path="Chapter_24.html"><a href="Chapter_24.html#anova-f-statistic-calculation"><i class="fa fa-check"></i><b>24.2.3</b> ANOVA F-statistic calculation</a></li>
</ul></li>
<li class="chapter" data-level="24.3" data-path="Chapter_24.html"><a href="Chapter_24.html#assumptions-of-anova"><i class="fa fa-check"></i><b>24.3</b> Assumptions of ANOVA</a></li>
</ul></li>
<li class="chapter" data-level="25" data-path="Chapter_25.html"><a href="Chapter_25.html"><i class="fa fa-check"></i><b>25</b> Multiple comparisons</a></li>
<li class="chapter" data-level="26" data-path="Chapter_26.html"><a href="Chapter_26.html"><i class="fa fa-check"></i><b>26</b> Kruskal-Wallis H test</a></li>
<li class="chapter" data-level="27" data-path="Chapter_27.html"><a href="Chapter_27.html"><i class="fa fa-check"></i><b>27</b> Two-way ANOVA</a></li>
<li class="chapter" data-level="28" data-path="Chapter_28.html"><a href="Chapter_28.html"><i class="fa fa-check"></i><b>28</b> <em>Practical</em>. ANOVA and associated tests</a>
<ul>
<li class="chapter" data-level="28.1" data-path="Chapter_28.html"><a href="Chapter_28.html#one-way-anova-site"><i class="fa fa-check"></i><b>28.1</b> One-way ANOVA (site)</a></li>
<li class="chapter" data-level="28.2" data-path="Chapter_28.html"><a href="Chapter_28.html#one-way-anova-profile"><i class="fa fa-check"></i><b>28.2</b> One-way ANOVA (profile)</a></li>
<li class="chapter" data-level="28.3" data-path="Chapter_28.html"><a href="Chapter_28.html#multiple-comparisons"><i class="fa fa-check"></i><b>28.3</b> Multiple comparisons</a></li>
<li class="chapter" data-level="28.4" data-path="Chapter_28.html"><a href="Chapter_28.html#kruskal-wallis-h-test"><i class="fa fa-check"></i><b>28.4</b> Kruskal-Wallis H test</a></li>
<li class="chapter" data-level="28.5" data-path="Chapter_28.html"><a href="Chapter_28.html#two-way-anova"><i class="fa fa-check"></i><b>28.5</b> Two-way ANOVA</a></li>
</ul></li>
<li class="chapter" data-level="29" data-path="Chapter_29.html"><a href="Chapter_29.html"><i class="fa fa-check"></i><b>29</b> Frequency and count data</a>
<ul>
<li class="chapter" data-level="29.1" data-path="Chapter_29.html"><a href="Chapter_29.html#chi-square-distribution"><i class="fa fa-check"></i><b>29.1</b> Chi-square distribution</a></li>
<li class="chapter" data-level="29.2" data-path="Chapter_29.html"><a href="Chapter_29.html#chi-square-goodness-of-fit"><i class="fa fa-check"></i><b>29.2</b> Chi-square goodness of fit</a></li>
<li class="chapter" data-level="29.3" data-path="Chapter_29.html"><a href="Chapter_29.html#chi-square-test-of-association"><i class="fa fa-check"></i><b>29.3</b> Chi-square test of association</a></li>
</ul></li>
<li class="chapter" data-level="30" data-path="Chapter_30.html"><a href="Chapter_30.html"><i class="fa fa-check"></i><b>30</b> Correlation</a>
<ul>
<li class="chapter" data-level="30.1" data-path="Chapter_30.html"><a href="Chapter_30.html#scatterplots"><i class="fa fa-check"></i><b>30.1</b> Scatterplots</a></li>
<li class="chapter" data-level="30.2" data-path="Chapter_30.html"><a href="Chapter_30.html#correlation-coefficient"><i class="fa fa-check"></i><b>30.2</b> Correlation coefficient</a>
<ul>
<li class="chapter" data-level="30.2.1" data-path="Chapter_30.html"><a href="Chapter_30.html#pearson-product-moment-correlation-coefficient"><i class="fa fa-check"></i><b>30.2.1</b> Pearson product moment correlation coefficient</a></li>
<li class="chapter" data-level="30.2.2" data-path="Chapter_30.html"><a href="Chapter_30.html#spearmans-rank-correlation-coefficient"><i class="fa fa-check"></i><b>30.2.2</b> Spearman’s rank correlation coefficient</a></li>
</ul></li>
<li class="chapter" data-level="30.3" data-path="Chapter_30.html"><a href="Chapter_30.html#correlation-hypothesis-testing"><i class="fa fa-check"></i><b>30.3</b> Correlation hypothesis testing</a></li>
</ul></li>
<li class="chapter" data-level="31" data-path="Chapter_31.html"><a href="Chapter_31.html"><i class="fa fa-check"></i><b>31</b> <em>Practical</em>. Analysis of counts and correlations</a>
<ul>
<li class="chapter" data-level="31.1" data-path="Chapter_31.html"><a href="Chapter_31.html#survival-goodness-of-fit"><i class="fa fa-check"></i><b>31.1</b> Survival goodness of fit</a></li>
<li class="chapter" data-level="31.2" data-path="Chapter_31.html"><a href="Chapter_31.html#colony-goodness-of-fit"><i class="fa fa-check"></i><b>31.2</b> Colony goodness of fit</a></li>
<li class="chapter" data-level="31.3" data-path="Chapter_31.html"><a href="Chapter_31.html#chi-square-test-of-association-1"><i class="fa fa-check"></i><b>31.3</b> Chi-Square test of association</a></li>
<li class="chapter" data-level="31.4" data-path="Chapter_31.html"><a href="Chapter_31.html#pearson-product-moment-correlation-test"><i class="fa fa-check"></i><b>31.4</b> Pearson product moment correlation test</a></li>
<li class="chapter" data-level="31.5" data-path="Chapter_31.html"><a href="Chapter_31.html#spearmans-rank-correlation-test"><i class="fa fa-check"></i><b>31.5</b> Spearman’s rank correlation test</a></li>
<li class="chapter" data-level="31.6" data-path="Chapter_31.html"><a href="Chapter_31.html#untidy-goodness-of-fit"><i class="fa fa-check"></i><b>31.6</b> Untidy goodness of fit</a></li>
</ul></li>
<li class="chapter" data-level="32" data-path="Chapter_32.html"><a href="Chapter_32.html"><i class="fa fa-check"></i><b>32</b> Simple linear regression</a>
<ul>
<li class="chapter" data-level="32.1" data-path="Chapter_32.html"><a href="Chapter_32.html#visual-interpretation-of-regression"><i class="fa fa-check"></i><b>32.1</b> Visual interpretation of regression</a></li>
<li class="chapter" data-level="32.2" data-path="Chapter_32.html"><a href="Chapter_32.html#intercepts-slopes-and-residuals"><i class="fa fa-check"></i><b>32.2</b> Intercepts, slopes, and residuals</a></li>
<li class="chapter" data-level="32.3" data-path="Chapter_32.html"><a href="Chapter_32.html#regression-coefficients"><i class="fa fa-check"></i><b>32.3</b> Regression coefficients</a></li>
<li class="chapter" data-level="32.4" data-path="Chapter_32.html"><a href="Chapter_32.html#regression-line-calculation"><i class="fa fa-check"></i><b>32.4</b> Regression line calculation</a></li>
<li class="chapter" data-level="32.5" data-path="Chapter_32.html"><a href="Chapter_32.html#coefficient-of-determination"><i class="fa fa-check"></i><b>32.5</b> Coefficient of determination</a></li>
<li class="chapter" data-level="32.6" data-path="Chapter_32.html"><a href="Chapter_32.html#regression-assumptions"><i class="fa fa-check"></i><b>32.6</b> Regression assumptions</a></li>
<li class="chapter" data-level="32.7" data-path="Chapter_32.html"><a href="Chapter_32.html#regression-hypothesis-testing"><i class="fa fa-check"></i><b>32.7</b> Regression hypothesis testing</a>
<ul>
<li class="chapter" data-level="32.7.1" data-path="Chapter_32.html"><a href="Chapter_32.html#overall-model-significance"><i class="fa fa-check"></i><b>32.7.1</b> Overall model significance</a></li>
<li class="chapter" data-level="32.7.2" data-path="Chapter_32.html"><a href="Chapter_32.html#significance-of-the-intercept"><i class="fa fa-check"></i><b>32.7.2</b> Significance of the intercept</a></li>
<li class="chapter" data-level="32.7.3" data-path="Chapter_32.html"><a href="Chapter_32.html#significance-of-the-slope"><i class="fa fa-check"></i><b>32.7.3</b> Significance of the slope</a></li>
<li class="chapter" data-level="32.7.4" data-path="Chapter_32.html"><a href="Chapter_32.html#simple-regression-output"><i class="fa fa-check"></i><b>32.7.4</b> Simple regression output</a></li>
</ul></li>
<li class="chapter" data-level="32.8" data-path="Chapter_32.html"><a href="Chapter_32.html#prediction-with-linear-models"><i class="fa fa-check"></i><b>32.8</b> Prediction with linear models</a></li>
<li class="chapter" data-level="32.9" data-path="Chapter_32.html"><a href="Chapter_32.html#conclusion"><i class="fa fa-check"></i><b>32.9</b> Conclusion</a></li>
</ul></li>
<li class="chapter" data-level="33" data-path="Chapter_33.html"><a href="Chapter_33.html"><i class="fa fa-check"></i><b>33</b> Multiple regression</a>
<ul>
<li class="chapter" data-level="33.1" data-path="Chapter_33.html"><a href="Chapter_33.html#adjusted-coefficient-of-determination"><i class="fa fa-check"></i><b>33.1</b> Adjusted coefficient of determination</a></li>
</ul></li>
<li class="chapter" data-level="34" data-path="Chapter_34.html"><a href="Chapter_34.html"><i class="fa fa-check"></i><b>34</b> <em>Practical</em>. Using regression</a>
<ul>
<li class="chapter" data-level="34.1" data-path="Chapter_34.html"><a href="Chapter_34.html#predicting-pyrogenic-carbon-from-soil-depth"><i class="fa fa-check"></i><b>34.1</b> Predicting pyrogenic carbon from soil depth</a></li>
<li class="chapter" data-level="34.2" data-path="Chapter_34.html"><a href="Chapter_34.html#predicting-pyrogenic-carbon-from-fire-frequency"><i class="fa fa-check"></i><b>34.2</b> Predicting pyrogenic carbon from fire frequency</a></li>
<li class="chapter" data-level="34.3" data-path="Chapter_34.html"><a href="Chapter_34.html#multiple-regression-depth-and-fire-frequency"><i class="fa fa-check"></i><b>34.3</b> Multiple regression depth and fire frequency</a></li>
<li class="chapter" data-level="34.4" data-path="Chapter_34.html"><a href="Chapter_34.html#large-multiple-regression"><i class="fa fa-check"></i><b>34.4</b> Large multiple regression</a></li>
<li class="chapter" data-level="34.5" data-path="Chapter_34.html"><a href="Chapter_34.html#predicting-temperature-from-fire-frequency"><i class="fa fa-check"></i><b>34.5</b> Predicting temperature from fire frequency</a></li>
</ul></li>
<li class="chapter" data-level="35" data-path="Chapter_35.html"><a href="Chapter_35.html"><i class="fa fa-check"></i><b>35</b> Randomisation</a>
<ul>
<li class="chapter" data-level="35.1" data-path="Chapter_35.html"><a href="Chapter_35.html#summary-of-parametric-hypothesis-testing"><i class="fa fa-check"></i><b>35.1</b> Summary of parametric hypothesis testing</a></li>
<li class="chapter" data-level="35.2" data-path="Chapter_35.html"><a href="Chapter_35.html#randomisation-approach"><i class="fa fa-check"></i><b>35.2</b> Randomisation approach</a></li>
<li class="chapter" data-level="35.3" data-path="Chapter_35.html"><a href="Chapter_35.html#randomisation-for-hypothesis-testing"><i class="fa fa-check"></i><b>35.3</b> Randomisation for hypothesis testing</a></li>
<li class="chapter" data-level="35.4" data-path="Chapter_35.html"><a href="Chapter_35.html#randomisation-assumptions"><i class="fa fa-check"></i><b>35.4</b> Randomisation assumptions</a></li>
<li class="chapter" data-level="35.5" data-path="Chapter_35.html"><a href="Chapter_35.html#bootstrapping"><i class="fa fa-check"></i><b>35.5</b> Bootstrapping</a></li>
<li class="chapter" data-level="35.6" data-path="Chapter_35.html"><a href="Chapter_35.html#randomisation-conclusions"><i class="fa fa-check"></i><b>35.6</b> Randomisation conclusions</a></li>
</ul></li>
<li class="appendix"><span><b>Appendix</b></span></li>
<li class="chapter" data-level="A" data-path="appendexA.html"><a href="appendexA.html"><i class="fa fa-check"></i><b>A</b> Answers to chapter exercises</a>
<ul>
<li class="chapter" data-level="A.1" data-path="appendexA.html"><a href="appendexA.html#chapter-3"><i class="fa fa-check"></i><b>A.1</b> Chapter 3</a>
<ul>
<li class="chapter" data-level="A.1.1" data-path="appendexA.html"><a href="appendexA.html#exercise-3.1"><i class="fa fa-check"></i><b>A.1.1</b> Exercise 3.1:</a></li>
<li class="chapter" data-level="A.1.2" data-path="appendexA.html"><a href="appendexA.html#exercise-3.2"><i class="fa fa-check"></i><b>A.1.2</b> Exercise 3.2</a></li>
<li class="chapter" data-level="A.1.3" data-path="appendexA.html"><a href="appendexA.html#exercise-3.3"><i class="fa fa-check"></i><b>A.1.3</b> Exercise 3.3</a></li>
<li class="chapter" data-level="A.1.4" data-path="appendexA.html"><a href="appendexA.html#exercise-3.4"><i class="fa fa-check"></i><b>A.1.4</b> Exercise 3.4</a></li>
</ul></li>
<li class="chapter" data-level="A.2" data-path="appendexA.html"><a href="appendexA.html#chapter-8"><i class="fa fa-check"></i><b>A.2</b> Chapter 8</a>
<ul>
<li class="chapter" data-level="A.2.1" data-path="appendexA.html"><a href="appendexA.html#exercise-8.1"><i class="fa fa-check"></i><b>A.2.1</b> Exercise 8.1</a></li>
<li class="chapter" data-level="A.2.2" data-path="appendexA.html"><a href="appendexA.html#exercise-8.2"><i class="fa fa-check"></i><b>A.2.2</b> Exercise 8.2</a></li>
<li class="chapter" data-level="A.2.3" data-path="appendexA.html"><a href="appendexA.html#exercise-8.3"><i class="fa fa-check"></i><b>A.2.3</b> Exercise 8.3</a></li>
</ul></li>
<li class="chapter" data-level="A.3" data-path="appendexA.html"><a href="appendexA.html#chapter-14"><i class="fa fa-check"></i><b>A.3</b> Chapter 14</a>
<ul>
<li class="chapter" data-level="A.3.1" data-path="appendexA.html"><a href="appendexA.html#exercise-14.1"><i class="fa fa-check"></i><b>A.3.1</b> Exercise 14.1</a></li>
<li class="chapter" data-level="A.3.2" data-path="appendexA.html"><a href="appendexA.html#exercise-14.2"><i class="fa fa-check"></i><b>A.3.2</b> Exercise 14.2</a></li>
<li class="chapter" data-level="A.3.3" data-path="appendexA.html"><a href="appendexA.html#exercise-14.3"><i class="fa fa-check"></i><b>A.3.3</b> Exercise 14.3</a></li>
<li class="chapter" data-level="A.3.4" data-path="appendexA.html"><a href="appendexA.html#exercise-14.4"><i class="fa fa-check"></i><b>A.3.4</b> Exercise 14.4</a></li>
<li class="chapter" data-level="A.3.5" data-path="appendexA.html"><a href="appendexA.html#exercise-14.5"><i class="fa fa-check"></i><b>A.3.5</b> Exercise 14.5</a></li>
</ul></li>
<li class="chapter" data-level="A.4" data-path="appendexA.html"><a href="appendexA.html#chapter-17"><i class="fa fa-check"></i><b>A.4</b> Chapter 17</a>
<ul>
<li class="chapter" data-level="A.4.1" data-path="appendexA.html"><a href="appendexA.html#exercise-17.1"><i class="fa fa-check"></i><b>A.4.1</b> Exercise 17.1</a></li>
<li class="chapter" data-level="A.4.2" data-path="appendexA.html"><a href="appendexA.html#exercise-17.2"><i class="fa fa-check"></i><b>A.4.2</b> Exercise 17.2</a></li>
<li class="chapter" data-level="A.4.3" data-path="appendexA.html"><a href="appendexA.html#exercise-17.3"><i class="fa fa-check"></i><b>A.4.3</b> Exercise 17.3</a></li>
</ul></li>
<li class="chapter" data-level="A.5" data-path="appendexA.html"><a href="appendexA.html#chapter-20"><i class="fa fa-check"></i><b>A.5</b> Chapter 20</a>
<ul>
<li class="chapter" data-level="A.5.1" data-path="appendexA.html"><a href="appendexA.html#exercise-20.1"><i class="fa fa-check"></i><b>A.5.1</b> Exercise 20.1</a></li>
<li class="chapter" data-level="A.5.2" data-path="appendexA.html"><a href="appendexA.html#exercise-20.2"><i class="fa fa-check"></i><b>A.5.2</b> Exercise 20.2</a></li>
<li class="chapter" data-level="A.5.3" data-path="appendexA.html"><a href="appendexA.html#exercise-20.3"><i class="fa fa-check"></i><b>A.5.3</b> Exercise 20.3</a></li>
<li class="chapter" data-level="A.5.4" data-path="appendexA.html"><a href="appendexA.html#exercise-20.4"><i class="fa fa-check"></i><b>A.5.4</b> Exercise 20.4</a></li>
<li class="chapter" data-level="A.5.5" data-path="appendexA.html"><a href="appendexA.html#exercise-20.5"><i class="fa fa-check"></i><b>A.5.5</b> Exercise 20.5</a></li>
</ul></li>
<li class="chapter" data-level="A.6" data-path="appendexA.html"><a href="appendexA.html#chapter-23"><i class="fa fa-check"></i><b>A.6</b> Chapter 23</a>
<ul>
<li class="chapter" data-level="A.6.1" data-path="appendexA.html"><a href="appendexA.html#exercise-23.1"><i class="fa fa-check"></i><b>A.6.1</b> Exercise 23.1</a></li>
<li class="chapter" data-level="A.6.2" data-path="appendexA.html"><a href="appendexA.html#exercise-23.2"><i class="fa fa-check"></i><b>A.6.2</b> Exercise 23.2</a></li>
<li class="chapter" data-level="A.6.3" data-path="appendexA.html"><a href="appendexA.html#exercise-23.3"><i class="fa fa-check"></i><b>A.6.3</b> Exercise 23.3</a></li>
<li class="chapter" data-level="A.6.4" data-path="appendexA.html"><a href="appendexA.html#exercise-23.4"><i class="fa fa-check"></i><b>A.6.4</b> Exercise 23.4</a></li>
<li class="chapter" data-level="A.6.5" data-path="appendexA.html"><a href="appendexA.html#exercise-23.5"><i class="fa fa-check"></i><b>A.6.5</b> Exercise 23.5</a></li>
</ul></li>
<li class="chapter" data-level="A.7" data-path="appendexA.html"><a href="appendexA.html#chapter-28"><i class="fa fa-check"></i><b>A.7</b> Chapter 28</a>
<ul>
<li class="chapter" data-level="A.7.1" data-path="appendexA.html"><a href="appendexA.html#exercise-28.1"><i class="fa fa-check"></i><b>A.7.1</b> Exercise 28.1</a></li>
<li class="chapter" data-level="A.7.2" data-path="appendexA.html"><a href="appendexA.html#exercise-28.2"><i class="fa fa-check"></i><b>A.7.2</b> Exercise 28.2</a></li>
<li class="chapter" data-level="A.7.3" data-path="appendexA.html"><a href="appendexA.html#exercise-28.3"><i class="fa fa-check"></i><b>A.7.3</b> Exercise 28.3</a></li>
<li class="chapter" data-level="A.7.4" data-path="appendexA.html"><a href="appendexA.html#exercise-28.4"><i class="fa fa-check"></i><b>A.7.4</b> Exercise 28.4</a></li>
</ul></li>
<li class="chapter" data-level="A.8" data-path="appendexA.html"><a href="appendexA.html#chapter-31"><i class="fa fa-check"></i><b>A.8</b> Chapter 31</a>
<ul>
<li class="chapter" data-level="A.8.1" data-path="appendexA.html"><a href="appendexA.html#exercise-31.1"><i class="fa fa-check"></i><b>A.8.1</b> Exercise 31.1</a></li>
<li class="chapter" data-level="A.8.2" data-path="appendexA.html"><a href="appendexA.html#exercise-31.2"><i class="fa fa-check"></i><b>A.8.2</b> Exercise 31.2</a></li>
<li class="chapter" data-level="A.8.3" data-path="appendexA.html"><a href="appendexA.html#exercise-31.3"><i class="fa fa-check"></i><b>A.8.3</b> Exercise 31.3</a></li>
<li class="chapter" data-level="A.8.4" data-path="appendexA.html"><a href="appendexA.html#exercise-31.4"><i class="fa fa-check"></i><b>A.8.4</b> Exercise 31.4</a></li>
<li class="chapter" data-level="A.8.5" data-path="appendexA.html"><a href="appendexA.html#exercise-31.5"><i class="fa fa-check"></i><b>A.8.5</b> Exercise 31.5</a></li>
</ul></li>
<li class="chapter" data-level="A.9" data-path="appendexA.html"><a href="appendexA.html#chapter-34"><i class="fa fa-check"></i><b>A.9</b> Chapter 34</a>
<ul>
<li class="chapter" data-level="A.9.1" data-path="appendexA.html"><a href="appendexA.html#exercise-34.1"><i class="fa fa-check"></i><b>A.9.1</b> Exercise 34.1</a></li>
<li class="chapter" data-level="A.9.2" data-path="appendexA.html"><a href="appendexA.html#exercise-34.2"><i class="fa fa-check"></i><b>A.9.2</b> Exercise 34.2</a></li>
<li class="chapter" data-level="A.9.3" data-path="appendexA.html"><a href="appendexA.html#exercise-34.3"><i class="fa fa-check"></i><b>A.9.3</b> Exercise 34.3</a></li>
<li class="chapter" data-level="A.9.4" data-path="appendexA.html"><a href="appendexA.html#exercise-34.4"><i class="fa fa-check"></i><b>A.9.4</b> Exercise 34.4</a></li>
<li class="chapter" data-level="A.9.5" data-path="appendexA.html"><a href="appendexA.html#exercise-33.5"><i class="fa fa-check"></i><b>A.9.5</b> Exercise 33.5</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="B" data-path="uncertainty_derivation.html"><a href="uncertainty_derivation.html"><i class="fa fa-check"></i><b>B</b> Uncertainty derivation</a>
<ul>
<li class="chapter" data-level="B.1" data-path="uncertainty_derivation.html"><a href="uncertainty_derivation.html#propagation-of-error-for-addition-and-subtraction"><i class="fa fa-check"></i><b>B.1</b> Propagation of error for addition and subtraction</a></li>
<li class="chapter" data-level="B.2" data-path="uncertainty_derivation.html"><a href="uncertainty_derivation.html#propagation-of-error-for-multiplication-and-division"><i class="fa fa-check"></i><b>B.2</b> Propagation of error for multiplication and division</a></li>
</ul></li>
<li class="chapter" data-level="" data-path="references.html"><a href="references.html"><i class="fa fa-check"></i>References</a></li>
<li class="divider"></li>
<li><a href="https://github.com/rstudio/bookdown" target="blank">Published with bookdown</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./">Fundamental statistical concepts and techniques in the biological and environmental sciences: With jamovi</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="Chapter_17" class="section level1 hasAnchor" number="17">
<h1><span class="header-section-number">Chapter 17</span> <em>Practical</em>. Probability and simulation<a href="Chapter_17.html#Chapter_17" class="anchor-section" aria-label="Anchor link to header"></a></h1>
<p>This practical focuses on applying the concepts from <a href="Chapter_15.html#Chapter_15">Chapter 15</a> and <a href="Chapter_16.html#Chapter_16">Chapter 16</a> in jamovi.
There will be three exercises:</p>
<ol style="list-style-type: decimal">
<li>Calculating probabilities from a dataset</li>
<li>Calculating probabilities from a normal distribution</li>
<li>Demonstrating the central limit theorem (CLT)</li>
</ol>
<p>To complete exercises 2 and 3, you will need to download and install two new jamovi modules.
Jamovi modules are add-ons that make it possible to run specialised statistical tools inside jamovi.
These tools are written by a community of statisticians, scientists, and educators and listed in the <a href="https://www.jamovi.org/library.html">jamovi library</a>.
Like jamovi, these tools are open source and free to use.</p>
<p>The dataset for this chapter is a bit different.
It comes from the Beacon Project (<a href="https://www.thebeaconproject.net/" class="uri">https://www.thebeaconproject.net/</a>), which is an interdisciplinary scientific research programme led by Dr Isabel Jones at the University of Stirling.
This project focuses on large hydropower dams as a way to understand the trade-offs between different United Nations Sustainable Development Goals.
It addresses challenging questions about environmental justice, biodiversity, and sustainable development.
The project works with people affected, and sometimes displaced, by dam construction in Brazil, Kazakhstan, India, USA, and UK.
Part of this project involves the use of mobile games to investigate how people make decisions about sustainable development.</p>
<p>The game ‘Power Up!’ is freely available as an <a href="https://play.google.com/store/apps/details?id=com.hyperluminal.stirlinguniversity.sustainabledevelopmentgame">Android</a> and <a href="https://apps.apple.com/gb/app/power-up/id1585634888">iPhone</a> app.
Data are collected from players’ decisions and used to investigate social-ecological questions.
We will use the ‘Power Up!’ dataset<a href="#fn24" class="footnote-ref" id="fnref24"><sup>24</sup></a> in exercises 1 and 2.
To get started, first download this dataset and open it in jamovi.
Note that these data are already in a tidy format, so we do not need to do any reorganising.
The dataset includes columns for each player’s ID, the OS that they use, the dam size that they decided to build in the game, their in-game investment in Biodiversity, Community, and Energy, and their final Score.</p>
<div id="probabilities-from-a-dataset" class="section level2 hasAnchor" number="17.1">
<h2><span class="header-section-number">17.1</span> Probabilities from a dataset<a href="Chapter_17.html#probabilities-from-a-dataset" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>Suppose that we want to estimate the probability that a new Power Up! game player will be an Android user.
To estimate this probability, we can use the proportion of players in the dataset who are Android users.
To get this proportion, we need to divide the number of Android users by the total number of players,</p>
<p><span class="math display">\[P(Android) = \frac{\mathrm{Number\:of\:Android\:users}}{\mathrm{Number\:of\:players}}.\]</span></p>
<p>In jamovi, you could figure this out the long way by counting up the number of rows with ‘Android’ in the second column, then dividing by the total number of rows.
But there is an easier way, which is faster and less prone to human error than manually tallying up items.
To do this, go to the ‘Analyses’ tab in jamovi and navigate to ‘Exploration’, then ‘Descriptives’.
Place the ‘OS’ variable into the ‘Variables’ box.
Next, find the check box called ‘Frequency tables’ just under the ‘Split by’ box and above the ‘Statistics’ drop-down tab.
Check this box to get a table of frequencies for Android versus iPhone users.</p>
<div class="figure"><span style="display:block;" id="fig:unnamed-chunk-66"></span>
<img src="img/jamovi_power_up_frequencies.png" alt="Jamovi interface of Descriptives with OS selected as a Variable and a frequency table to the right showing the frequencies of Android and iPhone users" width="100%" />
<p class="caption">
Figure 17.1: Jamovi Descriptives toolbar showing the OS column from the Power Up! dataset selected. The ‘Frequency tables’ checkbox builds a table of counts and percentages.
</p>
</div>
<p>The table of frequencies shown in Figure 17.1 includes counts of Android versus iPhone users.
We can see that 56 of the 74 total game players use Android, while 18 players use iPhone.
To get the proportion of Android users, we could divide 56 by 74 to get 0.7567568.
Similarly, for the proportion of iPhone users, we could calculate 18 / 74 = 0.2432432.
But jamovi already does this for us, with a bit of rounding.
The second column of the Frequencies table gives us these proportions, but expressed as a percentage.
The percentage of Android users is 75.7%, and the percentage of iPhone users is 24.3%.
Percentages are out of a total of 100, so to get back to the proportions, we can just divide by 100%, 75.7% / 100% = 0.757 for Android and 24.3% / 100% = 0.243 for iPhone.
To answer the original question, our best estimate of the probability that a new Power Up! game player will be an Android user is therefore 0.757.</p>
<p>Next, use the same procedure to find the probability that a game player will make a small-, medium-, and large-size dam.
Now, fill in Table 17.1 with counts, percentage, and the estimated probability of a player selecting a small, medium, or large dam.</p>
<table>
<caption><strong>TABLE 17.1</strong> Statistics of Power Up! decisions for dam size.</caption>
<thead>
<tr class="header">
<th>Dam Size</th>
<th>Counts</th>
<th>Percentage</th>
<th>Estimated Probability</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>Small</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr class="even">
<td>Medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr class="odd">
<td>Large</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<p>We can use these estimated probabilities of small, medium, and large dam size selection to predict what will happen in future games.
Suppose that a new player decides to play the game.
What is the probability that this player chooses a small <strong>or</strong> a large dam?</p>
<p><span class="math inline">\(P(small\:\mathrm{or}\:large) =\)</span> __________________________</p>
<p>Now suppose that 3 new players arrive and decide to play the game.
What is the probability that all 3 of these new players choose a large dam?</p>
<p><span class="math inline">\(P(3\:large) =\)</span> __________________________</p>
<p>What is the probability that the first player chooses a small dam, the second player chooses a medium dam, and the third player chooses a large dam?</p>
<p><span class="math inline">\(P(Player\:1 = small,Player\:2 = \:medium,Player\:3 = large) =\)</span> _______</p>
<p>Now consider a slightly different type of question.
Instead of trying to predict the probability of new player decisions, we will focus on sampling from the existing dataset.
Imagine that you randomly choose one of the 74 players with equal probability (i.e., every player is equally likely to be chosen).
What is the probability that you choose player 20?</p>
<p><span class="math inline">\(P(Player\:20) =\)</span> __________________________</p>
<p>What is the probability that you choose player 20, <em>then</em> choose a different player with a large dam?
As a hint, remember that you are now sampling <em>without replacement</em>.
The second choice cannot be player 20 again, so the probability of choosing a player with a large dam has changed from the estimated probability in Table 17.1.</p>
<p><span class="math inline">\(P(Player\:20,\:Large) =\)</span> __________________________</p>
<p>Now we can use the Descriptives tool in jamovi to ask a slightly different question with the data.
Suppose that we wanted to estimate the probability that an Android user will choose a large dam.
We could multiply the proportion of Android users times the proportion of players who choose a large dam (i.e., find the probability of Android <em>and</em> large dam).
But this assumes that the two characteristics are independent (i.e., that Android users are not more or less likely than iPhone users to build large dams).
To estimate the probability that a player chooses a large dam <em>given</em> that they are using Android, we can keep Dam_size in the Variables box, but now put OS in the ‘Split by’ box.
Figure 17.2 shows the output of jamovi.
A new frequency table breaks down dam choice for each OS.</p>
<div class="figure"><span style="display:block;" id="fig:unnamed-chunk-67"></span>
<img src="img/jamovi_power_up_frequencies2.png" alt="Jamovi interface of Descriptives with dam size selected as a Variable split by OS, and a frequency table to the right showing the frequencies of Android and iPhone users who chose small, medium, and large dams." width="100%" />
<p class="caption">
Figure 17.2: Jamovi Descriptives toolbar showing the dam size column from the Power Up! dataset selected as a variable split by OS. The ‘Frequency tables’ checkbox builds a table of counts for small, medium, and large dam size broken down by Android versus iPhone OS.
</p>
</div>
<p>To get the proportion of Android users who choose to build a large dam, we just need to divide the number of Android users who chose the large dam size by the total number of Android users (i.e., sum of the first column in the Frequencies table; Figure 17.2).
Note that the vertical bar, <span class="math inline">\(|\)</span>, in the equation below just means ‘given’ (or, rather, ‘conditional up’, so the number of players that chose a large dam <em>given</em> that they are Android users),</p>
<p><span class="math display">\[P(Large | Android) = \frac{\mathrm{Number\:of\:Android\:users\:choosing\:large\:dam}}{\mathrm{Number\:of\:Android\:users}}.\]</span></p>
<p>Now, recreate the table in Figure 17.2 and estimate the probability that an Android user will choose to build a large dam,</p>
<p><span class="math inline">\(P(Large | Android) =\)</span> __________________________</p>
<p>Is <span class="math inline">\(P(Large | Android)\)</span> much different from the probability that <em>any</em> player chooses a large dam, as calculated in Table 17.1? Do you think that the difference is significant?</p>
<pre><code>
</code></pre>
<p>Next, we will move on to calculating probabilities from a normal distribution.</p>
</div>
<div id="probabilities-from-a-normal-distribution" class="section level2 hasAnchor" number="17.2">
<h2><span class="header-section-number">17.2</span> Probabilities from a normal distribution<a href="Chapter_17.html#probabilities-from-a-normal-distribution" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>In the example of the first exercise, we looked at OS and dam size choice.
Players only use Android or iPhone, and they could only choose one of three sizes of dam.
For these nominal variables, estimating the probability of a particular discrete outcome (e.g., Android versus iPhone) was just a matter of dividing counts.
But we cannot use the same approach for calculating probabilities from continuous data.
Consider, for example, the final score for each player in the column ‘Score’.
Because of how the game was designed, Score can potentially be any real number, although most scores are somewhere around 100.
We can use a histogram to see the distribution of player scores (Figure 17.3).</p>
<p>In this case, it does not really make sense to ask what the probability is of a particular score.
If the score can take <em>any</em> real value, out to as many decimals as we want, then what is the probability of a score being <em>exactly</em> 94.97 (i.e., 94.97 with infinite zeros after it, <span class="math inline">\(94.9700000\bar{0}\)</span>)?
The probability is infinitesimal, i.e., basically zero, because there are an infinite number of real numbers.
Consequently, we are not really interested in the probabilities of specific values of continuous data.
Instead, we want to focus on intervals.
For example, what is the probability that a player scores higher than 120?
What is the probability that a player scores lower than 100?
What is the probability that a player scores between 100 and 120?</p>
<div class="figure"><span style="display:block;" id="fig:unnamed-chunk-68"></span>
<img src="bookdown-demo_files/figure-html/unnamed-chunk-68-1.png" alt="A histogram is shown with a normal shape. The x-axis is labelled 'Player Score', and there is a line indicating the probability density function of a normal distribution overlaid." width="100%" />
<p class="caption">
Figure 17.3: Distribution of player scores in the game Power Up! shown in histogram bars. The overlaid curve shows the probability density function for a normal distribution that has the same mean and standard deviation as the sample described by the histogram.
</p>
</div>
<p>Take another look at Figure 17.3, then take a guess at each of these probabilities.
As a hint, the y-axis of this histogram is showing density instead of frequency.
What this means is that the total grey area (i.e., the histogram bars) sums to 1.
Guessing the probability that a player scores higher than 120 is the same as guessing the proportion of grey space in the highest four bars of Figure 17.3 (i.e., grey space >120).</p>
<p><span class="math inline">\(P(Score>120) =\)</span> __________________________</p>
<p><span class="math inline">\(P(Score<100) =\)</span> __________________________</p>
<p><span class="math inline">\(P(100<Score<120) =\)</span> __________________________</p>
<p>Trying to do this by looking at a histogram is not easy, and it is really not the best way to get the above probabilities.
We can get much better estimates using jamovi, but we need to make an assumption about the distribution of Player Score.
Specifically, we need to assume that the distribution of Player Score has a specific shape.
More technically, we must assume a specific probability density function that we can use to mathematically calculate probabilities of different ranges of player scores.
Inspecting Figure 17.3, Player Score appears to be normally distributed.
In other words, the shape of Player Score distribution appears to be normal, or ‘Gaussian’.
If we are willing to assume this, then we can calculate probabilities using its mean and standard deviation.
Use jamovi to find the mean and the standard deviation of Player Score (note, we can just say that score is unitless, so no need to include units).</p>
<p>Mean score: __________________________</p>
<p>Standard deviation score: __________________________</p>
<p>We will assume that the <em>sample</em> of scores shown in Figure 17.3 came from a <em>population</em> that is normally distributed with the mean and standard deviation that you wrote above (recall sample versus population from <a href="Chapter_4.html#Chapter_4">Chapter 4</a>).
We can overlay this distribution on the histogram above using a curved line (Figure 17.3).</p>
<p>We can interpret the area under the curve in the same way that we interpret the area in the grey bars.
As mentioned earlier, the total area of the histogram bars must sum to 1.
The total area under the curve must also sum to 1.
Both represent the probability of different ranges of player scores.
Notice that the normal distribution is not a perfect match for the histogram bars.
For example, the middle bar of values illustrating scores between 90 and 100 appears to be a bit low compared to a perfect normal distribution, and there are more scores between 40 and 50 than we might expect.
Nevertheless, the two distributions broadly overlap, so we might be willing to assume that the player scores represented in the histogram bars are sampled from the population described by the curve.</p>
<p>Because the curve relating player score to probability density is described by an equation (see <a href="Chapter_15.html#Chapter_15">Chapter 15</a>), we can use that equation to make inferences about the probabilities of different ranges of scores.
The simplest example is the mean of the distribution.
Because the normal distribution is symmetric, the area to the left of the mean must be the same as the area to the right of the mean.
And since the whole area under the curve must sum to 1, we can conclude that the probability of sampling a player score that is less than the mean is 1/2, and the probability of sampling a player score greater than the mean is also 1/2.
Traditionally, we would need to do some maths to get other player score probabilities, but jamovi can do this much more easily.</p>
<p>To get jamovi to calculate probabilities from a normal distribution, we need to go to the Modules option and download a new module.
Click on the ‘Modules’ button, and select the first option called ‘jamovi library’ from the pull-down menu.
From the ‘Available’ tab, scroll down until you find the Module called ‘distrACTION - Quantiles and Probabilities of Continuous and Discrete Distributions’ <span class="citation">(<a href="#ref-Rihs2018" role="doc-biblioref">Rihs & Mayer, 2018</a>)</span>.
Click the ‘Install’ button to install it into jamovi.
A new button in the toolbar called ‘distrACTION’ should become visible (Figure 17.4).</p>
<div class="figure"><span style="display:block;" id="fig:unnamed-chunk-69"></span>
<img src="img/jamovi_toolbar_modules_distrACTION.png" alt="Jamovi toolbar is shown, which includes an option on the far right hand side called 'modules' and a button called distrACTION." width="100%" />
<p class="caption">
Figure 17.4: Jamovi tool bar, which includes an added module called distrACTION.
</p>
</div>
<p>If the module is not there after installation, then it should be possible to find by again going to Modules and selecting distrACTION from the pull-down menu.
Click on the module and choose ‘Normal Distribution’ from the pull-down menu.
Next, we can see a box for the mean and standard deviation (SD) under the ‘Parameters’ subtitle in bold.
Put the mean and the standard deviation calculated from above into these boxes.
In the panel on the right, jamovi will produce the same normal distribution that is in Figure 17.3 (note that the axes might be scaled a bit differently).</p>
<p>Given this normal distribution, we can compute the probability that a player scores less than x1 = 80 by checking the box ‘Compute probability’, which is located just under ‘Function’ (Figure 17.5).
We can then select the first radio button to find the probability that a randomly sampled value X from this distribution is less than x1, <span class="math inline">\(P(X \leq x1)\)</span>.
Notice in the panel on the right that the probability is given as <span class="math inline">\(P = 0.238\)</span>.
This is also represented in the plot of the normal distribution, with the same proportion in the lower part of the distribution shaded (<span class="math inline">\(P = 0.238\)</span>, i.e., about 23.8%).</p>
<div class="figure"><span style="display:block;" id="fig:unnamed-chunk-70"></span>
<img src="img/jamovi_normal_distribution.png" alt="Jamovi options for a module that calculates probabilities associated with a normal distribution, with computing probability checkboxes and radio buttons selected" width="100%" />
<p class="caption">
Figure 17.5: Jamovi options for the distrACTION module for computing probability for a given normal distribution. The example shown here calculates the probability that a value sampled from the normal distribution of interest is less than 80.
</p>
</div>
<p>To find the probability that a value is greater than 80, we could subtract our answer of 0.238 from 1, <span class="math inline">\(1 - 0.238 = 0.762\)</span> (remember that the total area under the normal curve equals 1, so the shaded plus the unshaded region must also equal 1; hence, 1 minus the shaded region gives us the unshaded region).
We could also just select the second radio button for <span class="math inline">\(P(X \geq x1)\)</span>.
Give this a try, and notice that the shaded and unshaded regions have flipped in the plot, and we get our answer in the table of 0.762.</p>
<p>Finally, to compute the probability of an interval, we can check the third radio button and set x2 in the bottom box (Figure 17.5).
For example, to see the probability of a score between 80 and 120, we can choose select <span class="math inline">\(P(x1 \leq X \leq x2)\)</span>, then set <span class="math inline">\(x2 = 120\)</span> in the bottom box.
Notice where the shaded area is in the newly drawn plot.
What is the probability of a player getting a score between 80 and 120?</p>
<p><span class="math inline">\(P(80 \leq X \leq 120)\)</span> = __________________________</p>
<p>What is the probability of a player getting a score greater than 130?</p>
<p><span class="math inline">\(P(X \geq 130)\)</span> = __________________________</p>
<p>Now try the following probabilities for different scores.</p>
<p><span class="math inline">\(P(X \geq 120)\)</span> = __________________________</p>
<p><span class="math inline">\(P(X \leq 100)\)</span> = __________________________</p>
<p><span class="math inline">\(P(100 \leq X \leq 120)\)</span> = __________________________</p>
<p>Note, these last three were the same intervals that you guessed using the histogram.
How close was your original guess to the calculations above?</p>
<pre><code>
</code></pre>
<p>One last question.
What is the probability of a player getting a score lower than 70 or higher than 130?</p>
<p><span class="math inline">\(P(X \leq 70 \: \cup \: X \geq 130)\)</span> = __________________________</p>
<p>There is more than one way to figure this last one out.
How did you do it, and what was your reasoning?</p>
<pre><code>
</code></pre>
<p>We will now move on to the central limit theorem.</p>
</div>
<div id="central-limit-theorem" class="section level2 hasAnchor" number="17.3">
<h2><span class="header-section-number">17.3</span> Central limit theorem<a href="Chapter_17.html#central-limit-theorem" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>To demonstrate the central limit theorem, we need to download and install another module in jamovi.
This time, go to ‘Modules’, and from the ‘Available’ tab, scroll down until you find ‘Rj’ in the jamovi library.
Install ‘Rj’, then a new button ‘R’ should become available in the toolbar.
This will allow us to run a bit of script using the coding language R.
Click on the new ‘R’ button in the toolbar and select ‘Rj Editor’ from the pull-down menu.
You will see an open editor; this is where the code will go.
If it has some code in it already (e.g., <code># summary(data[1:3])</code>), just delete it so that we can start with a clean slate.
Copy and paste the following lines into the Rj Editor.</p>
<div class="sourceCode" id="cb41"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb41-1"><a href="Chapter_17.html#cb41-1" aria-hidden="true" tabindex="-1"></a>v1 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-2"><a href="Chapter_17.html#cb41-2" aria-hidden="true" tabindex="-1"></a>v2 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-3"><a href="Chapter_17.html#cb41-3" aria-hidden="true" tabindex="-1"></a>v3 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-4"><a href="Chapter_17.html#cb41-4" aria-hidden="true" tabindex="-1"></a>v4 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-5"><a href="Chapter_17.html#cb41-5" aria-hidden="true" tabindex="-1"></a>v5 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-6"><a href="Chapter_17.html#cb41-6" aria-hidden="true" tabindex="-1"></a>v6 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-7"><a href="Chapter_17.html#cb41-7" aria-hidden="true" tabindex="-1"></a>v7 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-8"><a href="Chapter_17.html#cb41-8" aria-hidden="true" tabindex="-1"></a>v8 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-9"><a href="Chapter_17.html#cb41-9" aria-hidden="true" tabindex="-1"></a>v9 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-10"><a href="Chapter_17.html#cb41-10" aria-hidden="true" tabindex="-1"></a>v10 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-11"><a href="Chapter_17.html#cb41-11" aria-hidden="true" tabindex="-1"></a>v11 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-12"><a href="Chapter_17.html#cb41-12" aria-hidden="true" tabindex="-1"></a>v12 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-13"><a href="Chapter_17.html#cb41-13" aria-hidden="true" tabindex="-1"></a>v13 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-14"><a href="Chapter_17.html#cb41-14" aria-hidden="true" tabindex="-1"></a>v14 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-15"><a href="Chapter_17.html#cb41-15" aria-hidden="true" tabindex="-1"></a>v15 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-16"><a href="Chapter_17.html#cb41-16" aria-hidden="true" tabindex="-1"></a>v16 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-17"><a href="Chapter_17.html#cb41-17" aria-hidden="true" tabindex="-1"></a>v17 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-18"><a href="Chapter_17.html#cb41-18" aria-hidden="true" tabindex="-1"></a>v18 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-19"><a href="Chapter_17.html#cb41-19" aria-hidden="true" tabindex="-1"></a>v19 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-20"><a href="Chapter_17.html#cb41-20" aria-hidden="true" tabindex="-1"></a>v20 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-21"><a href="Chapter_17.html#cb41-21" aria-hidden="true" tabindex="-1"></a>v21 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-22"><a href="Chapter_17.html#cb41-22" aria-hidden="true" tabindex="-1"></a>v22 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-23"><a href="Chapter_17.html#cb41-23" aria-hidden="true" tabindex="-1"></a>v23 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-24"><a href="Chapter_17.html#cb41-24" aria-hidden="true" tabindex="-1"></a>v24 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-25"><a href="Chapter_17.html#cb41-25" aria-hidden="true" tabindex="-1"></a>v25 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-26"><a href="Chapter_17.html#cb41-26" aria-hidden="true" tabindex="-1"></a>v26 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-27"><a href="Chapter_17.html#cb41-27" aria-hidden="true" tabindex="-1"></a>v27 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-28"><a href="Chapter_17.html#cb41-28" aria-hidden="true" tabindex="-1"></a>v28 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-29"><a href="Chapter_17.html#cb41-29" aria-hidden="true" tabindex="-1"></a>v29 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-30"><a href="Chapter_17.html#cb41-30" aria-hidden="true" tabindex="-1"></a>v30 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-31"><a href="Chapter_17.html#cb41-31" aria-hidden="true" tabindex="-1"></a>v31 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-32"><a href="Chapter_17.html#cb41-32" aria-hidden="true" tabindex="-1"></a>v32 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-33"><a href="Chapter_17.html#cb41-33" aria-hidden="true" tabindex="-1"></a>v33 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-34"><a href="Chapter_17.html#cb41-34" aria-hidden="true" tabindex="-1"></a>v34 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-35"><a href="Chapter_17.html#cb41-35" aria-hidden="true" tabindex="-1"></a>v35 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-36"><a href="Chapter_17.html#cb41-36" aria-hidden="true" tabindex="-1"></a>v36 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-37"><a href="Chapter_17.html#cb41-37" aria-hidden="true" tabindex="-1"></a>v37 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-38"><a href="Chapter_17.html#cb41-38" aria-hidden="true" tabindex="-1"></a>v38 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-39"><a href="Chapter_17.html#cb41-39" aria-hidden="true" tabindex="-1"></a>v39 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-40"><a href="Chapter_17.html#cb41-40" aria-hidden="true" tabindex="-1"></a>v40 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="at">n =</span> <span class="dv">200</span>, <span class="at">min =</span> <span class="dv">0</span>, <span class="at">max =</span> <span class="dv">100</span>);</span>
<span id="cb41-41"><a href="Chapter_17.html#cb41-41" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb41-42"><a href="Chapter_17.html#cb41-42" aria-hidden="true" tabindex="-1"></a><span class="fu">hist</span>(<span class="at">x =</span> v1, <span class="at">main =</span> <span class="st">""</span>, <span class="at">xlab =</span> <span class="st">"Random uniform variable"</span>);</span></code></pre></div>
<p>What this code is doing is creating 40 different datasets of 200 random numbers from 0 to 100 (there is a way to do all of this in much fewer lines of code, but it requires a bit more advanced use of R).
The <code>hist</code> function plots a histogram of the first variable.
To run the code, find the green triangle in the upper right (Figure 17.6).</p>
<div class="figure"><span style="display:block;" id="fig:unnamed-chunk-72"></span>
<img src="img/jamovi_RjEditor.png" alt="Jamovi window with an R editor open and several lines of code for generating uniform numbers." width="100%" />
<p class="caption">
Figure 17.6: Jamovi interface for the Rj Editor module. Code can be run by clicking on the green triangle in the upper right.
</p>
</div>
<p>When you run the code, the 40 new variables will be created, each variable being made up of 200 random numbers.
The histogram for <code>v1</code> is plotted to the right (to plot other variables, substitute <code>v1</code> in the <code>hist</code> function for some other variable).
How would you describe the shape of the distribution of <code>v1</code>?</p>
<pre><code>
</code></pre>
<p>Next, we are going to get the mean value of each of the 40 variables.
To do this, copy the code below and paste it at the bottom of the Rj Editor (somewhere below the <code>hist</code> function).</p>
<div class="sourceCode" id="cb43"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb43-1"><a href="Chapter_17.html#cb43-1" aria-hidden="true" tabindex="-1"></a>m1 <span class="ot"><-</span> <span class="fu">mean</span>(v1);</span>
<span id="cb43-2"><a href="Chapter_17.html#cb43-2" aria-hidden="true" tabindex="-1"></a>m2 <span class="ot"><-</span> <span class="fu">mean</span>(v2);</span>
<span id="cb43-3"><a href="Chapter_17.html#cb43-3" aria-hidden="true" tabindex="-1"></a>m3 <span class="ot"><-</span> <span class="fu">mean</span>(v3);</span>
<span id="cb43-4"><a href="Chapter_17.html#cb43-4" aria-hidden="true" tabindex="-1"></a>m4 <span class="ot"><-</span> <span class="fu">mean</span>(v4);</span>
<span id="cb43-5"><a href="Chapter_17.html#cb43-5" aria-hidden="true" tabindex="-1"></a>m5 <span class="ot"><-</span> <span class="fu">mean</span>(v5);</span>
<span id="cb43-6"><a href="Chapter_17.html#cb43-6" aria-hidden="true" tabindex="-1"></a>m6 <span class="ot"><-</span> <span class="fu">mean</span>(v6);</span>
<span id="cb43-7"><a href="Chapter_17.html#cb43-7" aria-hidden="true" tabindex="-1"></a>m7 <span class="ot"><-</span> <span class="fu">mean</span>(v7);</span>
<span id="cb43-8"><a href="Chapter_17.html#cb43-8" aria-hidden="true" tabindex="-1"></a>m8 <span class="ot"><-</span> <span class="fu">mean</span>(v8);</span>
<span id="cb43-9"><a href="Chapter_17.html#cb43-9" aria-hidden="true" tabindex="-1"></a>m9 <span class="ot"><-</span> <span class="fu">mean</span>(v9);</span>
<span id="cb43-10"><a href="Chapter_17.html#cb43-10" aria-hidden="true" tabindex="-1"></a>m10 <span class="ot"><-</span> <span class="fu">mean</span>(v10);</span>
<span id="cb43-11"><a href="Chapter_17.html#cb43-11" aria-hidden="true" tabindex="-1"></a>m11 <span class="ot"><-</span> <span class="fu">mean</span>(v11);</span>
<span id="cb43-12"><a href="Chapter_17.html#cb43-12" aria-hidden="true" tabindex="-1"></a>m12 <span class="ot"><-</span> <span class="fu">mean</span>(v12);</span>
<span id="cb43-13"><a href="Chapter_17.html#cb43-13" aria-hidden="true" tabindex="-1"></a>m13 <span class="ot"><-</span> <span class="fu">mean</span>(v13);</span>
<span id="cb43-14"><a href="Chapter_17.html#cb43-14" aria-hidden="true" tabindex="-1"></a>m14 <span class="ot"><-</span> <span class="fu">mean</span>(v14);</span>
<span id="cb43-15"><a href="Chapter_17.html#cb43-15" aria-hidden="true" tabindex="-1"></a>m15 <span class="ot"><-</span> <span class="fu">mean</span>(v15);</span>
<span id="cb43-16"><a href="Chapter_17.html#cb43-16" aria-hidden="true" tabindex="-1"></a>m16 <span class="ot"><-</span> <span class="fu">mean</span>(v16);</span>
<span id="cb43-17"><a href="Chapter_17.html#cb43-17" aria-hidden="true" tabindex="-1"></a>m17 <span class="ot"><-</span> <span class="fu">mean</span>(v17);</span>
<span id="cb43-18"><a href="Chapter_17.html#cb43-18" aria-hidden="true" tabindex="-1"></a>m18 <span class="ot"><-</span> <span class="fu">mean</span>(v18);</span>
<span id="cb43-19"><a href="Chapter_17.html#cb43-19" aria-hidden="true" tabindex="-1"></a>m19 <span class="ot"><-</span> <span class="fu">mean</span>(v19);</span>
<span id="cb43-20"><a href="Chapter_17.html#cb43-20" aria-hidden="true" tabindex="-1"></a>m20 <span class="ot"><-</span> <span class="fu">mean</span>(v20);</span>
<span id="cb43-21"><a href="Chapter_17.html#cb43-21" aria-hidden="true" tabindex="-1"></a>m21 <span class="ot"><-</span> <span class="fu">mean</span>(v21);</span>
<span id="cb43-22"><a href="Chapter_17.html#cb43-22" aria-hidden="true" tabindex="-1"></a>m22 <span class="ot"><-</span> <span class="fu">mean</span>(v22);</span>
<span id="cb43-23"><a href="Chapter_17.html#cb43-23" aria-hidden="true" tabindex="-1"></a>m23 <span class="ot"><-</span> <span class="fu">mean</span>(v23);</span>
<span id="cb43-24"><a href="Chapter_17.html#cb43-24" aria-hidden="true" tabindex="-1"></a>m24 <span class="ot"><-</span> <span class="fu">mean</span>(v24);</span>
<span id="cb43-25"><a href="Chapter_17.html#cb43-25" aria-hidden="true" tabindex="-1"></a>m25 <span class="ot"><-</span> <span class="fu">mean</span>(v25);</span>
<span id="cb43-26"><a href="Chapter_17.html#cb43-26" aria-hidden="true" tabindex="-1"></a>m26 <span class="ot"><-</span> <span class="fu">mean</span>(v26);</span>
<span id="cb43-27"><a href="Chapter_17.html#cb43-27" aria-hidden="true" tabindex="-1"></a>m27 <span class="ot"><-</span> <span class="fu">mean</span>(v27);</span>
<span id="cb43-28"><a href="Chapter_17.html#cb43-28" aria-hidden="true" tabindex="-1"></a>m28 <span class="ot"><-</span> <span class="fu">mean</span>(v28);</span>
<span id="cb43-29"><a href="Chapter_17.html#cb43-29" aria-hidden="true" tabindex="-1"></a>m29 <span class="ot"><-</span> <span class="fu">mean</span>(v29);</span>
<span id="cb43-30"><a href="Chapter_17.html#cb43-30" aria-hidden="true" tabindex="-1"></a>m30 <span class="ot"><-</span> <span class="fu">mean</span>(v30);</span>
<span id="cb43-31"><a href="Chapter_17.html#cb43-31" aria-hidden="true" tabindex="-1"></a>m31 <span class="ot"><-</span> <span class="fu">mean</span>(v31);</span>
<span id="cb43-32"><a href="Chapter_17.html#cb43-32" aria-hidden="true" tabindex="-1"></a>m32 <span class="ot"><-</span> <span class="fu">mean</span>(v32);</span>
<span id="cb43-33"><a href="Chapter_17.html#cb43-33" aria-hidden="true" tabindex="-1"></a>m33 <span class="ot"><-</span> <span class="fu">mean</span>(v33);</span>
<span id="cb43-34"><a href="Chapter_17.html#cb43-34" aria-hidden="true" tabindex="-1"></a>m34 <span class="ot"><-</span> <span class="fu">mean</span>(v34);</span>
<span id="cb43-35"><a href="Chapter_17.html#cb43-35" aria-hidden="true" tabindex="-1"></a>m35 <span class="ot"><-</span> <span class="fu">mean</span>(v35);</span>
<span id="cb43-36"><a href="Chapter_17.html#cb43-36" aria-hidden="true" tabindex="-1"></a>m36 <span class="ot"><-</span> <span class="fu">mean</span>(v36);</span>
<span id="cb43-37"><a href="Chapter_17.html#cb43-37" aria-hidden="true" tabindex="-1"></a>m37 <span class="ot"><-</span> <span class="fu">mean</span>(v37);</span>
<span id="cb43-38"><a href="Chapter_17.html#cb43-38" aria-hidden="true" tabindex="-1"></a>m38 <span class="ot"><-</span> <span class="fu">mean</span>(v38);</span>
<span id="cb43-39"><a href="Chapter_17.html#cb43-39" aria-hidden="true" tabindex="-1"></a>m39 <span class="ot"><-</span> <span class="fu">mean</span>(v39);</span>
<span id="cb43-40"><a href="Chapter_17.html#cb43-40" aria-hidden="true" tabindex="-1"></a>m40 <span class="ot"><-</span> <span class="fu">mean</span>(v40);</span>
<span id="cb43-41"><a href="Chapter_17.html#cb43-41" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb43-42"><a href="Chapter_17.html#cb43-42" aria-hidden="true" tabindex="-1"></a>all_means <span class="ot"><-</span> <span class="fu">c</span>(m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, </span>
<span id="cb43-43"><a href="Chapter_17.html#cb43-43" aria-hidden="true" tabindex="-1"></a> m11, m12, m13, m14, m15, m16, m17, m18, m19, m20,</span>
<span id="cb43-44"><a href="Chapter_17.html#cb43-44" aria-hidden="true" tabindex="-1"></a> m21, m22, m23, m24, m25, m26, m27, m28, m29, m30,</span>
<span id="cb43-45"><a href="Chapter_17.html#cb43-45" aria-hidden="true" tabindex="-1"></a> m31, m32, m33, m34, m35, m36, m37, m38, m39, m40);</span></code></pre></div>
<p>Now we have calculated the mean for each variable.
The last line of code defines <code>all_means</code>, which makes a new dataset that includes the mean value of each of our original variables.
Think about what the distribution of these mean values will look like.
Sketch what you predict the shape of its distribution will be below.</p>
<pre><code>
</code></pre>
<p>Now, add one more line of code to the very bottom of the Rj Editor.</p>
<div class="sourceCode" id="cb45"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb45-1"><a href="Chapter_17.html#cb45-1" aria-hidden="true" tabindex="-1"></a><span class="fu">hist</span>(<span class="at">x =</span> all_means, <span class="at">main =</span> <span class="st">""</span>, <span class="at">xlab =</span> <span class="st">"All variable means"</span>);</span></code></pre></div>
<p>This last line will make a histogram of the means of all 40 variables.
Click the green button again to run the code.
Compare the distribution of the original <code>v1</code> to the means of variables 1–40, and to your prediction above.
Is this what you expected?
As best you can, explain why the shapes of the two distributions differ.</p>
<pre><code>
</code></pre>
<p>We did all of this the long way to make it easier to see and think about the relationship between the original, uniformly distributed, variables and the distribution of their means.
Now, we can repeat this more quickly using one more jamovi module.
Go to ‘Modules’, and from the ‘Available’ tab, download the ‘clt - Demonstrations’ module from the jamovi library.
Once it is downloaded, go to the ‘Demonstrations’ button in the jamovi toolbar and select ‘Central Limit Theorem’ from the pull-down menu.</p>
<div class="figure"><span style="display:block;" id="fig:unnamed-chunk-75"></span>
<img src="img/jamovi_clt.png" alt="Jamovi window with the central limit theorem (CLT) module open and boxes for changing the distribution, sample size, and trial number." width="100%" />
<p class="caption">
Figure 17.7: Jamovi interface for the ‘Demonstrations’ module, which allows users to randomly generate data from a specific source distribution (normal, uniform, geometric, lognormal, and binary), sample size, and number of trials (i.e., variables)
</p>
</div>
<p>To replicate what we did in the Rj Editor above, we just need to set the ‘Source distribution’ to ‘uniform’ using the pull-down menu, set the sample size to 200, and set the number of trials to 40 (Figure 17.7).
Try doing this, then look at the histogram generated to the lower right.
It should look similar, but not identical, to the histogram produced with the R code.
Now try increasing the number of trials to 200.
What happens to the histogram?
What about when you increase the number of trials to 2000?</p>
<pre><code>
</code></pre>
<p>Try playing around with different source distributions, sample sizes, and numbers of trials.
What general conclusion can you make about the distribution of sample means from the different distributions?</p>
<pre><code>
</code></pre>
</div>
</div>
<h3>References<a href="references.html#references" class="anchor-section" aria-label="Anchor link to header"></a></h3>
<div id="refs" class="references csl-bib-body hanging-indent" line-spacing="2">
<div id="ref-Rihs2018" class="csl-entry">
Rihs, M., & Mayer, B. (2018). <em>distrACTION-calculating and plotting distributions</em>. <span>jamovi.org</span>.
</div>
</div>
<div class="footnotes">
<hr />
<ol start="24">
<li id="fn24"><p><a href="https://bradduthie.github.io/stats/data/power_up.csv">https://bradduthie.github.io/stats/data/power_up.csv</a><a href="Chapter_17.html#fnref24" class="footnote-back">↩︎</a></p></li>
</ol>
</div>
</section>
</div>
</div>
</div>
<a href="Chapter_16.html" class="navigation navigation-prev " aria-label="Previous page"><i class="fa fa-angle-left"></i></a>
<a href="Chapter_18.html" class="navigation navigation-next " aria-label="Next page"><i class="fa fa-angle-right"></i></a>
</div>
</div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/clipboard.min.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-clipboard.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": false,
"facebook": true,
"twitter": true,
"linkedin": false,
"weibo": false,
"instapaper": false,
"vk": false,
"whatsapp": false,
"all": ["facebook", "twitter", "linkedin", "weibo", "instapaper"]
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": {
"link": "https://github.com/rstudio/bookdown-demo/edit/master/04-Probability_and_CLT.Rmd",
"text": "Edit"
},
"history": {
"link": null,
"text": null
},
"view": {
"link": null,
"text": null
},
"download": null,
"search": {
"engine": "fuse",
"options": null
},
"toc": {
"collapse": "subsection"
}
});
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.9/latest.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();