-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathDESCRIPTION
executable file
·103 lines (103 loc) · 3.24 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
Package: BuyseTest
Type: Package
Title: Generalized Pairwise Comparisons
Version: 3.1.0
Date: 2025-02-21
Authors@R: c(
person("Brice", "Ozenne", role = c("aut", "cre"), email = "brice.mh.ozenne@gmail.com", comment = c(ORCID = "0000-0001-9694-2956")),
person("Eva", "Cantagallo", role = "aut"),
person("William", "Anderson", role = "aut"),
person("Julien", "Peron", role = "ctb"),
person("Johan", "Verbeeck", role = "ctb")
)
Description: Implementation of the Generalized Pairwise Comparisons (GPC) as defined in Buyse (2010) <doi:10.1002/sim.3923> for complete observations, and extended in Peron (2018) <doi:10.1177/0962280216658320> to deal with right-censoring. GPC compare two groups of observations (intervention vs. control group) regarding several prioritized endpoints to estimate the probability that a random observation drawn from one group performs better/worse/equivalently than a random observation drawn from the other group. Summary statistics such as the net treatment benefit, win ratio, or win odds are then deduced from these probabilities. Confidence intervals and p-values are obtained based on asymptotic results (Ozenne 2021 <doi:10.1177/09622802211037067>), non-parametric bootstrap, or permutations. The software enables the use of thresholds of minimal importance difference, stratification, non-prioritized endpoints (O Brien test), and can handle right-censoring and competing-risks.
License: GPL-3
Encoding: UTF-8
URL: https://github.com/bozenne/BuyseTest
BugReports: https://github.com/bozenne/BuyseTest/issues
Depends:
R (>= 3.5.0),
Rcpp
Imports:
data.table,
doSNOW,
foreach,
ggplot2,
methods,
lava,
parallel,
prodlim,
riskRegression,
rlang,
scales,
stats,
stats4,
utils
Suggests:
cvAUC,
mvtnorm,
pbapply,
pROC,
R.rsp,
survival,
testthat
LinkingTo: Rcpp, RcppArmadillo
VignetteBuilder: R.rsp
NeedsCompilation: yes
RoxygenNote: 7.3.2
Collate:
'0-onLoad.R'
'1-setGeneric.R'
'BuyseMultComp.R'
'BuyseTTEM.R'
'BuyseTest-Peron.R'
'BuyseTest-check.R'
'BuyseTest-inference.R'
'BuyseTest-initialization.R'
'BuyseTest-package.R'
'BuyseTest-print.R'
'BuyseTest.R'
'BuyseTest.options.R'
'CasinoTest.R'
'PairScore.R'
'RcppExports.R'
'S4-BuysePower.R'
'S4-BuysePower-model.tables.R'
'S4-BuysePower-nobs.R'
'S4-BuysePower-summary.R'
'S4-BuysePower-print.R'
'S4-BuysePower-show.R'
'S4-BuyseTest.R'
'S4-BuyseTest-coef.R'
'S4-BuyseTest-confint.R'
'S4-BuyseTest-get.R'
'S4-BuyseTest-model.tables.R'
'S4-BuyseTest-nobs.R'
'S4-BuyseTest-plot.R'
'S4-BuyseTest-summary.R'
'S4-BuyseTest-print.R'
'S4-BuyseTest-sensitivity.R'
'S4-BuyseTest-show.R'
'S4-BuyseTest.options.R'
'as.data.table.performance.R'
'auc.R'
'autoplot.S4BuyseTest.R'
'brier.R'
'constStrata.R'
'discreteRoot.R'
'doc-data.R'
'efronlim.R'
'iid.S3sensitivity.R'
'iid.prodlim.R'
'normexp.R'
'performance.R'
'performanceResample.R'
'plot.S3sensitivity.R'
'powerBuyseTest.R'
'predict.logit.R'
'rbind.performanceResample.R'
'sim.simBuyseTest.R'
'simBuyseTest.R'
'simCompetingRisks.R'
'summary.performance.R'
'valid.R'