This repository has been archived by the owner on Jan 20, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_encoder.py
497 lines (428 loc) · 20 KB
/
train_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import os
import json
import torch
from easydict import EasyDict as edict
from load_config import config
from datetime import datetime
from training.dataset import ImageDataset
import time
import copy
import pickle
import psutil
import PIL.Image
import numpy as np
from torch_utils import misc
from torch_utils.ops import conv2d_gradfix
from torch_utils.ops import grid_sample_gradfix
from training import lpips
import math
from importlib import import_module
# ToDo: To be deleted!
#from torch_utils import training_stats
#----------------------------------------------------------------------------
def create_class_by_name(*args, class_name=None, **kwargs):
try:
module_path, class_name = class_name.rsplit('.', 1)
module = import_module(module_path)
obj = getattr(module, class_name)
assert callable(obj)
return obj(*args, **kwargs)
except (ImportError, AttributeError) as e:
raise ImportError(class_name)
def initial_process(rank):
if config.num_gpus > 0:
os.environ['MASTER_ADDR'] = '127.0.0.4'
os.environ['MASTER_PORT'] = '9904'
torch.distributed.init_process_group(backend='nccl', init_method='env://',
rank=rank,world_size=config.num_gpus)
print('---> Initialize torch.distributed!')
# Init torch_utils.
device = torch.device('cuda', rank) if config.num_gpus > 1 else None
#training_stats.init_multiprocessing(rank=rank, sync_device=device)
#----------------------------------------------------------------------------
def create_output_dir(rank):
desc = config.desc
outdir = config.outdir
now = datetime.now()
dt_string = now.strftime("%Y-%m-%d_%H-%M-%S")
config.run_dir = os.path.join(outdir, f'{dt_string}-{desc}')
# Create output directory.
if rank ==0:
print('Creating output directory...')
print(config.run_dir)
os.makedirs(config.run_dir)
with open(os.path.join(config.run_dir, 'training_options.json'), 'wt') as f:
json.dump(config, f, indent=2)
def update_learning_rate(args, i, optimizer):
if i < args.lr_decay_iter_start:
pass
elif i < args.lr_decay_iter_end:
lr_max = args.lr
lr_min = args.lr_decay
t_max = args.lr_decay_iter_end - args.lr_decay_iter_start
t_cur = i - args.lr_decay_iter_start
optimizer.param_groups[0]['lr'] = lr_min + 0.5 * (lr_max - lr_min) * (
1 + math.cos(t_cur * 1.0 / t_max * math.pi))
def save_image_grid(img, fname, drange):
lo, hi = drange
img = np.asarray(img, dtype=np.float32)
img = (img - lo) * (255 / (hi - lo))
img = np.rint(img).clip(0, 255).astype(np.uint8)
p, _N, C, H, W = img.shape
gw = 4
gh = p*_N //gw
img = img.reshape([gh, gw, C, H, W])
img = img.transpose(1, 3, 0, 4, 2)
img = img.reshape([gw * H, gh * W, C])
assert C in [1, 3]
if C == 1:
PIL.Image.fromarray(img[:, :, 0], 'L').save(fname)
if C == 3:
PIL.Image.fromarray(img, 'RGB').save(fname)
return img.transpose(2,0,1)
class LoopedSampler(torch.utils.data.Sampler):
def __init__(self, dataset, rank=0, num_replicas=1, shuffle=True, seed=0, window_size=0.5):
assert len(dataset) > 0
assert num_replicas > 0
assert 0 <= rank < num_replicas
assert 0 <= window_size <= 1
super().__init__(dataset)
self.dataset = dataset
self.rank = rank
self.num_replicas = num_replicas
self.shuffle = shuffle
self.seed = seed
self.window_size = window_size
def __iter__(self):
order = np.arange(len(self.dataset))
rnd = None
window = 0
if self.shuffle:
rnd = np.random.RandomState(self.seed)
rnd.shuffle(order)
window = int(np.rint(order.size * self.window_size))
idx = 0
while True:
i = idx % order.size
if idx % self.num_replicas == self.rank:
yield order[i]
if window >= 2:
j = (i - rnd.randint(window)) % order.size
order[i], order[j] = order[j], order[i]
idx += 1
#----------------------------------------------------------------------------
def main(rank):
create_output_dir(rank)
initial_process(rank)
num_gpus = config.num_gpus
batch_size = config.batch_size
random_seed = config.random_seed
# Initialize.
start_time = time.time()
device = torch.device('cuda', rank)
np.random.seed(config.random_seed * num_gpus + rank)
torch.manual_seed(config.random_seed * config.num_gpus + rank)
torch.backends.cudnn.benchmark = config.cudnn_benchmark # Improves training speed.
conv2d_gradfix.enabled = True # Improves training speed.
grid_sample_gradfix.enabled = True # Avoids errors with the augmentation pipe.
# Load training set.
if rank == 0:
print('Loading training set...')
if config.use_w:
divide_by = 2
else:
divide_by = 1
#########################
# Load datasets
#########################
# training set
training_set = ImageDataset(**config.training_set_kwargs)
training_set_sampler = LoopedSampler(dataset=training_set,
rank=rank,
num_replicas=num_gpus,
seed=random_seed)
training_set_iterator = iter(torch.utils.data.DataLoader(dataset=training_set, sampler=training_set_sampler,
batch_size=batch_size // num_gpus // divide_by,
**config.data_loader_kwargs))
# validation set
val_set = ImageDataset(**config.val_set_kwargs)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_set)
val_loader = torch.utils.data.DataLoader(dataset=val_set, shuffle=False, drop_last=True, sampler=val_sampler,
batch_size=config.batch_gpu, **config.data_loader_kwargs)
# fake image set
if config.use_w:
fake_set = ImageDataset(**config.fake_set_kwargs)
fake_set_sampler = LoopedSampler(dataset=fake_set, rank=rank, num_replicas=num_gpus,seed=random_seed)
fake_set_iterator = iter(torch.utils.data.DataLoader(dataset=fake_set, sampler=fake_set_sampler,
batch_size=batch_size // num_gpus // divide_by,
**config.data_loader_kwargs))
if rank == 0:
print()
print('Num training images: ', len(training_set))
print('Num validation images: ', len(val_set))
print('Image shape:', training_set.image_shape)
print('Label shape:', training_set.label_shape)
print('Aspect ratio: ', training_set.aspect_ratio)
print()
#########################
# Load generator
#########################
common_kwargs = dict(c_dim=config.label_dim, img_resolution=training_set.resolution,
img_channels=training_set.num_channels, img_aspect_ratio=training_set.aspect_ratio)
generator = create_class_by_name(**config.G_kwargs, **common_kwargs).train().requires_grad_(False).to(
device)
#dnnlib.util.construct_class_by_name
# load pretrained Generator
if rank == 0:
print('Loading networks from "%s"...' % config.G_pkl)
with open(config.G_pkl, "rb") as f:
resume_data = misc.load_network_pkl(f)
for name, module in [('G_ema', generator)]:
misc.copy_params_and_buffers(resume_data[name], module, require_all=False)
#####################################
# Construct Encoder & Discriminator
#####################################
if rank == 0:
print('Constructing encoder...')
common_kwargs = dict(input_dim=training_set.num_channels, n_latent=generator.mapping.num_ws)
encoder = create_class_by_name(**config.encoder_kwargs , **common_kwargs).train().requires_grad_(
False).to(device)
encoder_ema = copy.deepcopy(encoder).eval()
if rank == 0:
print('Setting Discriminator...')
D_channel = training_set.num_channels
common_kwargs = dict(input_nc=D_channel, getIntermFeat=True)
D_enc = create_class_by_name(**config.enc_D_kwargs, **common_kwargs).train().requires_grad_(
False).to(device) # subclass of torch.nn.Module
#############################
# Load Perception network
#############################
percept = lpips.PerceptualLoss(
model='net-lin', net='vgg',
use_gpu=False, gpu_ids=[rank],
masked_lpips_loss=config.masked_lpips_loss
).to(device)
#############################
# Configure Augmentation
#############################
if rank == 0:
print('Setting up augmentation...')
augment_pipe = None
ada_stats = None
ada_max_p = torch.tensor(config.ada_max_p, device=device)
# Not using augmentation pipeline in this code.
# if (config.augment_kwargs is not None) and (config.augment_p > 0 or config.ada_target is not None):
# augment_pipe = create_class_by_name(**config.augment_kwargs).train().requires_grad_(
# False).to(device)
# augment_pipe.p.copy_(torch.as_tensor(config.augment_p))
# if config.ada_target is not None:
# ada_stats = training_stats.Collector(regex='Loss/E/lpips')
#############################
# Multi GPUs
#############################
if rank == 0:
print(f'Distributing across {num_gpus} GPUs...')
for module in [encoder, generator, percept, augment_pipe]:
if module is not None and num_gpus > 1:
for param in misc.params_and_buffers(module):
torch.distributed.broadcast(param, src=0)
#############################
# Setup training
#############################
if rank == 0:
print('Setting up training ...')
noise_mode = 'const'
loss = create_class_by_name(
device=device,
E=encoder,D=D_enc, G=generator, percept=percept,
augment_pipe=augment_pipe,
noise_mode=noise_mode, **config.loss_kwargs
)
phases = [] # All modules(E & D) are in this list
for name, module, opt_kwargs, reg_interval in [('E', encoder, config.enc_opt_kwargs, None),
('D', D_enc, config.enc_D_opt_kwargs, config.D_reg_interval)]:
if reg_interval is None:
opt = create_class_by_name(params=module.parameters(), **opt_kwargs)
phases += [edict(name=name+'both', module=module, opt=opt, interval=1)]
else: # lazy regularization
mb_ratio = reg_interval / (reg_interval + 1)
opt_kwargs = edict(opt_kwargs)
opt_kwargs.lr = opt_kwargs.lr * mb_ratio
opt_kwargs.betas = [beta ** mb_ratio for beta in opt_kwargs.betas]
opt = create_class_by_name(module.parameters(), **opt_kwargs)
phases += [edict(name=name+'main', module=module, opt=opt, interval=1)]
phases += [edict(name=name+'reg', module=module, opt=opt, interval=reg_interval)]
#############################
# Initialize logsging
#############################
if rank == 0:
print('Initializing logs...')
#stats_collector = training_stats.Collector(regex='.*')
stats_metrics = dict()
stats_jsonl = None
stats_tfevents = None
if rank == 0:
stats_jsonl = open(os.path.join(config.run_dir, 'stats.jsonl'), 'wt')
import torch.utils.tensorboard as tensorboard
stats_tfevents = tensorboard.SummaryWriter(config.run_dir)
print(f'Training for {config.total_kimg} kimg...')
print()
cur_nimg = 0
cur_tick = 0
tick_start_nimg = cur_nimg
tick_start_time = time.time()
maintenance_time = tick_start_time - start_time
batch_idx = 0
while True:
# Fetch training data.
if config.use_w:
phase_syn_img, phase_gt_w = next(fake_set_iterator) # [bs,3,h,w], [bs, 512]
repeat_w = int((np.log2(phase_syn_img.shape[-1]) - 1) * 2)
phase_gt_w = phase_gt_w.unsqueeze(1).repeat(1,repeat_w,1).split(config.batch_gpu//divide_by)
phase_syn_img = (phase_syn_img.to(device).to(torch.float32) / 127.5 - 1).split(config.batch_gpu//divide_by)
else:
phase_gt_w = None
phase_syn_img = None
phase_real_img = next(training_set_iterator) # [bs,3,h,w], [bs, 0]
phase_real_img = (phase_real_img.to(device).to(torch.float32) / 127.5 - 1).split(config.batch_gpu//divide_by) # tuple
if phase_gt_w is None:
phase_gt_w = [None] * len(phase_real_img)
phase_syn_img = [None] * len(phase_real_img)
phase_new_img = [None] * len(phase_real_img)
# -------------------> !!! ATTENTION !!! <-------------------#
# Execute training phases.
for phase in phases:
if batch_idx % phase.interval != 0:
continue
# Accumulate gradients.
phase.opt.zero_grad(set_to_none=True)
phase.module.requires_grad_(True)
for real_img, syn_img, gt_w, new_img in zip(phase_real_img,phase_syn_img, phase_gt_w, phase_new_img):
if phase.name =='Eboth':
train_loss = loss.accumulate_gradients(phase=phase.name, real_img=real_img,
syn_img=syn_img,
gain=phase.interval, cur_nimg=cur_nimg,
new_img=new_img, gt_w=gt_w)
else:
loss.accumulate_gradients(phase=phase.name, real_img=real_img,
gain=phase.interval, cur_nimg=cur_nimg)
phase.module.requires_grad_(False)
# Update weights.
params = [param for param in encoder.parameters() if param.grad is not None]
if len(params) > 0:
flat = torch.cat([param.grad.flatten() for param in params])
if num_gpus > 1:
torch.distributed.all_reduce(flat)
flat /= num_gpus
misc.nan_to_num(flat, nan=0, posinf=1e5, neginf=-1e5, out=flat)
grads = flat.split([param.numel() for param in params])
for param, grad in zip(params, grads):
param.grad = grad.reshape(param.shape)
phase.opt.step()
if phase.name == 'Eboth':
update_learning_rate(config.lr_schedule_kwargs, batch_idx, phase.opt)
# learning rate
#training_stats.report0('lr/e_lr', phase.opt.param_groups[0]['lr'])
# Update E_ema.
if config.ema_enable:
ema_nimg = config.ema_kimg * 1000
if config.ema_rampup is not None:
ema_nimg = min(ema_nimg, cur_nimg * config.ema_rampup)
ema_beta = 0.5 ** (batch_size / max(ema_nimg, 1e-8))
for p_ema, p in zip(encoder_ema.parameters(), encoder.parameters()):
p_ema.copy_(p.lerp(p_ema, ema_beta))
for b_ema, b in zip(encoder_ema.buffers(), encoder.buffers()):
b_ema.copy_(b)
else:
encoder_ema = encoder
# Update state.
cur_nimg += batch_size
batch_idx += 1
# Execute ADA heuristic.
if (ada_stats is not None) and (batch_idx % config.ada_interval == 0):
ada_stats.update()
adjust = np.sign(config.ada_target - ada_stats['Loss/E/lpips']) \
* (batch_size * config.ada_interval) / (config.ada_kimg * 1000)
temp_p = augment_pipe.p + adjust
temp_p = min(temp_p, ada_max_p)
augment_pipe.p.copy_((temp_p).max(misc.constant(0, device=device)))
# Logging
done = (cur_nimg >= config.total_kimg * 1000)
if (not done) and (cur_tick != 0) and (cur_nimg < tick_start_nimg + config.kimg_per_tick * 1000):
continue
tick_end_time = time.time()
# fields = []
# fields += [f"kimg {training_stats.report0('Progress/kimg', cur_nimg / 1e3):<8.1f}"]
# fields += [
# f"sec/kimg {training_stats.report0('Timing/sec_per_kimg', (tick_end_time - tick_start_time) / (cur_nimg - tick_start_nimg) * 1e3):<7.2f}"]
# fields += [
# f"cpumem {training_stats.report0('Resources/cpu_mem_G', psutil.Process(os.getpid()).memory_info().rss / 2 ** 30):<6.2f}"]
# fields += [
# f"gpumem {training_stats.report0('Resources/peak_gpu_mem_G', torch.cuda.max_memory_allocated(device) / 2 ** 30):<6.2f}"]
# torch.cuda.reset_peak_memory_stats()
# fields += [
# f"augment {training_stats.report0('Progress/augment', float(augment_pipe.p.cpu()) if augment_pipe is not None else 0):.3f}"]
# training_stats.report0('Timing/total_hours', (tick_end_time - start_time) / (60 * 60))
# if rank == 0:
# print(' '.join(fields))
if rank==0:
print(f"Finish {cur_nimg} kimg.")
# Save image snapshot.
if (rank == 0) and (config.image_snapshot_ticks is not None) and (done or cur_tick % config.image_snapshot_ticks == 0):
latent_w, input_noise, layer_noise = encoder(real_img)
fake_img = generator.synthesis(latent_w, input_noise=input_noise, layer_noise=layer_noise,
noise_predict_from=encoder.noise_predict_from,
noise_predict_until=encoder.noise_predict_until,
noise_mode='const')
images = torch.stack([real_img.cpu(), fake_img.cpu()], dim=1).detach().numpy()
save_image_grid(images,
fname=os.path.join(config.run_dir, f'rec-train-{cur_nimg // 1000:06d}.png'),
drange=[-1, 1],)
del fake_img
del real_img
del images
# Save model
snapshot_pkl = None
snapshot_data = None
if (config.save_model_ticks is not None) and (done or cur_tick % config.save_model_ticks == 0):
snapshot_data = dict(E=encoder_ema, augment_pipe=augment_pipe,
training_set_kwargs=dict(config.training_set_kwargs))
for key, value in snapshot_data.items():
if isinstance(value, torch.nn.Module):
value = copy.deepcopy(value).eval().requires_grad_(False)
if num_gpus > 1:
torch.distributed.barrier()
for param in misc.params_and_buffers(value):
torch.distributed.broadcast(param, src=0)
snapshot_data[key] = value.cpu()
del value
snapshot_pkl = os.path.join(config.run_dir, f'network-snapshot-{cur_nimg // 1000:06d}.pkl')
if rank == 0:
with open(snapshot_pkl, 'wb') as f:
pickle.dump(snapshot_data, f)
del snapshot_data
# Collect statistics.
#stats_collector.update()
#stats_dict = stats_collector.as_dict()
# Update logs.
timestamp = time.time()
if stats_tfevents is not None:
global_step = int(cur_nimg / 1e3)
walltime = timestamp - start_time
#for name, value in stats_dict.items():
# stats_tfevents.add_scalar(name, value.mean, global_step=global_step, walltime=walltime)
for name, value in stats_metrics.items():
stats_tfevents.add_scalar(f'Metrics/{name}', value, global_step=global_step, walltime=walltime)
stats_tfevents.flush()
# Update state.
cur_tick += 1
tick_start_nimg = cur_nimg
tick_start_time = time.time()
if done:
break
#----------------------------------------------------------------------------
if __name__ == "__main__":
if config.num_gpus <= 1:
main(rank=0)
else:
torch.multiprocessing.spawn(main, nprocs=config.num_gpus, args=())