This repository has been archived by the owner on Jun 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_merge3.py
105 lines (87 loc) · 4.11 KB
/
generate_merge3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright (c) 2021 Robert Bosch GmbH
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# This source code is derived from Autonomous Vision - Occupancy Networks
# (https://github.com/autonomousvision/occupancy_networks)
# Copyright 2019 Lars Mescheder, Michael Oechsle, Michael Niemeyer,
# Andreas Geiger, Sebastian Nowozin
# This source code is licensed under the MIT license found in the
# 3rd-party-licenses.txt file in the root directory of this source tree.
import argparse
import os
import time
from collections import defaultdict
from typing import Dict, List
import numpy as np
import torch
from tqdm import tqdm
from im2mesh.utils.parts import Settings, get_valuegrid_patch, \
get_valuegrid_baseline, plot_logits, IOHelper
ISDEBUG = False
parser = argparse.ArgumentParser(
description='Extract meshes from occupancy process.'
)
parser.add_argument('config_bl', type=str, help='Path to baseline config file.')
parser.add_argument('config_patch1', type=str, help='Path to patch config file.')
parser.add_argument('config_patch2', type=str, help='Path to patch config file.')
parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
args = parser.parse_args()
# common settings
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
device = torch.device("cuda" if is_cuda else "cpu")
# Statistics
time_dicts: List[Dict] = []
# get baseline setup
bl_setting = Settings(args.config_bl, device)
patch_setting = Settings(args.config_patch1, device, part=True)
patch_setting2 = Settings(args.config_patch2, device, part=True)
Settings.assert_compatible([bl_setting, patch_setting, patch_setting2])
# generation directory
ioh = IOHelper(patch_setting, "_hierarchical3")
# Count how many models already created
model_counter = defaultdict(int) # make this the full image model counter (batch)
for it, (data_bl, data_patch, data_patch2) in enumerate(
tqdm(zip(
bl_setting.test_loader,
patch_setting.test_loader,
patch_setting2.test_loader),
total=len(bl_setting.test_loader))):
time_dict = ioh.update_fields_from_data(bl_setting, it)
time_dicts.append(time_dict)
# Generate outputs
out_file_dict = {}
t0 = time.time()
time_dict['mesh'] = time.time() - t0
vg_global, _ = get_valuegrid_baseline(data_bl, bl_setting)
vg_local, _ = get_valuegrid_patch(data_patch, patch_setting)
vg_local2, _ = get_valuegrid_patch(data_patch2, patch_setting2)
combined = (vg_local + vg_local2 + vg_global) / 3
padded_big_val_grid = np.ones((combined.shape[0]+2,combined.shape[1]+2,combined.shape[2]+2)) -10
padded_big_val_grid[1:-1,1:-1,1:-1] = combined
mesh = bl_setting.generator.extract_mesh(padded_big_val_grid,0)
if ISDEBUG:
plot_logits(bl_setting, combined, vg_global, patch_setting, vg_local, data_bl)
mesh_out_file = os.path.join(ioh.mesh_dir, '%s.ply' % ioh.modelname)
mesh.export(mesh_out_file)
out_file_dict['mesh'] = mesh_out_file
inputs = data_bl['inputs'].squeeze(0).cpu()
# Todo: decide if setting or ioh method
bl_setting.save_inputs(ioh.in_dir, inputs, ioh.modelname, out_file_dict)
# Copy to visualization directory for first vis_n_output samples
c_it = model_counter[ioh.category_id]
ioh.copy_to_vis(c_it, bl_setting, out_file_dict)
# increase model counter
model_counter[ioh.category_id] += 1
# Create pandas dataframe and save
ioh.save_df(time_dicts)