This repository has been archived by the owner on Jun 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_meshes.py
211 lines (183 loc) · 7.13 KB
/
eval_meshes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright (c) 2021 Robert Bosch GmbH
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import argparse
import os
import open3d # must: import before torch, used later in eval.py
import pandas as pd
import torch
import trimesh
from tqdm import tqdm
from im2mesh import config, data
from im2mesh.eval import MeshEvaluator
from im2mesh.utils.io import load_pointcloud
LOG_SCORES_REDUCED = ['fscore@1 (mesh)', 'chamfer (mesh)', 'iou (mesh)']
LOG_SCORES_ALL = [
'fscore@1 (mesh)', 'chamfer (mesh)', 'iou (mesh)',
'fscore@1_vis (mesh)', 'chamfer_vis (mesh)',
'fscore@1_invis (mesh)', 'chamfer_invis (mesh)'
]
log_scores = LOG_SCORES_REDUCED
parser = argparse.ArgumentParser(
description='Evaluate mesh algorithms.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
parser.add_argument('--eval_input', action='store_true',
help='Evaluate inputs instead.')
args = parser.parse_args()
cfg = config.load_config(args.config, 'configs/default.yaml')
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
device = torch.device("cuda" if is_cuda else "cpu")
# Shorthands
testset = cfg['data']['classes'][0]
out_dir = cfg['training']['out_dir']
generation_dir = os.path.join(out_dir, cfg['generation']['generation_dir'])
if not args.eval_input:
out_file = os.path.join(generation_dir, f'eval_meshes_full_{testset}.pkl')
out_file_class = os.path.join(generation_dir, f'eval_meshes_{testset}.csv')
else:
out_file = os.path.join(generation_dir, 'eval_input_full.pkl')
out_file_class = os.path.join(generation_dir, 'eval_input.csv')
# Dataset
dataset_type = cfg['data']['dataset']
# TODO: replace this with a function (e.g. dataset = config.get_dataset('test', cfg))
# TODO: why is this separate dataset setup necessary??
if 'H5' in dataset_type:
points_field = data.PointsFieldH5(
cfg['data']['points_iou_file'],
unpackbits=cfg['data']['points_unpackbits'],
)
pointcloud_field = data.PointCloudFieldH5(
cfg['data']['pointcloud_chamfer_file']
)
fields = {
'points_iou': points_field,
'pointcloud_chamfer': pointcloud_field,
'idx': data.IndexFieldH5(),
}
print('Test split: ', cfg['data']['test_split'])
dataset_folder = cfg['data']['path']
dataset = data.Shapes3dDatasetH5(
dataset_folder, fields,
cfg['data']['test_split'],
categories=cfg['data']['classes'])
else:
points_field = data.PointsField(
cfg['data']['points_iou_file'],
unpackbits=cfg['data']['points_unpackbits'],
)
pointcloud_field = data.PointCloudField(
cfg['data']['pointcloud_chamfer_file']
)
fields = {
'points_iou': points_field,
'pointcloud_chamfer': pointcloud_field,
'idx': data.IndexField(),
}
print('Test split: ', cfg['data']['test_split'])
dataset_folder = cfg['data']['path']
dataset = data.Shapes3dDataset(
dataset_folder, fields,
cfg['data']['test_split'],
categories=cfg['data']['classes'])
# Evaluator
evaluator = MeshEvaluator(n_points=100000)
# Loader
test_loader = torch.utils.data.DataLoader(
dataset, batch_size=1, num_workers=0, shuffle=False)
# Evaluate all classes
eval_dicts = []
print('Evaluating meshes...')
for it, data in enumerate(tqdm(test_loader)):
if data is None:
print('Invalid data.')
continue
# Output folders
if not args.eval_input:
mesh_dir = os.path.join(generation_dir, 'meshes')
pointcloud_dir = os.path.join(generation_dir, 'pointcloud')
else:
mesh_dir = os.path.join(generation_dir, 'input')
pointcloud_dir = os.path.join(generation_dir, 'input')
# Get index etc.
idx = data['idx'].item()
try:
model_dict = dataset.get_model_dict(idx)
except AttributeError:
model_dict = {'model': str(idx), 'category': 'n/a'}
modelname = model_dict['model']
category_id = model_dict['category']
try:
category_name = dataset.metadata[category_id].get('name', 'n/a')
except AttributeError:
category_name = 'n/a'
if category_id != 'n/a':
mesh_dir = os.path.join(mesh_dir, category_id)
pointcloud_dir = os.path.join(pointcloud_dir, category_id)
# Evaluate
pointcloud_tgt = data['pointcloud_chamfer'].squeeze(0).numpy()
normals_tgt = None # data['pointcloud_chamfer.normals'].squeeze(0).numpy()
pointcloud_tgt_visibility = None
if 'pointcloud_chamfer.visible' in data:
pointcloud_tgt_visibility = data['pointcloud_chamfer.visible'].squeeze(0).numpy()
log_scores = LOG_SCORES_ALL
points_tgt = data['points_iou'].squeeze(0).numpy()
occ_tgt = data['points_iou.occ'].squeeze(0).numpy()
# Evaluating mesh and pointcloud
# Start row and put basic informatin inside
eval_dict = {
'idx': idx,
'class id': category_id,
# 'class name': category_name,
'class name': modelname.split('_')[0],
'modelname': modelname,
}
eval_dicts.append(eval_dict)
# Evaluate mesh
if cfg['test']['eval_mesh']:
mesh_file = os.path.join(mesh_dir, '%s.off' % modelname)
if os.path.exists(mesh_file):
mesh = trimesh.load(mesh_file, process=False)
eval_dict_mesh = evaluator.eval_mesh(
mesh, pointcloud_tgt, normals_tgt, points_tgt, occ_tgt,
pointcloud_tgt_visibility)
for k, v in eval_dict_mesh.items():
eval_dict[k + ' (mesh)'] = v
else:
print('Warning: mesh does not exist: %s' % mesh_file)
# Evaluate point cloud
if cfg['test']['eval_pointcloud']:
pointcloud_file = os.path.join(
pointcloud_dir, '%s.ply' % modelname)
if os.path.exists(pointcloud_file):
pointcloud = load_pointcloud(pointcloud_file)
eval_dict_pcl = evaluator.eval_pointcloud(
pointcloud, pointcloud_tgt)
for k, v in eval_dict_pcl.items():
eval_dict[k + ' (pcl)'] = v
else:
print('Warning: pointcloud does not exist: %s'
% pointcloud_file)
# Create pandas dataframe and save
eval_df = pd.DataFrame(eval_dicts)
eval_df.set_index(['idx'], inplace=True)
eval_df.to_pickle(out_file)
# Create CSV file with main statistics
eval_df_class = eval_df.groupby(by=['class name']).mean()
eval_df_class.to_csv(out_file_class)
# Print results
eval_df_class.loc['mean'] = eval_df_class.mean()
eval_df_class.loc['mean_sample'] = eval_df.mean()
print(eval_df_class[log_scores])