Skip to content

Latest commit

 

History

History
95 lines (75 loc) · 4.8 KB

README.md

File metadata and controls

95 lines (75 loc) · 4.8 KB

AI Paperboy

📋 Project Abstract

Purpose

  • 사용자가 질문으로 요청하면 답변이 있는 뉴스 기사를 스크랩 해주는 서비스

Functions

  • 기사를 읽고 다시 보고 싶은 기사 스크랩 기능
  • 실시간 질문에 대한 답변 기사 AI 스크랩 기능
  • 일정 시간마다 기사 목록 업데이트 후 질문에 대한 답변 기사 AI 스크랩 기능

👨‍👨‍👧‍👦 Team Covit-19

Members

박별이 이준수 최웅준 추창한
github github github github

Responsibilities

박별이 이준수 최웅준 추창한
Data collection
make test dataset and analysis
common common common common
Code refactoring Retrieval post_processing
train
extraction_pre_process
generation_pre_process
generation_compute_metrics
configuration
building tiny dataset
Retrieval
User flow/Data flow User Flow
Data Flow
training pipeline User Flow
Data Flow
Modeling Apply BM 25 build train dataset
model training
train with tiny dataset
training reader model
error analysis on generation model
Apply BM 25
Prototyping reader model demo ODQA model / Batch Serving
Frontend web design
sign in
sign up
news scrap
article_form
performance improvement with UI policy
homepage_news title list
ai scrap news title list
my scrap news title list
performance improvement with UI policy
Backend build sqlite schema
sign in
sign up
news scrap
user_input homepage_news title list with wiki_news_db
ai scrap news title list with ai_scrap_db
my scrap news title list with user_scrap_db
build layered architecture design
get article page and user_input with real time service
batch serving

Collaboration tool

💾 Installation

1. Set up the python environment:

  • Recommended python version 3.8.5
$ conda create -n venv python=3.8.5 pip
$ conda activate venv

2. Install other required packages

$ cd $ROOT/final-project-level3-nlp-19/code
$ poetry install
$ poetry shell

🖥 Usage

1. Project Structure

code
├──routers/
├──schema/
├──services/
├──templates/
├──AIPaperboy.py
└──model train file (.py)

4 folder for serving

  • routers: Controller
  • schema: Model
  • sevices: Project's functions
  • templates: HTML & CSS file

2. Train

$ cd $ROOT/final-project-level3-nlp-19/code
$ python train_copy.py --output_dir ./outputs  --run_extraction True --run_generation False --do_train --do_eval \
--evaluation_strategy 'steps' --eval_steps 60 --logging_steps 60 --per_device_eval_batch_size 16 \
 --per_device_train_batch_size 16 --save_strategy "no" --fp16 True --fp16_full_eval True --num_train_epochs 9 --report_to "wandb" \
 --overwrite_output_dir

3. Inference

$ python inference_copy.py --output_dir ./outputs/test_dataset/ --dataset_name ../data/test_dataset/ --model_name_or_path ./models/train_dataset/ --do_predict  --overwrite_cache --overwrite_output_dir

4. Execute

$ cd $ROOT/final-project-level3-nlp-19/code
$ python AIPaperboy.py --output_dir ./outputs/test_dataset/ --model_name_or_path ./models/train_dataset/ --dataset_name ../data/test_dataset/ --do_predict

📽 Demo