-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
116 lines (102 loc) · 3.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
import torch
import wandb
import random
import argparse
import collections
import numpy as np
import torch.nn as nn
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from parse_config import ConfigParser
from trainer import Trainer
from utils import prepare_device
from transformers import AutoTokenizer
from data_loader.data_loaders import KhsDataLoader
def seed_everything(seed):
"""
fix random seeds for reproducibility.
Args:
seed (int):
seed number
"""
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
def main(config):
seed_everything(42)
wandb.init(project='#TODO', entity='#TODO', config=config)
# build model architecture and tokenizer
model = config.init_obj('model', module_arch)
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer']['type'])
# build train and valid dataloader
dataloader = KhsDataLoader(
tokenizer,
max_length=config['data_loader']['args']['max_length']
)
train_data_loader = dataloader.get_dataloader(
name='train',
data_dir=config['data_loader']['args']['data_dir'],
data_files=config['data_loader']['data_files'],
batch_size=config['data_loader']['args']['batch_size']
)
valid_data_loader = dataloader.get_dataloader(
name='valid',
data_dir=config['data_loader']['args']['data_dir'],
data_files=config['data_loader']['data_files'],
batch_size=config['data_loader']['args']['batch_size']
)
# prepare for (multi-device) GPU training
device, device_ids = prepare_device(config['n_gpu'])
model = model.to(device)
if len(device_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=device_ids)
# get function handles of loss and metrics
criterion = getattr(module_loss, config['loss'])
metrics = [getattr(module_metric, met) for met in config['metrics']]
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
no_decay = ['bias', 'LayerNorm.weight']
trainable_params = [
{
'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': config['optimizer']['weight_decay']
},
{
'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
'weight_decay': 0.0
}
]
optimizer = config.init_obj('optimizer', torch.optim, trainable_params)
lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer)
scaler = (
torch.cuda.amp.GradScaler() if config['trainer']['fp16'] and device != torch.device("cpu") else None
)
trainer = Trainer(
model,
criterion,
metrics,
optimizer,
config=config,
device=device,
data_loader=train_data_loader,
valid_data_loader=valid_data_loader,
lr_scheduler=lr_scheduler,
scaler=scaler
)
trainer.train()
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
config = ConfigParser.from_args(args)
main(config)