-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
020-image_processing_in_scikit-image.py
188 lines (132 loc) · 6.11 KB
/
020-image_processing_in_scikit-image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#!/usr/bin/env python
__author__ = "Sreenivas Bhattiprolu"
__license__ = "Feel free to copy, I appreciate if you acknowledge Python for Microscopists"
# https://www.youtube.com/watch?v=CTOURPZftuU
###########
# Let us start by looking at basic image transformation tasks like
#resize and rescale.
#Then let's look at a few ways to do edge detection.
#And then sharpening using deconvolution method and finally
#Then let's take a real life scenario like scratch assay analysis.
#Resize, rescale
import matplotlib.pyplot as plt
from skimage import io, color
from skimage.transform import rescale, resize, downscale_local_mean
img = io.imread("images/test_image.jpg", as_gray=True)
#Rescale, resize image by a given factor. While rescaling image
#gaussian smoothing can performed to avoid anti aliasing artifacts.
img_rescaled = rescale(img, 1.0 / 4.0, anti_aliasing=False) #Check rescales image size in variable explorer
#Resize, resize image to given dimensions (shape)
img_resized = resize(img, (200, 200), #Check dimensions in variable explorer
anti_aliasing=True)
#Downscale, downsample using local mean of elements of each block defined by user
img_downscaled = downscale_local_mean(img, (4, 3))
plt.imshow(img_downscaled)
################################################
###############################
# Edge Detection
import matplotlib.pyplot as plt
from skimage import io
from skimage.filters import roberts, sobel, scharr, prewitt
img = io.imread("images/test_image_cropped.jpg", as_gray=True) #Convert to grey scale
print(img.shape)
#plt.imshow(img, cmap=plt.cm.gray, interpolation='nearest')
edge_roberts = roberts(img)
#plt.imshow(edge_roberts, cmap=plt.cm.gray, interpolation='nearest')
edge_sobel = sobel(img)
edge_scharr = scharr(img)
edge_prewitt = prewitt(img)
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True,
figsize=(8, 8))
ax = axes.ravel()
ax[0].imshow(img, cmap=plt.cm.gray)
ax[0].set_title('Original image')
ax[1].imshow(edge_roberts, cmap=plt.cm.gray)
ax[1].set_title('Roberts Edge Detection')
ax[2].imshow(edge_sobel, cmap=plt.cm.gray)
ax[2].set_title('Sobel')
ax[3].imshow(edge_scharr, cmap=plt.cm.gray)
ax[3].set_title('Scharr')
for a in ax:
a.axis('off')
plt.tight_layout()
plt.show()
#Another edge filter is Canny. This is not just a single operation
#It does noise reduction, gradient calculation, and edge tracking among other things.
#Canny creates a binary file, true or false pixels.
from skimage import feature
edge_canny = feature.canny(img, sigma=3)
plt.imshow(edge_canny)
###############################################
#Image deconvolution
#Uses deconvolution to sharpen images.
import matplotlib.pyplot as plt
from skimage import io, color, restoration, img_as_float
img = img_as_float(io.imread("images/BSE_Google_blurred.jpg"))
print(img.shape)
#PSF
import scipy.stats as st
import numpy as np
#psf = np.ones((3, 3)) / 9 #point spread function to be used for deconvolution.
#The following page was used as reference to generate the kernel
#https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm
def gkern(kernlen=21, nsig=2): #Returns a 2D Gaussian kernel.
lim = kernlen//2 + (kernlen % 2)/2
x = np.linspace(-lim, lim, kernlen+1)
kern1d = np.diff(st.norm.cdf(x))
kern2d = np.outer(kern1d, kern1d)
return kern2d/kern2d.sum()
psf = gkern(5,3) #Kernel length and sigma
print(psf)
deconvolved, _ = restoration.unsupervised_wiener(img, psf)
plt.imsave("images/deconvolved.jpg", deconvolved, cmap='gray')
#########################################
#Let's find a way to calculate the area of scratch in would healing assay
#Entropy filter
#e.g. scratch assay where you have rough region with cells and flat region of scratch.
#entropy filter can be used to separate these regions
import matplotlib.pyplot as plt
from skimage import io, color, restoration, img_as_float
img = io.imread("images/scratch.jpg")
print(img.shape)
#Checkout this page for entropy and other examples
#https://scikit-image.org/docs/stable/auto_examples/
from skimage.filters.rank import entropy
from skimage.morphology import disk
entropy_img = entropy(img, disk(3))
#plt.imshow(entropy_img, cmap=plt.cm.gray)
#Once you have the entropy iamge you can apply a threshold to segment the image
#If you're not sure which threshold works fine, skimage has a way for you to check all
"""
from skimage.filters import try_all_threshold
fig, ax = try_all_threshold(entropy_img, figsize=(10, 8), verbose=False)
plt.show()
"""
#Now let us test Otsu segmentation.
from skimage.filters import threshold_otsu
thresh = threshold_otsu(entropy_img) #Just gives us a threshold value. Check in variable explorer.
binary= entropy_img <=thresh #let us generate a binary image by separating pixels below and above threshold value.
plt.imshow(binary, cmap=plt.cm.gray)
print("The percent white region is: ", (np.sum(binary == 1)*100)/(np.sum(binary == 0) + np.sum(binary == 1))) #Print toal number of true (white) pixels
#We can do the same exercise on all images in the time series and plot the area to understand cell proliferation over time
###################################################################
# HOG
import matplotlib.pyplot as plt
from skimage import io, color, restoration, img_as_float
from skimage.feature import hog
from skimage import data, exposure
img = io.imread("images/Neuron.jpg", as_gray=False)
print(img.shape)
fd, hog_image = hog(img, orientations=12, pixels_per_cell=(8, 8), cells_per_block=(2, 2),
visualize=True, multichannel=True)
print(hog_image.max())
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True)
ax1.axis('off')
ax1.imshow(img, cmap=plt.cm.gray)
ax1.set_title('Input image')
# Rescale histogram for better display
hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 50))
ax2.axis('off')
ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray)
ax2.set_title('Histogram of Oriented Gradients')
plt.show()