-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathunet_map_segmentations.py
47 lines (32 loc) · 1.49 KB
/
unet_map_segmentations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Author: Maxim Samarin (maxim.samarin@unibas.ch)
# Last modification: 13.12.20
#
from tf_unet import unet
from utils.utils import map_segmentation
def urs2016(timestamp, num_classes, thresholds, net):
original_image = 'Input/full_input_image.gif'
tile_dir_RGB = 'Input_Tiles/New_Example_RGB_tiles'
tile_dir_aspect = 'Input_Tiles/New_Example_Aspect_tiles'
tile_dir_curvature = 'Input_Tiles/New_Example_Curvature_tiles'
tile_dir_slope = 'Input_Tiles/New_Example_Slope_tiles'
tiles_x = 46
tiles_y = 39
margin_size_x = 20
margin_size_y = 20
image_size = (388, 352)
resolution_25cm = True
do_prediction = True
map_segmentation(timestamp=timestamp, net=net, original_image=original_image, tile_dir_RGB=tile_dir_RGB,
tile_dir_aspect=tile_dir_aspect,
tile_dir_curvature=tile_dir_curvature, tile_dir_slope=tile_dir_slope, tiles_x=tiles_x,
tiles_y=tiles_y,
margin_size_x=margin_size_x, margin_size_y=margin_size_y, image_size=image_size,
num_classes=num_classes,
thresholds=thresholds, resolution_25cm=resolution_25cm,
do_prediction=do_prediction)
if __name__ == '__main__':
timestamp = '08-26-2019_0908'
num_classes = 5
thresholds = [0.3]
net = unet.Unet(channels=6, n_class=num_classes, layers=3, features_root=32)
urs2016(timestamp=timestamp, num_classes=num_classes, thresholds=thresholds, net=net)