-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
213 lines (183 loc) · 6.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env python3
"""
Reference from: https://github.com/rwightman/pytorch-image-models/blob/master/train.py
"""
import os
import json
import logging
import argparse
from datetime import datetime
import torch
from torch.utils.tensorboard import SummaryWriter
from torch_geometric.data import DataLoader
# from torch_geometric.transforms import RemoveIsolatedNodes
from ogb.graphproppred import PygGraphPropPredDataset, Evaluator
from warmup_scheduler import GradualWarmupScheduler
from src.model import GraphLaplacianTransformerConfig, GraphLaplacianTransformerWithLinearClassifier
from src.utils import RemoveIsolatedNodes
from parser import set_parser
from train_and_evaluate import train_one_epoch, evaluate_or_test
# Loggere
#
FORMAT = '%(asctime)s - %(levelname)s - file: %(pathname)s - line: %(lineno)d - %(message)s'
logging.basicConfig(format=FORMAT)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Parser
#
parser = argparse.ArgumentParser(description='Training Config', add_help=False)
parser = set_parser(parser)
def main():
# Prepare args and creat loggings
args = parser.parse_args()
args.device = "cpu"
if torch.cuda.is_available():
torch.cuda.set_device(args.cuda_device)
args.device = f"cuda:{args.cuda_device}"
now = datetime.now()
now = now.strftime("%Y-%m-%d-%H-%M-%S")
task_folder = os.path.join(args.log_dir, args.dataset_name)
run_folder = os.path.join(task_folder, f"run_{now}_{args.log_msg}")
if not os.path.exists(task_folder):
os.mkdir(task_folder)
if not os.path.exists(run_folder):
os.mkdir(run_folder)
file_handler = logging.FileHandler(
os.path.join(run_folder, "logging.log"),
mode='w'
)
file_handler.setLevel(logging.INFO)
logger.addHandler(file_handler)
logger.info(f"PID: {os.getpid()}")
writer = SummaryWriter(log_dir=os.path.join(task_folder, "runs"), filename_suffix=f"{now}_{args.log_msg}")
with open(os.path.join(run_folder, "config.json"), 'w') as json_file:
json.dump(args.__dict__, json_file, indent=4)
# Dataset
logger.info(f"Reading datasets...")
dataset = PygGraphPropPredDataset(
name=args.dataset_name,
root=args.dataset_dir,
pre_transform=RemoveIsolatedNodes()
)
split_idx = dataset.get_idx_split()
train_loader = DataLoader(
dataset[split_idx["train"]],
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=args.pin_memory
)
valid_loader = DataLoader(
dataset[split_idx["valid"]],
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=args.pin_memory
)
test_loader = DataLoader(
dataset[split_idx["test"]],
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=args.pin_memory
)
# Model
logger.info(f"Initializing the model...")
config = GraphLaplacianTransformerConfig(**args.__dict__)
model = GraphLaplacianTransformerWithLinearClassifier(config)
# Optimizer
no_weight_decays = model.no_weight_decays
optimizer_grouped_parameters = [
{
'params': [
params for name, params in model.named_parameters()
if not any(nd in name for nd in no_weight_decays)
],
'weight_decay': args.weight_decay
},
{
'params': [
params for name, params in model.named_parameters()
if any(nd in name for nd in no_weight_decays)
],
'weight_decay': 0.0
}
]
optimizer = torch.optim.Adam(
optimizer_grouped_parameters,
lr=args.lr,
betas=args.betas,
)
# Scheduler
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=args.epochs*len(train_loader),
eta_min=args.min_lr
)
# lr_scheduler = GradualWarmupScheduler(
# optimizer,
# multiplier=args.max_lr/args.lr,
# total_epoch=1*len(train_loader),
# after_scheduler=lr_scheduler_tail
# )
# Loss & Evaluator
loss_fn = torch.nn.BCEWithLogitsLoss().to(args.device)
evaluator = Evaluator(name=args.dataset_name)
eval_key = evaluator.eval_metric
# Train Loop
logger.info(f"Starting to train... (Epoch: {args.epochs})")
best_valid_score = 0.
model.to(args.device)
for epoch in range(args.epochs):
train_metric = train_one_epoch(
epoch,
train_loader,
model,
optimizer,
lr_scheduler,
loss_fn,
evaluator,
writer,
logger,
args
)
valid_metric = evaluate_or_test(
epoch,
valid_loader,
model,
loss_fn,
evaluator,
writer,
logger,
args,
step=(epoch + 1)*len(train_loader) - 1
)
# Storing the model when it gets record high for valid metric, or every 10 epochs, or at the last epoch
if valid_metric[eval_key] > best_valid_score or (epoch + 1) % 10 == 0 or (epoch + 1) == args.epochs:
test_metric = evaluate_or_test(
epoch,
test_loader,
model,
loss_fn,
evaluator,
writer,
logger,
args,
step=(epoch + 1)*len(train_loader) - 1,
mode='test'
)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'train_metric': train_metric,
'valid_metric': valid_metric,
'test_metric': test_metric,
},
os.path.join(run_folder, f"checkpoint_{now}_{epoch}_{(epoch + 1)*len(train_loader) - 1}.pt")
)
best_valid_score = valid_metric[eval_key]
writer.flush()
writer.close()
if __name__ == "__main__":
main()