-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_cls_exp.py
176 lines (146 loc) · 4.72 KB
/
eval_cls_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import argparse
import os
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.nn import CrossEntropyLoss
from transformers import AdamW
import torch
from models import TrainableClfModel
from utils import train_model
from utils.train_utils import eval_model_index, get_logits_clf_eval, eval_model
from datasets import RedditClsDataset, RedditClsDataset_index
from torch.utils.tensorboard import SummaryWriter
os.environ["TOKENIZERS_PARALLELISM"] = "false"
parser = argparse.ArgumentParser(description="Prompt-based Training Script")
parser.add_argument(
"--train_dir",
type=str,
default="/pan2020/open_splits/unseen_all/xs/pan20-av-small-train.jsonl",
)
parser.add_argument(
"--val_dir",
type=str,
default="/pan2020/open_splits/unseen_all/xs/pan20-av-small-val.jsonl",
)
parser.add_argument(
"--test_dir",
type=str,
default="/pan2020/open_splits/unseen_all/xs/pan20-av-small-test.jsonl",
)
parser.add_argument(
"--tb_dir",
type=str,
default="./cls_runs",
)
parser.add_argument(
"--exp_prefix",
type=str,
default="Junk_XS_CLS_Openall",
)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--wd", type=float, default=1e-5)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--epochs", type=int, default=100)
parser.add_argument("--trainable_params", type=str, default="linear") # bias, linear
args = parser.parse_args()
train_dataset_path = args.train_dir
val_dataset_path = args.val_dir
test_dataset_path = args.test_dir
lr = args.lr
wd = args.wd
batch_size = args.batch_size
epochs = args.epochs
tb_dir = args.tb_dir
trainable_params = args.trainable_params
exp_prefix = (
args.exp_prefix
+ f"_lr{lr}_wd{wd}_bs{batch_size}_trainable_params{trainable_params}"
)
best_model_path = os.path.join("./checkpoints", exp_prefix)
tb_writer = SummaryWriter(log_dir=os.path.join(tb_dir, exp_prefix))
MODEL_NAMES = {
'bert': 'bert-base-uncased',
'distilbert': 'distilbert-base-uncased',
'albert': 'albert-base-v2'
}
model = TrainableClfModel(model_name=MODEL_NAMES["distilbert"])#, device=torch.device('cpu'))
if trainable_params == "bias":
trainable_params = [p for (n, p) in model.model.named_parameters() if "bias" in n]
elif trainable_params == "linear":
trainable_params = list(model.model.classifier.parameters())
else:
no_decay = ["bias", "LayerNorm.weight"]
trainable_params = [
{
"params": [
p
for n, p in model.model.named_parameters()
if not any(nd in n for nd in no_decay)
],
"weight_decay": wd,
},
{
"params": [
p
for n, p in model.model.named_parameters()
if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
# for p in trainable_params:
# print(p)
for p in model.model.parameters():
p.requires_grad = False
for p in trainable_params:
p.requires_grad = True
# for (n, p) in model.model.named_parameters():
# print((n,p))
optimizer = AdamW(trainable_params, lr=lr, weight_decay=wd)
test_dataset_full = RedditClsDataset_index(
path=test_dataset_path,
tokenizer=model.tokenizer,
debug=False,
train=False,
)
def get_model_size(model):
param_size = 0
for param in model.parameters():
param_size += param.nelement() * param.element_size()
buffer_size = 0
for buffer in model.buffers():
buffer_size += buffer.nelement() * buffer.element_size()
size_all_mb = (param_size + buffer_size) / 1024**2
return size_all_mb
print('model size: {:.3f}MB'.format(get_model_size(model.model)))
#print("dataset example 0 = ", test_dataset_full[0])
test_sampler_full = SequentialSampler(test_dataset_full)
test_dataloader_full = DataLoader(
test_dataset_full, sampler=test_sampler_full, batch_size=batch_size, num_workers=16
)
loss_crt = CrossEntropyLoss()
results = eval_model_index(
model,
dataloader=test_dataloader_full,
yes_idx=None,
no_idx=None,
#device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
device=torch.device("cpu"),
loss_crt=loss_crt,
get_logits_fun=get_logits_clf_eval,
max_batch_size=32,
)
print('results = ', results)
# train_model(
# model=model,
# optimizer=optimizer,
# loss_crt=loss_crt,
# train_dataloader=train_dataloader,
# train_dataloader_full=train_dataloader_full,
# val_dataloader_full=val_dataloader_full,
# test_dataloader_full=test_dataloader_full,
# scheduler=ReduceLROnPlateau,
# epochs=epochs,
# tb_writer=tb_writer,
# best_model_path=best_model_path,
# )