-
-
Notifications
You must be signed in to change notification settings - Fork 540
/
Copy pathmod.rs
2058 lines (1869 loc) · 69.9 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! An extremely fast, lookup table based, ECMAScript lexer which yields SyntaxKind tokens used by the rome-js parser.
//! For the purposes of error recovery, tokens may have an error attached to them, which is reflected in the Iterator Item.
//! The lexer will also yield `COMMENT` and `WHITESPACE` tokens.
//!
//! The lexer operates on raw bytes to take full advantage of lookup table optimizations, these bytes **must** be valid utf8,
//! therefore making a lexer from a `&[u8]` is unsafe since you must make sure the bytes are valid utf8.
//! Do not use this to learn how to lex JavaScript, this is just needlessly fast and demonic because i can't control myself :)
//!
//! basic ANSI syntax highlighting is also offered through the `highlight` feature.
//!
//! # Warning ⚠️
//!
//! `>>` and `>>>` are not emitted as single tokens, they are emitted as multiple `>` tokens. This is because of
//! TypeScript parsing and productions such as `T<U<N>>`
#![allow(clippy::or_fun_call)]
#[rustfmt::skip]
mod errors;
mod tests;
use std::ops::{BitOr, BitOrAssign};
use biome_js_syntax::JsSyntaxKind::*;
pub use biome_js_syntax::*;
use biome_parser::diagnostic::ParseDiagnostic;
use biome_parser::lexer::{
LexContext, Lexer, LexerCheckpoint, LexerWithCheckpoint, ReLexer, TokenFlags,
};
use biome_rowan::SyntaxKind;
use biome_unicode_table::{
is_js_id_continue, is_js_id_start, lookup_byte,
Dispatch::{self, *},
};
use enumflags2::{bitflags, make_bitflags, BitFlags};
use crate::JsParserOptions;
use self::errors::invalid_digits_after_unicode_escape_sequence;
// The first utf8 byte of every valid unicode whitespace char, used for short circuiting whitespace checks
const UNICODE_WHITESPACE_STARTS: [u8; 5] = [
// NBSP
0xC2, // BOM
0xEF, // Ogham space mark
0xE1, // En quad .. Hair space, narrow no break space, mathematical space
0xE2, // Ideographic space
0xE3,
];
// Unicode spaces, designated by the `Zs` unicode property
const UNICODE_SPACES: [char; 19] = [
'\u{0020}', '\u{00A0}', '\u{1680}', '\u{2000}', '\u{2001}', '\u{2002}', '\u{2003}', '\u{2004}',
'\u{2005}', '\u{2006}', '\u{2007}', '\u{2008}', '\u{2009}', '\u{200A}', '\u{200B}', '\u{202F}',
'\u{205F}', '\u{3000}', '\u{FEFF}',
];
/// Context in which the lexer should lex the next token
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default)]
pub enum JsLexContext {
/// Default context for if the lexer isn't in any specific other context
#[default]
Regular,
/// For lexing the elements of a JS template literal or TS template type.
/// Doesn't skip whitespace trivia.
TemplateElement { tagged: bool },
/// Lexes a token in a JSX children context.
/// Returns one of
/// - Whitespace trivia
/// - JsxText
/// - `<` end of the current element, or start of a new element
/// - expression start: `{`
/// - EOF
JsxChild,
/// Lexes a JSX Attribute value. Calls into normal lex token if positioned at anything
/// that isn't `'` or `"`.
JsxAttributeValue,
}
impl LexContext for JsLexContext {
/// Returns true if this is [JsLexContext::Regular]
fn is_regular(&self) -> bool {
matches!(self, JsLexContext::Regular)
}
}
/// Context in which the [JsLexContext]'s current should be re-lexed.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum JsReLexContext {
/// Re-lexes a `/` or `/=` token as a regular expression.
Regex,
/// Re-lexes
/// * `> >` as `>>`
/// * `> > >` as `>>>`,
/// * `> =` as '>='
/// * `> > =` as '>>='
/// * `> > > =` as `>>>=`
BinaryOperator,
/// Re-lexes `'<', '<'` as `<<` in places where a type argument is expected to support
/// `B<<A>()>`
TypeArgumentLessThan,
/// Re-lexes an identifier or keyword as a JSX identifier (that allows `-` tokens)
JsxIdentifier,
/// See [JsLexContext::JsxChild]
JsxChild,
}
/// An extremely fast, lookup table based, lossless ECMAScript lexer
#[derive(Debug)]
pub(crate) struct JsLexer<'src> {
/// Source text
source: &'src str,
/// The start byte position in the source text of the next token.
position: usize,
/// `true` if there has been a line break between the last non-trivia token and the next non-trivia token.
after_newline: bool,
/// If the source starts with a Unicode BOM, this is the number of bytes for that token.
unicode_bom_length: usize,
/// Byte offset of the current token from the start of the source
/// The range of the current token can be computed by `self.position - self.current_start`
current_start: TextSize,
/// The kind of the current token
current_kind: JsSyntaxKind,
/// Flags for the current token
current_flags: TokenFlags,
diagnostics: Vec<ParseDiagnostic>,
options: JsParserOptions,
}
impl<'src> Lexer<'src> for JsLexer<'src> {
const NEWLINE: Self::Kind = NEWLINE;
const WHITESPACE: Self::Kind = WHITESPACE;
type Kind = JsSyntaxKind;
type LexContext = JsLexContext;
type ReLexContext = JsReLexContext;
fn source(&self) -> &'src str {
self.source
}
fn current(&self) -> Self::Kind {
self.current_kind
}
fn current_range(&self) -> TextRange {
TextRange::new(self.current_start, TextSize::from(self.position as u32))
}
#[inline]
fn advance_char_unchecked(&mut self) {
let c = self.current_char_unchecked();
self.position += c.len_utf8();
}
#[inline]
fn current_start(&self) -> TextSize {
self.current_start
}
fn next_token(&mut self, context: Self::LexContext) -> Self::Kind {
self.current_start = TextSize::from(self.position as u32);
self.current_flags = TokenFlags::empty();
let kind = if self.is_eof() {
EOF
} else {
match context {
JsLexContext::Regular => self.lex_token(),
JsLexContext::TemplateElement { tagged } => self.lex_template(tagged),
JsLexContext::JsxChild => self.lex_jsx_child_token(),
JsLexContext::JsxAttributeValue => self.lex_jsx_attribute_value(),
}
};
self.current_flags
.set(TokenFlags::PRECEDING_LINE_BREAK, self.after_newline);
self.current_kind = kind;
if !kind.is_trivia() {
self.after_newline = false;
}
kind
}
fn has_preceding_line_break(&self) -> bool {
self.current_flags.has_preceding_line_break()
}
fn has_unicode_escape(&self) -> bool {
self.current_flags.has_unicode_escape()
}
fn rewind(&mut self, checkpoint: LexerCheckpoint<Self::Kind>) {
// test_err js js_rewind_at_eof_token
// (([zAgRvz=[=(e{V{
let LexerCheckpoint {
position,
current_start,
current_flags,
current_kind,
after_line_break,
unicode_bom_length,
diagnostics_pos,
} = checkpoint;
let new_pos = u32::from(position) as usize;
self.position = new_pos;
self.current_kind = current_kind;
self.current_start = current_start;
self.current_flags = current_flags;
self.after_newline = after_line_break;
self.unicode_bom_length = unicode_bom_length;
self.diagnostics.truncate(diagnostics_pos as usize);
}
fn finish(self) -> Vec<ParseDiagnostic> {
self.diagnostics
}
fn current_flags(&self) -> TokenFlags {
self.current_flags
}
fn push_diagnostic(&mut self, diagnostic: ParseDiagnostic) {
self.diagnostics.push(diagnostic);
}
fn position(&self) -> usize {
self.position
}
fn advance(&mut self, n: usize) {
self.position += n;
}
/// Consume one newline or all whitespace until a non-whitespace or a newline is found.
///
/// ## Safety
/// Must be called at a valid UT8 char boundary
fn consume_newline_or_whitespaces(&mut self) -> JsSyntaxKind {
if self.consume_newline() {
self.after_newline = true;
NEWLINE
} else {
self.consume_whitespaces();
WHITESPACE
}
}
}
impl<'src> ReLexer<'src> for JsLexer<'src> {
fn re_lex(&mut self, context: Self::ReLexContext) -> Self::Kind {
let old_position = self.position;
self.position = u32::from(self.current_start) as usize;
let re_lexed_kind = match context {
JsReLexContext::Regex if matches!(self.current(), T![/] | T![/=]) => self.read_regex(),
JsReLexContext::BinaryOperator => self.re_lex_binary_operator(),
JsReLexContext::TypeArgumentLessThan => self.re_lex_type_argument_less_than(),
JsReLexContext::JsxIdentifier => self.re_lex_jsx_identifier(old_position),
JsReLexContext::JsxChild if !self.is_eof() => self.lex_jsx_child_token(),
_ => self.current(),
};
if self.current() == re_lexed_kind {
// Didn't re-lex anything. Return existing token again
self.position = old_position;
} else {
self.current_kind = re_lexed_kind;
}
re_lexed_kind
}
}
impl<'src> LexerWithCheckpoint<'src> for JsLexer<'src> {
fn checkpoint(&self) -> LexerCheckpoint<Self::Kind> {
LexerCheckpoint {
position: TextSize::from(self.position as u32),
current_start: self.current_start,
current_flags: self.current_flags,
current_kind: self.current_kind,
after_line_break: self.after_newline,
unicode_bom_length: self.unicode_bom_length,
diagnostics_pos: self.diagnostics.len() as u32,
}
}
}
impl<'src> JsLexer<'src> {
/// Make a new lexer from a str, this is safe because strs are valid utf8
pub fn from_str(source: &'src str) -> Self {
Self {
source,
after_newline: false,
unicode_bom_length: 0,
current_kind: TOMBSTONE,
current_start: TextSize::from(0),
current_flags: TokenFlags::empty(),
position: 0,
diagnostics: vec![],
options: JsParserOptions::default(),
}
}
pub(crate) fn with_options(self, options: JsParserOptions) -> Self {
Self { options, ..self }
}
fn re_lex_binary_operator(&mut self) -> JsSyntaxKind {
if self.current_byte() == Some(b'>') {
match self.next_byte() {
Some(b'>') => match self.next_byte() {
Some(b'>') => match self.next_byte() {
Some(b'=') => self.eat_byte(T![>>>=]),
_ => T![>>>],
},
Some(b'=') => self.eat_byte(T![>>=]),
_ => T![>>],
},
Some(b'=') => self.eat_byte(T![>=]),
_ => T![>],
}
} else {
self.current_kind
}
}
fn re_lex_type_argument_less_than(&mut self) -> JsSyntaxKind {
if self.current() == T![<<] {
self.advance(1);
T![<]
} else {
self.current()
}
}
fn re_lex_jsx_identifier(&mut self, current_end: usize) -> JsSyntaxKind {
if self.current_kind.is_keyword() || self.current_kind == T![ident] {
self.position = current_end;
while let Some(current_byte) = self.current_byte() {
match current_byte {
b'-' => {
self.advance(1);
}
b':' => {
break;
}
_ => {
let start = self.position;
// consume ident advances by one position, so move back by one
self.position -= 1;
self.consume_ident();
// Didn't eat any identifier parts, break out
if start == self.position {
self.position = start;
break;
}
}
}
}
JSX_IDENT
} else {
self.current_kind
}
}
fn lex_jsx_child_token(&mut self) -> JsSyntaxKind {
debug_assert!(!self.is_eof());
// SAFETY: `lex_token` only calls this method if it isn't passed the EOF
let chr = unsafe { self.current_unchecked() };
match chr {
// `<`: empty jsx text, directly followed by another element or closing element
b'<' => self.eat_byte(T![<]),
// `{`: empty jsx text, directly followed by an expression
b'{' => self.eat_byte(T!['{']),
_ => {
while let Some(chr) = self.current_byte() {
// but not one of: { or < or > or }
match chr {
// Start of a new element, the closing tag, or an expression
b'<' | b'{' => break,
b'>' => {
self.push_diagnostic(ParseDiagnostic::new(
"Unexpected token. Did you mean `{'>'}` or `>`?",
self.position..self.position + 1,
));
self.advance(1);
}
b'}' => {
self.push_diagnostic(ParseDiagnostic::new(
"Unexpected token. Did you mean `{'}'}` or `}`?",
self.position..self.position + 1,
));
self.advance(1);
}
chr => {
if chr.is_ascii() {
self.advance(1);
} else {
self.advance_char_unchecked();
}
}
}
}
JSX_TEXT_LITERAL
}
}
}
fn lex_jsx_attribute_value(&mut self) -> JsSyntaxKind {
debug_assert!(!self.is_eof());
// Safety: Guaranteed because we aren't at the end of the file
let chr = unsafe { self.current_unchecked() };
match chr {
b'\'' | b'"' => {
self.consume_str_literal(true);
JSX_STRING_LITERAL
}
_ => self.lex_token(),
}
}
/// Bumps the current byte and creates a lexed token of the passed in kind
fn eat_byte(&mut self, tok: JsSyntaxKind) -> JsSyntaxKind {
self.next_byte();
tok
}
/// Consume just one newline/line break.
///
/// ## Safety
/// Must be called at a valid UT8 char boundary
fn consume_newline(&mut self) -> bool {
self.assert_current_char_boundary();
let start = self.position;
match self.current_byte() {
Some(b'\r') if self.peek_byte() == Some(b'\n') => self.advance(2),
Some(b'\r' | b'\n') => self.advance(1),
Some(chr) if !chr.is_ascii() => {
let chr = self.current_char_unchecked();
if is_linebreak(chr) {
self.advance(chr.len_utf8());
}
}
_ => {}
}
self.position != start
}
/// Consumes all whitespace until a non-whitespace or a newline is found.
///
/// ## Safety
/// Must be called at a valid UT8 char boundary
fn consume_whitespaces(&mut self) {
self.assert_current_char_boundary();
while let Some(chr) = self.current_byte() {
match lookup_byte(chr) {
Dispatch::WHS => {
if let b'\r' | b'\n' = chr {
break;
} else {
self.next_byte();
}
}
Dispatch::UNI => {
let chr = self.current_char_unchecked();
if UNICODE_SPACES.contains(&chr) {
self.advance(chr.len_utf8());
} else {
break;
}
}
_ => break,
}
}
}
/// Returns the current byte without checking if the lexer is at the end of the file.
///
/// ## Safety
/// Calling this function if the lexer is at or passed the end of file is undefined behaviour.
#[inline]
unsafe fn current_unchecked(&self) -> u8 {
self.assert_current_char_boundary();
*self.source.as_bytes().get_unchecked(self.position)
}
/// Advances the position by one and returns the next byte value
#[inline]
fn next_byte(&mut self) -> Option<u8> {
self.advance(1);
self.current_byte()
}
/// Get the next byte but only advance the index if there is a next byte.
/// This is really just a hack for certain methods like escapes
#[inline]
fn next_byte_bounded(&mut self) -> Option<u8> {
if let Some(b) = self.source.as_bytes().get(self.position + 1) {
self.advance(1);
Some(*b)
} else {
if !self.is_eof() {
// Move the cursor by one to position the Lexer at the EOF token
self.advance(1);
}
None
}
}
/// Advances the current position by `n` bytes.
#[inline]
fn advance(&mut self, n: usize) {
self.position += n;
}
#[inline]
fn advance_byte_or_char(&mut self, chr: u8) {
if chr.is_ascii() {
self.advance(1);
} else {
self.advance_char_unchecked();
}
}
// Read a `\u{000...}` escape sequence, this expects the cur char to be the `{`
fn read_codepoint_escape_char(&mut self) -> Result<char, ()> {
let start = self.position + 1;
self.read_hexnumber();
let current_byte = self.current_byte();
// Abort on EOF
if current_byte.is_none() {
return Err(());
}
if current_byte != Some(b'}') {
// We should not yield diagnostics on a unicode char boundary. That wont make codespan panic
// but it may cause a panic for other crates which just consume the diagnostics
let invalid = self.current_char_unchecked();
let err = ParseDiagnostic::new( "expected hex digits for a unicode code point escape, but encountered an invalid character",
self.position..self.position + invalid.len_utf8() );
self.push_diagnostic(err);
self.position -= 1;
return Err(());
}
// Safety: We know for a fact this is in bounds because we must be on the possible char after the } at this point
// which means its impossible for the range of the digits to be out of bounds.
// We also know we cant possibly be indexing a unicode char boundary because a unicode char (which cant be a hexdigit)
// would have triggered the if statement above. We also know this must be valid utf8, both because of read_hexnumber's behavior
// and because input to the lexer must be valid utf8
let digits_str = unsafe {
debug_assert!(self.source.as_bytes().get(start..self.position).is_some());
debug_assert!(std::str::from_utf8(
self.source.as_bytes().get_unchecked(start..self.position)
)
.is_ok());
std::str::from_utf8_unchecked(
self.source.as_bytes().get_unchecked(start..self.position),
)
};
match u32::from_str_radix(digits_str, 16) {
Ok(digits) if digits <= 0x10_FFFF => {
let res = std::char::from_u32(digits);
if let Some(chr) = res {
Ok(chr)
} else {
let err = ParseDiagnostic::new(
"invalid codepoint for unicode escape",
start..self.position,
);
self.push_diagnostic(err);
Err(())
}
}
_ => {
let err = ParseDiagnostic::new(
"out of bounds codepoint for unicode codepoint escape sequence",
start..self.position,
)
.with_hint("Codepoints range from 0 to 0x10FFFF (1114111)");
self.push_diagnostic(err);
Err(())
}
}
}
/// Reads a `\u0000` escape sequence.
///
/// This expects the current char to be the `u`. Afterwards, the current
/// char is the last hex digit.
///
/// This returns a `u32` since not all escape sequences produce valid
/// Unicode characters.
fn read_unicode_escape(&mut self) -> Result<u32, ()> {
self.assert_byte(b'u');
for _ in 0..4 {
match self.next_byte_bounded() {
None => {
let err = invalid_digits_after_unicode_escape_sequence(
self.position - 1,
self.position + 1,
);
self.push_diagnostic(err);
return Err(());
}
Some(b) if !b.is_ascii_hexdigit() => {
let err = invalid_digits_after_unicode_escape_sequence(
self.position - 1,
self.position + 1,
);
self.push_diagnostic(err);
return Err(());
}
_ => {}
}
}
// Safety: input to the lexer is guaranteed to be valid utf8 and so is
// the range since we return if there is a wrong amount of digits
// beforehand.
let digits_str = unsafe {
std::str::from_utf8_unchecked(
self.source
.as_bytes()
.get_unchecked((self.position - 3)..(self.position + 1)),
)
};
if let Ok(digits) = u32::from_str_radix(digits_str, 16) {
Ok(digits)
} else {
// Safety: we know this is unreachable because 4 hexdigits cannot
// make an out of bounds char, and we make sure that the chars are
// actually hex digits.
unsafe { core::hint::unreachable_unchecked() };
}
}
/// Reads a `\u0000` escape sequence and converts the sequence to a valid
/// Unicode character.
///
/// This expects the current char to be the `u`. Afterwards, the current
/// char is the last hex digit.
///
/// This function makes no attempt to match surrogate pairs, since those are
/// not valid characters inside JS identifiers anyway.
fn read_unicode_escape_char(&mut self) -> Result<char, ()> {
self.read_unicode_escape()
.and_then(|codepoint| std::char::from_u32(codepoint).ok_or(()))
}
// Validate a `\x00 escape sequence, this expects the current char to be the `x`, it also does not skip over the escape sequence
// The pos after this method is the last hex digit
fn validate_hex_escape(&mut self) -> bool {
self.assert_byte(b'x');
let diagnostic = ParseDiagnostic::new(
"invalid digits after hex escape sequence",
(self.position - 1)..(self.position + 1),
)
.with_hint("Expected 2 hex digits following this");
for _ in 0..2 {
match self.next_byte_bounded() {
None => {
self.push_diagnostic(diagnostic);
return false;
}
Some(b) if !b.is_ascii_hexdigit() => {
self.push_diagnostic(diagnostic);
return false;
}
_ => {}
}
}
true
}
/// Consume a `\..` escape sequence.
///
/// ## Safety
/// Must be called at a valid UT8 char boundary
fn consume_escape_sequence(&mut self) -> bool {
self.assert_current_char_boundary();
self.assert_byte(b'\\');
let cur = self.position;
self.advance(1); // eats '\'
if let Some(chr) = self.current_byte() {
match chr {
b'\\' | b'n' | b'r' | b't' | b'b' | b'v' | b'f' | b'\'' | b'"' => {
self.advance(1);
true
}
b'u' if self.peek_byte() == Some(b'{') => {
self.advance(1); // eats '{'
self.read_codepoint_escape_char().is_ok()
}
b'u' => self.read_unicode_escape().is_ok(),
b'x' => self.validate_hex_escape(),
b'\r' => {
if let Some(b'\n') = self.next_byte() {
self.advance(1);
}
true
}
chr => {
self.advance_byte_or_char(chr);
true
}
}
} else {
self.diagnostics
.push(ParseDiagnostic::new("", cur..cur + 1).with_hint(
"expected an escape sequence following a backslash, but found none",
));
false
}
}
// Consume an identifier by recursively consuming IDENTIFIER_PART kind chars
#[inline]
fn consume_ident(&mut self) {
loop {
if self.next_byte_bounded().is_none() || self.cur_ident_part().is_none() {
break;
}
}
}
/// Consumes the identifier at the current position, and fills the given buf with the UTF-8
/// encoded identifier that got consumed.
///
/// Returns the number of bytes written into the buffer, and if any char was escaped.
/// This method will stop writing into the buffer if the buffer is too small to
/// fit the whole identifier.
#[inline]
fn consume_and_get_ident(&mut self, buf: &mut [u8]) -> (usize, bool) {
let mut idx = 0;
let mut any_escaped = false;
while self.next_byte_bounded().is_some() {
if let Some((c, escaped)) = self.cur_ident_part() {
if let Some(buf) = buf.get_mut(idx..idx + 4) {
let res = c.encode_utf8(buf);
idx += res.len();
any_escaped |= escaped;
}
} else {
return (idx, any_escaped);
}
}
(idx, any_escaped)
}
/// Consume a string literal and advance the lexer, and returning a list of errors that occurred when reading the string
/// This could include unterminated string and invalid escape sequences
///
/// ## Safety
/// Must be called at a valid UT8 char boundary
fn consume_str_literal(&mut self, jsx_attribute: bool) -> bool {
self.assert_current_char_boundary();
let quote = unsafe { self.current_unchecked() };
let start = self.position;
let mut valid = true;
self.advance(1); // eats the start quote
while let Some(chr) = self.current_byte() {
match chr {
b'\\' if !jsx_attribute => {
valid &= self.consume_escape_sequence();
}
b'\r' | b'\n' if !jsx_attribute => {
let unterminated =
ParseDiagnostic::new("unterminated string literal", start..self.position)
.with_detail(start..self.position, "")
.with_hint("The closing quote must be on the same line.");
self.push_diagnostic(unterminated);
return false;
}
chr if chr == quote => {
self.advance(1);
return valid;
}
chr => {
if chr.is_ascii() {
self.advance(1);
} else {
self.advance_char_unchecked();
}
}
}
}
let unterminated =
ParseDiagnostic::new("unterminated string literal", self.position..self.position)
.with_detail(self.position..self.position, "input ends here")
.with_detail(start..start + 1, "string literal starts here");
self.push_diagnostic(unterminated);
false
}
/// Returns `Some(x)` if the current position is an identifier, with the character at
/// the position.
///
/// Boolean states if there are escaped characters.
///
/// The character may be a char that was generated from a unicode escape sequence,
/// e.g. `t` is returned, the actual source code is `\u{74}`
#[inline]
fn cur_ident_part(&mut self) -> Option<(char, bool)> {
debug_assert!(!self.is_eof());
// Safety: we always call this method on a char
let b = unsafe { self.current_unchecked() };
match lookup_byte(b) {
IDT | DOL | DIG | ZER => Some((b as char, false)),
// FIXME: This should use ID_Continue, not XID_Continue
UNI => {
let chr = self.current_char_unchecked();
let res = is_js_id_continue(chr);
if res {
self.advance(chr.len_utf8() - 1);
Some((chr, false))
} else {
None
}
}
BSL if self.peek_byte() == Some(b'u') => {
let start = self.position;
self.next_byte();
let res = if self.peek_byte() == Some(b'{') {
self.next_byte();
self.read_codepoint_escape_char()
} else {
self.read_unicode_escape_char()
};
if let Ok(c) = res {
if is_js_id_continue(c) {
Some((c, true))
} else {
self.position = start;
None
}
} else {
self.position = start;
None
}
}
_ => None,
}
}
// check if the current char is an identifier start, this implicitly advances if the char being matched
// is a `\uxxxx` sequence which is an identifier start, or if the char is a unicode char which is an identifier start
#[inline]
fn cur_is_ident_start(&mut self) -> bool {
debug_assert!(!self.is_eof());
// Safety: we always call this method on a char
let b = unsafe { self.current_unchecked() };
match lookup_byte(b) {
BSL if self.peek_byte() == Some(b'u') => {
let start = self.position;
self.next_byte();
if let Ok(chr) = self.read_unicode_escape_char() {
if is_js_id_start(chr) {
return true;
}
}
self.position = start;
false
}
UNI => {
let chr = self.current_char_unchecked();
if is_js_id_start(chr) {
self.advance(chr.len_utf8() - 1);
true
} else {
false
}
}
IDT | DOL => true,
_ => false,
}
}
/// Returns the identifier token at the current position, or the keyword token if
/// the identifier is a keyword.
///
/// `first` is a pair of a character that was already consumed,
/// but is still part of the identifier, and the characters position.
#[inline]
fn resolve_identifier(&mut self, first: char) -> JsSyntaxKind {
use JsSyntaxKind::*;
// Note to keep the buffer large enough to fit every possible keyword that
// the lexer can return
let mut buf = [0u8; 16];
let len = first.encode_utf8(&mut buf).len();
let (count, escaped) = self.consume_and_get_ident(&mut buf[len..]);
if escaped {
self.current_flags |= TokenFlags::UNICODE_ESCAPE;
}
match &buf[..count + len] {
// Keywords
b"break" => BREAK_KW,
b"case" => CASE_KW,
b"catch" => CATCH_KW,
b"class" => CLASS_KW,
b"const" => CONST_KW,
b"continue" => CONTINUE_KW,
b"debugger" => DEBUGGER_KW,
b"default" => DEFAULT_KW,
b"delete" => DELETE_KW,
b"do" => DO_KW,
b"else" => ELSE_KW,
b"enum" => ENUM_KW,
b"export" => EXPORT_KW,
b"extends" => EXTENDS_KW,
b"false" => FALSE_KW,
b"finally" => FINALLY_KW,
b"for" => FOR_KW,
b"function" => FUNCTION_KW,
b"if" => IF_KW,
b"in" => IN_KW,
b"import" => IMPORT_KW,
b"instanceof" => INSTANCEOF_KW,
b"new" => NEW_KW,
b"null" => NULL_KW,
b"return" => RETURN_KW,
b"super" => SUPER_KW,
b"switch" => SWITCH_KW,
b"this" => THIS_KW,
b"throw" => THROW_KW,
b"try" => TRY_KW,
b"true" => TRUE_KW,
b"typeof" => TYPEOF_KW,
b"var" => VAR_KW,
b"void" => VOID_KW,
b"while" => WHILE_KW,
b"with" => WITH_KW,
// Strict mode contextual Keywords
b"implements" => IMPLEMENTS_KW,
b"interface" => INTERFACE_KW,
b"let" => LET_KW,
b"package" => PACKAGE_KW,
b"private" => PRIVATE_KW,
b"protected" => PROTECTED_KW,
b"public" => PUBLIC_KW,
b"static" => STATIC_KW,
b"yield" => YIELD_KW,
// contextual keywords
b"abstract" => ABSTRACT_KW,