-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
180 lines (159 loc) · 7.68 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from collections import namedtuple
from torch.distributions import Categorical
import torch
from torch import nn
from torch.nn.init import xavier_uniform_
from torch.nn.init import constant_
from torch.nn.init import xavier_normal_
import torch.nn.functional as F
import numpy as np
from copy import deepcopy
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
SavedAction = namedtuple('SavedAction', ['log_prob', 'value'])
def find_nonzeros(tensor):
nz_idx = tensor.nonzero()
nz_val = tensor[nz_idx[:,0], nz_idx[:,1]]
return nz_idx, nz_val
def pick_random_sample(input_mask,n_query,n_question):
if n_query==-1:
return input_mask.detach().clone()
train_mask = torch.zeros(input_mask.shape[0], n_question).long().to(device)
actions = torch.multinomial(input_mask.float(), n_query, replacement=False)
train_mask = train_mask.scatter(dim=1, index=actions, value=1)
return train_mask
def get_inputs(batch):
input_labels = batch['input_labels'].to(device).float()
input_mask = batch['input_mask'].to(device)
input_ans = None
return input_labels, input_ans, input_mask
def get_outputs(batch):
output_labels, output_mask = batch['output_labels'].to(
device).float(), batch['output_mask'].to(device) # B,948
return output_labels, output_mask
def compute_loss(output, labels, mask, reduction= True):
loss_function = nn.BCEWithLogitsLoss(reduction='none')
loss = loss_function(output, labels) * mask
if reduction:
return loss.sum()/mask.sum()
else:
return loss.sum()
def compute_seq_loss(output, labels_S, labels_Q, mask, student_emb, reduction = 'none'):
B,n = mask.size()
loss_function = nn.BCEWithLogitsLoss(reduction='none')
logitS = (loss_function(output, labels_S) * mask).sum()
logitQ = loss_function(output, labels_Q).sum()
grad_s = torch.autograd.grad(logitS, student_emb, create_graph=True)[0]
grad_q = torch.autograd.grad(logitQ, student_emb, create_graph=True)[0]
non_zero_counts = mask.sum(dim=-1, keepdim=True) + 1e-8
ave_grad_s = grad_s / non_zero_counts
ave_grad_q = grad_q / n
grad_diff = ave_grad_s - ave_grad_q
del grad_s, grad_q, ave_grad_s, ave_grad_q
loss = torch.norm(grad_diff, p=2) / B
return loss
def normalize_loss(output, labels, mask):
loss_function = nn.BCEWithLogitsLoss(reduction='none')
loss = loss_function(output, labels) * mask
count = mask.sum(dim =-1)+1e-8#N,1
loss = 10. * torch.sum(loss, dim =-1)/count
return loss.sum()
class MAMLModel(nn.Module):
def __init__(self, n_question,question_dim =1,dropout=0.2, sampling='active', n_query=10,emb = None,tp='irt'):
super().__init__()
self.n_query = n_query
self.sampling = sampling
self.sigmoid = nn.Sigmoid()
self.n_question = n_question
self.question_dim = question_dim
self.tp = tp
if tp == 'irt':
self.question_difficulty = nn.Parameter(torch.zeros(question_dim,n_question))
else:
self.prednet_input_len = emb.shape[1]
self.prednet_len1, self.prednet_len2 = 128, 64 # changeable
self.kn_emb = emb
self.k_difficulty = nn.Parameter(torch.zeros(n_question,self.prednet_input_len))
self.e_discrimination = nn.Parameter(torch.full((n_question,1), 0.5))
self.prednet_full1 = nn.Linear(self.prednet_input_len, self.prednet_len1)
self.drop_1 = nn.Dropout(p=0.5)
self.prednet_full2 = nn.Linear(self.prednet_len1, self.prednet_len2)
self.drop_2 = nn.Dropout(p=0.5)
self.prednet_full3 = nn.Linear(self.prednet_len2, 1)
def reset(self, batch):
input_labels, _, input_mask = get_inputs(batch)
obs_state = ((input_labels-0.5)*2.) # B, 948
train_mask = torch.zeros(
input_mask.shape[0], self.n_question).long().to(device)
env_states = {'obs_state': obs_state, 'train_mask': train_mask,
'action_mask': input_mask.clone()}
return env_states
def step(self, env_states):
obs_state, train_mask = env_states[
'obs_state'], env_states['train_mask']
state = obs_state*train_mask # B, 948
return state
def pick_sample(self,sampling, config):
if sampling == 'random':
train_mask = pick_random_sample(
config['available_mask'], self.n_query, self.n_question)
config['train_mask'] = train_mask
return train_mask
elif sampling == 'active':
student_embed = config['meta_param']
n_student = len(config['meta_param'])
action = self.pick_uncertain_sample(student_embed, config['available_mask'])
config['train_mask'][range(n_student), action], config['available_mask'][range(n_student), action] = 1, 0
return action
def forward(self, batch, config):
# get inputs
input_labels = batch['input_labels'].to(device).float()
student_embed = config['meta_param']#
output = self.compute_output(student_embed)
train_mask = config['train_mask']
# compute loss
if config['mode'] == 'train':
output_labels, output_mask = get_outputs(batch)
# meta model parameters
output_loss = compute_loss(output, output_labels, output_mask, reduction=False)/len(train_mask)
# for adapting meta model parameters
seq_loss = compute_seq_loss(output, output_labels, output_labels, output_mask, student_emb=student_embed)
# for BEAT subset
if self.n_query!=-1:
input_loss = compute_loss(output, input_labels, train_mask, reduction=False)
else:
input_loss = normalize_loss(output, input_labels, train_mask)
return {'loss': output_loss, 'train_loss': input_loss, 'seq_loss':seq_loss, 'output': self.sigmoid(output).detach().cpu().numpy()}
else:
input_loss = compute_loss(output, input_labels, train_mask,reduction=False)
return {'output': self.sigmoid(output).detach().cpu().numpy(), 'train_loss': input_loss}
def pick_uncertain_sample(self, student_embed, available_mask):
with torch.no_grad():
output = self.compute_output(student_embed)
output = self.sigmoid(output)
inf_mask = torch.clamp(
torch.log(available_mask.float()), min=torch.finfo(torch.float32).min)
scores = torch.min(1-output, output)+inf_mask
actions = torch.argmax(scores, dim=-1)
return actions
def compute_output(self, student_embed):
if self.tp=='irt':
output = (student_embed - self.question_difficulty)
else:
k_difficulty = self.k_difficulty
e_discrimination = self.e_discrimination
kn_emb = self.kn_emb
student_embed = student_embed.unsqueeze(1)
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
input_x = e_discrimination * (student_embed - k_difficulty) *kn_emb.to(device)
input_x = self.drop_1(torch.sigmoid(self.prednet_full1(input_x)))
input_x = self.drop_2(torch.sigmoid(self.prednet_full2(input_x)))
output = self.prednet_full3(input_x)
output = output.squeeze()
return output
def difficulty_irt_old(self):
if self.tp == 'irt':
return self.question_difficulty
else:
return self.k_difficulty