-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10.py
50 lines (38 loc) · 1.61 KB
/
cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.datasets import cifar10
class Cifar10(object):
NUM_CLASSES = 10
@classmethod
def load_data(cls, y_test_to_categorical=False):
# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, Cifar10.NUM_CLASSES)
if y_test_to_categorical:
y_test = keras.utils.to_categorical(y_test, Cifar10.NUM_CLASSES)
return (x_train, y_train), (x_test, y_test)
@classmethod
def load_model(cls):
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu',
input_shape=(32, 32, 3)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
return model