-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDQN_distributed.py
364 lines (272 loc) · 12 KB
/
DQN_distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import torch
import time
import os
import ray
from tqdm import tqdm
from random import uniform, randint
from dqn_model import DQNModel
from dqn_model import _DQNModel
from memory import ReplayBuffer
import matplotlib.pyplot as plt
FloatTensor = torch.FloatTensor
ENV_NAME = 'Distributed_CartPole'
def plot_result(total_rewards, learning_num, legend):
print("\nLearning Performance:\n")
episodes = []
for i in range(len(total_rewards)):
episodes.append(i * learning_num + 1)
plt.figure(num=1)
fig, ax = plt.subplots()
plt.plot(episodes, total_rewards)
#plt.title('Performance')
plt.legend(legend)
plt.xlabel("Episodes")
plt.ylabel("Total Rewards")
plt.savefig("Distributed_DQN_4_Collectors_4_Workers.png")
plt.show()
ray.shutdown()
ray.init(include_webui=False, ignore_reinit_error=True, redis_max_memory=500000000, object_store_memory=5000000000)
from memory_remote import ReplayBuffer_remote
from dqn_model import _DQNModel
import torch
from custom_cartpole import CartPoleEnv
from collections import deque
simulator = CartPoleEnv()
result_folder = ENV_NAME
result_file = ENV_NAME + "/results4.txt"
if not os.path.isdir(result_folder):
os.mkdir(result_folder)
torch.set_num_threads(12)
Memory_Server = ReplayBuffer_remote.remote(2000)
@ray.remote
class DQN_Model_Server():
def __init__(self, env, hyper_params, batch_size, update_steps, memory_size, beta, model_replace_freq,
learning_rate, use_target_model=True, memory=Memory_Server, action_space=2,
training_episodes=7000, test_interval=50):
# super().__init__(update_steps, memory_size, model_replace_freq, learning_rate, beta=0.99, batch_size = 32, use_target_model=True)
self.batch_size = batch_size
state = env.reset()
input_len = len(state)
output_len = action_space
self.eval_model = DQNModel(input_len, output_len, learning_rate=0.0003)
self.target_model = DQNModel(input_len, output_len)
self.steps = 0
self.memory = memory
# self.memory = ReplayBuffer(hyper_params['memory_size'])
self.prev = 0
self.next = 0
self.model_dq = deque()
self.result = [0] * ((training_episodes // test_interval) + 1)
self.previous_q_networks = []
self.result_count = 0
self.learning_episodes = training_episodes
self.episode = 0
self.is_collection_completed = False
self.evaluator_done = False
self.batch_num = training_episodes // test_interval
self.use_target_model = True
self.beta = 0.99
self.test_interval = test_interval
def get_evaluation_model(self):
if self.episode >= self.learning_episodes:
self.is_collection_completed = True
return self.is_collection_completed
def replace(self):
self.target_model.replace(self.eval_model)
def get_total_steps(self):
return self.steps
def predict_next(self, state, e_model):
return e_model.predict(state)
def get_predict(self, state):
return self.eval_model.predict(state)
def set_collect_count(self):
self.next += 1
def set_collector_count(self):
self.episode += 1
def get_evaluation_count(self):
return self.result_count
def get_evaluator_count(self):
return self.episode
def ask_evaluation(self):
if len(self.previous_q_networks) > self.result_count:
num = self.result_count
evluation_q_network = self.previous_q_networks[num]
self.result_count += 1
self.episode += 50
return evluation_q_network, False, num
else:
if self.episode >= self.learning_episodes:
self.evaluator_done = True
return [], self.evaluator_done, None
def update_batch(self):
self.steps += 10
if ray.get(self.memory.__len__.remote()) < self.batch_size: # or self.steps % self.update_steps != 0:
return
if self.is_collection_completed:
return
batch = ray.get(self.memory.sample.remote(self.batch_size))
(states, actions, reward, next_states,
is_terminal) = batch
states = states
next_states = next_states
terminal = FloatTensor([1 if t else 0 for t in is_terminal])
reward = FloatTensor(reward)
batch_index = torch.arange(self.batch_size,
dtype=torch.long)
_, q_values = self.eval_model.predict_batch(states)
q_values = q_values[batch_index, actions]
if self.use_target_model:
actions, q_next = self.target_model.predict_batch(next_states)
else:
actions, q_next = self.eval_model.predict_batch(next_states)#dont need though
q_targets = []
for i in range(0, len(terminal), 1):
if terminal[i] == 1:
q_targets.append(reward[i])
else:
q_targets.append(reward[i] + (self.beta * torch.max(q_next, 1).values[i].data))
q_target = FloatTensor(q_targets)
self.eval_model.fit(q_values, q_target)
if self.episode // self.test_interval + 1 > len(self.previous_q_networks):
model_id = ray.put(self.eval_model)
self.previous_q_networks.append(model_id)
return self.steps
def set_results(self, result, num):
self.result[num] = result
def get_results(self):
return self.result
@ray.remote
def collecting_worker(model_server, env, update_steps, max_episode_steps, training_episodes, test_interval,
model_replace_freq, memory=Memory_Server, action_space=2):
initial_epsilon = 1
final_epsilon = 0.1
def greedy_policy(curr_state):
return ray.get(model_server.get_predict.remote(curr_state))
def linear_decrease(initial_value, final_value, curr_steps, final_decay_steps):
decay_rate = curr_steps / final_decay_steps
if decay_rate > 1:
decay_rate = 1
return initial_value - (initial_value - final_value) * decay_rate
def explore_or_exploit_policy(curr_state):
p = uniform(0, 1)
self_steps = ray.get(model_server.get_total_steps.remote())
epsilon = linear_decrease(initial_value=initial_epsilon, final_value=final_epsilon, curr_steps=self_steps,
final_decay_steps=100000)
if p < epsilon:
return randint(0, action_space - 1)
else:
return greedy_policy(curr_state)
while True:
collect_done = ray.get(model_server.get_evaluation_model.remote())
if collect_done:
break
for episode in tqdm(range(test_interval), desc="Training"):
state = env.reset()
done = False
steps = 0
model_replace_freq = 2000
while steps < max_episode_steps and not done:
action = explore_or_exploit_policy(state)
next_state, reward, done, info = env.step(action)
memory.add.remote(state, action, reward, next_state, done)
state = next_state
steps += 1
if steps % update_steps == 0:
model_server.update_batch.remote()
total_step = ray.get(model_server.get_total_steps.remote())
if total_step % model_replace_freq == 0:
model_server.replace.remote()
@ray.remote
def evaluation_worker(model_server, env, training_episodes, test_interval, eval_worker, trials=30):
best_reward = 0
def greedy_policy(curr_state, eval_model):
return ray.get(model_server.predict_next.remote(curr_state, eval_model))
while True:
model_id, done, num = ray.get(model_server.ask_evaluation.remote())
eval_model = ray.get(model_id)
eval_num = ray.get(model_server.get_evaluation_count.remote())
if done:
break
total_reward = 0
if eval_model == []: #
continue
for _ in tqdm(range(trials), desc="Evaluating"):
state = env.reset()
done = False
steps = 0
while steps < env._max_episode_steps and not done:
steps += 1
action = greedy_policy(state, eval_model) # predicted action of the eval model on specific state
# action = eval_model.predict(state)
state, reward, done, _ = env.step(action)
total_reward += reward
avg_reward = total_reward / trials
model_server.set_results.remote(avg_reward, num)
print(avg_reward)
f = open(result_file, "a+")
f.write(str(avg_reward) + "\n")
f.close()
return avg_reward
class distributed_DQN_agent():
def __init__(self, env, hyper_params, cw_num, ew_num, epsilon_decay_steps=100000, final_epsilon=0.1, batch_size=32,
update_steps=10, memory_size=2000, beta=0.99, model_replace_freq=2000,
learning_rate=0.003, do_test=True, memory=Memory_Server, action_space=2,
training_episodes=7000, test_interval=50):
self.env = env
self.max_episode_steps = env._max_episode_steps
self.update_steps = update_steps
self.model_server = DQN_Model_Server.remote(env, hyper_params, batch_size, update_steps, memory_size, beta,
model_replace_freq,
learning_rate, use_target_model=True, memory=Memory_Server,
action_space=2)
self.workers_id = []
self.final_epsilon = final_epsilon
self.batch_size = batch_size
self.cw_num = cw_num
self.ew_num = ew_num
self.beta = beta
self.do_test = do_test
self.memory = Memory_Server
self.action_space = action_space
self.training_episodes = training_episodes
self.test_interval = test_interval
self.model_replace_freq = model_replace_freq
def learn_and_evaluate(self):
workers_id = []
for i in range(self.cw_num):
cw_id = collecting_worker.remote(self.model_server, self.env, self.update_steps, self.max_episode_steps,
training_episodes, test_interval, self.model_replace_freq, Memory_Server,
self.action_space)
workers_id.append(cw_id)
for i in range(self.ew_num):
ew_id = evaluation_worker.remote(self.model_server, self.env, self.training_episodes, self.test_interval,
self.ew_num)
workers_id.append(ew_id)
ray.wait(workers_id, len(workers_id))
return ray.get(self.model_server.get_results.remote())
hyperparams_CartPole = {
'epsilon_decay_steps': 100000,
'final_epsilon': 0.1,
'batch_size': 32,
'update_steps': 10,
'memory_size': 2000,
'beta': 0.99,
'model_replace_freq': 2000,
'learning_rate': 0.0003,
'use_target_model': True
}
cw_nums = [4]
ew_nums = [4]
for cw_num, ew_num in zip(cw_nums, ew_nums):
start_time = time.time()
training_episodes, test_interval = 5500, 50#note 5500
distributed_dqn_agent = distributed_DQN_agent(simulator, hyperparams_CartPole, cw_num=cw_num, ew_num=ew_num,
epsilon_decay_steps=100000, final_epsilon=0.1, batch_size=32,
update_steps=10, memory_size=2000,
beta=0.99, model_replace_freq=140, learning_rate=0.003, do_test=True,
memory=Memory_Server, action_space=2,
training_episodes=training_episodes, test_interval=test_interval)
result = distributed_dqn_agent.learn_and_evaluate()
run_time = time.time() - start_time
print("Learning time:\n",run_time)
#plot_result(result, test_interval, ["Distributed DQN"])