-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlockfree_hashtable.h
611 lines (525 loc) · 21 KB
/
lockfree_hashtable.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
#ifndef LOCKFREE_HASHTABLE_H
#define LOCKFREE_HASHTABLE_H
#include <atomic>
#include <cassert>
#include <cmath>
#include "HazardPointer/reclaimer.h"
// The maximum bucket size equals to kSegmentSize^kMaxLevel, in this case the
// maximum bucket size is 64^4. If the load factor is 0.5, the maximum number of
// items that Hash Table contains is 64^4 * 0.5 = 2^23. You can adjust the
// following two values according to your memory size.
const int kMaxLevel = 4;
const int kSegmentSize = 64;
const size_t kMaxBucketSize = pow(kSegmentSize, kMaxLevel);
// Hash Table can be stored 2^power_of_2_ * kLoadFactor items.
const float kLoadFactor = 0.5;
template <typename K, typename V>
class TableReclaimer;
template <typename K, typename V, typename Hash = std::hash<K>>
class LockFreeHashTable {
static_assert(std::is_copy_constructible_v<K>, "K requires copy constructor");
static_assert(std::is_copy_constructible_v<V>, "V requires copy constructor");
friend TableReclaimer<K, V>;
struct Node;
struct DummyNode;
struct RegularNode;
struct Segment;
typedef size_t HashKey;
typedef size_t BucketIndex;
typedef size_t SegmentIndex;
typedef std::atomic<DummyNode*> Bucket;
public:
LockFreeHashTable() : power_of_2_(1), size_(0), hash_func_(Hash()) {
// Initialize first bucket
int level = 1;
Segment* segments = segments_; // Point to current segment.
while (level++ <= kMaxLevel - 2) {
Segment* sub_segments = NewSegments(level);
segments[0].data.store(sub_segments, std::memory_order_release);
segments = sub_segments;
}
Bucket* buckets = NewBuckets();
segments[0].data.store(buckets, std::memory_order_release);
DummyNode* head = new DummyNode(0);
buckets[0].store(head, std::memory_order_release);
head_ = head;
}
~LockFreeHashTable() {
Node* p = head_;
while (p != nullptr) {
Node* tmp = p;
p = p->next.load(std::memory_order_acquire);
tmp->Release();
}
}
LockFreeHashTable(const LockFreeHashTable& other) = delete;
LockFreeHashTable(LockFreeHashTable&& other) = delete;
LockFreeHashTable& operator=(const LockFreeHashTable& other) = delete;
LockFreeHashTable& operator=(LockFreeHashTable&& other) = delete;
bool Insert(const K& key, const V& value) {
RegularNode* new_node = new RegularNode(key, value, hash_func_);
DummyNode* head = GetBucketHeadByHash(new_node->hash);
return InsertRegularNode(head, new_node);
}
bool Insert(K&& key, const V& value) {
RegularNode* new_node = new RegularNode(std::move(key), value, hash_func_);
DummyNode* head = GetBucketHeadByHash(new_node->hash);
return InsertRegularNode(head, new_node);
}
bool Insert(const K& key, V&& value) {
RegularNode* new_node = new RegularNode(key, std::move(value), hash_func_);
DummyNode* head = GetBucketHeadByHash(new_node->hash);
return InsertRegularNode(head, new_node);
}
bool Insert(K&& key, V&& value) {
RegularNode* new_node =
new RegularNode(std::move(key), std::move(value), hash_func_);
DummyNode* head = GetBucketHeadByHash(new_node->hash);
return InsertRegularNode(head, new_node);
}
bool Delete(const K& key) {
HashKey hash = hash_func_(key);
DummyNode* head = GetBucketHeadByHash(hash);
RegularNode delete_node(key, hash_func_);
return DeleteNode(head, &delete_node);
}
bool Find(const K& key, V& value) {
HashKey hash = hash_func_(key);
DummyNode* head = GetBucketHeadByHash(hash);
RegularNode find_node(key, hash_func_);
return FindNode(head, &find_node, value);
};
size_t size() const { return size_.load(std::memory_order_relaxed); }
private:
size_t bucket_size() const {
return 1 << power_of_2_.load(std::memory_order_relaxed);
}
Segment* NewSegments(int level) {
Segment* segments = new Segment[kSegmentSize];
for (int i = 0; i < kSegmentSize; ++i) {
segments[i].level = level;
segments[i].data.store(nullptr, std::memory_order_release);
}
return segments;
}
Bucket* NewBuckets() {
Bucket* buckets = new Bucket[kSegmentSize];
for (int i = 0; i < kSegmentSize; ++i) {
buckets[i].store(nullptr, std::memory_order_release);
}
return buckets;
}
// Initialize bucket recursively.
DummyNode* InitializeBucket(BucketIndex bucket_index);
// When the table size is 2^i , a logical table bucket b contains items whose
// keys k maintain k mod 2^i = b. When the size becomes 2^i+1, the items of
// this bucket are split into two buckets: some remain in the bucket b, and
// others, for which k mod 2^(i+1) == b + 2^i.
BucketIndex GetBucketParent(BucketIndex bucket_index) const {
//__builtin_clzl: Get number of leading zero bits.
// Unset the MSB(most significant bit) of bucket_index;
return (~(0x8000000000000000 >> (__builtin_clzl(bucket_index))) &
bucket_index);
};
// Get the head node of bucket, if bucket not exist then return nullptr or
// return head.
DummyNode* GetBucketHeadByIndex(BucketIndex bucket_index);
// Get the head node of bucket, if bucket not exist then initialize it and
// return head.
DummyNode* GetBucketHeadByHash(HashKey hash) {
BucketIndex bucket_index = (hash & (bucket_size() - 1));
DummyNode* head = GetBucketHeadByIndex(bucket_index);
if (nullptr == head) {
head = InitializeBucket(bucket_index);
}
return head;
}
// Harris' OrderedListBasedset with Michael's hazard pointer to manage memory,
// See also https://github.com/bhhbazinga/LockFreeLinkedList.
bool InsertRegularNode(DummyNode* head, RegularNode* new_node);
bool InsertDummyNode(DummyNode* head, DummyNode* new_node,
DummyNode** real_head);
bool DeleteNode(DummyNode* head, Node* delete_node);
bool FindNode(DummyNode* head, RegularNode* find_node, V& value) {
Node* prev;
Node* cur;
HazardPointer prev_hp, cur_hp;
bool found = SearchNode(head, find_node, &prev, &cur, prev_hp, cur_hp);
auto& reclaimer = TableReclaimer<K, V>::GetInstance();
if (found) {
V* value_ptr;
V* temp;
do {
// When find and insert concurrently value may be deleted,
// see InsertRegularNode, so value must be marked as hazard.
value_ptr = static_cast<RegularNode*>(cur)->value.load(
std::memory_order_consume);
temp = value_ptr;
value_ptr = static_cast<RegularNode*>(cur)->value.load(
std::memory_order_consume);
} while (temp != value_ptr);
reclaimer.ReclaimNoHazardPointer();
value = *value_ptr;
}
return found;
}
// Traverse list begin with head until encounter nullptr or the first node
// which is greater than or equals to the given search_node.
bool SearchNode(DummyNode* head, Node* search_node, Node** prev_ptr,
Node** cur_ptr, HazardPointer& prev_hp,
HazardPointer& cur_hp);
// Compare two nodes according to their reverse_hash and the key.
bool Less(Node* node1, Node* node2) const {
if (node1->reverse_hash != node2->reverse_hash) {
return node1->reverse_hash < node2->reverse_hash;
}
if (node1->IsDummy() || node2->IsDummy()) {
// When initialize bucket concurrently, that could happen.
return false;
}
return static_cast<RegularNode*>(node1)->key <
static_cast<RegularNode*>(node2)->key;
}
bool GreaterOrEquals(Node* node1, Node* node2) const {
return !(Less(node1, node2));
}
bool Equals(Node* node1, Node* node2) const {
return !Less(node1, node2) && !Less(node2, node1);
}
bool is_marked_reference(Node* next) const {
return (reinterpret_cast<unsigned long>(next) & 0x1) == 0x1;
}
Node* get_marked_reference(Node* next) const {
return reinterpret_cast<Node*>(reinterpret_cast<unsigned long>(next) | 0x1);
}
Node* get_unmarked_reference(Node* next) const {
return reinterpret_cast<Node*>(reinterpret_cast<unsigned long>(next) &
~0x1);
}
static void OnDeleteNode(void* ptr) { delete static_cast<Node*>(ptr); }
struct Node {
Node(HashKey hash_, bool dummy)
: hash(hash_),
reverse_hash(dummy ? DummyKey(hash) : RegularKey(hash)),
next(nullptr) {}
virtual void Release() = 0;
virtual ~Node() {}
HashKey Reverse(HashKey hash) const {
return reverse8bits_[hash & 0xff] << 56 |
reverse8bits_[(hash >> 8) & 0xff] << 48 |
reverse8bits_[(hash >> 16) & 0xff] << 40 |
reverse8bits_[(hash >> 24) & 0xff] << 32 |
reverse8bits_[(hash >> 32) & 0xff] << 24 |
reverse8bits_[(hash >> 40) & 0xff] << 16 |
reverse8bits_[(hash >> 48) & 0xff] << 8 |
reverse8bits_[(hash >> 56) & 0xff];
}
HashKey RegularKey(HashKey hash) const {
return Reverse(hash | 0x8000000000000000);
}
HashKey DummyKey(HashKey hash) const { return Reverse(hash); }
virtual bool IsDummy() const { return (reverse_hash & 0x1) == 0; }
Node* get_next() const { return next.load(std::memory_order_acquire); }
const HashKey hash;
const HashKey reverse_hash;
std::atomic<Node*> next;
};
// Head node of bucket
struct DummyNode : Node {
DummyNode(BucketIndex bucket_index) : Node(bucket_index, true) {}
~DummyNode() override {}
void Release() override { delete this; }
bool IsDummy() const override { return true; }
};
struct RegularNode : Node {
RegularNode(const K& key_, const V& value_, const Hash& hash_func)
: Node(hash_func(key_), false), key(key_), value(new V(value_)) {}
RegularNode(const K& key_, V&& value_, const Hash& hash_func)
: Node(hash_func(key_), false),
key(key_),
value(new V(std::move(value_))) {}
RegularNode(K&& key_, const V& value_, const Hash& hash_func)
: Node(hash_func(key_), false),
key(std::move(key_)),
value(new V(value_)) {}
RegularNode(K&& key_, V&& value_, const Hash& hash_func)
: Node(hash_func(key_), false),
key(std::move(key_)),
value(new V(std::move(value_))) {}
RegularNode(const K& key_, const Hash& hash_func)
: Node(hash_func(key_), false), key(key_), value(nullptr) {}
~RegularNode() override {
V* ptr = value.load(std::memory_order_consume);
if (ptr != nullptr)
delete ptr; // If update a node, value of this node is nullptr.
}
void Release() override { delete this; }
bool IsDummy() const override { return false; }
const K key;
std::atomic<V*> value;
};
struct Segment {
Segment() : level(1), data(nullptr) {}
explicit Segment(int level_) : level(level_), data(nullptr) {}
Bucket* get_sub_buckets() const {
return static_cast<Bucket*>(data.load(std::memory_order_consume));
}
Segment* get_sub_segments() const {
return static_cast<Segment*>(data.load(std::memory_order_consume));
}
~Segment() {
void* ptr = data.load(std::memory_order_consume);
if (nullptr == ptr) return;
if (level == kMaxLevel - 1) {
Bucket* buckets = static_cast<Bucket*>(ptr);
delete[] buckets;
} else {
Segment* sub_segments = static_cast<Segment*>(ptr);
delete[] sub_segments;
}
}
int level; // Level of segment.
std::atomic<void*> data; // If level == kMaxLevel then data point to
// buckets else data point to segments.
};
std::atomic<size_t> power_of_2_; // Bucket size == 2^power_of_2_.
std::atomic<size_t> size_; // Item size.
Hash hash_func_; // Hash function.
Segment segments_[kSegmentSize]; // Top level sengments.
static size_t reverse8bits_[256]; // Lookup table for reverse bits quickly.
DummyNode* head_; // Head of linkedlist.
static Reclaimer::HazardPointerList global_hp_list_;
};
template <typename K, typename V, typename Hash>
Reclaimer::HazardPointerList LockFreeHashTable<K, V, Hash>::global_hp_list_;
template <typename K, typename V>
class TableReclaimer : public Reclaimer {
friend LockFreeHashTable<K, V>;
private:
TableReclaimer(HazardPointerList& hp_list) : Reclaimer(hp_list) {}
~TableReclaimer() override = default;
static TableReclaimer<K, V>& GetInstance() {
thread_local static TableReclaimer reclaimer(
LockFreeHashTable<K, V>::global_hp_list_);
return reclaimer;
}
};
// Fast reverse bits using Lookup Table.
#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
// Lookup Table that store the reverse of each 8bit number.
template <typename K, typename V, typename Hash>
size_t LockFreeHashTable<K, V, Hash>::reverse8bits_[256] = {R6(0), R6(2), R6(1),
R6(3)};
template <typename K, typename V, typename Hash>
typename LockFreeHashTable<K, V, Hash>::DummyNode*
LockFreeHashTable<K, V, Hash>::InitializeBucket(BucketIndex bucket_index) {
BucketIndex parent_index = GetBucketParent(bucket_index);
DummyNode* parent_head = GetBucketHeadByIndex(parent_index);
if (nullptr == parent_head) {
parent_head = InitializeBucket(parent_index);
}
int level = 1;
Segment* segments = segments_; // Point to current segment.
while (level++ <= kMaxLevel - 2) {
Segment& cur_segment =
segments[(bucket_index / static_cast<SegmentIndex>(pow(
kSegmentSize, kMaxLevel - level + 1))) %
kSegmentSize];
Segment* sub_segments = cur_segment.get_sub_segments();
if (nullptr == sub_segments) {
// Try allocate segments.
sub_segments = NewSegments(level);
void* expected = nullptr;
if (!cur_segment.data.compare_exchange_strong(
expected, sub_segments, std::memory_order_release)) {
delete[] sub_segments;
sub_segments = static_cast<Segment*>(expected);
}
}
segments = sub_segments;
}
Segment& cur_segment = segments[(bucket_index / kSegmentSize) % kSegmentSize];
Bucket* buckets = cur_segment.get_sub_buckets();
if (nullptr == buckets) {
// Try allocate buckets.
void* expected = nullptr;
buckets = NewBuckets();
if (!cur_segment.data.compare_exchange_strong(expected, buckets,
std::memory_order_release)) {
delete[] buckets;
buckets = static_cast<Bucket*>(expected);
}
}
Bucket& bucket = buckets[bucket_index % kSegmentSize];
DummyNode* head = bucket.load(std::memory_order_consume);
if (nullptr == head) {
// Try allocate dummy head.
head = new DummyNode(bucket_index);
DummyNode* real_head; // If insert failed, real_head is the head of bucket.
if (InsertDummyNode(parent_head, head, &real_head)) {
// Dummy head must be inserted into the list before storing into bucket.
bucket.store(head, std::memory_order_release);
} else {
delete head;
head = real_head;
}
}
return head;
}
template <typename K, typename V, typename Hash>
typename LockFreeHashTable<K, V, Hash>::DummyNode*
LockFreeHashTable<K, V, Hash>::GetBucketHeadByIndex(BucketIndex bucket_index) {
int level = 1;
const Segment* segments = segments_;
while (level++ <= kMaxLevel - 2) {
segments =
segments[(bucket_index / static_cast<SegmentIndex>(pow(
kSegmentSize, kMaxLevel - level + 1))) %
kSegmentSize]
.get_sub_segments();
if (nullptr == segments) return nullptr;
}
Bucket* buckets =
segments[(bucket_index / kSegmentSize) % kSegmentSize].get_sub_buckets();
if (nullptr == buckets) return nullptr;
Bucket& bucket = buckets[bucket_index % kSegmentSize];
return bucket.load(std::memory_order_consume);
}
template <typename K, typename V, typename Hash>
bool LockFreeHashTable<K, V, Hash>::InsertDummyNode(DummyNode* parent_head,
DummyNode* new_head,
DummyNode** real_head) {
Node* prev;
Node* cur;
HazardPointer prev_hp, cur_hp;
do {
if (SearchNode(parent_head, new_head, &prev, &cur, prev_hp, cur_hp)) {
// The head of bucket already insert into list.
*real_head = static_cast<DummyNode*>(cur);
return false;
}
new_head->next.store(cur, std::memory_order_release);
} while (!prev->next.compare_exchange_weak(
cur, new_head, std::memory_order_release, std::memory_order_relaxed));
return true;
}
// Insert regular node into hash table, if its key is already exists in
// hash table then update it and return false else return true.
template <typename K, typename V, typename Hash>
bool LockFreeHashTable<K, V, Hash>::InsertRegularNode(DummyNode* head,
RegularNode* new_node) {
Node* prev;
Node* cur;
HazardPointer prev_hp, cur_hp;
auto& reclaimer = TableReclaimer<K, V>::GetInstance();
do {
if (SearchNode(head, new_node, &prev, &cur, prev_hp, cur_hp)) {
V* new_value = new_node->value.load(std::memory_order_consume);
V* old_value = static_cast<RegularNode*>(cur)->value.exchange(
new_value, std::memory_order_release);
reclaimer.ReclaimLater(old_value,
[](void* ptr) { delete static_cast<V*>(ptr); });
new_node->value.store(nullptr, std::memory_order_release);
delete new_node;
return false;
}
new_node->next.store(cur, std::memory_order_release);
} while (!prev->next.compare_exchange_weak(
cur, new_node, std::memory_order_release, std::memory_order_relaxed));
size_t size = size_.fetch_add(1, std::memory_order_relaxed) + 1;
size_t power = power_of_2_.load(std::memory_order_relaxed);
if ((1 << power) * kLoadFactor < size) {
if (power_of_2_.compare_exchange_strong(power, power + 1,
std::memory_order_release)) {
assert(bucket_size() <=
kMaxBucketSize); // Out of memory or you can change the kMaxLevel
// and kSegmentSize.
}
}
return true;
}
template <typename K, typename V, typename Hash>
bool LockFreeHashTable<K, V, Hash>::SearchNode(DummyNode* head,
Node* search_node,
Node** prev_ptr, Node** cur_ptr,
HazardPointer& prev_hp,
HazardPointer& cur_hp) {
auto& reclaimer = TableReclaimer<K, V>::GetInstance();
try_again:
Node* prev = head;
Node* cur = prev->get_next();
Node* next;
while (true) {
cur_hp.UnMark();
cur_hp = HazardPointer(&reclaimer, cur);
// Make sure prev is the predecessor of cur,
// so that cur is properly marked as hazard.
if (prev->get_next() != cur) goto try_again;
if (nullptr == cur) {
*prev_ptr = prev;
*cur_ptr = cur;
return false;
}
next = cur->get_next();
if (is_marked_reference(next)) {
if (!prev->next.compare_exchange_strong(cur,
get_unmarked_reference(next)))
goto try_again;
reclaimer.ReclaimLater(cur, LockFreeHashTable<K, V, Hash>::OnDeleteNode);
reclaimer.ReclaimNoHazardPointer();
size_.fetch_sub(1, std::memory_order_relaxed);
cur = get_unmarked_reference(next);
} else {
if (prev->get_next() != cur) goto try_again;
// Can not get copy_cur after above invocation,
// because prev may not be the predecessor of cur at this point.
if (GreaterOrEquals(cur, search_node)) {
*prev_ptr = prev;
*cur_ptr = cur;
return Equals(cur, search_node);
}
// Swap cur_hp and prev_hp.
HazardPointer tmp = std::move(cur_hp);
cur_hp = std::move(prev_hp);
prev_hp = std::move(tmp);
prev = cur;
cur = next;
}
};
assert(false);
return false;
}
template <typename K, typename V, typename Hash>
bool LockFreeHashTable<K, V, Hash>::DeleteNode(DummyNode* head,
Node* delete_node) {
Node* prev;
Node* cur;
Node* next;
HazardPointer prev_hp, cur_hp;
do {
do {
if (!SearchNode(head, delete_node, &prev, &cur, prev_hp, cur_hp)) {
return false;
}
next = cur->get_next();
} while (is_marked_reference(next));
// Logically delete cur by marking cur->next.
} while (!cur->next.compare_exchange_weak(next, get_marked_reference(next),
std::memory_order_release,
std::memory_order_relaxed));
if (prev->next.compare_exchange_strong(cur, next,
std::memory_order_release)) {
size_.fetch_sub(1, std::memory_order_relaxed);
auto& reclaimer = TableReclaimer<K, V>::GetInstance();
reclaimer.ReclaimLater(cur, LockFreeHashTable<K, V, Hash>::OnDeleteNode);
reclaimer.ReclaimNoHazardPointer();
} else {
prev_hp.UnMark();
cur_hp.UnMark();
SearchNode(head, delete_node, &prev, &cur, prev_hp, cur_hp);
}
return true;
}
#endif // LOCKFREE_HASHTABLE_H