-
-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
Copy pathiter_combinations.rs
159 lines (142 loc) · 5.08 KB
/
iter_combinations.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
//! Shows how to iterate over combinations of query results.
use bevy::{color::palettes::css::ORANGE_RED, math::FloatPow, prelude::*};
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(ClearColor(Color::BLACK))
.add_systems(Startup, generate_bodies)
.add_systems(FixedUpdate, (interact_bodies, integrate))
.add_systems(Update, look_at_star)
.run();
}
const GRAVITY_CONSTANT: f32 = 0.001;
const NUM_BODIES: usize = 100;
#[derive(Component, Default)]
struct Mass(f32);
#[derive(Component, Default)]
struct Acceleration(Vec3);
#[derive(Component, Default)]
struct LastPos(Vec3);
#[derive(Component)]
struct Star;
#[derive(Bundle, Default)]
struct BodyBundle {
mesh: Mesh3d,
material: MeshMaterial3d<StandardMaterial>,
mass: Mass,
last_pos: LastPos,
acceleration: Acceleration,
}
fn generate_bodies(
time: Res<Time<Fixed>>,
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
let mesh = meshes.add(Sphere::new(1.0).mesh().ico(3).unwrap());
let color_range = 0.5..1.0;
let vel_range = -0.5..0.5;
// We're seeding the PRNG here to make this example deterministic for testing purposes.
// This isn't strictly required in practical use unless you need your app to be deterministic.
let mut rng = ChaCha8Rng::seed_from_u64(19878367467713);
for _ in 0..NUM_BODIES {
let radius: f32 = rng.gen_range(0.1..0.7);
let mass_value = FloatPow::cubed(radius) * 10.;
let position = Vec3::new(
rng.gen_range(-1.0..1.0),
rng.gen_range(-1.0..1.0),
rng.gen_range(-1.0..1.0),
)
.normalize()
* ops::cbrt(rng.gen_range(0.2f32..1.0))
* 15.;
commands.spawn((
BodyBundle {
mesh: Mesh3d(mesh.clone()),
material: MeshMaterial3d(materials.add(Color::srgb(
rng.gen_range(color_range.clone()),
rng.gen_range(color_range.clone()),
rng.gen_range(color_range.clone()),
))),
mass: Mass(mass_value),
acceleration: Acceleration(Vec3::ZERO),
last_pos: LastPos(
position
- Vec3::new(
rng.gen_range(vel_range.clone()),
rng.gen_range(vel_range.clone()),
rng.gen_range(vel_range.clone()),
) * time.timestep().as_secs_f32(),
),
},
Transform {
translation: position,
scale: Vec3::splat(radius),
..default()
},
));
}
// add bigger "star" body in the center
let star_radius = 1.;
commands
.spawn((
BodyBundle {
mesh: Mesh3d(meshes.add(Sphere::new(1.0).mesh().ico(5).unwrap())),
material: MeshMaterial3d(materials.add(StandardMaterial {
base_color: ORANGE_RED.into(),
emissive: LinearRgba::from(ORANGE_RED) * 2.,
..default()
})),
mass: Mass(500.0),
..default()
},
Transform::from_scale(Vec3::splat(star_radius)),
Star,
))
.with_child(PointLight {
color: Color::WHITE,
range: 100.0,
radius: star_radius,
..default()
});
commands.spawn((
Camera3d::default(),
Transform::from_xyz(0.0, 10.5, -30.0).looking_at(Vec3::ZERO, Vec3::Y),
));
}
fn interact_bodies(mut query: Query<(&Mass, &GlobalTransform, &mut Acceleration)>) {
let mut iter = query.iter_combinations_mut();
while let Some([(Mass(m1), transform1, mut acc1), (Mass(m2), transform2, mut acc2)]) =
iter.fetch_next()
{
let delta = transform2.translation() - transform1.translation();
let distance_sq: f32 = delta.length_squared();
let f = GRAVITY_CONSTANT / distance_sq;
let force_unit_mass = delta * f;
acc1.0 += force_unit_mass * *m2;
acc2.0 -= force_unit_mass * *m1;
}
}
fn integrate(time: Res<Time>, mut query: Query<(&mut Acceleration, &mut Transform, &mut LastPos)>) {
let dt_sq = time.delta_secs() * time.delta_secs();
for (mut acceleration, mut transform, mut last_pos) in &mut query {
// verlet integration
// x(t+dt) = 2x(t) - x(t-dt) + a(t)dt^2 + O(dt^4)
let new_pos = transform.translation * 2.0 - last_pos.0 + acceleration.0 * dt_sq;
acceleration.0 = Vec3::ZERO;
last_pos.0 = transform.translation;
transform.translation = new_pos;
}
}
fn look_at_star(
mut camera: Single<&mut Transform, (With<Camera>, Without<Star>)>,
star: Single<&Transform, With<Star>>,
) {
let new_rotation = camera
.looking_at(star.translation, Vec3::Y)
.rotation
.lerp(camera.rotation, 0.1);
camera.rotation = new_rotation;
}