-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathrun.py
205 lines (185 loc) · 7.05 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import time
import os
import numpy as np
import pickle as pkl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import warnings
from models import RelationalGraphConvModel
from data_utils import load_data
from utils import row_normalize, accuracy, get_splits
from params import args
from pytorchtools import EarlyStopping
warnings.filterwarnings("ignore")
class Train:
def __init__(self, args):
self.args = args
self.best_val = 0
# Load data
self.A, self.y, self.train_idx, self.test_idx = self.input_data()
self.num_nodes = self.A[0].shape[0]
self.num_rel = len(self.A)
self.labels = torch.LongTensor(np.array(np.argmax(self.y, axis=-1)).squeeze())
# Get dataset splits
(
self.y_train,
self.y_val,
self.y_test,
self.idx_train,
self.idx_val,
self.idx_test,
) = get_splits(self.y, self.train_idx, self.test_idx, self.args.validation)
# Adjacency matrix normalization
self.A = row_normalize(self.A)
# Create Model
self.model = RelationalGraphConvModel(
input_size=self.num_nodes,
hidden_size=self.args.hidden,
output_size=self.y_train.shape[1],
num_bases=self.args.bases,
num_rel=self.num_rel,
num_layer=2,
dropout=self.args.drop,
featureless=True,
cuda=self.args.using_cuda,
)
print(
"Loaded %s dataset with %d entities, %d relations and %d classes"
% (self.args.data, self.num_nodes, self.num_rel, self.y_train.shape[1])
)
# Loss and optimizer
self.criterion = nn.CrossEntropyLoss()
self.optimizer = torch.optim.Adam(
self.model.parameters(), lr=self.args.lr, weight_decay=self.args.l2
)
# initialize the early_stopping object
if self.args.validation:
self.early_stopping = EarlyStopping(patience=10, verbose=True)
if self.args.using_cuda:
print("Using the GPU")
self.model.cuda()
self.labels = self.labels.cuda()
def input_data(self, dirname="./data"):
data = None
if os.path.isfile(
dirname + "/" + self.args.data + "_" + str(self.args.hop) + ".pickle"
):
with open(
dirname + "/" + self.args.data + "_" + str(self.args.hop) + ".pickle",
"rb",
) as f:
data = pkl.load(f)
else:
with open(
dirname + "/" + self.args.data + "_" + str(self.args.hop) + ".pickle",
"wb",
) as f:
# Data Loading...
(
A,
X,
y,
labeled_nodes_idx,
train_idx,
test_idx,
rel_dict,
train_names,
test_names,
) = load_data(self.args.data, self.args.hop)
data = {
"A": A,
"y": y,
"train_idx": train_idx,
"test_idx": test_idx,
}
pkl.dump(data, f, pkl.HIGHEST_PROTOCOL)
return data["A"], data["y"], data["train_idx"], data["test_idx"]
def train(self, epoch):
t = time.time()
X = None # featureless
# Start training
self.model.train()
emb_train = self.model(A=self.A, X=None)
loss = self.criterion(emb_train[self.idx_train], self.labels[self.idx_train])
# Backward and optimize
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
print(
"Epoch: {epoch}, Training Loss on {num} training data: {loss}".format(
epoch=epoch, num=len(self.idx_train), loss=str(loss.item())
)
)
if self.args.validation:
# Evaluate validation set performance separately,
# deactivates dropout during validation run.
with torch.no_grad():
self.model.eval()
emb_valid = self.model(A=self.A, X=None)
loss_val = self.criterion(
emb_valid[self.idx_val], self.labels[self.idx_val]
)
acc_val = accuracy(emb_valid[self.idx_val], self.labels[self.idx_val])
if acc_val >= self.best_val:
self.best_val = acc_val
self.model_state = {
"state_dict": self.model.state_dict(),
"best_val": acc_val,
"best_epoch": epoch,
"optimizer": self.optimizer.state_dict(),
}
print(
"loss_val: {:.4f}".format(loss_val.item()),
"acc_val: {:.4f}".format(acc_val.item()),
"time: {:.4f}s".format(time.time() - t),
)
print("\n")
self.early_stopping(loss_val, self.model)
if self.early_stopping.early_stop:
print("Early stopping")
self.model_state = {
"state_dict": self.model.state_dict(),
"best_val": acc_val,
"best_epoch": epoch,
"optimizer": self.optimizer.state_dict(),
}
return False
return True
def test(self):
with torch.no_grad():
self.model.eval()
emb_test = self.model(A=self.A, X=None)
loss_test = self.criterion(
emb_test[self.idx_test], self.labels[self.idx_test]
)
acc_test = accuracy(emb_test[self.idx_test], self.labels[self.idx_test])
print(
"Accuracy of the network on the {num} test data: {acc} %, loss: {loss}".format(
num=len(self.idx_test), acc=acc_test * 100, loss=loss_test.item()
)
)
def save_checkpoint(self, filename="./.checkpoints/" + args.name):
print("Save model...")
if not os.path.exists(".checkpoints"):
os.makedirs(".checkpoints")
torch.save(self.model_state, filename)
print("Successfully saved model\n...")
def load_checkpoint(self, filename="./.checkpoints/" + args.name, ts="teacher"):
print("Load model...")
load_state = torch.load(filename)
self.model.load_state_dict(load_state["state_dict"])
self.optimizer.load_state_dict(load_state["optimizer"])
print("Successfully Loaded model\n...")
print("Best Epoch:", load_state["best_epoch"])
print("Best acc_val:", load_state["best_val"].item())
if __name__ == "__main__":
train = Train(args)
for epoch in range(args.epochs):
if train.train(epoch) is False:
break
if args.validation:
train.save_checkpoint()
train.load_checkpoint()
train.test()