-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathlayers.py
105 lines (89 loc) · 3.28 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/usr/bin/env python
# coding: utf-8
import math
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
import torch.nn.functional as F
from torch.nn.modules.module import Module
from torch.nn.modules.utils import _single, _pair, _triple
from torch.autograd import Variable
import numpy as np
class RelationalGraphConvLayer(Module):
def __init__(
self, input_size, output_size, num_bases, num_rel, bias=False, cuda=False
):
super(RelationalGraphConvLayer, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.num_bases = num_bases
self.num_rel = num_rel
self.cuda = cuda
# R-GCN weights
if num_bases > 0:
self.w_bases = Parameter(
torch.FloatTensor(self.num_bases, self.input_size, self.output_size)
)
self.w_rel = Parameter(torch.FloatTensor(self.num_rel, self.num_bases))
else:
self.w = Parameter(
torch.FloatTensor(self.num_rel, self.input_size, self.output_size)
)
# R-GCN bias
if bias:
self.bias = Parameter(torch.FloatTensor(self.output_size))
else:
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self):
if self.num_bases > 0:
nn.init.xavier_uniform_(self.w_bases.data)
nn.init.xavier_uniform_(self.w_rel.data)
else:
nn.init.xavier_uniform_(self.w.data)
if self.bias is not None:
nn.init.xavier_uniform_(self.bias.data)
def forward(self, A, X):
X = X.cuda() if X is not None and self.cuda else X
self.w = (
torch.einsum("rb, bio -> rio", (self.w_rel, self.w_bases))
if self.num_bases > 0
else self.w
)
weights = self.w.view(
self.w.shape[0] * self.w.shape[1], self.w.shape[2]
) # shape(r*input_size, output_size)
# Each relations * Weight
supports = []
for i in range(self.num_rel):
if X is not None:
supports.append(torch.sparse.mm(csr2tensor(A[i], self.cuda), X))
else:
supports.append(csr2tensor(A[i], self.cuda))
tmp = torch.cat(supports, dim=1)
out = torch.mm(tmp.float(), weights) # shape(#node, output_size)
if self.bias is not None:
out += self.bias.unsqueeze(0)
return out
def to_sparse(x):
"""converts dense tensor x to sparse format"""
x_typename = torch.typename(x).split(".")[-1]
sparse_tensortype = getattr(torch.sparse, x_typename)
indices = torch.nonzero(x)
if len(indices.shape) == 0: # if all elements are zeros
return sparse_tensortype(*x.shape)
indices = indices.t()
values = x[tuple(indices[i] for i in range(indices.shape[0]))]
return sparse_tensortype(indices, values, x.size())
def csr2tensor(A, cuda):
coo = A.tocoo()
values = coo.data
indices = np.vstack((coo.row, coo.col))
i = torch.LongTensor(indices)
v = torch.FloatTensor(values)
shape = coo.shape
if cuda:
out = torch.sparse.FloatTensor(i, v, torch.Size(shape)).cuda()
else:
out = torch.sparse.FloatTensor(i, v, torch.Size(shape))
return out