-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi_helper.py
87 lines (56 loc) · 1.84 KB
/
api_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import pandas as pd
import joblib
def predict(filename, algo):
if algo == "lr":
model = joblib.load("model_cv_lr.pkl")
else:
model = joblib.load("model_cv_mnb.pkl")
return logistic_or_mnb(filename, model)
def logistic_or_mnb(filename, model):
predicted = []
data = pd.read_csv(filename)
n_positive = 0
n_negetive = 0
pos = []
neg = []
most_negetive_index = 0
most_positive_index = 0
for i in range(len(data)):
prop = {"index": i, "text": "some text", "lable": "some lable", "confidence": 0}
x = [data["text"][i]]
prop["lable"] = model.predict(x)[0]
prop["text"] = data["text"][i]
prop["confidence"] = model.predict_proba(x)[0][0] if model.predict_proba(x)[0][0] > model.predict_proba(x)[0][1] else model.predict_proba(x)[0][1]
if prop["lable"] == "__label__2":
prop["lable"] = "+"
n_positive += 1
else:
prop["lable"] = "-"
n_negetive += 1
if prop["lable"] == "+":
pos.append(prop)
else:
neg.append(prop)
predicted.append(prop)
max = 0
min = 0
for i in pos:
if i["confidence"] > max:
max = i["confidence"]
most_positive_index = i["index"]
for i in neg:
if i["confidence"] > min:
min = i["confidence"]
most_negetive_index = i["index"]
meter = (-1) * int(((n_negetive - n_positive) / len(predicted)) * 100)
prop = {
"index": len(predicted),
"most_positive_index": most_positive_index,
"most_negetive_index": most_negetive_index,
"n_positive": n_positive,
"n_negetive": n_negetive,
"total_reviews": len(predicted),
"meter": meter,
}
predicted.append(prop)
return predicted