-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathlinear_modern.py
132 lines (107 loc) · 5.13 KB
/
linear_modern.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Basic linear combinations that implicitly generate variables."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
use_weight_normalization_default = False
def linear(args, output_size, bias, bias_start=0.0, use_l2_loss = False, use_weight_normalization = use_weight_normalization_default, scope=None, timestep = -1, weight_initializer = None, orthogonal_scale_factor = 1.1):
"""Linear map: sum_i(args[i] * W[i]), where W[i] is a variable.
Args:
args: a 2D Tensor or a list of 2D, batch x n, Tensors.
output_size: int, second dimension of W[i].
bias: boolean, whether to add a bias term or not.
bias_start: starting value to initialize the bias; 0 by default.
scope: VariableScope for the created subgraph; defaults to "Linear".
Returns:
A 2D Tensor with shape [batch x output_size] equal to
sum_i(args[i] * W[i]), where W[i]s are newly created matrices.
Raises:
ValueError: if some of the arguments has unspecified or wrong shape.
"""
# assert args #was causing error in upgraded tensorflow
if not isinstance(args, (list, tuple)):
args = [args]
if len(args) > 1 and use_weight_normalization: raise ValueError('you can not use weight_normalization with multiple inputs because the euclidean norm will be incorrect -- besides, you should be using multiple integration instead!!!')
# Calculate the total size of arguments on dimension 1.
total_arg_size = 0
shapes = [a.get_shape().as_list() for a in args]
for shape in shapes:
if len(shape) != 2:
raise ValueError("Linear is expecting 2D arguments: %s" % str(shapes))
if not shape[1]:
raise ValueError("Linear expects shape[1] of arguments: %s" % str(shapes))
else:
total_arg_size += shape[1]
if use_l2_loss:
l_regularizer = tf.contrib.layers.l2_regularizer(1e-5)
else:
l_regularizer = None
# Now the computation.
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [total_arg_size, output_size],
initializer = tf.uniform_unit_scaling_initializer(), regularizer = l_regularizer)
if use_weight_normalization: matrix = weight_normalization(matrix, timestep = timestep)
if len(args) == 1:
res = tf.matmul(args[0], matrix)
else:
res = tf.matmul(tf.concat(1, args), matrix)
if not bias:
return res
bias_term = tf.get_variable("Bias", [output_size],
initializer=tf.constant_initializer(bias_start), regularizer = l_regularizer)
return res + bias_term
def batch_timesteps_linear(input, output_size, bias, bias_start=0.0, use_l2_loss = False, use_weight_normalization = use_weight_normalization_default, scope=None,
tranpose_input = True, timestep = -1):
"""Linear map: sum_i(args[i] * W[i]), where W[i] is a variable.
Args:
args: a 3D Tensor [timesteps, batch_size, input_size]
output_size: int, second dimension of W[i].
bias: boolean, whether to add a bias term or not.
bias_start: starting value to initialize the bias; 0 by default.
scope: VariableScope for the created subgraph; defaults to "Linear".
Returns:
A 2D Tensor with shape [batch x output_size] equal to
sum_i(args[i] * W[i]), where W[i]s are newly created matrices.
Raises:
ValueError: if some of the arguments has unspecified or wrong shape.
"""
# Calculate the total size of arguments on dimension 2.
if tranpose_input:
input = tf.transpose(input, [1,0,2])
shape_list = input.get_shape().as_list()
if len(shape_list) != 3: raise ValueError('shape must be of size 3, you have inputted shape size of:', len(shape_list))
num_timesteps = shape_list[0]
batch_size = shape_list[1]
total_arg_size = shape_list[2]
if use_l2_loss:
l_regularizer = tf.contrib.layers.l2_regularizer(1e-5)
else:
l_regularizer = None
# Now the computation.
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [total_arg_size, output_size], initializer = tf.uniform_unit_scaling_initializer(), regularizer = l_regularizer)
if use_weight_normalization: matrix = weight_normalization(matrix)
matrix = tf.tile(tf.expand_dims(matrix, 0), [num_timesteps, 1, 1])
res = tf.batch_matmul(input, matrix)
if bias:
bias_term = tf.get_variable(
"Bias", [output_size],
initializer=tf.constant_initializer(bias_start))
res = res + bias_term
if tranpose_input:
res = tf.transpose(res, [1,0,2])
return res