-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtransform.py
executable file
·103 lines (95 loc) · 4.48 KB
/
transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/env python3
import sys
import argparse
from pathlib import Path
parser = argparse.ArgumentParser(description='Transform the coordinates of each segment in the original drone images to the orthomosaic.')
parser.add_argument(
"project_file", help="a path to a metashape project file (w/ a psx file ending) containing an orthomosaic"
)
parser.add_argument(
"segments", help="a path to a file containing the json coordinates of the segmented regions in a drone image"
)
parser.add_argument(
"out", help="the json file in which to store the coordinates of the segmented regions in the orthomosaic"
)
parser.add_argument(
"--camera", default=None, help="the file name of the original drone image; required only if the segments file is not named the same as the original drone image"
)
parser.add_argument(
"--image", default="", help="a path to the original drone; this argument must be provided if you plan to open the out file in labelme"
)
args = parser.parse_args()
args.camera = Path(args.segments if args.camera is None else args.camera).stem
import logging
import Metashape
import numpy as np
import import_labelme
import time
# count skipped points to see how much of a problem it is
skipped = 0
def transform(chunk, camera, points):
"""transform camera pixel coordinates to orthomosaic coordinates"""
global skipped
# get the width and height of every pixel in latitude and longitude units
x = (chunk.orthomosaic.right-chunk.orthomosaic.left)/chunk.orthomosaic.width
y = (chunk.orthomosaic.top-chunk.orthomosaic.bottom)/chunk.orthomosaic.height
# excute try/except block tomake sure camera.center is not null (too few pictures in the orthomosaic)
try:
pt = chunk.model.pickPoint(camera.center, camera.unproject(Metashape.Vector(points[0])))
if camera.center != None:
for point in points:
# several steps are being taken here:
# 1) the point is projected from pixel coords to the camera's coordinate system
# 2) the pickPoint() method is used to transform the point to the chunk coord system using the camera's "vector intersection with the (orthomosaic) surface"
# (see https://www.agisoft.com/forum/index.php?topic=10513.msg47741#msg47741)
# 3) if the new point exists, it is transformed via matrix multiplcation to geocentric coords
# 4) the geocentric coords are projected to geographic coords (ie latitude and longitude)
pt = chunk.model.pickPoint(camera.center, camera.unproject(Metashape.Vector(point)))
if pt is None:
# agh I don't know why this happens but we'll just skip it!
skipped += 1
continue
pt = chunk.crs.project(chunk.transform.matrix.mulp(pt))
# finally, we convert the pt to pixel coords in the orthomosaic by looking at how far it is from the orthomosaic's top, left corner
yield [(pt[0]-chunk.orthomosaic.left)/x, (chunk.orthomosaic.top-pt[1])/y]
except TypeError:
print("camera.center = ", str(camera.center), ", Meaning that too few images are on the orthomosaic. Maybe change a dataset.")
# open the metashape document
doc = Metashape.Document()
doc.open(args.project_file, read_only=True)
# find the correct chunk
for chunk in doc.chunks:
# ie the one with the orthomosaic in it
if chunk.orthomosaic is not None:
break
# now find the camera that matches the name given
for camera in chunk.cameras+[None]:
if camera is None:
parser.error("Could not find the specified drone image in the project file. Check the value you provided to the --camera option.")
if camera.label == args.camera:
break
# # import the segments
# files = {
# f.stem: f.stem+f.suffix
# for f in Path(args.segments).iterdir()
# if f.is_file() and (f.suffix == '.json' or f.suffix == '.JSON')
# }
# # map each file name (w/o the .json extension) to its index in chunk.cameras
# cams = {
# chunk.cameras[i].label: chunk.cameras[i]
# for i in range(len(chunk.cameras))
# if chunk.cameras[i].label in files
# }
# 1) import the segments using the labelme importer
# 2) transform them
# 3) and then write them to the out file
import_labelme.write(
args.out,
[
list(transform(chunk, camera, seg))
for seg in import_labelme.main(args.segments)
],
args.image
)
if skipped:
logging.warning("There were "+str(skipped)+" points that couldn't be transformed")