-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSnakefile
executable file
·196 lines (163 loc) · 7.53 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
configfile: 'config.yaml'
# The pipeline only works with mp4 files. If the input is a mov file, it converts it to mp4 and
# puts the new mp4 file into the input directory.
rule convert_mov_to_mp4:
input:
'input/{video}.mov'
output:
'input/{video}.mp4'
shell:
'ffmpeg -i {input} -vcodec h264 -acodec mp2 {output}'
# Video shakes at the beginning and end, so we trim the first and last 5 seconds to ensure consistency.
# Please note that I am not 100 percent sure this works as intended, but it doesn't crash the program.
rule trim:
input:
'input/{video}.mp4'
output:
'intermediate/trim/{video}.mp4'
shell:
'''
duration=$(ffprobe -v error -show_entries format=duration -of csv=p=0 {input}); \
duration=$(bc <<< "$duration - 5"); \
echo $duration; \
ffmpeg -ss 00:00:05 -to $duration -i {input} -c copy {output}
'''
# Detects the regions of interest using the first frame of the input video. Please ensure all ArUco
# tags are clearly visible. Change the year the video was recorded in the config file, as the layout
# of the videos produced in 2021 is different than 2023. Currently, the program attempts to continue
# even if six (rather than seven) tags are detected.
rule roidetect:
input:
'intermediate/trim/{video}.mp4'
output:
'intermediate/rois/{video}.txt'
shell:
'python scripts/roidetect.py {input} {output} -y ' + str(config["roidetect"]["year"])
# Splits videos that are too long into 10 minute chunks. Note that the amount split can be changed
# but the default is 10 minutes.
checkpoint split:
input:
'intermediate/trim/{video}.mp4'
output:
directory('intermediate/split/{video}')
priority: 20
shell:
'python scripts/split.py -s %s -l %s {input} {output}' \
% (config['split']['segment-length'],
config['split']['min-segment-length'])
def croprotate_input(wildcards):
indir = checkpoints.split.get(video=wildcards.video).output[0]
return [os.path.join(indir, '{split}.mp4').format(split=wildcards.split),
'intermediate/rois/{video}.txt'.format(video=wildcards.video),
]
# Crops the input video and creates individual ROI videos. Please check labels.png in the output
# directory. Every black rectangular box is where the crops will occur.
# WARNING: There is a tendency for cropping to not work properly. Change to the crop directory
# in the intermediate directory and do the command "ls -l *". This should output the size in bytes
# of the file. If the size of the video file is zero, it means
checkpoint croprotate:
input:
croprotate_input
output:
directory('intermediate/crop/{video}/{split}')
priority: 20
threads: config['croprot']['cores']
shell:
'python scripts/croprotate.py -c %d {input[0]} {output} {input[1]}' \
% config['croprot']['cores']
def track_input(wildcards):
checkpoints.croprotate.get(**wildcards).output[0]
return 'intermediate/crop/{video}/{split}/ROI_{roi}.mp4'
# Tracks the ants in each cropped video. The first output (csv) contains all the detected "ants".
# All detected tracks will be in the csv file, regardless if they are an ant or not. The second
# output (mp4) will contain the full video with annotations. Annotations include the ID number
# assigned to each ant as well as the timestamp.
# PLEASE CHECK TRACK.PY TO SEE THIRD AND FOURTH OUTPUTS: The third output (mp4) will contain the
# moments a merger was detected. The fourth output (mp4) is the same as the third output, but
# with annotations.
# The reason why the third and fourth outputs are not under the outputs section in the snakefile
# is because the third and fourth outputs are occasional (it depends on merged ants being detected)
# but output one and two will always occur
# If you would like to read documentation, please go to this website:
# https://docs.google.com/document/d/1htbx2V9Csv76w_K1VIHraufgfp67IIGRi2dBFt5XDXk/edit
rule track:
input:
track_input
threads: 32
output:
'intermediate/track/{video}/{split}/ROI_{roi}.csv',
'intermediate/full_annotation/{video}/{split}/ROI_{roi}.mp4'
shell:
'python scripts/track.py {{input}} {{output[0]}} {{output[1]}} -m {} -c {} -g {} -it {} -d {} '
'-cto {} -ctt {} -cas {} -tt {} -dm {} -tdt {} -ttl {} -nac {} -eb {} -md {}' \
.format(*(config['tracks'][x]
for x in ['min-blob', 'count-warning-threshold',
'num-gaussians', 'invisible-threshold', 'min-duration',
'canny-threshold-one', 'canny-threshold-two',
'canny-aperture-size', 'thresholding-threshold',
'dilating-matrix', 'tracker-distance-threshold',
'tracker-trace-length', 'no-ant-counter-frames-total',
'edge-border', 'merge-distance']))
def aggregate_splits_input(wildcards):
split_out = checkpoints.split.get(video=wildcards.video).output[0]
track_out = 'intermediate/track/{video}/{split}/ROI_{roi}.csv'
return expand(track_out, **wildcards,
split=glob_wildcards(os.path.join(split_out, '{i}.mp4')).i)
# Combines the different tracks.csv files due to the split rule. Also deals with mergers
# and unmergers, and then gets rid of rows in the csv that are not actual ants. This step
# also flags the warning "count-warning-threshold" when necessary.
rule aggregate_splits:
input:
aggregate_splits_input
output:
'intermediate/aggregate/{video}/ROI_{roi}.csv'
shell:
'python scripts/combinetrack.py {{output}} {{input}} -c {} -d {}' \
.format(*(config['tracks'][x]
for x in ['count-warning-threshold', 'min-duration']))
def aggregate_rois_input(wildcards):
crop_out = checkpoints.croprotate.get(**wildcards, split=0).output[0]
aggregate_split_out = 'intermediate/aggregate/{video}/ROI_{roi}.csv'
crop_out = os.path.join(crop_out, 'ROI_{i}.mp4')
rois = glob_wildcards(crop_out).i
print(crop_out, rois, sep='\n')
return expand(aggregate_split_out, **wildcards, roi=rois)
# combines the aggregate.csv files into one
rule aggregate_rois:
input:
aggregate_rois_input
output:
'output/{video}/tracks.csv'
shell:
'python scripts/combinerois.py {output} {input}'
# this sorts the tracks.csv file by t0 (time ants were first discovered). This file
# is good for comparing human collected data. Note that t0 is the 5th column, hence
# the command "-nk 5"
rule sort_aggregated_rois:
input:
'output/{video}/tracks.csv'
output:
'output/{video}/sorted.csv'
shell:
'cat {input} | sort --field-separator=, -nk 5'
' > {output}'
# Loads infile and converts it to which edges were crossed, as defined by the bboxes
# parameter, and then saves it to outfile.
rule edge_from_tracks:
input:
'output/{video}/sorted.csv',
'intermediate/rois/{video}.txt'
output:
'output/{video}/edges.csv'
shell:
'python scripts/edgefromtrack.py {input[0]} {output} {input[1]}'
# draws the regions of interest onto a frame of the video.
rule roi_label:
input:
'intermediate/trim/{video}.mp4',
'intermediate/rois/{video}.txt'
output:
'output/{video}/labels.png'
shell:
'python scripts/roilabel.py {input[0]} {input[1]} {output} -y ' + str(config["roidetect"]["year"])
+ (' -i' if config['label']['insignificant-vertices'] else '')