-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloss.py
93 lines (77 loc) · 3.06 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
### Weighted F Score
def lyft_score(pred, target, weight):
num,c,h,w = pred.shape
pred = pred.view(num, c, -1) # Flatten
target = target.view(num, c, -1) # Flatten
intersection = (pred * target)
int_sum = intersection.sum(dim=-1)
pred_sum = pred.sum(dim=-1)
targ_sum = target.sum(dim=-1)
eps = 1e-9
precision = int_sum / (pred_sum + eps)
recall = int_sum / (targ_sum + eps)
beta = V(weight ** 2)
fnum = (1.+beta) * precision * recall
fden = beta * precision + recall + eps
fscore = fnum / fden
# fb = (precision*recall)/precision*beta + recall + eps
avg_w = torch.cuda.FloatTensor([0,.5,.5])
favg = V(avg_w) * fscore
# pdb.set_trace()
return favg.sum(dim=-1)
class FLoss(nn.Module):
def __init__(self, weight=torch.cuda.FloatTensor([1,2,0.5]), softmax=True):
super().__init__()
self.weight = weight
self.softmax = softmax
def forward(self, logits, targets):
probs = F.softmax(logits) if self.softmax else F.sigmoid(logits)
num = targets.size(0) # Number of batches
targets = torch.cat(((targets==0).unsqueeze(1), (targets==1).unsqueeze(1), (targets==2).unsqueeze(1)), dim=1).float()
if isinstance(logits.data, torch.cuda.HalfTensor):
targets = targets.half()
else:
targets = targets.float()
score = lyft_score(probs, targets, self.weight)
score = 1 - score.sum() / num
return score
### Weighted Dice loss
def dice_coeff_weight(pred, target, weight):
smooth = 1.
num,c,h,w = pred.shape
m1 = pred.view(num, c, -1) # Flatten
m2 = target.view(num, c, -1) # Flatten
intersection = (m1 * m2)
w = V(weight.view(1,-1,1))
i_w = (w*intersection).sum()
m1_w = (w*m1).sum()
m2_w = (w*m2).sum()
return (2. * i_w + smooth) / (m1_w + m2_w + smooth)
def dice_coeff(pred, target):
smooth = 1.
num,c,h,w = pred.shape
m1 = pred.view(num, c, -1) # Flatten
m2 = target.view(num, c, -1) # Flatten
intersection = (m1 * m2).sum()
return (2. * intersection + smooth) / (m1.sum() + m2.sum() + smooth)
class SoftDiceLoss(nn.Module):
def __init__(self, weight=None, size_average=True, softmax=True):
super(SoftDiceLoss, self).__init__()
self.weight = weight
self.softmax = softmax
def forward(self, logits, targets):
probs = F.softmax(logits) if self.softmax else F.sigmoid(logits)
num = targets.size(0) # Number of batches
targets = torch.cat(((targets==0).unsqueeze(1), (targets==1).unsqueeze(1), (targets==2).unsqueeze(1)), dim=1).float()
if isinstance(logits.data, torch.cuda.HalfTensor):
targets = targets.half()
else:
targets = targets.float()
if self.weight is not None:
score = dice_coeff_weight(probs, targets, self.weight)
else:
score = dice_coeff(probs, targets)
score = 1 - score.sum() / num
return score
#### Weighted Cross-Entropy Loss
torch.nn.CrossEntropyLoss(weight=class_weights)