-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
73 lines (63 loc) · 2.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
'''
IMPORT LIBRARIES
'''
from argparse import ArgumentParser
import os
import torch, torchvision
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()
from detectron2.engine import DefaultTrainer, DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2 import model_zoo
from detectron2.data.datasets import register_coco_instances
import matplotlib.pyplot as plt
import numpy as np
import cv2
'''
TRAINING FUNCTION
'''
def train(output, itr, use_cpu=False):
register_coco_instances("train", {}, args.annotation, args.directory)
metadata = MetadataCatalog.get("train")
dataset_dicts = DatasetCatalog.get("train")
# SET CONFIG
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.DATASETS.TRAIN = ("train",)
cfg.DATASETS.TEST = ()
cfg.TEST.EVAL_PERIOD = 100
cfg.DATALOADER.NUM_WORKERS = 2
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") # Let training initialize from model zoo
cfg.SOLVER.IMS_PER_BATCH = 6
cfg.SOLVER.BASE_LR = 0.001
cfg.SOLVER.MAX_ITER = itr
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 19
cfg.OUTPUT_DIR = output
if use_cpu:
cfg.MODEL.DEVICE = 'cpu'
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
trainer = DefaultTrainer(cfg)
trainer.resume_or_load(resume=False)
trainer.train()
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("-a", "--annotation", metavar="path", type=str, help="path to coco annotation json", required=True)
parser.add_argument("-d", "--directory", metavar="path", type=str, help="directory to images", required=True)
parser.add_argument("-o", "--output", default='models/train', metavar="path", type=str, help="path to save the model", required=False)
parser.add_argument("-i", "--itr", default=40000, metavar='num', help="numer of iterations to train", required=False)
parser.add_argument("-g", "--gpu", default=0, metavar='num', help="gpu id", required=False)
args = parser.parse_args()
print(' '.join(f'{k}={v}' for k, v in vars(args).items()))
if str(args.gpu) == '-1':
DEVICE = 'cpu'
use_cpu = True
print('using cpu...\nthis may be slow, gpu is recommended')
else:
use_cpu = False
os.environ["CUDA_VISIBLE_DEVICES"]=str(args.gpu)
print('using cuda device', args.gpu, '...')
train(args.output, int(args.itr), use_cpu)