-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathargs.py
92 lines (67 loc) · 5.06 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import argparse
def parse_args(mode='train'):
parser = argparse.ArgumentParser()
parser.add_argument('--seed', default=42, type=int, help='seed')
parser.add_argument('--device', default='cpu', type=str, help='cpu or gpu')
parser.add_argument('--data_dir', default='/opt/ml/input/data/train_dataset', type=str, help='data directory')
parser.add_argument('--asset_dir', default='asset/', type=str, help='data directory')
parser.add_argument('--train_file_name', default='add_FE_fixed_train.csv', type=str, help='train file name')
parser.add_argument('--valid_file_name', default='add_FE_fixed_valid.csv', type=str, help='valid file name')
parser.add_argument('--test_file_name', default='add_FE_fixed_test.csv', type=str, help='test file name')
parser.add_argument('--model_dir', default='models/', type=str, help='model directory')
parser.add_argument('--model_name', default='', type=str, help='model folder name')
parser.add_argument('--model_epoch', default=0, type=int, help='epoch')
parser.add_argument('--output_dir', default='output/', type=str, help='output directory')
parser.add_argument('--output_file', default='output', type=str, help='output directory')
parser.add_argument('--max_seq_len', default=20, type=int, help='max sequence length')
parser.add_argument('--num_workers', default=1, type=int, help='number of workers')
# 모델
parser.add_argument('--hidden_dim', default=64, type=int, help='hidden dimension size')
parser.add_argument('--n_layers', default=2, type=int, help='number of layers')
parser.add_argument('--n_heads', default=2, type=int, help='number of heads')
parser.add_argument('--drop_out', default=0.2, type=float, help='drop out rate')
parser.add_argument('--dim_div', default=3, type=int, help='model에서 dimension이 커지는 것을 방지')
# TabNet
parser.add_argument('--tabnet_pretrain', default=False, type=bool, help='tabnet pretrain')
parser.add_argument('--use_test_to_train', default=False, type=bool, help='train with testset')
parser.add_argument('--tabnet_scheduler', default='steplr', type=str, help='tabnet_scheduler')
parser.add_argument('--tabnet_optimizer', default='adam', type=str, help='tabnet_optimizer')
parser.add_argument('--tabnet_lr', default=2e-2, type=float, help='tabnet_lr')
parser.add_argument('--tabnet_batchsize', default=16384, type=int, help='tabnet_batchsize')
parser.add_argument('--tabnet_n_step', default=5, type=int, help='tabnet_n_step(not log step)')
parser.add_argument('--tabnet_gamma', default=1.7, type=float, help='tabnet_gamma')
parser.add_argument('--tabnet_mask_type', default='sparsemax', type=str, help='tabnet_mask_type')
parser.add_argument('--tabnet_virtual_batchsize', default=256, type=int, help='tabnet_virtual_batchsize')
parser.add_argument('--tabnet_pretraining_ratio', default=0.8, type=float, help='tabnet_pretraining_ratio')
# 훈련
parser.add_argument('--n_epochs', default=20, type=int, help='number of epochs')
parser.add_argument('--batch_size', default=64, type=int, help='batch size')
parser.add_argument('--lr', default=0.0001, type=float, help='learning rate')
parser.add_argument('--clip_grad', default=10, type=int, help='clip grad')
parser.add_argument('--patience', default=5, type=int, help='for early stopping')
parser.add_argument('--is_decoder', default=True, type=bool, help='transformer decoder')
# Sliding Window
parser.add_argument('--window', default=False, type=bool, help='Sliding Window augmentation')
parser.add_argument('--shuffle', default=False, type=bool, help='Shuffle sliding window')
parser.add_argument('--stride', default=20, type=int, help='Sliding Window stride')
parser.add_argument('--shuffle_n', default=1, type=int, help='Shuffle times')
# T-Fixup
parser.add_argument('--Tfixup', default=False, type=bool, help='Using T-Fixup')
parser.add_argument('--layer_norm', default=False, type=bool, help='T-Fixup with layer norm')
# Pseudo Labeling
parser.add_argument('--use_pseudo', default=False, type=bool, help='Using Pseudo labeling')
parser.add_argument('--pseudo_label_file', default='', type=str, help='file path for pseudo labeling')
# Finetuning
parser.add_argument('--use_finetune', default=False, type=bool, help='Using Fine Tuning')
parser.add_argument('--trained_model', default='/opt/ml/code/p4-dkt-no_caffeine_no_gain/models/re_pse_Bert_40_5/model_epoch7.pt', type=str, help='pretrained model path')
# log
parser.add_argument('--log_steps', default=50, type=int, help='print log per n steps')
# wandb
parser.add_argument('--use_wandb', default=True, type=bool, help='if you want to use wandb')
### 중요 ###
parser.add_argument('--model', default='lstm', type=str, help='model type')
parser.add_argument('--optimizer', default='adamW', type=str, help='optimizer type')
parser.add_argument('--scheduler', default='plateau', type=str, help='scheduler type')
args = parser.parse_args()
return args