-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_dlib.py
51 lines (40 loc) · 1.2 KB
/
test_dlib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Testing HOG detector and CNN based detector using Dlib
import time
import cv2
import dlib
import argparse
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the image")
args = vars(ap.parse_args())
image = cv2.imread(args["image"])
# init dlib detectors
hog_face_detector = dlib.get_frontal_face_detector()
cnn_face_detector = dlib.cnn_face_detection_model_v1('cnn_weights.dat')
# hog detector testing
start = time.time()
faces_hog = hog_face_detector(image, 1)
end = time.time()
print("HOG + SVM Execution time: " + str(end-start))
# draw bounding boxes
for face in faces_hog:
x = face.left()
y = face.top()
w = face.right() - x
h = face.bottom() - y
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.imshow("image", image)
cv2.waitKey(0)
# cnn detector testing
start = time.time()
faces_cnn = cnn_face_detector(image, 1)
end = time.time()
print("CNN Execution time: " + str(end-start))
# draw bounding boxes
for face in faces_cnn:
x = face.rect.left()
y = face.rect.top()
w = face.rect.right() - x
h = face.rect.bottom() - y
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 0, 255), 2)
cv2.imshow("image", image)
cv2.waitKey(0)