-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwatoc2020poster.tex
332 lines (287 loc) · 16.9 KB
/
watoc2020poster.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
% !TeX document-id = {555063d9-c49e-4e5d-bcc1-5d7d130c26f4}
% !TeX program = lualatex
% !TeX TXS-program:bibliography = txs:///biber
\documentclass[final, xcolor={svgnames}]{beamer}
\input{preamble}
% =====
% Title
% =====
\title{On Symmetry and Degeneracy\\ in the Construction of the Adiabatic Connection\\ Based on the Lieb Variational Principle}
\author{\underline{Bang C. Huynh}\inst{1} \and Andrew M. Teale\inst{1}}
\institute[Chemistry, Nottingham, UK]{\inst{1} School of Chemistry, University of Nottingham, United Kingdom}
% ====
% Body
% ====
\begin{document}
\begin{frame}[t]
\begin{columns}[t]
\separatorcolumn
\begin{column}{\colwidth}
\begin{block}{1. The Exact Adiabatic Connection (AC)}
For an $\gls*{gen:Ne}$-electron system, consider a $\lambda$-parametrised electronic Hamiltonian
\begin{equation*}
\gls*{op:hamil}[_{\lambda}](\gls*{op:pot1e}_{\lambda})
=
\gls*{op:kin}
+ \lambda \gls*{op:ee}
+ \sum_{i=1}^{\gls*{gen:Ne}} \gls*{op:pot1e}_{\lambda}(\gls*{bas:spatialcoord}[_i]),
\quad
\textrm{where}
\quad
\gls*{op:ee} = \sum_{i=1}^{\gls*{gen:Ne}}\sum_{j>i}^{\gls*{gen:Ne}} \frac{1}{\lvert \gls*{bas:spatialcoord}[_i] - \gls*{bas:spatialcoord}[_j] \rvert},
\end{equation*}
that continuously links the \emphbold{LightSalmon}{physical system} to the \emphbold{LightSeaGreen}{non-interacting system}.
% \tikzextrue
\tikzexternalenable
\begin{figure}
\centering
\useexternalfile{0.92}{0}{0}{acdiagram}
\label{fig:acdiagram}
\end{figure}
\tikzexternaldisable
% \tikzexfalse
The \emphbold{Blue}{potential $\gls*{op:pot1e}_{\lambda}$} is chosen for $\gls*{op:hamil}[_{\lambda}]$ to admit the same \emphbold{Blue}{ground density $\gls*{den:ground}$} as $\gls*{op:hamil}[_{1}]$ via the \emphbold{Blue}{ground density matrix $\gls*{op:denen}[_{\lambda}](\gls*{den:ground})$}.
The \emphbold{Red}{adiabatic connection (AC)}, defined by $\symcal{W}_{\lambda}(\gls*{den:ground}) = \tr \gls*{op:denen}[_{\lambda}](\gls*{den:ground}) \gls*{op:ee}$, can be calculated accurately for small systems to form approximate models for larger systems.
\end{block}
\end{column}
\separatorcolumn
\begin{column}{\colwidth}
\begin{block}{2. The Lieb Variational Principle}
Consider the space of densities $\gls*{struct:denspace}$ and its dual, the space of potentials $\gls*{struct:potspace}$:
\begin{equation*}
\gls*{struct:denspace} = L^{3}(\symbb{R}^3) \cap L^{1}(\symbb{R}^3),\quad
\gls*{struct:potspace} = L^{3/2}(\symbb{R}^3) + L^{\infty}(\symbb{R}^3).
\end{equation*}
For every $\lambda$ along the AC, given a \emphbold{Red}{wavefunction method M} to compute the \emphbold{Blue}{M-ground energy $E^{\symup{M}}_{\lambda}(\gls*{op:pot1e})$} of $\gls*{op:hamil}[_{\lambda}](\gls*{op:pot1e})$ and the M-reference density $\gls*{den:ground}[^{\symup{M}}_1] \in \gls*{struct:denspace}$, by finding the \emphbold{Blue}{Lieb universal functional}
\begin{equation*}
F^{\symup{M}}_{\lambda}(\gls*{den:ground}[^{\symup{M}}_1])
= \sup_{\gls*{op:pot1e} \in \gls*{struct:potspace}}
\,\left[%
E^{\symup{M}}_{\lambda}(\gls*{op:pot1e})
- \int \gls*{op:pot1e}(\gls*{bas:spatialcoord}) \gls*{den:ground}[^{\symup{M}}_1](\gls*{bas:spatialcoord}) \ \symup{d} \gls*{bas:spatialcoord}%
\right]
\equiv \sup_{\gls*{op:pot1e} \in \gls*{struct:potspace}}
G^{\symup{M}}_{\lambda}(\gls*{op:pot1e}; \gls*{den:ground}[^{\symup{M}}_1]),
\end{equation*}
one obtains the \emphbold{Blue}{M-optimal potential $\gls*{op:pot1e}^{\symup{M}}_{\lambda}$} that
\begin{itemize}
\item supports $\gls*{den:ground}^{\symup{M}}_{\lambda}$ as its ground density; and
\item minimises the \emphbold{Blue}{Lieb-variational errors $\lVert \gls*{den:ground}^{\symup{M}}_{\lambda} - \gls*{den:ground}[^{\symup{M}}_1] \rVert_p$}, $1 \le p \le 3$.
\end{itemize}
How well $\gls*{op:pot1e}^{\symup{M}}_{\lambda}$ approximates the true potential $\gls*{op:pot1e}_{\lambda}$ depends on the \emphbold{Red}{quality of the method M} and on \emphbold{Red}{whether $\gls*{op:pot1e}_{\lambda}$ actually exists in $\gls*{struct:potspace}$}.
% The higher the quality of the wavefunction method M:
% \begin{itemize}
% \item the better $\gls*{den:ground}[^{\symup{M}}_1]$ approximates the true reference density $\gls*{den:ground}$;
%% \item the lower the \emphbold{Blue}{Lieb-variational errors $\lVert \gls*{den:ground}^{\symup{M}}_{\lambda} - \gls*{den:ground}[^{\symup{M}}_1] \rVert_p$} where $1 \le p \le 3$; and
% \item the better $\gls*{op:pot1e}^{\symup{M}}_{\lambda}$ approximates the true potential $\gls*{op:pot1e}_{\lambda}$.
% \end{itemize}
\end{block}
\end{column}
\separatorcolumn
\end{columns}
\begin{columns}[t]
\separatorcolumn
\begin{column}{\dimexpr(2\colwidth+\sepwidth)}
\begin{alertblock}{3. Challenges of Degenerate Systems}
Consider a Hamiltonian $\gls*{op:hamil}[_{\lambda}](\gls*{op:pot1e})$ having a \emphbold{Blue}{symmetry group $\gls*{struct:gengroup}_{\lambda}(\gls*{op:pot1e})$} and admitting a \emphbold{Red}{degenerate ground wavefunction $\gls*{wf:ground}[^{\symup{M}}_{\lambda}](\gls*{op:pot1e})$} with \emphbold{Blue}{energy $E^{\symup{M}}_{\lambda}(\gls*{op:pot1e})$} and \emphbold{Blue}{density $\gls*{den:ground}[_{\lambda}^{\symup{M}}](\gls*{bas:spatialcoord}; \gls*{op:pot1e})$}.
\vspace{1ex}
\begin{center}
\tcbox[%
enhanced,%
width=\colwidth,%
fontupper=\Large,
colframe=Red,
colback=Red!10!white,
overlay,%
remember as=nonconvbox,%
]{
\emphbold{Red}{Non-convergence} in Lieb optimisation at $\lambda \ne 1$.
}%
\end{center}%
\begin{columns}[t]
\begin{column}{\dimexpr(.65\colwidth)}
\centering
\begin{highlightbox}[height=14.5cm, remember as=gradbox]{highlightorange}{Well-defined gradient?}{\faQuestionCircle[regular]}
The Lieb optimisation procedure to obtain the M-optimal potential $\gls*{op:pot1e}^{\symup{M}}_{\lambda}$ requires the functional derivative
\begin{equation*}
\frac{%
\delta G^{\symup{M}}_{\lambda}(\gls*{op:pot1e}; \gls*{den:ground}[^{\symup{M}}_1])%
}{%
\delta \gls*{op:pot1e}(\gls*{bas:spatialcoord})%
}
= \textcolor{Blue}{%
\frac{%
\delta E^{\symup{M}}_{\lambda}(\gls*{op:pot1e})%
}{%
\delta \gls*{op:pot1e}(\gls*{bas:spatialcoord})%
}%
} - \gls*{den:ground}[^{\symup{M}}_1](\gls*{bas:spatialcoord}).
\end{equation*}
As the degenerate density $\gls*{den:ground}[_{\lambda}^{\symup{M}}](\gls*{bas:spatialcoord}; \gls*{op:pot1e})$ is not invariant under all of $\gls*{struct:gengroup}_{\lambda}(\gls*{op:pot1e})$, $\textcolor{Blue}{%
\delta E^{\symup{M}}_{\lambda}(\gls*{op:pot1e}) / \delta \gls*{op:pot1e}(\gls*{bas:spatialcoord})%
}$ is \emphbold{Red}{not unique}:
\begin{equation*}
\textcolor{Blue}{%
\frac{%
\delta E^{\symup{M}}_{\lambda}(\gls*{op:pot1e})%
}{%
\delta \gls*{op:pot1e}(\gls*{bas:spatialcoord})%
}%
} =
\sum_{i=1}^{\lvert\gls*{struct:gengroup}_{\lambda}(\gls*{op:pot1e})\rvert}
c_i
\hat{g}_i
\gls*{den:ground}[_{\lambda}^{\symup{M}}](\gls*{bas:spatialcoord}; \gls*{op:pot1e}),
\quad
g_i \in \gls*{struct:gengroup}_{\lambda}(\gls*{op:pot1e}),
\ c_i \ge 0,
\ \sum_{i=1}^{\lvert\gls*{struct:gengroup}_{\lambda}(\gls*{op:pot1e})\rvert} c_i = 1.
\end{equation*}
\end{highlightbox}
\end{column}
\begin{column}{\dimexpr(.65\colwidth)}
\centering
\begin{highlightbox}[height=14.5cm, remember as=sympotbox]{highlightviolet}{Symmetry of potential?}{\faQuestionCircle[regular]}
At all $\lambda$, the M-optimal potential $\gls*{op:pot1e}[^{\symup{M}}_{\lambda}]$ determines the \emphbold{Red}{symmetry group} of the Hamiltonian:
\begin{alignat*}{4}
\lambda = 1: &\quad \gls*{op:pot1e}[_{\symup{ext}}] &&\mapsto \gls*{struct:gengroup}_1(\gls*{op:pot1e}[_{\symup{ext}}]) \quad &&\textrm{physical system},\\[6pt]
0 \le \lambda < 1: &\quad \gls*{op:pot1e}[^{\symup{M}}_{\lambda}] &&\mapsto \gls*{struct:gengroup}_{\lambda}(\gls*{op:pot1e}[^{\symup{M}}_{\lambda}]) \quad &&\textrm{auxiliary systems}.
\end{alignat*}
Is \emphbold{Red}{equality} in the following condition
\begin{equation*}
\gls*{struct:gengroup}_1(\gls*{op:pot1e}[_{\symup{ext}}]) \ge \gls*{struct:gengroup}_{\lambda}(\gls*{op:pot1e}[^{\symup{M}}_{\lambda}]),
\quad
\lambda \ne 1
\end{equation*}
necessary?
In other words, do the \emphbold{Blue}{auxiliary systems} have to \emphbold{Red}{respect} the symmetry of the \emphbold{Blue}{physical system}?
\end{highlightbox}
\end{column}
\begin{column}{\dimexpr(.65\colwidth)}
\centering
\begin{highlightbox}[height=14.5cm, remember as=vrepbox]{highlightgreen}{Pure-state $\symbfit{v}$-representability (PSVR)?}{\faQuestionCircle[regular]}
The \emphbold{Blue}{continuity} of the AC $\symcal{W}_{\lambda}(\gls*{den:ground})$ requires the \emphbold{Blue}{reference density $\gls*{den:ground}$} to be \emphbold{Blue}{$v$-representable $\forall \lambda \in \interval{0}{1}$}.
However, general $v$-representability conditions for densities in $\gls*{struct:denspace}$ are not well-established.
In particular, consider the degenerate pure-state ground density $\gls*{den:ground}[^{\symup{M}}_1]$ as the reference density: there is no guarantee that it is \emphbold{Red}{pure-state $v$-representable} $\forall \lambda \in \interval{0}{1}$.\\
$\Leftrightarrow$ There can exist $\lambda$ values at which the M-optimal potential $\gls*{op:pot1e}^{\symup{M}}_{\lambda}$ supports a ground density $\gls*{den:ground}^{\symup{M}}_{\lambda}$ such that the Lieb-variational errors $\lVert \gls*{den:ground}^{\symup{M}}_{\lambda} - \gls*{den:ground}[^{\symup{M}}_1] \rVert_p$ can get arbitrarily large.
\end{highlightbox}
\end{column}
\end{columns}
\vspace{2cm}
\begin{columns}[t]
\begin{column}{\dimexpr(.65\colwidth)}
\centering
\begin{highlightbox}[height=10.95cm, remember as=denalignbox]{highlightorange}{Density alignment}{\faCheckCircle[regular]}
The uniqueness of $\textcolor{Blue}{%
\delta E^{\symup{M}}_{\lambda}(\gls*{op:pot1e}) / \delta \gls*{op:pot1e}(\gls*{bas:spatialcoord})%
}$ is enforced by \emphbold{Red}{choosing}
\begin{equation*}
\textcolor{Blue}{%
\frac{%
\delta E^{\symup{M}}_{\lambda}(\gls*{op:pot1e})%
}{%
\delta \gls*{op:pot1e}(\gls*{bas:spatialcoord})%
}%
}
= \hat{g} \gls*{den:ground}[_{\lambda}^{\symup{M}}](\gls*{bas:spatialcoord}; v),
\quad
g \in \gls*{struct:gengroup}_1(\gls*{op:pot1e}[_{\symup{ext}}])
\end{equation*}
such that $\hat{g} \gls*{den:ground}[_{\lambda}^{\symup{M}}](\gls*{bas:spatialcoord}; v)$ is in the \emphbold{Red}{same symmetry gauge} as $\gls*{den:ground}[_{1}^{\symup{M}}](\gls*{bas:spatialcoord})$, \textit{i.e.} both densities are invariant under the same subgroup of $\gls*{struct:gengroup}_1(\gls*{op:pot1e}[_{\symup{ext}}])$.
\end{highlightbox}
\end{column}
\begin{column}{\dimexpr(.65\colwidth)}
\centering
\begin{highlightbox}[height=10.95cm, remember as=potsymconsbox]{highlightviolet}{Potential symmetry constraint}{\faCheckCircle[regular]}
In the simplest \textit{Ansatz}, at any $\lambda \in \interval{0}{1}$, the constraint
\begin{equation*}
\gls*{struct:gengroup}_1(\gls*{op:pot1e}[_{\symup{ext}}]) \mathbin{\textcolor{Red}{=}} \gls*{struct:gengroup}_{\lambda}(\gls*{op:pot1e})
\end{equation*}
is imposed for \emphbold{Blue}{all trial potentials $\gls*{op:pot1e}$} to assist convergence in the Lieb optimisation.
The necessity of this constraint can then be systematically investigated by relaxing to subgroups of $\gls*{struct:gengroup}_1(\gls*{op:pot1e}[_{\symup{ext}}])$.
\end{highlightbox}
\end{column}
\begin{column}{\dimexpr(.65\colwidth)}
\centering
\begin{highlightbox}[height=10.95cm, remember as=totsymendenbox]{highlightgreen}{Totally symmetric ensemble density}{\faCheckCircle[regular]}
Consider instead the ensemble density
\begin{equation*}
\frac{1}{\lvert\gls*{struct:gengroup}_1\rvert}
\sum_{i=1}^{\lvert\gls*{struct:gengroup}_1\rvert}
\hat{g}_i
\gls*{den:ground}[_{1}^{\symup{M}}](\gls*{bas:spatialcoord}),
\quad
g_i \in \gls*{struct:gengroup}_1(\gls*{op:pot1e}[_{\symup{ext}}]) \equiv \gls*{struct:gengroup}_1
\end{equation*}
as the reference density, which is invariant under all of $\gls*{struct:gengroup}_1(\gls*{op:pot1e}[_{\symup{ext}}])$ and \emphbold{Red}{not skewed} towards any particular degenerate component.
\end{highlightbox}
\end{column}
\end{columns}
\tikzexternaldisable
\begin{tikzpicture}[overlay, remember picture]
% Top arrows
\draw[-{>[length=7mm, width=8mm]}, rounded corners=9pt, line width=1.7mm, Red] (nonconvbox) -| ($(vrepbox.north) + (0, 1.5ex)$);
\draw[-{>[length=7mm, width=8mm]}, rounded corners=9pt, line width=1.7mm, Red] (nonconvbox) -- ($(sympotbox.north) + (0, 1.5ex)$);
\draw[-{>[length=7mm, width=8mm]}, rounded corners=9pt, line width=1.7mm, Red] (nonconvbox) -| ($(gradbox.north) + (0, 1.5ex)$);
% Bottom arrows
\draw[-{>[length=7mm, width=8mm]}, rounded corners=9pt, line width=1.7mm, Red] (gradbox) -- ($(denalignbox.north) + (0, 1.5ex)$);
\draw[-{>[length=7mm, width=8mm]}, rounded corners=9pt, line width=1.7mm, Red] (sympotbox) -- ($(potsymconsbox.north) + (0, 1.5ex)$);
\draw[-{>[length=7mm, width=8mm]}, rounded corners=9pt, line width=1.7mm, Red] (vrepbox) -- ($(totsymendenbox.north) + (0, 1.5ex)$);
\end{tikzpicture}
\tikzexternalenable
\vspace{-0.5cm}
\end{alertblock}
\end{column}
\separatorcolumn
\end{columns}
\begin{columns}[t]
\separatorcolumn
\begin{column}{1.37\colwidth}
\begin{block}{4. $\symbfit{v}$-Representability in the Adiabatic Connection}
\vspace{-1.0cm}
\tikzextrue
\tikzexternalenable
\begin{figure}
\centering
\begin{subfigure}[t]{0.80\colwidth}
\subcaption{\emphbold{Blue}{Pure-state} density vs. \emphbold{Red}{ensemble} density ACs.}
\useexternalfile{0.83}{0}{0}{ac_C_O}
\end{subfigure}
\begin{subfigure}[t]{0.54\colwidth}
\subcaption{%
Exchange-correlation potentials in \emphbold{Red}{ensemble} density ACs.%
}
\useexternalfile{0.83}{0}{0}{pot_C_O}
\end{subfigure}
\end{figure}
\tikzexternaldisable
\tikzexfalse
\end{block}
\end{column}
\halfseparatorcolumn
\begin{column}{\dimexpr(0.63\colwidth+0.5\sepwidth)}
\begin{alertblock}{5. Discussion}
\emphbold{darkblue}{\underline{Tackling the degeneracy challenges}}
\begin{itemize}
\item \emphbold{highlightorange}{Density alignment} guarantees well-defined gradients for asymmetric densities.
\item \emphbold{highlightviolet}{Constraining} the potential to be \emphbold{highlightviolet}{totally symmetric} speeds up convergence by limiting $\gls*{struct:potspace}$ to symmetry-sensible subspaces.
\item \emphbold{highlightgreen}{Totally symmetric ensemble densities} ensure $v$-representability by avoiding unphysical HOMO--LUMO inversions.
\end{itemize}
\emphbold{darkblue}{\underline{Results}}
\begin{itemize}
\item \emphbold{Red}{Smooth} ACs for open-shell degenerate atoms with \emphbold{Red}{acceptable} Lieb-variational errors
\item Exchange-correlation potentials with \emphbold{Red}{qualitatively reasonable} features
\end{itemize}
\end{alertblock}
\begin{block}{References}
\AtNextBibliography{\footnotesize}
\nocite{*}
\begin{center}\mbox{}\vspace{-\baselineskip}
\printbibliography[heading=none]
\end{center}
\end{block}
\end{column}
\separatorcolumn
\end{columns}
\end{frame}
\end{document}