diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/_meta.json b/sdk/machinelearning/azure-mgmt-machinelearningservices/_meta.json
index f4f9290aab9b..8933f65eba9c 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/_meta.json
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/_meta.json
@@ -1,11 +1,11 @@
{
- "commit": "c7daa3d35baaaabece0dbc6f731eadbe426973b9",
+ "commit": "f87dba08211841f4b87631fa0de60fc6ff3412a9",
"repository_url": "https://github.com/Azure/azure-rest-api-specs",
- "autorest": "3.9.2",
+ "autorest": "3.9.7",
"use": [
- "@autorest/python@6.4.12",
- "@autorest/modelerfour@4.24.3"
+ "@autorest/python@6.7.1",
+ "@autorest/modelerfour@4.26.2"
],
- "autorest_command": "autorest specification/machinelearningservices/resource-manager/readme.md --generate-sample=True --include-x-ms-examples-original-file=True --python --python-sdks-folder=/home/vsts/work/1/azure-sdk-for-python/sdk --use=@autorest/python@6.4.12 --use=@autorest/modelerfour@4.24.3 --version=3.9.2 --version-tolerant=False",
+ "autorest_command": "autorest specification/machinelearningservices/resource-manager/readme.md --generate-sample=True --include-x-ms-examples-original-file=True --python --python-sdks-folder=/mnt/vss/_work/1/s/azure-sdk-for-python/sdk --use=@autorest/python@6.7.1 --use=@autorest/modelerfour@4.26.2 --version=3.9.7 --version-tolerant=False",
"readme": "specification/machinelearningservices/resource-manager/readme.md"
}
\ No newline at end of file
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_configuration.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_configuration.py
index a128695e54fd..730f9950c6cc 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_configuration.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_configuration.py
@@ -29,14 +29,14 @@ class MachineLearningServicesMgmtClientConfiguration(Configuration): # pylint:
:type credential: ~azure.core.credentials.TokenCredential
:param subscription_id: The ID of the target subscription. Required.
:type subscription_id: str
- :keyword api_version: Api Version. Default value is "2023-04-01". Note that overriding this
+ :keyword api_version: Api Version. Default value is "2023-10-01". Note that overriding this
default value may result in unsupported behavior.
:paramtype api_version: str
"""
def __init__(self, credential: "TokenCredential", subscription_id: str, **kwargs: Any) -> None:
super(MachineLearningServicesMgmtClientConfiguration, self).__init__(**kwargs)
- api_version: str = kwargs.pop("api_version", "2023-04-01")
+ api_version: str = kwargs.pop("api_version", "2023-10-01")
if credential is None:
raise ValueError("Parameter 'credential' must not be None.")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_machine_learning_services_mgmt_client.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_machine_learning_services_mgmt_client.py
index 690ca6db66e4..8d648e1fbc80 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_machine_learning_services_mgmt_client.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_machine_learning_services_mgmt_client.py
@@ -28,7 +28,14 @@
DatastoresOperations,
EnvironmentContainersOperations,
EnvironmentVersionsOperations,
+ FeaturesOperations,
+ FeaturesetContainersOperations,
+ FeaturesetVersionsOperations,
+ FeaturestoreEntityContainersOperations,
+ FeaturestoreEntityVersionsOperations,
JobsOperations,
+ ManagedNetworkProvisionsOperations,
+ ManagedNetworkSettingsRuleOperations,
ModelContainersOperations,
ModelVersionsOperations,
OnlineDeploymentsOperations,
@@ -43,6 +50,7 @@
RegistryComponentContainersOperations,
RegistryComponentVersionsOperations,
RegistryDataContainersOperations,
+ RegistryDataReferencesOperations,
RegistryDataVersionsOperations,
RegistryEnvironmentContainersOperations,
RegistryEnvironmentVersionsOperations,
@@ -86,6 +94,12 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v
:ivar workspace_connections: WorkspaceConnectionsOperations operations
:vartype workspace_connections:
azure.mgmt.machinelearningservices.operations.WorkspaceConnectionsOperations
+ :ivar managed_network_settings_rule: ManagedNetworkSettingsRuleOperations operations
+ :vartype managed_network_settings_rule:
+ azure.mgmt.machinelearningservices.operations.ManagedNetworkSettingsRuleOperations
+ :ivar managed_network_provisions: ManagedNetworkProvisionsOperations operations
+ :vartype managed_network_provisions:
+ azure.mgmt.machinelearningservices.operations.ManagedNetworkProvisionsOperations
:ivar registry_code_containers: RegistryCodeContainersOperations operations
:vartype registry_code_containers:
azure.mgmt.machinelearningservices.operations.RegistryCodeContainersOperations
@@ -104,6 +118,9 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v
:ivar registry_data_versions: RegistryDataVersionsOperations operations
:vartype registry_data_versions:
azure.mgmt.machinelearningservices.operations.RegistryDataVersionsOperations
+ :ivar registry_data_references: RegistryDataReferencesOperations operations
+ :vartype registry_data_references:
+ azure.mgmt.machinelearningservices.operations.RegistryDataReferencesOperations
:ivar registry_environment_containers: RegistryEnvironmentContainersOperations operations
:vartype registry_environment_containers:
azure.mgmt.machinelearningservices.operations.RegistryEnvironmentContainersOperations
@@ -146,6 +163,20 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v
:ivar environment_versions: EnvironmentVersionsOperations operations
:vartype environment_versions:
azure.mgmt.machinelearningservices.operations.EnvironmentVersionsOperations
+ :ivar featureset_containers: FeaturesetContainersOperations operations
+ :vartype featureset_containers:
+ azure.mgmt.machinelearningservices.operations.FeaturesetContainersOperations
+ :ivar features: FeaturesOperations operations
+ :vartype features: azure.mgmt.machinelearningservices.operations.FeaturesOperations
+ :ivar featureset_versions: FeaturesetVersionsOperations operations
+ :vartype featureset_versions:
+ azure.mgmt.machinelearningservices.operations.FeaturesetVersionsOperations
+ :ivar featurestore_entity_containers: FeaturestoreEntityContainersOperations operations
+ :vartype featurestore_entity_containers:
+ azure.mgmt.machinelearningservices.operations.FeaturestoreEntityContainersOperations
+ :ivar featurestore_entity_versions: FeaturestoreEntityVersionsOperations operations
+ :vartype featurestore_entity_versions:
+ azure.mgmt.machinelearningservices.operations.FeaturestoreEntityVersionsOperations
:ivar jobs: JobsOperations operations
:vartype jobs: azure.mgmt.machinelearningservices.operations.JobsOperations
:ivar model_containers: ModelContainersOperations operations
@@ -172,7 +203,7 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v
:type subscription_id: str
:param base_url: Service URL. Default value is "https://management.azure.com".
:type base_url: str
- :keyword api_version: Api Version. Default value is "2023-04-01". Note that overriding this
+ :keyword api_version: Api Version. Default value is "2023-10-01". Note that overriding this
default value may result in unsupported behavior.
:paramtype api_version: str
:keyword int polling_interval: Default waiting time between two polls for LRO operations if no
@@ -212,6 +243,12 @@ def __init__(
self.workspace_connections = WorkspaceConnectionsOperations(
self._client, self._config, self._serialize, self._deserialize
)
+ self.managed_network_settings_rule = ManagedNetworkSettingsRuleOperations(
+ self._client, self._config, self._serialize, self._deserialize
+ )
+ self.managed_network_provisions = ManagedNetworkProvisionsOperations(
+ self._client, self._config, self._serialize, self._deserialize
+ )
self.registry_code_containers = RegistryCodeContainersOperations(
self._client, self._config, self._serialize, self._deserialize
)
@@ -230,6 +267,9 @@ def __init__(
self.registry_data_versions = RegistryDataVersionsOperations(
self._client, self._config, self._serialize, self._deserialize
)
+ self.registry_data_references = RegistryDataReferencesOperations(
+ self._client, self._config, self._serialize, self._deserialize
+ )
self.registry_environment_containers = RegistryEnvironmentContainersOperations(
self._client, self._config, self._serialize, self._deserialize
)
@@ -263,6 +303,19 @@ def __init__(
self.environment_versions = EnvironmentVersionsOperations(
self._client, self._config, self._serialize, self._deserialize
)
+ self.featureset_containers = FeaturesetContainersOperations(
+ self._client, self._config, self._serialize, self._deserialize
+ )
+ self.features = FeaturesOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.featureset_versions = FeaturesetVersionsOperations(
+ self._client, self._config, self._serialize, self._deserialize
+ )
+ self.featurestore_entity_containers = FeaturestoreEntityContainersOperations(
+ self._client, self._config, self._serialize, self._deserialize
+ )
+ self.featurestore_entity_versions = FeaturestoreEntityVersionsOperations(
+ self._client, self._config, self._serialize, self._deserialize
+ )
self.jobs = JobsOperations(self._client, self._config, self._serialize, self._deserialize)
self.model_containers = ModelContainersOperations(
self._client, self._config, self._serialize, self._deserialize
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_serialization.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_serialization.py
index 842ae727fbbc..4bae2292227b 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_serialization.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_serialization.py
@@ -662,8 +662,9 @@ def _serialize(self, target_obj, data_type=None, **kwargs):
_serialized.update(_new_attr) # type: ignore
_new_attr = _new_attr[k] # type: ignore
_serialized = _serialized[k]
- except ValueError:
- continue
+ except ValueError as err:
+ if isinstance(err, SerializationError):
+ raise
except (AttributeError, KeyError, TypeError) as err:
msg = "Attribute {} in object {} cannot be serialized.\n{}".format(attr_name, class_name, str(target_obj))
@@ -741,6 +742,8 @@ def query(self, name, data, data_type, **kwargs):
:param data: The data to be serialized.
:param str data_type: The type to be serialized from.
+ :keyword bool skip_quote: Whether to skip quote the serialized result.
+ Defaults to False.
:rtype: str
:raises: TypeError if serialization fails.
:raises: ValueError if data is None
@@ -749,10 +752,8 @@ def query(self, name, data, data_type, **kwargs):
# Treat the list aside, since we don't want to encode the div separator
if data_type.startswith("["):
internal_data_type = data_type[1:-1]
- data = [self.serialize_data(d, internal_data_type, **kwargs) if d is not None else "" for d in data]
- if not kwargs.get("skip_quote", False):
- data = [quote(str(d), safe="") for d in data]
- return str(self.serialize_iter(data, internal_data_type, **kwargs))
+ do_quote = not kwargs.get("skip_quote", False)
+ return str(self.serialize_iter(data, internal_data_type, do_quote=do_quote, **kwargs))
# Not a list, regular serialization
output = self.serialize_data(data, data_type, **kwargs)
@@ -891,6 +892,8 @@ def serialize_iter(self, data, iter_type, div=None, **kwargs):
not be None or empty.
:param str div: If set, this str will be used to combine the elements
in the iterable into a combined string. Default is 'None'.
+ :keyword bool do_quote: Whether to quote the serialized result of each iterable element.
+ Defaults to False.
:rtype: list, str
"""
if isinstance(data, str):
@@ -903,9 +906,14 @@ def serialize_iter(self, data, iter_type, div=None, **kwargs):
for d in data:
try:
serialized.append(self.serialize_data(d, iter_type, **kwargs))
- except ValueError:
+ except ValueError as err:
+ if isinstance(err, SerializationError):
+ raise
serialized.append(None)
+ if kwargs.get("do_quote", False):
+ serialized = ["" if s is None else quote(str(s), safe="") for s in serialized]
+
if div:
serialized = ["" if s is None else str(s) for s in serialized]
serialized = div.join(serialized)
@@ -950,7 +958,9 @@ def serialize_dict(self, attr, dict_type, **kwargs):
for key, value in attr.items():
try:
serialized[self.serialize_unicode(key)] = self.serialize_data(value, dict_type, **kwargs)
- except ValueError:
+ except ValueError as err:
+ if isinstance(err, SerializationError):
+ raise
serialized[self.serialize_unicode(key)] = None
if "xml" in serialization_ctxt:
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_vendor.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_vendor.py
index bd0df84f5319..0dafe0e287ff 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_vendor.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_vendor.py
@@ -5,8 +5,6 @@
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
-from typing import List, cast
-
from azure.core.pipeline.transport import HttpRequest
@@ -16,15 +14,3 @@ def _convert_request(request, files=None):
if files:
request.set_formdata_body(files)
return request
-
-
-def _format_url_section(template, **kwargs):
- components = template.split("/")
- while components:
- try:
- return template.format(**kwargs)
- except KeyError as key:
- # Need the cast, as for some reasons "split" is typed as list[str | Any]
- formatted_components = cast(List[str], template.split("/"))
- components = [c for c in formatted_components if "{}".format(key.args[0]) not in c]
- template = "/".join(components)
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_version.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_version.py
index 2eda20789583..e5754a47ce68 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_version.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_version.py
@@ -6,4 +6,4 @@
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
-VERSION = "2.0.0b2"
+VERSION = "1.0.0b1"
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_configuration.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_configuration.py
index f012a758393b..2b7c17d22d0f 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_configuration.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_configuration.py
@@ -29,14 +29,14 @@ class MachineLearningServicesMgmtClientConfiguration(Configuration): # pylint:
:type credential: ~azure.core.credentials_async.AsyncTokenCredential
:param subscription_id: The ID of the target subscription. Required.
:type subscription_id: str
- :keyword api_version: Api Version. Default value is "2023-04-01". Note that overriding this
+ :keyword api_version: Api Version. Default value is "2023-10-01". Note that overriding this
default value may result in unsupported behavior.
:paramtype api_version: str
"""
def __init__(self, credential: "AsyncTokenCredential", subscription_id: str, **kwargs: Any) -> None:
super(MachineLearningServicesMgmtClientConfiguration, self).__init__(**kwargs)
- api_version: str = kwargs.pop("api_version", "2023-04-01")
+ api_version: str = kwargs.pop("api_version", "2023-10-01")
if credential is None:
raise ValueError("Parameter 'credential' must not be None.")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_machine_learning_services_mgmt_client.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_machine_learning_services_mgmt_client.py
index 0240f80e8769..8d75d03f269d 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_machine_learning_services_mgmt_client.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_machine_learning_services_mgmt_client.py
@@ -28,7 +28,14 @@
DatastoresOperations,
EnvironmentContainersOperations,
EnvironmentVersionsOperations,
+ FeaturesOperations,
+ FeaturesetContainersOperations,
+ FeaturesetVersionsOperations,
+ FeaturestoreEntityContainersOperations,
+ FeaturestoreEntityVersionsOperations,
JobsOperations,
+ ManagedNetworkProvisionsOperations,
+ ManagedNetworkSettingsRuleOperations,
ModelContainersOperations,
ModelVersionsOperations,
OnlineDeploymentsOperations,
@@ -43,6 +50,7 @@
RegistryComponentContainersOperations,
RegistryComponentVersionsOperations,
RegistryDataContainersOperations,
+ RegistryDataReferencesOperations,
RegistryDataVersionsOperations,
RegistryEnvironmentContainersOperations,
RegistryEnvironmentVersionsOperations,
@@ -86,6 +94,12 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v
:ivar workspace_connections: WorkspaceConnectionsOperations operations
:vartype workspace_connections:
azure.mgmt.machinelearningservices.aio.operations.WorkspaceConnectionsOperations
+ :ivar managed_network_settings_rule: ManagedNetworkSettingsRuleOperations operations
+ :vartype managed_network_settings_rule:
+ azure.mgmt.machinelearningservices.aio.operations.ManagedNetworkSettingsRuleOperations
+ :ivar managed_network_provisions: ManagedNetworkProvisionsOperations operations
+ :vartype managed_network_provisions:
+ azure.mgmt.machinelearningservices.aio.operations.ManagedNetworkProvisionsOperations
:ivar registry_code_containers: RegistryCodeContainersOperations operations
:vartype registry_code_containers:
azure.mgmt.machinelearningservices.aio.operations.RegistryCodeContainersOperations
@@ -104,6 +118,9 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v
:ivar registry_data_versions: RegistryDataVersionsOperations operations
:vartype registry_data_versions:
azure.mgmt.machinelearningservices.aio.operations.RegistryDataVersionsOperations
+ :ivar registry_data_references: RegistryDataReferencesOperations operations
+ :vartype registry_data_references:
+ azure.mgmt.machinelearningservices.aio.operations.RegistryDataReferencesOperations
:ivar registry_environment_containers: RegistryEnvironmentContainersOperations operations
:vartype registry_environment_containers:
azure.mgmt.machinelearningservices.aio.operations.RegistryEnvironmentContainersOperations
@@ -148,6 +165,20 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v
:ivar environment_versions: EnvironmentVersionsOperations operations
:vartype environment_versions:
azure.mgmt.machinelearningservices.aio.operations.EnvironmentVersionsOperations
+ :ivar featureset_containers: FeaturesetContainersOperations operations
+ :vartype featureset_containers:
+ azure.mgmt.machinelearningservices.aio.operations.FeaturesetContainersOperations
+ :ivar features: FeaturesOperations operations
+ :vartype features: azure.mgmt.machinelearningservices.aio.operations.FeaturesOperations
+ :ivar featureset_versions: FeaturesetVersionsOperations operations
+ :vartype featureset_versions:
+ azure.mgmt.machinelearningservices.aio.operations.FeaturesetVersionsOperations
+ :ivar featurestore_entity_containers: FeaturestoreEntityContainersOperations operations
+ :vartype featurestore_entity_containers:
+ azure.mgmt.machinelearningservices.aio.operations.FeaturestoreEntityContainersOperations
+ :ivar featurestore_entity_versions: FeaturestoreEntityVersionsOperations operations
+ :vartype featurestore_entity_versions:
+ azure.mgmt.machinelearningservices.aio.operations.FeaturestoreEntityVersionsOperations
:ivar jobs: JobsOperations operations
:vartype jobs: azure.mgmt.machinelearningservices.aio.operations.JobsOperations
:ivar model_containers: ModelContainersOperations operations
@@ -175,7 +206,7 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v
:type subscription_id: str
:param base_url: Service URL. Default value is "https://management.azure.com".
:type base_url: str
- :keyword api_version: Api Version. Default value is "2023-04-01". Note that overriding this
+ :keyword api_version: Api Version. Default value is "2023-10-01". Note that overriding this
default value may result in unsupported behavior.
:paramtype api_version: str
:keyword int polling_interval: Default waiting time between two polls for LRO operations if no
@@ -215,6 +246,12 @@ def __init__(
self.workspace_connections = WorkspaceConnectionsOperations(
self._client, self._config, self._serialize, self._deserialize
)
+ self.managed_network_settings_rule = ManagedNetworkSettingsRuleOperations(
+ self._client, self._config, self._serialize, self._deserialize
+ )
+ self.managed_network_provisions = ManagedNetworkProvisionsOperations(
+ self._client, self._config, self._serialize, self._deserialize
+ )
self.registry_code_containers = RegistryCodeContainersOperations(
self._client, self._config, self._serialize, self._deserialize
)
@@ -233,6 +270,9 @@ def __init__(
self.registry_data_versions = RegistryDataVersionsOperations(
self._client, self._config, self._serialize, self._deserialize
)
+ self.registry_data_references = RegistryDataReferencesOperations(
+ self._client, self._config, self._serialize, self._deserialize
+ )
self.registry_environment_containers = RegistryEnvironmentContainersOperations(
self._client, self._config, self._serialize, self._deserialize
)
@@ -266,6 +306,19 @@ def __init__(
self.environment_versions = EnvironmentVersionsOperations(
self._client, self._config, self._serialize, self._deserialize
)
+ self.featureset_containers = FeaturesetContainersOperations(
+ self._client, self._config, self._serialize, self._deserialize
+ )
+ self.features = FeaturesOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.featureset_versions = FeaturesetVersionsOperations(
+ self._client, self._config, self._serialize, self._deserialize
+ )
+ self.featurestore_entity_containers = FeaturestoreEntityContainersOperations(
+ self._client, self._config, self._serialize, self._deserialize
+ )
+ self.featurestore_entity_versions = FeaturestoreEntityVersionsOperations(
+ self._client, self._config, self._serialize, self._deserialize
+ )
self.jobs = JobsOperations(self._client, self._config, self._serialize, self._deserialize)
self.model_containers = ModelContainersOperations(
self._client, self._config, self._serialize, self._deserialize
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/__init__.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/__init__.py
index 4967e3af6930..6792c518adf9 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/__init__.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/__init__.py
@@ -15,12 +15,15 @@
from ._private_endpoint_connections_operations import PrivateEndpointConnectionsOperations
from ._private_link_resources_operations import PrivateLinkResourcesOperations
from ._workspace_connections_operations import WorkspaceConnectionsOperations
+from ._managed_network_settings_rule_operations import ManagedNetworkSettingsRuleOperations
+from ._managed_network_provisions_operations import ManagedNetworkProvisionsOperations
from ._registry_code_containers_operations import RegistryCodeContainersOperations
from ._registry_code_versions_operations import RegistryCodeVersionsOperations
from ._registry_component_containers_operations import RegistryComponentContainersOperations
from ._registry_component_versions_operations import RegistryComponentVersionsOperations
from ._registry_data_containers_operations import RegistryDataContainersOperations
from ._registry_data_versions_operations import RegistryDataVersionsOperations
+from ._registry_data_references_operations import RegistryDataReferencesOperations
from ._registry_environment_containers_operations import RegistryEnvironmentContainersOperations
from ._registry_environment_versions_operations import RegistryEnvironmentVersionsOperations
from ._registry_model_containers_operations import RegistryModelContainersOperations
@@ -36,6 +39,11 @@
from ._datastores_operations import DatastoresOperations
from ._environment_containers_operations import EnvironmentContainersOperations
from ._environment_versions_operations import EnvironmentVersionsOperations
+from ._featureset_containers_operations import FeaturesetContainersOperations
+from ._features_operations import FeaturesOperations
+from ._featureset_versions_operations import FeaturesetVersionsOperations
+from ._featurestore_entity_containers_operations import FeaturestoreEntityContainersOperations
+from ._featurestore_entity_versions_operations import FeaturestoreEntityVersionsOperations
from ._jobs_operations import JobsOperations
from ._model_containers_operations import ModelContainersOperations
from ._model_versions_operations import ModelVersionsOperations
@@ -59,12 +67,15 @@
"PrivateEndpointConnectionsOperations",
"PrivateLinkResourcesOperations",
"WorkspaceConnectionsOperations",
+ "ManagedNetworkSettingsRuleOperations",
+ "ManagedNetworkProvisionsOperations",
"RegistryCodeContainersOperations",
"RegistryCodeVersionsOperations",
"RegistryComponentContainersOperations",
"RegistryComponentVersionsOperations",
"RegistryDataContainersOperations",
"RegistryDataVersionsOperations",
+ "RegistryDataReferencesOperations",
"RegistryEnvironmentContainersOperations",
"RegistryEnvironmentVersionsOperations",
"RegistryModelContainersOperations",
@@ -80,6 +91,11 @@
"DatastoresOperations",
"EnvironmentContainersOperations",
"EnvironmentVersionsOperations",
+ "FeaturesetContainersOperations",
+ "FeaturesOperations",
+ "FeaturesetVersionsOperations",
+ "FeaturestoreEntityContainersOperations",
+ "FeaturestoreEntityVersionsOperations",
"JobsOperations",
"ModelContainersOperations",
"ModelVersionsOperations",
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_versions_operations.py
index cf86e6d15801..53f467c16851 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_versions_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_versions_operations.py
@@ -7,7 +7,7 @@
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from io import IOBase
-from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload
+from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload
import urllib.parse
from azure.core.async_paging import AsyncItemPaged, AsyncList
@@ -21,11 +21,13 @@
)
from azure.core.pipeline import PipelineResponse
from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
from azure.core.rest import HttpRequest
from azure.core.tracing.decorator import distributed_trace
from azure.core.tracing.decorator_async import distributed_trace_async
from azure.core.utils import case_insensitive_dict
from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling
from ... import models as _models
from ..._vendor import _convert_request
@@ -35,6 +37,7 @@
build_delete_request,
build_get_request,
build_list_request,
+ build_publish_request,
)
T = TypeVar("T")
@@ -498,6 +501,256 @@ async def create_or_update(
"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}"
}
+ async def _publish_initial( # pylint: disable=inconsistent-return-statements
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "DestinationAsset")
+
+ request = build_publish_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._publish_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _publish_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}/publish"
+ }
+
+ @overload
+ async def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.DestinationAsset,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace_async
+ async def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Is either a DestinationAsset type or a IO type.
+ Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._publish_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_publish.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}/publish"
+ }
+
@overload
async def create_or_get_start_pending_upload(
self,
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_versions_operations.py
index 5910c2b49220..bd7d78ab0ea4 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_versions_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_versions_operations.py
@@ -7,7 +7,7 @@
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from io import IOBase
-from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload
+from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload
import urllib.parse
from azure.core.async_paging import AsyncItemPaged, AsyncList
@@ -21,11 +21,13 @@
)
from azure.core.pipeline import PipelineResponse
from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
from azure.core.rest import HttpRequest
from azure.core.tracing.decorator import distributed_trace
from azure.core.tracing.decorator_async import distributed_trace_async
from azure.core.utils import case_insensitive_dict
from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling
from ... import models as _models
from ..._vendor import _convert_request
@@ -34,6 +36,7 @@
build_delete_request,
build_get_request,
build_list_request,
+ build_publish_request,
)
T = TypeVar("T")
@@ -492,3 +495,253 @@ async def create_or_update(
create_or_update.metadata = {
"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/components/{name}/versions/{version}"
}
+
+ async def _publish_initial( # pylint: disable=inconsistent-return-statements
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "DestinationAsset")
+
+ request = build_publish_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._publish_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _publish_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/components/{name}/versions/{version}/publish"
+ }
+
+ @overload
+ async def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.DestinationAsset,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace_async
+ async def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Is either a DestinationAsset type or a IO type.
+ Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._publish_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_publish.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/components/{name}/versions/{version}/publish"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_versions_operations.py
index 875689bd263c..4ee7d438cd63 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_versions_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_versions_operations.py
@@ -7,7 +7,7 @@
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from io import IOBase
-from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload
+from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload
import urllib.parse
from azure.core.async_paging import AsyncItemPaged, AsyncList
@@ -21,11 +21,13 @@
)
from azure.core.pipeline import PipelineResponse
from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
from azure.core.rest import HttpRequest
from azure.core.tracing.decorator import distributed_trace
from azure.core.tracing.decorator_async import distributed_trace_async
from azure.core.utils import case_insensitive_dict
from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling
from ... import models as _models
from ..._vendor import _convert_request
@@ -34,6 +36,7 @@
build_delete_request,
build_get_request,
build_list_request,
+ build_publish_request,
)
T = TypeVar("T")
@@ -501,3 +504,253 @@ async def create_or_update(
create_or_update.metadata = {
"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/data/{name}/versions/{version}"
}
+
+ async def _publish_initial( # pylint: disable=inconsistent-return-statements
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "DestinationAsset")
+
+ request = build_publish_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._publish_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _publish_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/data/{name}/versions/{version}/publish"
+ }
+
+ @overload
+ async def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.DestinationAsset,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace_async
+ async def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Is either a DestinationAsset type or a IO type.
+ Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._publish_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_publish.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/data/{name}/versions/{version}/publish"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_versions_operations.py
index 031930c06fc8..0523a8e1aa3b 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_versions_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_versions_operations.py
@@ -7,7 +7,7 @@
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from io import IOBase
-from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload
+from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload
import urllib.parse
from azure.core.async_paging import AsyncItemPaged, AsyncList
@@ -21,11 +21,13 @@
)
from azure.core.pipeline import PipelineResponse
from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
from azure.core.rest import HttpRequest
from azure.core.tracing.decorator import distributed_trace
from azure.core.tracing.decorator_async import distributed_trace_async
from azure.core.utils import case_insensitive_dict
from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling
from ... import models as _models
from ..._vendor import _convert_request
@@ -34,6 +36,7 @@
build_delete_request,
build_get_request,
build_list_request,
+ build_publish_request,
)
T = TypeVar("T")
@@ -492,3 +495,253 @@ async def create_or_update(
create_or_update.metadata = {
"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/environments/{name}/versions/{version}"
}
+
+ async def _publish_initial( # pylint: disable=inconsistent-return-statements
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "DestinationAsset")
+
+ request = build_publish_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._publish_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _publish_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/environments/{name}/versions/{version}/publish"
+ }
+
+ @overload
+ async def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.DestinationAsset,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace_async
+ async def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Is either a DestinationAsset type or a IO type.
+ Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._publish_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_publish.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/environments/{name}/versions/{version}/publish"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_features_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_features_operations.py
new file mode 100644
index 000000000000..713179b1c8e1
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_features_operations.py
@@ -0,0 +1,269 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar, Union
+import urllib.parse
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._features_operations import build_get_request, build_list_request
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+
+class FeaturesOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s
+ :attr:`features` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs) -> None:
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ @distributed_trace
+ def list(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ featureset_name: str,
+ featureset_version: str,
+ skip: Optional[str] = None,
+ tags: Optional[str] = None,
+ feature_name: Optional[str] = None,
+ description: Optional[str] = None,
+ list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ page_size: int = 1000,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.Feature"]:
+ """List Features.
+
+ List Features.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param featureset_name: Featureset name. This is case-sensitive. Required.
+ :type featureset_name: str
+ :param featureset_version: Featureset Version identifier. This is case-sensitive. Required.
+ :type featureset_version: str
+ :param skip: Continuation token for pagination. Default value is None.
+ :type skip: str
+ :param tags: Comma-separated list of tag names (and optionally values). Example:
+ tag1,tag2=value2. Default value is None.
+ :type tags: str
+ :param feature_name: feature name. Default value is None.
+ :type feature_name: str
+ :param description: Description of the featureset. Default value is None.
+ :type description: str
+ :param list_view_type: [ListViewType.ActiveOnly, ListViewType.ArchivedOnly,
+ ListViewType.All]View type for including/excluding (for example) archived entities. Known
+ values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None.
+ :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ :param page_size: Page size. Default value is 1000.
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either Feature or the result of cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.Feature]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeatureResourceArmPaginatedResult] = kwargs.pop("cls", None)
+
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ featureset_name=featureset_name,
+ featureset_version=featureset_version,
+ subscription_id=self._config.subscription_id,
+ skip=skip,
+ tags=tags,
+ feature_name=feature_name,
+ description=description,
+ list_view_type=list_view_type,
+ page_size=page_size,
+ api_version=api_version,
+ template_url=self.list.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ # make call to next link with the client's api-version
+ _parsed_next_link = urllib.parse.urlparse(next_link)
+ _next_request_params = case_insensitive_dict(
+ {
+ key: [urllib.parse.quote(v) for v in value]
+ for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
+ }
+ )
+ _next_request_params["api-version"] = self._config.api_version
+ request = HttpRequest(
+ "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("FeatureResourceArmPaginatedResult", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem) # type: ignore
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+ return AsyncItemPaged(get_next, extract_data)
+
+ list.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{featuresetName}/versions/{featuresetVersion}/features"
+ }
+
+ @distributed_trace_async
+ async def get(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ featureset_name: str,
+ featureset_version: str,
+ feature_name: str,
+ **kwargs: Any
+ ) -> _models.Feature:
+ """Get feature.
+
+ Get feature.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param featureset_name: Feature set name. This is case-sensitive. Required.
+ :type featureset_name: str
+ :param featureset_version: Feature set version identifier. This is case-sensitive. Required.
+ :type featureset_version: str
+ :param feature_name: Feature Name. This is case-sensitive. Required.
+ :type feature_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Feature or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Feature
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.Feature] = kwargs.pop("cls", None)
+
+ request = build_get_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ featureset_name=featureset_name,
+ featureset_version=featureset_version,
+ feature_name=feature_name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self.get.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize("Feature", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{featuresetName}/versions/{featuresetVersion}/features/{featureName}"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_featureset_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_featureset_containers_operations.py
new file mode 100644
index 000000000000..da0306692f1d
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_featureset_containers_operations.py
@@ -0,0 +1,649 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from io import IOBase
+from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload
+import urllib.parse
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._featureset_containers_operations import (
+ build_create_or_update_request,
+ build_delete_request,
+ build_get_entity_request,
+ build_list_request,
+)
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+
+class FeaturesetContainersOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s
+ :attr:`featureset_containers` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs) -> None:
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ @distributed_trace
+ def list(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ skip: Optional[str] = None,
+ tags: Optional[str] = None,
+ list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ page_size: int = 20,
+ name: Optional[str] = None,
+ description: Optional[str] = None,
+ created_by: Optional[str] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.FeaturesetContainer"]:
+ """List featurestore entity containers.
+
+ List featurestore entity containers.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param skip: Continuation token for pagination. Default value is None.
+ :type skip: str
+ :param tags: Comma-separated list of tag names (and optionally values). Example:
+ tag1,tag2=value2. Default value is None.
+ :type tags: str
+ :param list_view_type: [ListViewType.ActiveOnly, ListViewType.ArchivedOnly,
+ ListViewType.All]View type for including/excluding (for example) archived entities. Known
+ values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None.
+ :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ :param page_size: page size. Default value is 20.
+ :type page_size: int
+ :param name: name for the featureset. Default value is None.
+ :type name: str
+ :param description: description for the feature set. Default value is None.
+ :type description: str
+ :param created_by: createdBy user name. Default value is None.
+ :type created_by: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either FeaturesetContainer or the result of cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.FeaturesetContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturesetContainerResourceArmPaginatedResult] = kwargs.pop("cls", None)
+
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ subscription_id=self._config.subscription_id,
+ skip=skip,
+ tags=tags,
+ list_view_type=list_view_type,
+ page_size=page_size,
+ name=name,
+ description=description,
+ created_by=created_by,
+ api_version=api_version,
+ template_url=self.list.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ # make call to next link with the client's api-version
+ _parsed_next_link = urllib.parse.urlparse(next_link)
+ _next_request_params = case_insensitive_dict(
+ {
+ key: [urllib.parse.quote(v) for v in value]
+ for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
+ }
+ )
+ _next_request_params["api-version"] = self._config.api_version
+ request = HttpRequest(
+ "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("FeaturesetContainerResourceArmPaginatedResult", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem) # type: ignore
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+ return AsyncItemPaged(get_next, extract_data)
+
+ list.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets"
+ }
+
+ async def _delete_initial( # pylint: disable=inconsistent-return-statements
+ self, resource_group_name: str, workspace_name: str, name: str, **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ request = build_delete_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self._delete_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _delete_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}"
+ }
+
+ @distributed_trace_async
+ async def begin_delete(
+ self, resource_group_name: str, workspace_name: str, name: str, **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Delete container.
+
+ Delete container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._delete_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ api_version=api_version,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_delete.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}"
+ }
+
+ @distributed_trace_async
+ async def get_entity(
+ self, resource_group_name: str, workspace_name: str, name: str, **kwargs: Any
+ ) -> _models.FeaturesetContainer:
+ """Get container.
+
+ Get container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: FeaturesetContainer or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.FeaturesetContainer
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturesetContainer] = kwargs.pop("cls", None)
+
+ request = build_get_entity_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self.get_entity.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize("FeaturesetContainer", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_entity.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}"
+ }
+
+ async def _create_or_update_initial(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: Union[_models.FeaturesetContainer, IO],
+ **kwargs: Any
+ ) -> _models.FeaturesetContainer:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturesetContainer] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "FeaturesetContainer")
+
+ request = build_create_or_update_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._create_or_update_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 201]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize("FeaturesetContainer", pipeline_response)
+
+ if response.status_code == 201:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Azure-AsyncOperation"] = self._deserialize(
+ "str", response.headers.get("Azure-AsyncOperation")
+ )
+
+ deserialized = self._deserialize("FeaturesetContainer", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers) # type: ignore
+
+ return deserialized # type: ignore
+
+ _create_or_update_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}"
+ }
+
+ @overload
+ async def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: _models.FeaturesetContainer,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.FeaturesetContainer]:
+ """Create or update container.
+
+ Create or update container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param body: Container entity to create or update. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturesetContainer
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either FeaturesetContainer or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.FeaturesetContainer]:
+ """Create or update container.
+
+ Create or update container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param body: Container entity to create or update. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either FeaturesetContainer or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace_async
+ async def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: Union[_models.FeaturesetContainer, IO],
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.FeaturesetContainer]:
+ """Create or update container.
+
+ Create or update container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param body: Container entity to create or update. Is either a FeaturesetContainer type or a IO
+ type. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturesetContainer or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either FeaturesetContainer or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturesetContainer] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._create_or_update_initial(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response):
+ deserialized = self._deserialize("FeaturesetContainer", pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod,
+ AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs),
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_create_or_update.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_featureset_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_featureset_versions_operations.py
new file mode 100644
index 000000000000..b2ebbb208325
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_featureset_versions_operations.py
@@ -0,0 +1,945 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from io import IOBase
+from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload
+import urllib.parse
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._featureset_versions_operations import (
+ build_backfill_request,
+ build_create_or_update_request,
+ build_delete_request,
+ build_get_request,
+ build_list_request,
+)
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+
+class FeaturesetVersionsOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s
+ :attr:`featureset_versions` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs) -> None:
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ @distributed_trace
+ def list(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ skip: Optional[str] = None,
+ tags: Optional[str] = None,
+ list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ page_size: int = 20,
+ version_name: Optional[str] = None,
+ version: Optional[str] = None,
+ description: Optional[str] = None,
+ created_by: Optional[str] = None,
+ stage: Optional[str] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.FeaturesetVersion"]:
+ """List versions.
+
+ List versions.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Featureset name. This is case-sensitive. Required.
+ :type name: str
+ :param skip: Continuation token for pagination. Default value is None.
+ :type skip: str
+ :param tags: Comma-separated list of tag names (and optionally values). Example:
+ tag1,tag2=value2. Default value is None.
+ :type tags: str
+ :param list_view_type: [ListViewType.ActiveOnly, ListViewType.ArchivedOnly,
+ ListViewType.All]View type for including/excluding (for example) archived entities. Known
+ values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None.
+ :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ :param page_size: page size. Default value is 20.
+ :type page_size: int
+ :param version_name: name for the featureset version. Default value is None.
+ :type version_name: str
+ :param version: featureset version. Default value is None.
+ :type version: str
+ :param description: description for the feature set version. Default value is None.
+ :type description: str
+ :param created_by: createdBy user name. Default value is None.
+ :type created_by: str
+ :param stage: Specifies the featurestore stage. Default value is None.
+ :type stage: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either FeaturesetVersion or the result of cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.FeaturesetVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturesetVersionResourceArmPaginatedResult] = kwargs.pop("cls", None)
+
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ skip=skip,
+ tags=tags,
+ list_view_type=list_view_type,
+ page_size=page_size,
+ version_name=version_name,
+ version=version,
+ description=description,
+ created_by=created_by,
+ stage=stage,
+ api_version=api_version,
+ template_url=self.list.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ # make call to next link with the client's api-version
+ _parsed_next_link = urllib.parse.urlparse(next_link)
+ _next_request_params = case_insensitive_dict(
+ {
+ key: [urllib.parse.quote(v) for v in value]
+ for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
+ }
+ )
+ _next_request_params["api-version"] = self._config.api_version
+ request = HttpRequest(
+ "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("FeaturesetVersionResourceArmPaginatedResult", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem) # type: ignore
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+ return AsyncItemPaged(get_next, extract_data)
+
+ list.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions"
+ }
+
+ async def _delete_initial( # pylint: disable=inconsistent-return-statements
+ self, resource_group_name: str, workspace_name: str, name: str, version: str, **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ request = build_delete_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self._delete_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _delete_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}"
+ }
+
+ @distributed_trace_async
+ async def begin_delete(
+ self, resource_group_name: str, workspace_name: str, name: str, version: str, **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Delete version.
+
+ Delete version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._delete_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ api_version=api_version,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_delete.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}"
+ }
+
+ @distributed_trace_async
+ async def get(
+ self, resource_group_name: str, workspace_name: str, name: str, version: str, **kwargs: Any
+ ) -> _models.FeaturesetVersion:
+ """Get version.
+
+ Get version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: FeaturesetVersion or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.FeaturesetVersion
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturesetVersion] = kwargs.pop("cls", None)
+
+ request = build_get_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self.get.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize("FeaturesetVersion", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}"
+ }
+
+ async def _create_or_update_initial(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.FeaturesetVersion, IO],
+ **kwargs: Any
+ ) -> _models.FeaturesetVersion:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturesetVersion] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "FeaturesetVersion")
+
+ request = build_create_or_update_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._create_or_update_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 201]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize("FeaturesetVersion", pipeline_response)
+
+ if response.status_code == 201:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Azure-AsyncOperation"] = self._deserialize(
+ "str", response.headers.get("Azure-AsyncOperation")
+ )
+
+ deserialized = self._deserialize("FeaturesetVersion", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers) # type: ignore
+
+ return deserialized # type: ignore
+
+ _create_or_update_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}"
+ }
+
+ @overload
+ async def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.FeaturesetVersion,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.FeaturesetVersion]:
+ """Create or update version.
+
+ Create or update version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Version entity to create or update. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturesetVersion
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either FeaturesetVersion or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.FeaturesetVersion]:
+ """Create or update version.
+
+ Create or update version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Version entity to create or update. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either FeaturesetVersion or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace_async
+ async def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.FeaturesetVersion, IO],
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.FeaturesetVersion]:
+ """Create or update version.
+
+ Create or update version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Version entity to create or update. Is either a FeaturesetVersion type or a IO
+ type. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturesetVersion or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either FeaturesetVersion or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturesetVersion] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._create_or_update_initial(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response):
+ deserialized = self._deserialize("FeaturesetVersion", pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod,
+ AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs),
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_create_or_update.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}"
+ }
+
+ async def _backfill_initial(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.FeaturesetVersionBackfillRequest, IO],
+ **kwargs: Any
+ ) -> Optional[_models.FeaturesetVersionBackfillResponse]:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[Optional[_models.FeaturesetVersionBackfillResponse]] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "FeaturesetVersionBackfillRequest")
+
+ request = build_backfill_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._backfill_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = None
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize("FeaturesetVersionBackfillResponse", pipeline_response)
+
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers)
+
+ return deserialized
+
+ _backfill_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}/backfill"
+ }
+
+ @overload
+ async def begin_backfill(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.FeaturesetVersionBackfillRequest,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.FeaturesetVersionBackfillResponse]:
+ """Backfill.
+
+ Backfill.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Feature set version backfill request entity. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturesetVersionBackfillRequest
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either FeaturesetVersionBackfillResponse or
+ the result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetVersionBackfillResponse]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def begin_backfill(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.FeaturesetVersionBackfillResponse]:
+ """Backfill.
+
+ Backfill.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Feature set version backfill request entity. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either FeaturesetVersionBackfillResponse or
+ the result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetVersionBackfillResponse]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace_async
+ async def begin_backfill(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.FeaturesetVersionBackfillRequest, IO],
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.FeaturesetVersionBackfillResponse]:
+ """Backfill.
+
+ Backfill.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Feature set version backfill request entity. Is either a
+ FeaturesetVersionBackfillRequest type or a IO type. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturesetVersionBackfillRequest or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either FeaturesetVersionBackfillResponse or
+ the result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetVersionBackfillResponse]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturesetVersionBackfillResponse] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._backfill_initial(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response):
+ deserialized = self._deserialize("FeaturesetVersionBackfillResponse", pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_backfill.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}/backfill"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_featurestore_entity_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_featurestore_entity_containers_operations.py
new file mode 100644
index 000000000000..1a68f75af25d
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_featurestore_entity_containers_operations.py
@@ -0,0 +1,650 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from io import IOBase
+from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload
+import urllib.parse
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._featurestore_entity_containers_operations import (
+ build_create_or_update_request,
+ build_delete_request,
+ build_get_entity_request,
+ build_list_request,
+)
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+
+class FeaturestoreEntityContainersOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s
+ :attr:`featurestore_entity_containers` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs) -> None:
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ @distributed_trace
+ def list(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ skip: Optional[str] = None,
+ tags: Optional[str] = None,
+ list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ page_size: int = 20,
+ name: Optional[str] = None,
+ description: Optional[str] = None,
+ created_by: Optional[str] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.FeaturestoreEntityContainer"]:
+ """List featurestore entity containers.
+
+ List featurestore entity containers.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param skip: Continuation token for pagination. Default value is None.
+ :type skip: str
+ :param tags: Comma-separated list of tag names (and optionally values). Example:
+ tag1,tag2=value2. Default value is None.
+ :type tags: str
+ :param list_view_type: [ListViewType.ActiveOnly, ListViewType.ArchivedOnly,
+ ListViewType.All]View type for including/excluding (for example) archived entities. Known
+ values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None.
+ :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ :param page_size: page size. Default value is 20.
+ :type page_size: int
+ :param name: name for the featurestore entity. Default value is None.
+ :type name: str
+ :param description: description for the featurestore entity. Default value is None.
+ :type description: str
+ :param created_by: createdBy user name. Default value is None.
+ :type created_by: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either FeaturestoreEntityContainer or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturestoreEntityContainerResourceArmPaginatedResult] = kwargs.pop("cls", None)
+
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ subscription_id=self._config.subscription_id,
+ skip=skip,
+ tags=tags,
+ list_view_type=list_view_type,
+ page_size=page_size,
+ name=name,
+ description=description,
+ created_by=created_by,
+ api_version=api_version,
+ template_url=self.list.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ # make call to next link with the client's api-version
+ _parsed_next_link = urllib.parse.urlparse(next_link)
+ _next_request_params = case_insensitive_dict(
+ {
+ key: [urllib.parse.quote(v) for v in value]
+ for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
+ }
+ )
+ _next_request_params["api-version"] = self._config.api_version
+ request = HttpRequest(
+ "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("FeaturestoreEntityContainerResourceArmPaginatedResult", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem) # type: ignore
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+ return AsyncItemPaged(get_next, extract_data)
+
+ list.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities"
+ }
+
+ async def _delete_initial( # pylint: disable=inconsistent-return-statements
+ self, resource_group_name: str, workspace_name: str, name: str, **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ request = build_delete_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self._delete_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _delete_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}"
+ }
+
+ @distributed_trace_async
+ async def begin_delete(
+ self, resource_group_name: str, workspace_name: str, name: str, **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Delete container.
+
+ Delete container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._delete_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ api_version=api_version,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_delete.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}"
+ }
+
+ @distributed_trace_async
+ async def get_entity(
+ self, resource_group_name: str, workspace_name: str, name: str, **kwargs: Any
+ ) -> _models.FeaturestoreEntityContainer:
+ """Get container.
+
+ Get container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: FeaturestoreEntityContainer or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturestoreEntityContainer] = kwargs.pop("cls", None)
+
+ request = build_get_entity_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self.get_entity.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize("FeaturestoreEntityContainer", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_entity.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}"
+ }
+
+ async def _create_or_update_initial(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: Union[_models.FeaturestoreEntityContainer, IO],
+ **kwargs: Any
+ ) -> _models.FeaturestoreEntityContainer:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturestoreEntityContainer] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "FeaturestoreEntityContainer")
+
+ request = build_create_or_update_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._create_or_update_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 201]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize("FeaturestoreEntityContainer", pipeline_response)
+
+ if response.status_code == 201:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Azure-AsyncOperation"] = self._deserialize(
+ "str", response.headers.get("Azure-AsyncOperation")
+ )
+
+ deserialized = self._deserialize("FeaturestoreEntityContainer", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers) # type: ignore
+
+ return deserialized # type: ignore
+
+ _create_or_update_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}"
+ }
+
+ @overload
+ async def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: _models.FeaturestoreEntityContainer,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.FeaturestoreEntityContainer]:
+ """Create or update container.
+
+ Create or update container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param body: Container entity to create or update. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either FeaturestoreEntityContainer or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.FeaturestoreEntityContainer]:
+ """Create or update container.
+
+ Create or update container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param body: Container entity to create or update. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either FeaturestoreEntityContainer or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace_async
+ async def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: Union[_models.FeaturestoreEntityContainer, IO],
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.FeaturestoreEntityContainer]:
+ """Create or update container.
+
+ Create or update container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param body: Container entity to create or update. Is either a FeaturestoreEntityContainer type
+ or a IO type. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either FeaturestoreEntityContainer or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturestoreEntityContainer] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._create_or_update_initial(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response):
+ deserialized = self._deserialize("FeaturestoreEntityContainer", pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod,
+ AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs),
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_create_or_update.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_featurestore_entity_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_featurestore_entity_versions_operations.py
new file mode 100644
index 000000000000..65885ab1ab71
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_featurestore_entity_versions_operations.py
@@ -0,0 +1,681 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from io import IOBase
+from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload
+import urllib.parse
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._featurestore_entity_versions_operations import (
+ build_create_or_update_request,
+ build_delete_request,
+ build_get_request,
+ build_list_request,
+)
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+
+class FeaturestoreEntityVersionsOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s
+ :attr:`featurestore_entity_versions` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs) -> None:
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ @distributed_trace
+ def list(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ skip: Optional[str] = None,
+ tags: Optional[str] = None,
+ list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ page_size: int = 20,
+ version_name: Optional[str] = None,
+ version: Optional[str] = None,
+ description: Optional[str] = None,
+ created_by: Optional[str] = None,
+ stage: Optional[str] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.FeaturestoreEntityVersion"]:
+ """List versions.
+
+ List versions.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Feature entity name. This is case-sensitive. Required.
+ :type name: str
+ :param skip: Continuation token for pagination. Default value is None.
+ :type skip: str
+ :param tags: Comma-separated list of tag names (and optionally values). Example:
+ tag1,tag2=value2. Default value is None.
+ :type tags: str
+ :param list_view_type: [ListViewType.ActiveOnly, ListViewType.ArchivedOnly,
+ ListViewType.All]View type for including/excluding (for example) archived entities. Known
+ values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None.
+ :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ :param page_size: page size. Default value is 20.
+ :type page_size: int
+ :param version_name: name for the featurestore entity version. Default value is None.
+ :type version_name: str
+ :param version: featurestore entity version. Default value is None.
+ :type version: str
+ :param description: description for the feature entity version. Default value is None.
+ :type description: str
+ :param created_by: createdBy user name. Default value is None.
+ :type created_by: str
+ :param stage: Specifies the featurestore stage. Default value is None.
+ :type stage: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either FeaturestoreEntityVersion or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturestoreEntityVersionResourceArmPaginatedResult] = kwargs.pop("cls", None)
+
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ skip=skip,
+ tags=tags,
+ list_view_type=list_view_type,
+ page_size=page_size,
+ version_name=version_name,
+ version=version,
+ description=description,
+ created_by=created_by,
+ stage=stage,
+ api_version=api_version,
+ template_url=self.list.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ # make call to next link with the client's api-version
+ _parsed_next_link = urllib.parse.urlparse(next_link)
+ _next_request_params = case_insensitive_dict(
+ {
+ key: [urllib.parse.quote(v) for v in value]
+ for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
+ }
+ )
+ _next_request_params["api-version"] = self._config.api_version
+ request = HttpRequest(
+ "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("FeaturestoreEntityVersionResourceArmPaginatedResult", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem) # type: ignore
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+ return AsyncItemPaged(get_next, extract_data)
+
+ list.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions"
+ }
+
+ async def _delete_initial( # pylint: disable=inconsistent-return-statements
+ self, resource_group_name: str, workspace_name: str, name: str, version: str, **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ request = build_delete_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self._delete_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _delete_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions/{version}"
+ }
+
+ @distributed_trace_async
+ async def begin_delete(
+ self, resource_group_name: str, workspace_name: str, name: str, version: str, **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Delete version.
+
+ Delete version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._delete_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ api_version=api_version,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_delete.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions/{version}"
+ }
+
+ @distributed_trace_async
+ async def get(
+ self, resource_group_name: str, workspace_name: str, name: str, version: str, **kwargs: Any
+ ) -> _models.FeaturestoreEntityVersion:
+ """Get version.
+
+ Get version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: FeaturestoreEntityVersion or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturestoreEntityVersion] = kwargs.pop("cls", None)
+
+ request = build_get_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self.get.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize("FeaturestoreEntityVersion", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions/{version}"
+ }
+
+ async def _create_or_update_initial(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.FeaturestoreEntityVersion, IO],
+ **kwargs: Any
+ ) -> _models.FeaturestoreEntityVersion:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturestoreEntityVersion] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "FeaturestoreEntityVersion")
+
+ request = build_create_or_update_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._create_or_update_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 201]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize("FeaturestoreEntityVersion", pipeline_response)
+
+ if response.status_code == 201:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Azure-AsyncOperation"] = self._deserialize(
+ "str", response.headers.get("Azure-AsyncOperation")
+ )
+
+ deserialized = self._deserialize("FeaturestoreEntityVersion", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers) # type: ignore
+
+ return deserialized # type: ignore
+
+ _create_or_update_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions/{version}"
+ }
+
+ @overload
+ async def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.FeaturestoreEntityVersion,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.FeaturestoreEntityVersion]:
+ """Create or update version.
+
+ Create or update version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Version entity to create or update. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either FeaturestoreEntityVersion or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.FeaturestoreEntityVersion]:
+ """Create or update version.
+
+ Create or update version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Version entity to create or update. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either FeaturestoreEntityVersion or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace_async
+ async def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.FeaturestoreEntityVersion, IO],
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.FeaturestoreEntityVersion]:
+ """Create or update version.
+
+ Create or update version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Version entity to create or update. Is either a FeaturestoreEntityVersion type or
+ a IO type. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either FeaturestoreEntityVersion or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturestoreEntityVersion] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._create_or_update_initial(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response):
+ deserialized = self._deserialize("FeaturestoreEntityVersion", pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod,
+ AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs),
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_create_or_update.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions/{version}"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_jobs_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_jobs_operations.py
index 8196b0804d30..c5216bd05a57 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_jobs_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_jobs_operations.py
@@ -71,6 +71,7 @@ def list(
job_type: Optional[str] = None,
tag: Optional[str] = None,
list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ properties: Optional[str] = None,
**kwargs: Any
) -> AsyncIterable["_models.JobBase"]:
"""Lists Jobs in the workspace.
@@ -91,6 +92,9 @@ def list(
:param list_view_type: View type for including/excluding (for example) archived entities. Known
values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None.
:type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ :param properties: Comma-separated list of user property names (and optionally values).
+ Example: prop1,prop2=value2. Default value is None.
+ :type properties: str
:keyword callable cls: A custom type or function that will be passed the direct response
:return: An iterator like instance of either JobBase or the result of cls(response)
:rtype:
@@ -122,6 +126,7 @@ def prepare_request(next_link=None):
job_type=job_type,
tag=tag,
list_view_type=list_view_type,
+ properties=properties,
api_version=api_version,
template_url=self.list.metadata["url"],
headers=_headers,
@@ -387,8 +392,10 @@ async def create_or_update(
**kwargs: Any
) -> _models.JobBase:
"""Creates and executes a Job.
+ For update case, the Tags in the definition passed in will replace Tags in the existing job.
Creates and executes a Job.
+ For update case, the Tags in the definition passed in will replace Tags in the existing job.
:param resource_group_name: The name of the resource group. The name is case insensitive.
Required.
@@ -420,8 +427,10 @@ async def create_or_update(
**kwargs: Any
) -> _models.JobBase:
"""Creates and executes a Job.
+ For update case, the Tags in the definition passed in will replace Tags in the existing job.
Creates and executes a Job.
+ For update case, the Tags in the definition passed in will replace Tags in the existing job.
:param resource_group_name: The name of the resource group. The name is case insensitive.
Required.
@@ -446,8 +455,10 @@ async def create_or_update(
self, resource_group_name: str, workspace_name: str, id: str, body: Union[_models.JobBase, IO], **kwargs: Any
) -> _models.JobBase:
"""Creates and executes a Job.
+ For update case, the Tags in the definition passed in will replace Tags in the existing job.
Creates and executes a Job.
+ For update case, the Tags in the definition passed in will replace Tags in the existing job.
:param resource_group_name: The name of the resource group. The name is case insensitive.
Required.
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_managed_network_provisions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_managed_network_provisions_operations.py
new file mode 100644
index 000000000000..9a5995c4287b
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_managed_network_provisions_operations.py
@@ -0,0 +1,299 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from io import IOBase
+from typing import Any, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload
+
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._managed_network_provisions_operations import build_provision_managed_network_request
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+
+class ManagedNetworkProvisionsOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s
+ :attr:`managed_network_provisions` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs) -> None:
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ async def _provision_managed_network_initial(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional[Union[_models.ManagedNetworkProvisionOptions, IO]] = None,
+ **kwargs: Any
+ ) -> Optional[_models.ManagedNetworkProvisionStatus]:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[Optional[_models.ManagedNetworkProvisionStatus]] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ if body is not None:
+ _json = self._serialize.body(body, "ManagedNetworkProvisionOptions")
+ else:
+ _json = None
+
+ request = build_provision_managed_network_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._provision_managed_network_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = None
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize("ManagedNetworkProvisionStatus", pipeline_response)
+
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers)
+
+ return deserialized
+
+ _provision_managed_network_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/provisionManagedNetwork"
+ }
+
+ @overload
+ async def begin_provision_managed_network(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional[_models.ManagedNetworkProvisionOptions] = None,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.ManagedNetworkProvisionStatus]:
+ """Provisions the managed network of a machine learning workspace.
+
+ Provisions the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param body: Managed Network Provisioning Options for a machine learning workspace. Default
+ value is None.
+ :type body: ~azure.mgmt.machinelearningservices.models.ManagedNetworkProvisionOptions
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either ManagedNetworkProvisionStatus or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.ManagedNetworkProvisionStatus]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def begin_provision_managed_network(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional[IO] = None,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.ManagedNetworkProvisionStatus]:
+ """Provisions the managed network of a machine learning workspace.
+
+ Provisions the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param body: Managed Network Provisioning Options for a machine learning workspace. Default
+ value is None.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either ManagedNetworkProvisionStatus or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.ManagedNetworkProvisionStatus]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace_async
+ async def begin_provision_managed_network(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional[Union[_models.ManagedNetworkProvisionOptions, IO]] = None,
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.ManagedNetworkProvisionStatus]:
+ """Provisions the managed network of a machine learning workspace.
+
+ Provisions the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param body: Managed Network Provisioning Options for a machine learning workspace. Is either a
+ ManagedNetworkProvisionOptions type or a IO type. Default value is None.
+ :type body: ~azure.mgmt.machinelearningservices.models.ManagedNetworkProvisionOptions or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either ManagedNetworkProvisionStatus or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.ManagedNetworkProvisionStatus]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.ManagedNetworkProvisionStatus] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._provision_managed_network_initial(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response):
+ deserialized = self._deserialize("ManagedNetworkProvisionStatus", pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_provision_managed_network.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/provisionManagedNetwork"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_managed_network_settings_rule_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_managed_network_settings_rule_operations.py
new file mode 100644
index 000000000000..a8e926be6b60
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_managed_network_settings_rule_operations.py
@@ -0,0 +1,606 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from io import IOBase
+from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload
+import urllib.parse
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._managed_network_settings_rule_operations import (
+ build_create_or_update_request,
+ build_delete_request,
+ build_get_request,
+ build_list_request,
+)
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+
+class ManagedNetworkSettingsRuleOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s
+ :attr:`managed_network_settings_rule` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs) -> None:
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ @distributed_trace
+ def list(
+ self, resource_group_name: str, workspace_name: str, **kwargs: Any
+ ) -> AsyncIterable["_models.OutboundRuleBasicResource"]:
+ """Lists the managed network outbound rules for a machine learning workspace.
+
+ Lists the managed network outbound rules for a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either OutboundRuleBasicResource or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.OutboundRuleListResult] = kwargs.pop("cls", None)
+
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self.list.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ # make call to next link with the client's api-version
+ _parsed_next_link = urllib.parse.urlparse(next_link)
+ _next_request_params = case_insensitive_dict(
+ {
+ key: [urllib.parse.quote(v) for v in value]
+ for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
+ }
+ )
+ _next_request_params["api-version"] = self._config.api_version
+ request = HttpRequest(
+ "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("OutboundRuleListResult", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem) # type: ignore
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+ return AsyncItemPaged(get_next, extract_data)
+
+ list.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules"
+ }
+
+ async def _delete_initial( # pylint: disable=inconsistent-return-statements
+ self, resource_group_name: str, workspace_name: str, rule_name: str, **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ request = build_delete_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ rule_name=rule_name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self._delete_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _delete_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules/{ruleName}"
+ }
+
+ @distributed_trace_async
+ async def begin_delete(
+ self, resource_group_name: str, workspace_name: str, rule_name: str, **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Deletes an outbound rule from the managed network of a machine learning workspace.
+
+ Deletes an outbound rule from the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param rule_name: Name of the workspace managed network outbound rule. Required.
+ :type rule_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._delete_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ rule_name=rule_name,
+ api_version=api_version,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs))
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_delete.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules/{ruleName}"
+ }
+
+ @distributed_trace_async
+ async def get(
+ self, resource_group_name: str, workspace_name: str, rule_name: str, **kwargs: Any
+ ) -> _models.OutboundRuleBasicResource:
+ """Gets an outbound rule from the managed network of a machine learning workspace.
+
+ Gets an outbound rule from the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param rule_name: Name of the workspace managed network outbound rule. Required.
+ :type rule_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: OutboundRuleBasicResource or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.OutboundRuleBasicResource] = kwargs.pop("cls", None)
+
+ request = build_get_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ rule_name=rule_name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self.get.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize("OutboundRuleBasicResource", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules/{ruleName}"
+ }
+
+ async def _create_or_update_initial(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ rule_name: str,
+ body: Union[_models.OutboundRuleBasicResource, IO],
+ **kwargs: Any
+ ) -> Optional[_models.OutboundRuleBasicResource]:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[Optional[_models.OutboundRuleBasicResource]] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "OutboundRuleBasicResource")
+
+ request = build_create_or_update_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ rule_name=rule_name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._create_or_update_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = None
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize("OutboundRuleBasicResource", pipeline_response)
+
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers)
+
+ return deserialized
+
+ _create_or_update_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules/{ruleName}"
+ }
+
+ @overload
+ async def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ rule_name: str,
+ body: _models.OutboundRuleBasicResource,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.OutboundRuleBasicResource]:
+ """Creates or updates an outbound rule in the managed network of a machine learning workspace.
+
+ Creates or updates an outbound rule in the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param rule_name: Name of the workspace managed network outbound rule. Required.
+ :type rule_name: str
+ :param body: Outbound Rule to be created or updated in the managed network of a machine
+ learning workspace. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either OutboundRuleBasicResource or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ rule_name: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.OutboundRuleBasicResource]:
+ """Creates or updates an outbound rule in the managed network of a machine learning workspace.
+
+ Creates or updates an outbound rule in the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param rule_name: Name of the workspace managed network outbound rule. Required.
+ :type rule_name: str
+ :param body: Outbound Rule to be created or updated in the managed network of a machine
+ learning workspace. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either OutboundRuleBasicResource or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace_async
+ async def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ rule_name: str,
+ body: Union[_models.OutboundRuleBasicResource, IO],
+ **kwargs: Any
+ ) -> AsyncLROPoller[_models.OutboundRuleBasicResource]:
+ """Creates or updates an outbound rule in the managed network of a machine learning workspace.
+
+ Creates or updates an outbound rule in the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param rule_name: Name of the workspace managed network outbound rule. Required.
+ :type rule_name: str
+ :param body: Outbound Rule to be created or updated in the managed network of a machine
+ learning workspace. Is either a OutboundRuleBasicResource type or a IO type. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either OutboundRuleBasicResource or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.OutboundRuleBasicResource] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._create_or_update_initial(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ rule_name=rule_name,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response):
+ deserialized = self._deserialize("OutboundRuleBasicResource", pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_create_or_update.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules/{ruleName}"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_versions_operations.py
index 8d601cec0072..592be8920a70 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_versions_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_versions_operations.py
@@ -7,7 +7,7 @@
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from io import IOBase
-from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload
+from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload
import urllib.parse
from azure.core.async_paging import AsyncItemPaged, AsyncList
@@ -21,11 +21,13 @@
)
from azure.core.pipeline import PipelineResponse
from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
from azure.core.rest import HttpRequest
from azure.core.tracing.decorator import distributed_trace
from azure.core.tracing.decorator_async import distributed_trace_async
from azure.core.utils import case_insensitive_dict
from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling
from ... import models as _models
from ..._vendor import _convert_request
@@ -34,6 +36,7 @@
build_delete_request,
build_get_request,
build_list_request,
+ build_publish_request,
)
T = TypeVar("T")
@@ -518,3 +521,253 @@ async def create_or_update(
create_or_update.metadata = {
"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{name}/versions/{version}"
}
+
+ async def _publish_initial( # pylint: disable=inconsistent-return-statements
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "DestinationAsset")
+
+ request = build_publish_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._publish_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _publish_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{name}/versions/{version}/publish"
+ }
+
+ @overload
+ async def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.DestinationAsset,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace_async
+ async def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Is either a DestinationAsset type or a IO type.
+ Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._publish_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_publish.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{name}/versions/{version}/publish"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_operations.py
index 3edc6c4bb6de..df569e88f306 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_operations.py
@@ -53,20 +53,20 @@ def __init__(self, *args, **kwargs) -> None:
self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
@distributed_trace
- def list(self, **kwargs: Any) -> AsyncIterable["_models.AmlOperation"]:
+ def list(self, **kwargs: Any) -> AsyncIterable["_models.Operation"]:
"""Lists all of the available Azure Machine Learning Workspaces REST API operations.
:keyword callable cls: A custom type or function that will be passed the direct response
- :return: An iterator like instance of either AmlOperation or the result of cls(response)
+ :return: An iterator like instance of either Operation or the result of cls(response)
:rtype:
- ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.AmlOperation]
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.Operation]
:raises ~azure.core.exceptions.HttpResponseError:
"""
_headers = kwargs.pop("headers", {}) or {}
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
- cls: ClsType[_models.AmlOperationListResult] = kwargs.pop("cls", None)
+ cls: ClsType[_models.OperationListResult] = kwargs.pop("cls", None)
error_map = {
401: ClientAuthenticationError,
@@ -107,7 +107,7 @@ def prepare_request(next_link=None):
return request
async def extract_data(pipeline_response):
- deserialized = self._deserialize("AmlOperationListResult", pipeline_response)
+ deserialized = self._deserialize("OperationListResult", pipeline_response)
list_of_elem = deserialized.value
if cls:
list_of_elem = cls(list_of_elem) # type: ignore
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_data_references_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_data_references_operations.py
new file mode 100644
index 000000000000..7c3a29103e53
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_data_references_operations.py
@@ -0,0 +1,224 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from io import IOBase
+from typing import Any, Callable, Dict, IO, Optional, TypeVar, Union, overload
+
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._registry_data_references_operations import build_get_blob_reference_sas_request
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+
+class RegistryDataReferencesOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s
+ :attr:`registry_data_references` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs) -> None:
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ @overload
+ async def get_blob_reference_sas(
+ self,
+ resource_group_name: str,
+ registry_name: str,
+ name: str,
+ version: str,
+ body: _models.GetBlobReferenceSASRequestDto,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> _models.GetBlobReferenceSASResponseDto:
+ """Get blob reference SAS Uri.
+
+ Get blob reference SAS Uri.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive.
+ Required.
+ :type registry_name: str
+ :param name: Data reference name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Asset id and blob uri. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.GetBlobReferenceSASRequestDto
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: GetBlobReferenceSASResponseDto or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.GetBlobReferenceSASResponseDto
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def get_blob_reference_sas(
+ self,
+ resource_group_name: str,
+ registry_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> _models.GetBlobReferenceSASResponseDto:
+ """Get blob reference SAS Uri.
+
+ Get blob reference SAS Uri.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive.
+ Required.
+ :type registry_name: str
+ :param name: Data reference name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Asset id and blob uri. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: GetBlobReferenceSASResponseDto or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.GetBlobReferenceSASResponseDto
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace_async
+ async def get_blob_reference_sas(
+ self,
+ resource_group_name: str,
+ registry_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.GetBlobReferenceSASRequestDto, IO],
+ **kwargs: Any
+ ) -> _models.GetBlobReferenceSASResponseDto:
+ """Get blob reference SAS Uri.
+
+ Get blob reference SAS Uri.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive.
+ Required.
+ :type registry_name: str
+ :param name: Data reference name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Asset id and blob uri. Is either a GetBlobReferenceSASRequestDto type or a IO
+ type. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.GetBlobReferenceSASRequestDto or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: GetBlobReferenceSASResponseDto or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.GetBlobReferenceSASResponseDto
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.GetBlobReferenceSASResponseDto] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "GetBlobReferenceSASRequestDto")
+
+ request = build_get_blob_reference_sas_request(
+ resource_group_name=resource_group_name,
+ registry_name=registry_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.get_blob_reference_sas.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize("GetBlobReferenceSASResponseDto", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_blob_reference_sas.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/datareferences/{name}/versions/{version}"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspaces_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspaces_operations.py
index 1195fbbbd75b..8e0e26052ab7 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspaces_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspaces_operations.py
@@ -188,11 +188,16 @@ async def _create_or_update_initial(
raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
deserialized = None
+ response_headers = {}
if response.status_code == 200:
deserialized = self._deserialize("Workspace", pipeline_response)
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
if cls:
- return cls(pipeline_response, deserialized, {})
+ return cls(pipeline_response, deserialized, response_headers)
return deserialized
@@ -356,7 +361,7 @@ def get_long_running_output(pipeline_response):
}
async def _delete_initial( # pylint: disable=inconsistent-return-statements
- self, resource_group_name: str, workspace_name: str, **kwargs: Any
+ self, resource_group_name: str, workspace_name: str, force_to_purge: bool = False, **kwargs: Any
) -> None:
error_map = {
401: ClientAuthenticationError,
@@ -376,6 +381,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements
resource_group_name=resource_group_name,
workspace_name=workspace_name,
subscription_id=self._config.subscription_id,
+ force_to_purge=force_to_purge,
api_version=api_version,
template_url=self._delete_initial.metadata["url"],
headers=_headers,
@@ -404,7 +410,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements
}
@distributed_trace_async
- async def begin_delete(self, resource_group_name: str, workspace_name: str, **kwargs: Any) -> AsyncLROPoller[None]:
+ async def begin_delete(
+ self, resource_group_name: str, workspace_name: str, force_to_purge: bool = False, **kwargs: Any
+ ) -> AsyncLROPoller[None]:
"""Deletes a machine learning workspace.
:param resource_group_name: The name of the resource group. The name is case insensitive.
@@ -412,6 +420,8 @@ async def begin_delete(self, resource_group_name: str, workspace_name: str, **kw
:type resource_group_name: str
:param workspace_name: Name of Azure Machine Learning workspace. Required.
:type workspace_name: str
+ :param force_to_purge: Flag to indicate delete is a purge request. Default value is False.
+ :type force_to_purge: bool
:keyword callable cls: A custom type or function that will be passed the direct response
:keyword str continuation_token: A continuation token to restart a poller from a saved state.
:keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
@@ -436,6 +446,7 @@ async def begin_delete(self, resource_group_name: str, workspace_name: str, **kw
raw_result = await self._delete_initial( # type: ignore
resource_group_name=resource_group_name,
workspace_name=workspace_name,
+ force_to_purge=force_to_purge,
api_version=api_version,
cls=lambda x, y, z: x,
headers=_headers,
@@ -525,11 +536,16 @@ async def _update_initial(
raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
deserialized = None
+ response_headers = {}
if response.status_code == 200:
deserialized = self._deserialize("Workspace", pipeline_response)
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
if cls:
- return cls(pipeline_response, deserialized, {})
+ return cls(pipeline_response, deserialized, response_headers)
return deserialized
@@ -1137,8 +1153,13 @@ async def _resync_keys_initial( # pylint: disable=inconsistent-return-statement
error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
if cls:
- return cls(pipeline_response, None, {})
+ return cls(pipeline_response, None, response_headers)
_resync_keys_initial.metadata = {
"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/resyncKeys"
@@ -1405,11 +1426,16 @@ async def _prepare_notebook_initial(
raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
deserialized = None
+ response_headers = {}
if response.status_code == 200:
deserialized = self._deserialize("NotebookResourceInfo", pipeline_response)
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
if cls:
- return cls(pipeline_response, deserialized, {})
+ return cls(pipeline_response, deserialized, response_headers)
return deserialized
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/__init__.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/__init__.py
index 339c533836e3..6420c137643c 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/__init__.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/__init__.py
@@ -15,17 +15,17 @@
from ._models_py3 import AksComputeSecrets
from ._models_py3 import AksComputeSecretsProperties
from ._models_py3 import AksNetworkingConfiguration
+from ._models_py3 import AllFeatures
from ._models_py3 import AllNodes
from ._models_py3 import AmlCompute
from ._models_py3 import AmlComputeNodeInformation
from ._models_py3 import AmlComputeNodesInformation
from ._models_py3 import AmlComputeProperties
from ._models_py3 import AmlComputeSchema
-from ._models_py3 import AmlOperation
-from ._models_py3 import AmlOperationDisplay
-from ._models_py3 import AmlOperationListResult
from ._models_py3 import AmlToken
+from ._models_py3 import AmlTokenComputeIdentity
from ._models_py3 import AmlUserFeature
+from ._models_py3 import AnonymousAccessCredential
from ._models_py3 import ArmResourceId
from ._models_py3 import AssetBase
from ._models_py3 import AssetContainer
@@ -45,6 +45,8 @@
from ._models_py3 import AzureBlobDatastore
from ._models_py3 import AzureDataLakeGen1Datastore
from ._models_py3 import AzureDataLakeGen2Datastore
+from ._models_py3 import AzureDatastore
+from ._models_py3 import AzureDevOpsWebhook
from ._models_py3 import AzureFileDatastore
from ._models_py3 import BanditPolicy
from ._models_py3 import BatchDeployment
@@ -59,6 +61,9 @@
from ._models_py3 import BindOptions
from ._models_py3 import BlobReferenceForConsumptionDto
from ._models_py3 import BuildContext
+from ._models_py3 import CategoricalDataDriftMetricThreshold
+from ._models_py3 import CategoricalDataQualityMetricThreshold
+from ._models_py3 import CategoricalPredictionDriftMetricThreshold
from ._models_py3 import CertificateDatastoreCredentials
from ._models_py3 import CertificateDatastoreSecrets
from ._models_py3 import Classification
@@ -102,11 +107,14 @@
from ._models_py3 import ContainerResourceRequirements
from ._models_py3 import ContainerResourceSettings
from ._models_py3 import CosmosDbSettings
+from ._models_py3 import CreateMonitorAction
from ._models_py3 import Cron
from ._models_py3 import CronTrigger
from ._models_py3 import CustomForecastHorizon
+from ._models_py3 import CustomMetricThreshold
from ._models_py3 import CustomModelJobInput
from ._models_py3 import CustomModelJobOutput
+from ._models_py3 import CustomMonitoringSignal
from ._models_py3 import CustomNCrossValidations
from ._models_py3 import CustomSeasonality
from ._models_py3 import CustomService
@@ -115,11 +123,16 @@
from ._models_py3 import DataContainer
from ._models_py3 import DataContainerProperties
from ._models_py3 import DataContainerResourceArmPaginatedResult
+from ._models_py3 import DataDriftMetricThresholdBase
+from ._models_py3 import DataDriftMonitoringSignal
from ._models_py3 import DataFactory
from ._models_py3 import DataLakeAnalytics
from ._models_py3 import DataLakeAnalyticsSchema
from ._models_py3 import DataLakeAnalyticsSchemaProperties
from ._models_py3 import DataPathAssetReference
+from ._models_py3 import DataQualityMetricThresholdBase
+from ._models_py3 import DataQualityMonitoringSignal
+from ._models_py3 import DataReferenceCredential
from ._models_py3 import DataVersionBase
from ._models_py3 import DataVersionBaseProperties
from ._models_py3 import DataVersionBaseResourceArmPaginatedResult
@@ -137,6 +150,7 @@
from ._models_py3 import DeploymentLogs
from ._models_py3 import DeploymentLogsRequest
from ._models_py3 import DeploymentResourceConfiguration
+from ._models_py3 import DestinationAsset
from ._models_py3 import DiagnoseRequestProperties
from ._models_py3 import DiagnoseResponseResult
from ._models_py3 import DiagnoseResponseResultValue
@@ -144,6 +158,7 @@
from ._models_py3 import DiagnoseWorkspaceParameters
from ._models_py3 import DistributionConfiguration
from ._models_py3 import Docker
+from ._models_py3 import DockerCredential
from ._models_py3 import EarlyTerminationPolicy
from ._models_py3 import EncryptionKeyVaultProperties
from ._models_py3 import EncryptionProperty
@@ -170,12 +185,40 @@
from ._models_py3 import FQDNEndpointDetail
from ._models_py3 import FQDNEndpoints
from ._models_py3 import FQDNEndpointsProperties
+from ._models_py3 import Feature
+from ._models_py3 import FeatureAttributionDriftMonitoringSignal
+from ._models_py3 import FeatureAttributionMetricThreshold
+from ._models_py3 import FeatureImportanceSettings
+from ._models_py3 import FeatureProperties
+from ._models_py3 import FeatureResourceArmPaginatedResult
+from ._models_py3 import FeatureSubset
+from ._models_py3 import FeatureWindow
+from ._models_py3 import FeaturesetContainer
+from ._models_py3 import FeaturesetContainerProperties
+from ._models_py3 import FeaturesetContainerResourceArmPaginatedResult
+from ._models_py3 import FeaturesetSpecification
+from ._models_py3 import FeaturesetVersion
+from ._models_py3 import FeaturesetVersionBackfillRequest
+from ._models_py3 import FeaturesetVersionBackfillResponse
+from ._models_py3 import FeaturesetVersionProperties
+from ._models_py3 import FeaturesetVersionResourceArmPaginatedResult
+from ._models_py3 import FeaturestoreEntityContainer
+from ._models_py3 import FeaturestoreEntityContainerProperties
+from ._models_py3 import FeaturestoreEntityContainerResourceArmPaginatedResult
+from ._models_py3 import FeaturestoreEntityVersion
+from ._models_py3 import FeaturestoreEntityVersionProperties
+from ._models_py3 import FeaturestoreEntityVersionResourceArmPaginatedResult
from ._models_py3 import FeaturizationSettings
+from ._models_py3 import FixedInputData
from ._models_py3 import FlavorData
from ._models_py3 import ForecastHorizon
from ._models_py3 import Forecasting
from ._models_py3 import ForecastingSettings
from ._models_py3 import ForecastingTrainingSettings
+from ._models_py3 import FqdnOutboundRule
+from ._models_py3 import GetBlobReferenceForConsumptionDto
+from ._models_py3 import GetBlobReferenceSASRequestDto
+from ._models_py3 import GetBlobReferenceSASResponseDto
from ._models_py3 import GridSamplingAlgorithm
from ._models_py3 import HDInsight
from ._models_py3 import HDInsightProperties
@@ -201,6 +244,7 @@
from ._models_py3 import ImageObjectDetectionBase
from ._models_py3 import ImageSweepSettings
from ._models_py3 import ImageVertical
+from ._models_py3 import IndexColumn
from ._models_py3 import InferenceContainerProperties
from ._models_py3 import InstanceTypeSchema
from ._models_py3 import InstanceTypeSchemaResources
@@ -229,10 +273,17 @@
from ._models_py3 import MLTableData
from ._models_py3 import MLTableJobInput
from ._models_py3 import MLTableJobOutput
+from ._models_py3 import ManagedComputeIdentity
from ._models_py3 import ManagedIdentity
from ._models_py3 import ManagedIdentityAuthTypeWorkspaceConnectionProperties
+from ._models_py3 import ManagedIdentityCredential
+from ._models_py3 import ManagedNetworkProvisionOptions
+from ._models_py3 import ManagedNetworkProvisionStatus
+from ._models_py3 import ManagedNetworkSettings
from ._models_py3 import ManagedOnlineDeployment
from ._models_py3 import ManagedServiceIdentity
+from ._models_py3 import MaterializationComputeResource
+from ._models_py3 import MaterializationSettings
from ._models_py3 import MedianStoppingPolicy
from ._models_py3 import ModelContainer
from ._models_py3 import ModelContainerProperties
@@ -240,6 +291,17 @@
from ._models_py3 import ModelVersion
from ._models_py3 import ModelVersionProperties
from ._models_py3 import ModelVersionResourceArmPaginatedResult
+from ._models_py3 import MonitorComputeConfigurationBase
+from ._models_py3 import MonitorComputeIdentityBase
+from ._models_py3 import MonitorDefinition
+from ._models_py3 import MonitorEmailNotificationSettings
+from ._models_py3 import MonitorNotificationSettings
+from ._models_py3 import MonitorServerlessSparkCompute
+from ._models_py3 import MonitoringFeatureFilterBase
+from ._models_py3 import MonitoringInputDataBase
+from ._models_py3 import MonitoringSignalBase
+from ._models_py3 import MonitoringTarget
+from ._models_py3 import MonitoringThreshold
from ._models_py3 import Mpi
from ._models_py3 import NCrossValidations
from ._models_py3 import NlpVertical
@@ -252,6 +314,10 @@
from ._models_py3 import NotebookAccessTokenResult
from ._models_py3 import NotebookPreparationError
from ._models_py3 import NotebookResourceInfo
+from ._models_py3 import NotificationSetting
+from ._models_py3 import NumericalDataDriftMetricThreshold
+from ._models_py3 import NumericalDataQualityMetricThreshold
+from ._models_py3 import NumericalPredictionDriftMetricThreshold
from ._models_py3 import Objective
from ._models_py3 import OnlineDeployment
from ._models_py3 import OnlineDeploymentProperties
@@ -261,6 +327,12 @@
from ._models_py3 import OnlineEndpointTrackedResourceArmPaginatedResult
from ._models_py3 import OnlineRequestSettings
from ._models_py3 import OnlineScaleSettings
+from ._models_py3 import Operation
+from ._models_py3 import OperationDisplay
+from ._models_py3 import OperationListResult
+from ._models_py3 import OutboundRule
+from ._models_py3 import OutboundRuleBasicResource
+from ._models_py3 import OutboundRuleListResult
from ._models_py3 import OutputPathAssetReference
from ._models_py3 import PATAuthTypeWorkspaceConnectionProperties
from ._models_py3 import PaginatedComputeResourcesList
@@ -278,15 +350,21 @@
from ._models_py3 import PendingUploadResponseDto
from ._models_py3 import PersonalComputeInstanceSettings
from ._models_py3 import PipelineJob
+from ._models_py3 import PredictionDriftMetricThresholdBase
+from ._models_py3 import PredictionDriftMonitoringSignal
from ._models_py3 import PrivateEndpoint
from ._models_py3 import PrivateEndpointConnection
from ._models_py3 import PrivateEndpointConnectionListResult
+from ._models_py3 import PrivateEndpointDestination
+from ._models_py3 import PrivateEndpointOutboundRule
from ._models_py3 import PrivateEndpointResource
from ._models_py3 import PrivateLinkResource
from ._models_py3 import PrivateLinkResourceListResult
from ._models_py3 import PrivateLinkServiceConnectionState
from ._models_py3 import ProbeSettings
+from ._models_py3 import ProxyResource
from ._models_py3 import PyTorch
+from ._models_py3 import QueueSettings
from ._models_py3 import QuotaBaseProperties
from ._models_py3 import QuotaUpdateParameters
from ._models_py3 import RandomSamplingAlgorithm
@@ -309,8 +387,10 @@
from ._models_py3 import ResourceId
from ._models_py3 import ResourceName
from ._models_py3 import ResourceQuota
+from ._models_py3 import RollingInputData
from ._models_py3 import Route
from ._models_py3 import SASAuthTypeWorkspaceConnectionProperties
+from ._models_py3 import SASCredential
from ._models_py3 import SASCredentialDto
from ._models_py3 import SamplingAlgorithm
from ._models_py3 import SasDatastoreCredentials
@@ -328,6 +408,8 @@
from ._models_py3 import ServiceManagedResourcesSettings
from ._models_py3 import ServicePrincipalDatastoreCredentials
from ._models_py3 import ServicePrincipalDatastoreSecrets
+from ._models_py3 import ServiceTagDestination
+from ._models_py3 import ServiceTagOutboundRule
from ._models_py3 import SetupScripts
from ._models_py3 import SharedPrivateLinkResource
from ._models_py3 import Sku
@@ -337,6 +419,7 @@
from ._models_py3 import SkuSetting
from ._models_py3 import SslConfiguration
from ._models_py3 import StackEnsembleSettings
+from ._models_py3 import StaticInputData
from ._models_py3 import StorageAccountDetails
from ._models_py3 import SweepJob
from ._models_py3 import SweepJobLimits
@@ -357,6 +440,7 @@
from ._models_py3 import TextClassificationMultilabel
from ._models_py3 import TextNer
from ._models_py3 import TmpfsOptions
+from ._models_py3 import TopNFeaturesByAttribution
from ._models_py3 import TrackedResource
from ._models_py3 import TrainingSettings
from ._models_py3 import TrialComponent
@@ -391,6 +475,7 @@
from ._models_py3 import VirtualMachineSshCredentials
from ._models_py3 import VolumeDefinition
from ._models_py3 import VolumeOptions
+from ._models_py3 import Webhook
from ._models_py3 import Workspace
from ._models_py3 import WorkspaceConnectionManagedIdentity
from ._models_py3 import WorkspaceConnectionPersonalAccessToken
@@ -402,6 +487,7 @@
from ._models_py3 import WorkspaceListResult
from ._models_py3 import WorkspaceUpdateParameters
+from ._machine_learning_services_mgmt_client_enums import ActionType
from ._machine_learning_services_mgmt_client_enums import AllocationState
from ._machine_learning_services_mgmt_client_enums import ApplicationSharingPolicy
from ._machine_learning_services_mgmt_client_enums import AssetProvisioningState
@@ -412,6 +498,9 @@
from ._machine_learning_services_mgmt_client_enums import BillingCurrency
from ._machine_learning_services_mgmt_client_enums import BlockedTransformers
from ._machine_learning_services_mgmt_client_enums import Caching
+from ._machine_learning_services_mgmt_client_enums import CategoricalDataDriftMetric
+from ._machine_learning_services_mgmt_client_enums import CategoricalDataQualityMetric
+from ._machine_learning_services_mgmt_client_enums import CategoricalPredictionDriftMetric
from ._machine_learning_services_mgmt_client_enums import ClassificationModels
from ._machine_learning_services_mgmt_client_enums import ClassificationMultilabelPrimaryMetrics
from ._machine_learning_services_mgmt_client_enums import ClassificationPrimaryMetrics
@@ -425,6 +514,8 @@
from ._machine_learning_services_mgmt_client_enums import ContainerType
from ._machine_learning_services_mgmt_client_enums import CreatedByType
from ._machine_learning_services_mgmt_client_enums import CredentialsType
+from ._machine_learning_services_mgmt_client_enums import DataAvailabilityStatus
+from ._machine_learning_services_mgmt_client_enums import DataReferenceCredentialType
from ._machine_learning_services_mgmt_client_enums import DataType
from ._machine_learning_services_mgmt_client_enums import DatastoreType
from ._machine_learning_services_mgmt_client_enums import DeploymentProvisioningState
@@ -432,6 +523,7 @@
from ._machine_learning_services_mgmt_client_enums import DistributionType
from ._machine_learning_services_mgmt_client_enums import EarlyTerminationPolicyType
from ._machine_learning_services_mgmt_client_enums import EgressPublicNetworkAccessType
+from ._machine_learning_services_mgmt_client_enums import EmailNotificationEnableType
from ._machine_learning_services_mgmt_client_enums import EncryptionStatus
from ._machine_learning_services_mgmt_client_enums import EndpointAuthMode
from ._machine_learning_services_mgmt_client_enums import EndpointComputeType
@@ -439,6 +531,9 @@
from ._machine_learning_services_mgmt_client_enums import EndpointServiceConnectionStatus
from ._machine_learning_services_mgmt_client_enums import EnvironmentType
from ._machine_learning_services_mgmt_client_enums import EnvironmentVariableType
+from ._machine_learning_services_mgmt_client_enums import FeatureAttributionMetric
+from ._machine_learning_services_mgmt_client_enums import FeatureDataType
+from ._machine_learning_services_mgmt_client_enums import FeatureImportanceMode
from ._machine_learning_services_mgmt_client_enums import FeatureLags
from ._machine_learning_services_mgmt_client_enums import FeaturizationMode
from ._machine_learning_services_mgmt_client_enums import ForecastHorizonMode
@@ -449,30 +544,46 @@
from ._machine_learning_services_mgmt_client_enums import ImageType
from ._machine_learning_services_mgmt_client_enums import InputDeliveryMode
from ._machine_learning_services_mgmt_client_enums import InstanceSegmentationPrimaryMetrics
+from ._machine_learning_services_mgmt_client_enums import IsolationMode
from ._machine_learning_services_mgmt_client_enums import JobInputType
from ._machine_learning_services_mgmt_client_enums import JobLimitsType
from ._machine_learning_services_mgmt_client_enums import JobOutputType
from ._machine_learning_services_mgmt_client_enums import JobStatus
+from ._machine_learning_services_mgmt_client_enums import JobTier
from ._machine_learning_services_mgmt_client_enums import JobType
from ._machine_learning_services_mgmt_client_enums import KeyType
from ._machine_learning_services_mgmt_client_enums import LearningRateScheduler
from ._machine_learning_services_mgmt_client_enums import ListViewType
from ._machine_learning_services_mgmt_client_enums import LoadBalancerType
from ._machine_learning_services_mgmt_client_enums import LogVerbosity
+from ._machine_learning_services_mgmt_client_enums import ManagedNetworkStatus
from ._machine_learning_services_mgmt_client_enums import ManagedServiceIdentityType
+from ._machine_learning_services_mgmt_client_enums import MaterializationStoreType
from ._machine_learning_services_mgmt_client_enums import ModelSize
+from ._machine_learning_services_mgmt_client_enums import ModelTaskType
+from ._machine_learning_services_mgmt_client_enums import MonitorComputeIdentityType
+from ._machine_learning_services_mgmt_client_enums import MonitorComputeType
+from ._machine_learning_services_mgmt_client_enums import MonitoringFeatureDataType
+from ._machine_learning_services_mgmt_client_enums import MonitoringFeatureFilterType
+from ._machine_learning_services_mgmt_client_enums import MonitoringInputDataType
+from ._machine_learning_services_mgmt_client_enums import MonitoringNotificationType
+from ._machine_learning_services_mgmt_client_enums import MonitoringSignalType
from ._machine_learning_services_mgmt_client_enums import MountAction
from ._machine_learning_services_mgmt_client_enums import MountState
from ._machine_learning_services_mgmt_client_enums import NCrossValidationsMode
from ._machine_learning_services_mgmt_client_enums import Network
from ._machine_learning_services_mgmt_client_enums import NodeState
from ._machine_learning_services_mgmt_client_enums import NodesValueType
+from ._machine_learning_services_mgmt_client_enums import NumericalDataDriftMetric
+from ._machine_learning_services_mgmt_client_enums import NumericalDataQualityMetric
+from ._machine_learning_services_mgmt_client_enums import NumericalPredictionDriftMetric
from ._machine_learning_services_mgmt_client_enums import ObjectDetectionPrimaryMetrics
from ._machine_learning_services_mgmt_client_enums import OperatingSystemType
from ._machine_learning_services_mgmt_client_enums import OperationName
from ._machine_learning_services_mgmt_client_enums import OperationStatus
from ._machine_learning_services_mgmt_client_enums import OperationTrigger
from ._machine_learning_services_mgmt_client_enums import OrderString
+from ._machine_learning_services_mgmt_client_enums import Origin
from ._machine_learning_services_mgmt_client_enums import OsType
from ._machine_learning_services_mgmt_client_enums import OutputDeliveryMode
from ._machine_learning_services_mgmt_client_enums import PendingUploadCredentialType
@@ -491,6 +602,10 @@
from ._machine_learning_services_mgmt_client_enums import RegressionModels
from ._machine_learning_services_mgmt_client_enums import RegressionPrimaryMetrics
from ._machine_learning_services_mgmt_client_enums import RemoteLoginPortPublicAccess
+from ._machine_learning_services_mgmt_client_enums import RuleAction
+from ._machine_learning_services_mgmt_client_enums import RuleCategory
+from ._machine_learning_services_mgmt_client_enums import RuleStatus
+from ._machine_learning_services_mgmt_client_enums import RuleType
from ._machine_learning_services_mgmt_client_enums import SamplingAlgorithmType
from ._machine_learning_services_mgmt_client_enums import ScaleType
from ._machine_learning_services_mgmt_client_enums import ScheduleActionType
@@ -526,6 +641,7 @@
from ._machine_learning_services_mgmt_client_enums import ValueFormat
from ._machine_learning_services_mgmt_client_enums import VmPriority
from ._machine_learning_services_mgmt_client_enums import VolumeDefinitionType
+from ._machine_learning_services_mgmt_client_enums import WebhookType
from ._machine_learning_services_mgmt_client_enums import WeekDay
from ._patch import __all__ as _patch_all
from ._patch import * # pylint: disable=unused-wildcard-import
@@ -541,17 +657,17 @@
"AksComputeSecrets",
"AksComputeSecretsProperties",
"AksNetworkingConfiguration",
+ "AllFeatures",
"AllNodes",
"AmlCompute",
"AmlComputeNodeInformation",
"AmlComputeNodesInformation",
"AmlComputeProperties",
"AmlComputeSchema",
- "AmlOperation",
- "AmlOperationDisplay",
- "AmlOperationListResult",
"AmlToken",
+ "AmlTokenComputeIdentity",
"AmlUserFeature",
+ "AnonymousAccessCredential",
"ArmResourceId",
"AssetBase",
"AssetContainer",
@@ -571,6 +687,8 @@
"AzureBlobDatastore",
"AzureDataLakeGen1Datastore",
"AzureDataLakeGen2Datastore",
+ "AzureDatastore",
+ "AzureDevOpsWebhook",
"AzureFileDatastore",
"BanditPolicy",
"BatchDeployment",
@@ -585,6 +703,9 @@
"BindOptions",
"BlobReferenceForConsumptionDto",
"BuildContext",
+ "CategoricalDataDriftMetricThreshold",
+ "CategoricalDataQualityMetricThreshold",
+ "CategoricalPredictionDriftMetricThreshold",
"CertificateDatastoreCredentials",
"CertificateDatastoreSecrets",
"Classification",
@@ -628,11 +749,14 @@
"ContainerResourceRequirements",
"ContainerResourceSettings",
"CosmosDbSettings",
+ "CreateMonitorAction",
"Cron",
"CronTrigger",
"CustomForecastHorizon",
+ "CustomMetricThreshold",
"CustomModelJobInput",
"CustomModelJobOutput",
+ "CustomMonitoringSignal",
"CustomNCrossValidations",
"CustomSeasonality",
"CustomService",
@@ -641,11 +765,16 @@
"DataContainer",
"DataContainerProperties",
"DataContainerResourceArmPaginatedResult",
+ "DataDriftMetricThresholdBase",
+ "DataDriftMonitoringSignal",
"DataFactory",
"DataLakeAnalytics",
"DataLakeAnalyticsSchema",
"DataLakeAnalyticsSchemaProperties",
"DataPathAssetReference",
+ "DataQualityMetricThresholdBase",
+ "DataQualityMonitoringSignal",
+ "DataReferenceCredential",
"DataVersionBase",
"DataVersionBaseProperties",
"DataVersionBaseResourceArmPaginatedResult",
@@ -663,6 +792,7 @@
"DeploymentLogs",
"DeploymentLogsRequest",
"DeploymentResourceConfiguration",
+ "DestinationAsset",
"DiagnoseRequestProperties",
"DiagnoseResponseResult",
"DiagnoseResponseResultValue",
@@ -670,6 +800,7 @@
"DiagnoseWorkspaceParameters",
"DistributionConfiguration",
"Docker",
+ "DockerCredential",
"EarlyTerminationPolicy",
"EncryptionKeyVaultProperties",
"EncryptionProperty",
@@ -696,12 +827,40 @@
"FQDNEndpointDetail",
"FQDNEndpoints",
"FQDNEndpointsProperties",
+ "Feature",
+ "FeatureAttributionDriftMonitoringSignal",
+ "FeatureAttributionMetricThreshold",
+ "FeatureImportanceSettings",
+ "FeatureProperties",
+ "FeatureResourceArmPaginatedResult",
+ "FeatureSubset",
+ "FeatureWindow",
+ "FeaturesetContainer",
+ "FeaturesetContainerProperties",
+ "FeaturesetContainerResourceArmPaginatedResult",
+ "FeaturesetSpecification",
+ "FeaturesetVersion",
+ "FeaturesetVersionBackfillRequest",
+ "FeaturesetVersionBackfillResponse",
+ "FeaturesetVersionProperties",
+ "FeaturesetVersionResourceArmPaginatedResult",
+ "FeaturestoreEntityContainer",
+ "FeaturestoreEntityContainerProperties",
+ "FeaturestoreEntityContainerResourceArmPaginatedResult",
+ "FeaturestoreEntityVersion",
+ "FeaturestoreEntityVersionProperties",
+ "FeaturestoreEntityVersionResourceArmPaginatedResult",
"FeaturizationSettings",
+ "FixedInputData",
"FlavorData",
"ForecastHorizon",
"Forecasting",
"ForecastingSettings",
"ForecastingTrainingSettings",
+ "FqdnOutboundRule",
+ "GetBlobReferenceForConsumptionDto",
+ "GetBlobReferenceSASRequestDto",
+ "GetBlobReferenceSASResponseDto",
"GridSamplingAlgorithm",
"HDInsight",
"HDInsightProperties",
@@ -727,6 +886,7 @@
"ImageObjectDetectionBase",
"ImageSweepSettings",
"ImageVertical",
+ "IndexColumn",
"InferenceContainerProperties",
"InstanceTypeSchema",
"InstanceTypeSchemaResources",
@@ -755,10 +915,17 @@
"MLTableData",
"MLTableJobInput",
"MLTableJobOutput",
+ "ManagedComputeIdentity",
"ManagedIdentity",
"ManagedIdentityAuthTypeWorkspaceConnectionProperties",
+ "ManagedIdentityCredential",
+ "ManagedNetworkProvisionOptions",
+ "ManagedNetworkProvisionStatus",
+ "ManagedNetworkSettings",
"ManagedOnlineDeployment",
"ManagedServiceIdentity",
+ "MaterializationComputeResource",
+ "MaterializationSettings",
"MedianStoppingPolicy",
"ModelContainer",
"ModelContainerProperties",
@@ -766,6 +933,17 @@
"ModelVersion",
"ModelVersionProperties",
"ModelVersionResourceArmPaginatedResult",
+ "MonitorComputeConfigurationBase",
+ "MonitorComputeIdentityBase",
+ "MonitorDefinition",
+ "MonitorEmailNotificationSettings",
+ "MonitorNotificationSettings",
+ "MonitorServerlessSparkCompute",
+ "MonitoringFeatureFilterBase",
+ "MonitoringInputDataBase",
+ "MonitoringSignalBase",
+ "MonitoringTarget",
+ "MonitoringThreshold",
"Mpi",
"NCrossValidations",
"NlpVertical",
@@ -778,6 +956,10 @@
"NotebookAccessTokenResult",
"NotebookPreparationError",
"NotebookResourceInfo",
+ "NotificationSetting",
+ "NumericalDataDriftMetricThreshold",
+ "NumericalDataQualityMetricThreshold",
+ "NumericalPredictionDriftMetricThreshold",
"Objective",
"OnlineDeployment",
"OnlineDeploymentProperties",
@@ -787,6 +969,12 @@
"OnlineEndpointTrackedResourceArmPaginatedResult",
"OnlineRequestSettings",
"OnlineScaleSettings",
+ "Operation",
+ "OperationDisplay",
+ "OperationListResult",
+ "OutboundRule",
+ "OutboundRuleBasicResource",
+ "OutboundRuleListResult",
"OutputPathAssetReference",
"PATAuthTypeWorkspaceConnectionProperties",
"PaginatedComputeResourcesList",
@@ -804,15 +992,21 @@
"PendingUploadResponseDto",
"PersonalComputeInstanceSettings",
"PipelineJob",
+ "PredictionDriftMetricThresholdBase",
+ "PredictionDriftMonitoringSignal",
"PrivateEndpoint",
"PrivateEndpointConnection",
"PrivateEndpointConnectionListResult",
+ "PrivateEndpointDestination",
+ "PrivateEndpointOutboundRule",
"PrivateEndpointResource",
"PrivateLinkResource",
"PrivateLinkResourceListResult",
"PrivateLinkServiceConnectionState",
"ProbeSettings",
+ "ProxyResource",
"PyTorch",
+ "QueueSettings",
"QuotaBaseProperties",
"QuotaUpdateParameters",
"RandomSamplingAlgorithm",
@@ -835,8 +1029,10 @@
"ResourceId",
"ResourceName",
"ResourceQuota",
+ "RollingInputData",
"Route",
"SASAuthTypeWorkspaceConnectionProperties",
+ "SASCredential",
"SASCredentialDto",
"SamplingAlgorithm",
"SasDatastoreCredentials",
@@ -854,6 +1050,8 @@
"ServiceManagedResourcesSettings",
"ServicePrincipalDatastoreCredentials",
"ServicePrincipalDatastoreSecrets",
+ "ServiceTagDestination",
+ "ServiceTagOutboundRule",
"SetupScripts",
"SharedPrivateLinkResource",
"Sku",
@@ -863,6 +1061,7 @@
"SkuSetting",
"SslConfiguration",
"StackEnsembleSettings",
+ "StaticInputData",
"StorageAccountDetails",
"SweepJob",
"SweepJobLimits",
@@ -883,6 +1082,7 @@
"TextClassificationMultilabel",
"TextNer",
"TmpfsOptions",
+ "TopNFeaturesByAttribution",
"TrackedResource",
"TrainingSettings",
"TrialComponent",
@@ -917,6 +1117,7 @@
"VirtualMachineSshCredentials",
"VolumeDefinition",
"VolumeOptions",
+ "Webhook",
"Workspace",
"WorkspaceConnectionManagedIdentity",
"WorkspaceConnectionPersonalAccessToken",
@@ -927,6 +1128,7 @@
"WorkspaceConnectionUsernamePassword",
"WorkspaceListResult",
"WorkspaceUpdateParameters",
+ "ActionType",
"AllocationState",
"ApplicationSharingPolicy",
"AssetProvisioningState",
@@ -937,6 +1139,9 @@
"BillingCurrency",
"BlockedTransformers",
"Caching",
+ "CategoricalDataDriftMetric",
+ "CategoricalDataQualityMetric",
+ "CategoricalPredictionDriftMetric",
"ClassificationModels",
"ClassificationMultilabelPrimaryMetrics",
"ClassificationPrimaryMetrics",
@@ -950,6 +1155,8 @@
"ContainerType",
"CreatedByType",
"CredentialsType",
+ "DataAvailabilityStatus",
+ "DataReferenceCredentialType",
"DataType",
"DatastoreType",
"DeploymentProvisioningState",
@@ -957,6 +1164,7 @@
"DistributionType",
"EarlyTerminationPolicyType",
"EgressPublicNetworkAccessType",
+ "EmailNotificationEnableType",
"EncryptionStatus",
"EndpointAuthMode",
"EndpointComputeType",
@@ -964,6 +1172,9 @@
"EndpointServiceConnectionStatus",
"EnvironmentType",
"EnvironmentVariableType",
+ "FeatureAttributionMetric",
+ "FeatureDataType",
+ "FeatureImportanceMode",
"FeatureLags",
"FeaturizationMode",
"ForecastHorizonMode",
@@ -974,30 +1185,46 @@
"ImageType",
"InputDeliveryMode",
"InstanceSegmentationPrimaryMetrics",
+ "IsolationMode",
"JobInputType",
"JobLimitsType",
"JobOutputType",
"JobStatus",
+ "JobTier",
"JobType",
"KeyType",
"LearningRateScheduler",
"ListViewType",
"LoadBalancerType",
"LogVerbosity",
+ "ManagedNetworkStatus",
"ManagedServiceIdentityType",
+ "MaterializationStoreType",
"ModelSize",
+ "ModelTaskType",
+ "MonitorComputeIdentityType",
+ "MonitorComputeType",
+ "MonitoringFeatureDataType",
+ "MonitoringFeatureFilterType",
+ "MonitoringInputDataType",
+ "MonitoringNotificationType",
+ "MonitoringSignalType",
"MountAction",
"MountState",
"NCrossValidationsMode",
"Network",
"NodeState",
"NodesValueType",
+ "NumericalDataDriftMetric",
+ "NumericalDataQualityMetric",
+ "NumericalPredictionDriftMetric",
"ObjectDetectionPrimaryMetrics",
"OperatingSystemType",
"OperationName",
"OperationStatus",
"OperationTrigger",
"OrderString",
+ "Origin",
"OsType",
"OutputDeliveryMode",
"PendingUploadCredentialType",
@@ -1016,6 +1243,10 @@
"RegressionModels",
"RegressionPrimaryMetrics",
"RemoteLoginPortPublicAccess",
+ "RuleAction",
+ "RuleCategory",
+ "RuleStatus",
+ "RuleType",
"SamplingAlgorithmType",
"ScaleType",
"ScheduleActionType",
@@ -1051,6 +1282,7 @@
"ValueFormat",
"VmPriority",
"VolumeDefinitionType",
+ "WebhookType",
"WeekDay",
]
__all__.extend([p for p in _patch_all if p not in __all__])
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_machine_learning_services_mgmt_client_enums.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_machine_learning_services_mgmt_client_enums.py
index a32b5b391440..7fd8d4cfc41a 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_machine_learning_services_mgmt_client_enums.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_machine_learning_services_mgmt_client_enums.py
@@ -10,6 +10,12 @@
from azure.core import CaseInsensitiveEnumMeta
+class ActionType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Enum. Indicates the action type. "Internal" refers to actions that are for internal only APIs."""
+
+ INTERNAL = "Internal"
+
+
class AllocationState(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Allocation state of the compute. Possible values are: steady - Indicates that the compute is
not resizing. There are no changes to the number of compute nodes in the compute in progress. A
@@ -119,6 +125,39 @@ class Caching(str, Enum, metaclass=CaseInsensitiveEnumMeta):
READ_WRITE = "ReadWrite"
+class CategoricalDataDriftMetric(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """CategoricalDataDriftMetric."""
+
+ JENSEN_SHANNON_DISTANCE = "JensenShannonDistance"
+ """The Jensen Shannon Distance (JSD) metric."""
+ POPULATION_STABILITY_INDEX = "PopulationStabilityIndex"
+ """The Population Stability Index (PSI) metric."""
+ PEARSONS_CHI_SQUARED_TEST = "PearsonsChiSquaredTest"
+ """The Pearsons Chi Squared Test metric."""
+
+
+class CategoricalDataQualityMetric(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """CategoricalDataQualityMetric."""
+
+ NULL_VALUE_RATE = "NullValueRate"
+ """Calculates the rate of null values."""
+ DATA_TYPE_ERROR_RATE = "DataTypeErrorRate"
+ """Calculates the rate of data type errors."""
+ OUT_OF_BOUNDS_RATE = "OutOfBoundsRate"
+ """Calculates the rate values are out of bounds."""
+
+
+class CategoricalPredictionDriftMetric(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """CategoricalPredictionDriftMetric."""
+
+ JENSEN_SHANNON_DISTANCE = "JensenShannonDistance"
+ """The Jensen Shannon Distance (JSD) metric."""
+ POPULATION_STABILITY_INDEX = "PopulationStabilityIndex"
+ """The Population Stability Index (PSI) metric."""
+ PEARSONS_CHI_SQUARED_TEST = "PearsonsChiSquaredTest"
+ """The Pearsons Chi Squared Test metric."""
+
+
class ClassificationModels(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Enum for all classification models supported by AutoML."""
@@ -325,6 +364,24 @@ class CredentialsType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
SERVICE_PRINCIPAL = "ServicePrincipal"
+class DataAvailabilityStatus(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """DataAvailabilityStatus."""
+
+ NONE = "None"
+ PENDING = "Pending"
+ INCOMPLETE = "Incomplete"
+ COMPLETE = "Complete"
+
+
+class DataReferenceCredentialType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Enum to determine the DataReference credentials type."""
+
+ SAS = "SAS"
+ DOCKER_CREDENTIALS = "DockerCredentials"
+ MANAGED_IDENTITY = "ManagedIdentity"
+ NO_CREDENTIALS = "NoCredentials"
+
+
class DatastoreType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Enum to determine the datastore contents type."""
@@ -387,6 +444,14 @@ class EgressPublicNetworkAccessType(str, Enum, metaclass=CaseInsensitiveEnumMeta
DISABLED = "Disabled"
+class EmailNotificationEnableType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Enum to determine the email notification type."""
+
+ JOB_COMPLETED = "JobCompleted"
+ JOB_FAILED = "JobFailed"
+ JOB_CANCELLED = "JobCancelled"
+
+
class EncryptionStatus(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Indicates whether or not the encryption is enabled for the workspace."""
@@ -443,6 +508,35 @@ class EnvironmentVariableType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
LOCAL = "local"
+class FeatureAttributionMetric(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """FeatureAttributionMetric."""
+
+ NORMALIZED_DISCOUNTED_CUMULATIVE_GAIN = "NormalizedDiscountedCumulativeGain"
+ """The Normalized Discounted Cumulative Gain metric."""
+
+
+class FeatureDataType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """FeatureDataType."""
+
+ STRING = "String"
+ INTEGER = "Integer"
+ LONG = "Long"
+ FLOAT = "Float"
+ DOUBLE = "Double"
+ BINARY = "Binary"
+ DATETIME = "Datetime"
+ BOOLEAN = "Boolean"
+
+
+class FeatureImportanceMode(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The mode of operation for computing feature importance."""
+
+ DISABLED = "Disabled"
+ """Disables computing feature importance within a signal."""
+ ENABLED = "Enabled"
+ """Enables computing feature importance within a signal."""
+
+
class FeatureLags(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Flag for generating lags for the numeric features."""
@@ -610,6 +704,14 @@ class InstanceSegmentationPrimaryMetrics(str, Enum, metaclass=CaseInsensitiveEnu
#: AP is calculated for each class and averaged to get the MAP."""
+class IsolationMode(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Isolation mode for the managed network of a machine learning workspace."""
+
+ DISABLED = "Disabled"
+ ALLOW_INTERNET_OUTBOUND = "AllowInternetOutbound"
+ ALLOW_ONLY_APPROVED_OUTBOUND = "AllowOnlyApprovedOutbound"
+
+
class JobInputType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Enum to determine the Job Input Type."""
@@ -678,6 +780,16 @@ class JobStatus(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Default job status if not mapped to all other statuses"""
+class JobTier(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Enum to determine the job tier."""
+
+ NULL = "Null"
+ SPOT = "Spot"
+ BASIC = "Basic"
+ STANDARD = "Standard"
+ PREMIUM = "Premium"
+
+
class JobType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Enum to determine the type of job."""
@@ -737,6 +849,13 @@ class LogVerbosity(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Only critical statements logged."""
+class ManagedNetworkStatus(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Status for the managed network of a machine learning workspace."""
+
+ INACTIVE = "Inactive"
+ ACTIVE = "Active"
+
+
class ManagedServiceIdentityType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Type of managed service identity (where both SystemAssigned and UserAssigned types are
allowed).
@@ -748,6 +867,15 @@ class ManagedServiceIdentityType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
SYSTEM_ASSIGNED_USER_ASSIGNED = "SystemAssigned,UserAssigned"
+class MaterializationStoreType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """MaterializationStoreType."""
+
+ NONE = "None"
+ ONLINE = "Online"
+ OFFLINE = "Offline"
+ ONLINE_AND_OFFLINE = "OnlineAndOffline"
+
+
class ModelSize(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Image model size."""
@@ -763,6 +891,85 @@ class ModelSize(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Extra large size."""
+class ModelTaskType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Model task type enum."""
+
+ CLASSIFICATION = "Classification"
+ REGRESSION = "Regression"
+
+
+class MonitorComputeIdentityType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Monitor compute identity type enum."""
+
+ AML_TOKEN = "AmlToken"
+ """Authenticates through user's AML token."""
+ MANAGED_IDENTITY = "ManagedIdentity"
+ """Authenticates through a user-provided managed identity."""
+
+
+class MonitorComputeType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Monitor compute type enum."""
+
+ SERVERLESS_SPARK = "ServerlessSpark"
+ """Serverless Spark compute."""
+
+
+class MonitoringFeatureDataType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """MonitoringFeatureDataType."""
+
+ NUMERICAL = "Numerical"
+ """Used for features of numerical data type."""
+ CATEGORICAL = "Categorical"
+ """Used for features of categorical data type."""
+
+
+class MonitoringFeatureFilterType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """MonitoringFeatureFilterType."""
+
+ ALL_FEATURES = "AllFeatures"
+ """Includes all features."""
+ TOP_N_BY_ATTRIBUTION = "TopNByAttribution"
+ """Only includes the top contributing features, measured by feature attribution."""
+ FEATURE_SUBSET = "FeatureSubset"
+ """Includes a user-defined subset of features."""
+
+
+class MonitoringInputDataType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Monitoring input data type enum."""
+
+ STATIC = "Static"
+ """An input data with a fixed window size."""
+ ROLLING = "Rolling"
+ """An input data which rolls relatively to the monitor's current run time."""
+ FIXED = "Fixed"
+ """An input data with tabular format which doesn't require preprocessing."""
+
+
+class MonitoringNotificationType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """MonitoringNotificationType."""
+
+ AML_NOTIFICATION = "AmlNotification"
+ """Enables email notifications through AML notifications."""
+
+
+class MonitoringSignalType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """MonitoringSignalType."""
+
+ DATA_DRIFT = "DataDrift"
+ """Tracks model input data distribution change, comparing against training data or past production
+ #: data."""
+ PREDICTION_DRIFT = "PredictionDrift"
+ """Tracks prediction result data distribution change, comparing against validation/test label data
+ #: or past production data."""
+ DATA_QUALITY = "DataQuality"
+ """Tracks model input data integrity."""
+ FEATURE_ATTRIBUTION_DRIFT = "FeatureAttributionDrift"
+ """Tracks feature importance change in production, comparing against feature importance at
+ #: training time."""
+ CUSTOM = "Custom"
+ """Tracks a custom signal provided by users."""
+
+
class MountAction(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Mount Action."""
@@ -817,6 +1024,43 @@ class NodesValueType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
ALL = "All"
+class NumericalDataDriftMetric(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """NumericalDataDriftMetric."""
+
+ JENSEN_SHANNON_DISTANCE = "JensenShannonDistance"
+ """The Jensen Shannon Distance (JSD) metric."""
+ POPULATION_STABILITY_INDEX = "PopulationStabilityIndex"
+ """The Population Stability Index (PSI) metric."""
+ NORMALIZED_WASSERSTEIN_DISTANCE = "NormalizedWassersteinDistance"
+ """The Normalized Wasserstein Distance metric."""
+ TWO_SAMPLE_KOLMOGOROV_SMIRNOV_TEST = "TwoSampleKolmogorovSmirnovTest"
+ """The Two Sample Kolmogorov-Smirnov Test (two-sample K–S) metric."""
+
+
+class NumericalDataQualityMetric(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """NumericalDataQualityMetric."""
+
+ NULL_VALUE_RATE = "NullValueRate"
+ """Calculates the rate of null values."""
+ DATA_TYPE_ERROR_RATE = "DataTypeErrorRate"
+ """Calculates the rate of data type errors."""
+ OUT_OF_BOUNDS_RATE = "OutOfBoundsRate"
+ """Calculates the rate values are out of bounds."""
+
+
+class NumericalPredictionDriftMetric(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """NumericalPredictionDriftMetric."""
+
+ JENSEN_SHANNON_DISTANCE = "JensenShannonDistance"
+ """The Jensen Shannon Distance (JSD) metric."""
+ POPULATION_STABILITY_INDEX = "PopulationStabilityIndex"
+ """The Population Stability Index (PSI) metric."""
+ NORMALIZED_WASSERSTEIN_DISTANCE = "NormalizedWassersteinDistance"
+ """The Normalized Wasserstein Distance metric."""
+ TWO_SAMPLE_KOLMOGOROV_SMIRNOV_TEST = "TwoSampleKolmogorovSmirnovTest"
+ """The Two Sample Kolmogorov-Smirnov Test (two-sample K–S) metric."""
+
+
class ObjectDetectionPrimaryMetrics(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Primary metrics for Image ObjectDetection task."""
@@ -873,6 +1117,16 @@ class OrderString(str, Enum, metaclass=CaseInsensitiveEnumMeta):
UPDATED_AT_ASC = "UpdatedAtAsc"
+class Origin(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The intended executor of the operation; as in Resource Based Access Control (RBAC) and audit
+ logs UX. Default value is "user,system".
+ """
+
+ USER = "user"
+ SYSTEM = "system"
+ USER_SYSTEM = "user,system"
+
+
class OsType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Compute OS Type."""
@@ -1073,6 +1327,36 @@ class RemoteLoginPortPublicAccess(str, Enum, metaclass=CaseInsensitiveEnumMeta):
NOT_SPECIFIED = "NotSpecified"
+class RuleAction(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The action enum for networking rule."""
+
+ ALLOW = "Allow"
+ DENY = "Deny"
+
+
+class RuleCategory(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Category of a managed network Outbound Rule of a machine learning workspace."""
+
+ REQUIRED = "Required"
+ RECOMMENDED = "Recommended"
+ USER_DEFINED = "UserDefined"
+
+
+class RuleStatus(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Type of a managed network Outbound Rule of a machine learning workspace."""
+
+ INACTIVE = "Inactive"
+ ACTIVE = "Active"
+
+
+class RuleType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Type of a managed network Outbound Rule of a machine learning workspace."""
+
+ FQDN = "FQDN"
+ PRIVATE_ENDPOINT = "PrivateEndpoint"
+ SERVICE_TAG = "ServiceTag"
+
+
class SamplingAlgorithmType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""SamplingAlgorithmType."""
@@ -1093,6 +1377,7 @@ class ScheduleActionType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
CREATE_JOB = "CreateJob"
INVOKE_BATCH_ENDPOINT = "InvokeBatchEndpoint"
+ CREATE_MONITOR = "CreateMonitor"
class ScheduleListViewType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
@@ -1434,6 +1719,12 @@ class VolumeDefinitionType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
NPIPE = "npipe"
+class WebhookType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Enum to determine the webhook callback service type."""
+
+ AZURE_DEV_OPS = "AzureDevOps"
+
+
class WeekDay(str, Enum, metaclass=CaseInsensitiveEnumMeta):
"""Enum of weekday."""
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_models_py3.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_models_py3.py
index 736189ee6853..41789d8b69af 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_models_py3.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_models_py3.py
@@ -728,6 +728,69 @@ def __init__(
self.load_balancer_subnet = load_balancer_subnet
+class MonitoringFeatureFilterBase(_serialization.Model):
+ """MonitoringFeatureFilterBase.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ AllFeatures, FeatureSubset, TopNFeaturesByAttribution
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar filter_type: [Required] Specifies the feature filter to leverage when selecting features
+ to calculate metrics over. Required. Known values are: "AllFeatures", "TopNByAttribution", and
+ "FeatureSubset".
+ :vartype filter_type: str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringFeatureFilterType
+ """
+
+ _validation = {
+ "filter_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "filter_type": {"key": "filterType", "type": "str"},
+ }
+
+ _subtype_map = {
+ "filter_type": {
+ "AllFeatures": "AllFeatures",
+ "FeatureSubset": "FeatureSubset",
+ "TopNByAttribution": "TopNFeaturesByAttribution",
+ }
+ }
+
+ def __init__(self, **kwargs: Any) -> None:
+ """ """
+ super().__init__(**kwargs)
+ self.filter_type: Optional[str] = None
+
+
+class AllFeatures(MonitoringFeatureFilterBase):
+ """AllFeatures.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar filter_type: [Required] Specifies the feature filter to leverage when selecting features
+ to calculate metrics over. Required. Known values are: "AllFeatures", "TopNByAttribution", and
+ "FeatureSubset".
+ :vartype filter_type: str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringFeatureFilterType
+ """
+
+ _validation = {
+ "filter_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "filter_type": {"key": "filterType", "type": "str"},
+ }
+
+ def __init__(self, **kwargs: Any) -> None:
+ """ """
+ super().__init__(**kwargs)
+ self.filter_type: str = "AllFeatures"
+
+
class Nodes(_serialization.Model):
"""Abstract Nodes definition.
@@ -1147,112 +1210,6 @@ def __init__(
self.property_bag = property_bag
-class AmlOperation(_serialization.Model):
- """Azure Machine Learning workspace REST API operation.
-
- :ivar name: Operation name: {provider}/{resource}/{operation}.
- :vartype name: str
- :ivar display: Display name of operation.
- :vartype display: ~azure.mgmt.machinelearningservices.models.AmlOperationDisplay
- :ivar is_data_action: Indicates whether the operation applies to data-plane.
- :vartype is_data_action: bool
- """
-
- _attribute_map = {
- "name": {"key": "name", "type": "str"},
- "display": {"key": "display", "type": "AmlOperationDisplay"},
- "is_data_action": {"key": "isDataAction", "type": "bool"},
- }
-
- def __init__(
- self,
- *,
- name: Optional[str] = None,
- display: Optional["_models.AmlOperationDisplay"] = None,
- is_data_action: Optional[bool] = None,
- **kwargs: Any
- ) -> None:
- """
- :keyword name: Operation name: {provider}/{resource}/{operation}.
- :paramtype name: str
- :keyword display: Display name of operation.
- :paramtype display: ~azure.mgmt.machinelearningservices.models.AmlOperationDisplay
- :keyword is_data_action: Indicates whether the operation applies to data-plane.
- :paramtype is_data_action: bool
- """
- super().__init__(**kwargs)
- self.name = name
- self.display = display
- self.is_data_action = is_data_action
-
-
-class AmlOperationDisplay(_serialization.Model):
- """Display name of operation.
-
- :ivar provider: The resource provider name: Microsoft.MachineLearningExperimentation.
- :vartype provider: str
- :ivar resource: The resource on which the operation is performed.
- :vartype resource: str
- :ivar operation: The operation that users can perform.
- :vartype operation: str
- :ivar description: The description for the operation.
- :vartype description: str
- """
-
- _attribute_map = {
- "provider": {"key": "provider", "type": "str"},
- "resource": {"key": "resource", "type": "str"},
- "operation": {"key": "operation", "type": "str"},
- "description": {"key": "description", "type": "str"},
- }
-
- def __init__(
- self,
- *,
- provider: Optional[str] = None,
- resource: Optional[str] = None,
- operation: Optional[str] = None,
- description: Optional[str] = None,
- **kwargs: Any
- ) -> None:
- """
- :keyword provider: The resource provider name: Microsoft.MachineLearningExperimentation.
- :paramtype provider: str
- :keyword resource: The resource on which the operation is performed.
- :paramtype resource: str
- :keyword operation: The operation that users can perform.
- :paramtype operation: str
- :keyword description: The description for the operation.
- :paramtype description: str
- """
- super().__init__(**kwargs)
- self.provider = provider
- self.resource = resource
- self.operation = operation
- self.description = description
-
-
-class AmlOperationListResult(_serialization.Model):
- """An array of operations supported by the resource provider.
-
- :ivar value: List of AML workspace operations supported by the AML workspace resource provider.
- :vartype value: list[~azure.mgmt.machinelearningservices.models.AmlOperation]
- """
-
- _attribute_map = {
- "value": {"key": "value", "type": "[AmlOperation]"},
- }
-
- def __init__(self, *, value: Optional[List["_models.AmlOperation"]] = None, **kwargs: Any) -> None:
- """
- :keyword value: List of AML workspace operations supported by the AML workspace resource
- provider.
- :paramtype value: list[~azure.mgmt.machinelearningservices.models.AmlOperation]
- """
- super().__init__(**kwargs)
- self.value = value
-
-
class IdentityConfiguration(_serialization.Model):
"""Base definition for identity configuration.
@@ -1310,6 +1267,63 @@ def __init__(self, **kwargs: Any) -> None:
self.identity_type: str = "AMLToken"
+class MonitorComputeIdentityBase(_serialization.Model):
+ """Monitor compute identity base definition.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ AmlTokenComputeIdentity, ManagedComputeIdentity
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar compute_identity_type: [Required] Specifies the type of identity to use within the
+ monitoring jobs. Required. Known values are: "AmlToken" and "ManagedIdentity".
+ :vartype compute_identity_type: str or
+ ~azure.mgmt.machinelearningservices.models.MonitorComputeIdentityType
+ """
+
+ _validation = {
+ "compute_identity_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "compute_identity_type": {"key": "computeIdentityType", "type": "str"},
+ }
+
+ _subtype_map = {
+ "compute_identity_type": {"AmlToken": "AmlTokenComputeIdentity", "ManagedIdentity": "ManagedComputeIdentity"}
+ }
+
+ def __init__(self, **kwargs: Any) -> None:
+ """ """
+ super().__init__(**kwargs)
+ self.compute_identity_type: Optional[str] = None
+
+
+class AmlTokenComputeIdentity(MonitorComputeIdentityBase):
+ """AML token compute identity definition.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar compute_identity_type: [Required] Specifies the type of identity to use within the
+ monitoring jobs. Required. Known values are: "AmlToken" and "ManagedIdentity".
+ :vartype compute_identity_type: str or
+ ~azure.mgmt.machinelearningservices.models.MonitorComputeIdentityType
+ """
+
+ _validation = {
+ "compute_identity_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "compute_identity_type": {"key": "computeIdentityType", "type": "str"},
+ }
+
+ def __init__(self, **kwargs: Any) -> None:
+ """ """
+ super().__init__(**kwargs)
+ self.compute_identity_type: str = "AmlToken"
+
+
class AmlUserFeature(_serialization.Model):
"""Features enabled for a workspace.
@@ -1349,6 +1363,68 @@ def __init__(
self.description = description
+class DataReferenceCredential(_serialization.Model):
+ """DataReferenceCredential base class.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ DockerCredential, ManagedIdentityCredential, AnonymousAccessCredential, SASCredential
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar credential_type: [Required] Credential type used to authentication with storage.
+ Required. Known values are: "SAS", "DockerCredentials", "ManagedIdentity", and "NoCredentials".
+ :vartype credential_type: str or
+ ~azure.mgmt.machinelearningservices.models.DataReferenceCredentialType
+ """
+
+ _validation = {
+ "credential_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "credential_type": {"key": "credentialType", "type": "str"},
+ }
+
+ _subtype_map = {
+ "credential_type": {
+ "DockerCredentials": "DockerCredential",
+ "ManagedIdentity": "ManagedIdentityCredential",
+ "NoCredentials": "AnonymousAccessCredential",
+ "SAS": "SASCredential",
+ }
+ }
+
+ def __init__(self, **kwargs: Any) -> None:
+ """ """
+ super().__init__(**kwargs)
+ self.credential_type: Optional[str] = None
+
+
+class AnonymousAccessCredential(DataReferenceCredential):
+ """Access credential with no credentials.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar credential_type: [Required] Credential type used to authentication with storage.
+ Required. Known values are: "SAS", "DockerCredentials", "ManagedIdentity", and "NoCredentials".
+ :vartype credential_type: str or
+ ~azure.mgmt.machinelearningservices.models.DataReferenceCredentialType
+ """
+
+ _validation = {
+ "credential_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "credential_type": {"key": "credentialType", "type": "str"},
+ }
+
+ def __init__(self, **kwargs: Any) -> None:
+ """ """
+ super().__init__(**kwargs)
+ self.credential_type: str = "NoCredentials"
+
+
class ArmResourceId(_serialization.Model):
"""ARM ResourceId of a resource.
@@ -1879,6 +1955,8 @@ class AutoMLJob(JobBaseProperties): # pylint: disable=too-many-instance-attribu
:vartype environment_variables: dict[str, str]
:ivar outputs: Mapping of output data bindings used in the job.
:vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput]
+ :ivar queue_settings: Queue settings for the job.
+ :vartype queue_settings: ~azure.mgmt.machinelearningservices.models.QueueSettings
:ivar resources: Compute Resource configuration for the job.
:vartype resources: ~azure.mgmt.machinelearningservices.models.JobResourceConfiguration
:ivar task_details: [Required] This represents scenario which can be one of Tables/NLP/Image.
@@ -1908,6 +1986,7 @@ class AutoMLJob(JobBaseProperties): # pylint: disable=too-many-instance-attribu
"environment_id": {"key": "environmentId", "type": "str"},
"environment_variables": {"key": "environmentVariables", "type": "{str}"},
"outputs": {"key": "outputs", "type": "{JobOutput}"},
+ "queue_settings": {"key": "queueSettings", "type": "QueueSettings"},
"resources": {"key": "resources", "type": "JobResourceConfiguration"},
"task_details": {"key": "taskDetails", "type": "AutoMLVertical"},
}
@@ -1929,6 +2008,7 @@ def __init__(
environment_id: Optional[str] = None,
environment_variables: Optional[Dict[str, str]] = None,
outputs: Optional[Dict[str, "_models.JobOutput"]] = None,
+ queue_settings: Optional["_models.QueueSettings"] = None,
resources: Optional["_models.JobResourceConfiguration"] = None,
**kwargs: Any
) -> None:
@@ -1965,6 +2045,8 @@ def __init__(
:paramtype environment_variables: dict[str, str]
:keyword outputs: Mapping of output data bindings used in the job.
:paramtype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput]
+ :keyword queue_settings: Queue settings for the job.
+ :paramtype queue_settings: ~azure.mgmt.machinelearningservices.models.QueueSettings
:keyword resources: Compute Resource configuration for the job.
:paramtype resources: ~azure.mgmt.machinelearningservices.models.JobResourceConfiguration
:keyword task_details: [Required] This represents scenario which can be one of
@@ -1988,6 +2070,7 @@ def __init__(
self.environment_id = environment_id
self.environment_variables = environment_variables
self.outputs = outputs
+ self.queue_settings = queue_settings
self.resources = resources
self.task_details = task_details
@@ -2422,7 +2505,35 @@ def __init__(
self.is_default = None
-class AzureBlobDatastore(DatastoreProperties): # pylint: disable=too-many-instance-attributes
+class AzureDatastore(_serialization.Model):
+ """Base definition for Azure datastore contents configuration.
+
+ :ivar resource_group: Azure Resource Group name.
+ :vartype resource_group: str
+ :ivar subscription_id: Azure Subscription Id.
+ :vartype subscription_id: str
+ """
+
+ _attribute_map = {
+ "resource_group": {"key": "resourceGroup", "type": "str"},
+ "subscription_id": {"key": "subscriptionId", "type": "str"},
+ }
+
+ def __init__(
+ self, *, resource_group: Optional[str] = None, subscription_id: Optional[str] = None, **kwargs: Any
+ ) -> None:
+ """
+ :keyword resource_group: Azure Resource Group name.
+ :paramtype resource_group: str
+ :keyword subscription_id: Azure Subscription Id.
+ :paramtype subscription_id: str
+ """
+ super().__init__(**kwargs)
+ self.resource_group = resource_group
+ self.subscription_id = subscription_id
+
+
+class AzureBlobDatastore(AzureDatastore, DatastoreProperties): # pylint: disable=too-many-instance-attributes
"""Azure Blob datastore configuration.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -2443,6 +2554,10 @@ class AzureBlobDatastore(DatastoreProperties): # pylint: disable=too-many-insta
:ivar is_default: Readonly property to indicate if datastore is the workspace default
datastore.
:vartype is_default: bool
+ :ivar resource_group: Azure Resource Group name.
+ :vartype resource_group: str
+ :ivar subscription_id: Azure Subscription Id.
+ :vartype subscription_id: str
:ivar account_name: Storage account name.
:vartype account_name: str
:ivar container_name: Storage account container name.
@@ -2471,6 +2586,8 @@ class AzureBlobDatastore(DatastoreProperties): # pylint: disable=too-many-insta
"credentials": {"key": "credentials", "type": "DatastoreCredentials"},
"datastore_type": {"key": "datastoreType", "type": "str"},
"is_default": {"key": "isDefault", "type": "bool"},
+ "resource_group": {"key": "resourceGroup", "type": "str"},
+ "subscription_id": {"key": "subscriptionId", "type": "str"},
"account_name": {"key": "accountName", "type": "str"},
"container_name": {"key": "containerName", "type": "str"},
"endpoint": {"key": "endpoint", "type": "str"},
@@ -2485,6 +2602,8 @@ def __init__(
description: Optional[str] = None,
properties: Optional[Dict[str, str]] = None,
tags: Optional[Dict[str, str]] = None,
+ resource_group: Optional[str] = None,
+ subscription_id: Optional[str] = None,
account_name: Optional[str] = None,
container_name: Optional[str] = None,
endpoint: Optional[str] = None,
@@ -2501,6 +2620,10 @@ def __init__(
:paramtype tags: dict[str, str]
:keyword credentials: [Required] Account credentials. Required.
:paramtype credentials: ~azure.mgmt.machinelearningservices.models.DatastoreCredentials
+ :keyword resource_group: Azure Resource Group name.
+ :paramtype resource_group: str
+ :keyword subscription_id: Azure Subscription Id.
+ :paramtype subscription_id: str
:keyword account_name: Storage account name.
:paramtype account_name: str
:keyword container_name: Storage account container name.
@@ -2515,16 +2638,31 @@ def __init__(
:paramtype service_data_access_auth_identity: str or
~azure.mgmt.machinelearningservices.models.ServiceDataAccessAuthIdentity
"""
- super().__init__(description=description, properties=properties, tags=tags, credentials=credentials, **kwargs)
+ super().__init__(
+ resource_group=resource_group,
+ subscription_id=subscription_id,
+ description=description,
+ properties=properties,
+ tags=tags,
+ credentials=credentials,
+ **kwargs
+ )
+ self.description = description
+ self.properties = properties
+ self.tags = tags
+ self.credentials = credentials
self.datastore_type: str = "AzureBlob"
+ self.is_default = None
self.account_name = account_name
self.container_name = container_name
self.endpoint = endpoint
self.protocol = protocol
self.service_data_access_auth_identity = service_data_access_auth_identity
+ self.resource_group = resource_group
+ self.subscription_id = subscription_id
-class AzureDataLakeGen1Datastore(DatastoreProperties):
+class AzureDataLakeGen1Datastore(AzureDatastore, DatastoreProperties):
"""Azure Data Lake Gen1 datastore configuration.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -2545,6 +2683,10 @@ class AzureDataLakeGen1Datastore(DatastoreProperties):
:ivar is_default: Readonly property to indicate if datastore is the workspace default
datastore.
:vartype is_default: bool
+ :ivar resource_group: Azure Resource Group name.
+ :vartype resource_group: str
+ :ivar subscription_id: Azure Subscription Id.
+ :vartype subscription_id: str
:ivar service_data_access_auth_identity: Indicates which identity to use to authenticate
service data access to customer's storage. Known values are: "None",
"WorkspaceSystemAssignedIdentity", and "WorkspaceUserAssignedIdentity".
@@ -2568,6 +2710,8 @@ class AzureDataLakeGen1Datastore(DatastoreProperties):
"credentials": {"key": "credentials", "type": "DatastoreCredentials"},
"datastore_type": {"key": "datastoreType", "type": "str"},
"is_default": {"key": "isDefault", "type": "bool"},
+ "resource_group": {"key": "resourceGroup", "type": "str"},
+ "subscription_id": {"key": "subscriptionId", "type": "str"},
"service_data_access_auth_identity": {"key": "serviceDataAccessAuthIdentity", "type": "str"},
"store_name": {"key": "storeName", "type": "str"},
}
@@ -2580,6 +2724,8 @@ def __init__(
description: Optional[str] = None,
properties: Optional[Dict[str, str]] = None,
tags: Optional[Dict[str, str]] = None,
+ resource_group: Optional[str] = None,
+ subscription_id: Optional[str] = None,
service_data_access_auth_identity: Optional[Union[str, "_models.ServiceDataAccessAuthIdentity"]] = None,
**kwargs: Any
) -> None:
@@ -2592,6 +2738,10 @@ def __init__(
:paramtype tags: dict[str, str]
:keyword credentials: [Required] Account credentials. Required.
:paramtype credentials: ~azure.mgmt.machinelearningservices.models.DatastoreCredentials
+ :keyword resource_group: Azure Resource Group name.
+ :paramtype resource_group: str
+ :keyword subscription_id: Azure Subscription Id.
+ :paramtype subscription_id: str
:keyword service_data_access_auth_identity: Indicates which identity to use to authenticate
service data access to customer's storage. Known values are: "None",
"WorkspaceSystemAssignedIdentity", and "WorkspaceUserAssignedIdentity".
@@ -2600,13 +2750,28 @@ def __init__(
:keyword store_name: [Required] Azure Data Lake store name. Required.
:paramtype store_name: str
"""
- super().__init__(description=description, properties=properties, tags=tags, credentials=credentials, **kwargs)
+ super().__init__(
+ resource_group=resource_group,
+ subscription_id=subscription_id,
+ description=description,
+ properties=properties,
+ tags=tags,
+ credentials=credentials,
+ **kwargs
+ )
+ self.description = description
+ self.properties = properties
+ self.tags = tags
+ self.credentials = credentials
self.datastore_type: str = "AzureDataLakeGen1"
+ self.is_default = None
self.service_data_access_auth_identity = service_data_access_auth_identity
self.store_name = store_name
+ self.resource_group = resource_group
+ self.subscription_id = subscription_id
-class AzureDataLakeGen2Datastore(DatastoreProperties): # pylint: disable=too-many-instance-attributes
+class AzureDataLakeGen2Datastore(AzureDatastore, DatastoreProperties): # pylint: disable=too-many-instance-attributes
"""Azure Data Lake Gen2 datastore configuration.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -2627,6 +2792,10 @@ class AzureDataLakeGen2Datastore(DatastoreProperties): # pylint: disable=too-ma
:ivar is_default: Readonly property to indicate if datastore is the workspace default
datastore.
:vartype is_default: bool
+ :ivar resource_group: Azure Resource Group name.
+ :vartype resource_group: str
+ :ivar subscription_id: Azure Subscription Id.
+ :vartype subscription_id: str
:ivar account_name: [Required] Storage account name. Required.
:vartype account_name: str
:ivar endpoint: Azure cloud endpoint for the storage account.
@@ -2657,6 +2826,8 @@ class AzureDataLakeGen2Datastore(DatastoreProperties): # pylint: disable=too-ma
"credentials": {"key": "credentials", "type": "DatastoreCredentials"},
"datastore_type": {"key": "datastoreType", "type": "str"},
"is_default": {"key": "isDefault", "type": "bool"},
+ "resource_group": {"key": "resourceGroup", "type": "str"},
+ "subscription_id": {"key": "subscriptionId", "type": "str"},
"account_name": {"key": "accountName", "type": "str"},
"endpoint": {"key": "endpoint", "type": "str"},
"filesystem": {"key": "filesystem", "type": "str"},
@@ -2673,6 +2844,8 @@ def __init__(
description: Optional[str] = None,
properties: Optional[Dict[str, str]] = None,
tags: Optional[Dict[str, str]] = None,
+ resource_group: Optional[str] = None,
+ subscription_id: Optional[str] = None,
endpoint: Optional[str] = None,
protocol: Optional[str] = None,
service_data_access_auth_identity: Optional[Union[str, "_models.ServiceDataAccessAuthIdentity"]] = None,
@@ -2687,7 +2860,11 @@ def __init__(
:paramtype tags: dict[str, str]
:keyword credentials: [Required] Account credentials. Required.
:paramtype credentials: ~azure.mgmt.machinelearningservices.models.DatastoreCredentials
- :keyword account_name: [Required] Storage account name. Required.
+ :keyword resource_group: Azure Resource Group name.
+ :paramtype resource_group: str
+ :keyword subscription_id: Azure Subscription Id.
+ :paramtype subscription_id: str
+ :keyword account_name: [Required] Storage account name. Required.
:paramtype account_name: str
:keyword endpoint: Azure cloud endpoint for the storage account.
:paramtype endpoint: str
@@ -2701,16 +2878,97 @@ def __init__(
:paramtype service_data_access_auth_identity: str or
~azure.mgmt.machinelearningservices.models.ServiceDataAccessAuthIdentity
"""
- super().__init__(description=description, properties=properties, tags=tags, credentials=credentials, **kwargs)
+ super().__init__(
+ resource_group=resource_group,
+ subscription_id=subscription_id,
+ description=description,
+ properties=properties,
+ tags=tags,
+ credentials=credentials,
+ **kwargs
+ )
+ self.description = description
+ self.properties = properties
+ self.tags = tags
+ self.credentials = credentials
self.datastore_type: str = "AzureDataLakeGen2"
+ self.is_default = None
self.account_name = account_name
self.endpoint = endpoint
self.filesystem = filesystem
self.protocol = protocol
self.service_data_access_auth_identity = service_data_access_auth_identity
+ self.resource_group = resource_group
+ self.subscription_id = subscription_id
+
+
+class Webhook(_serialization.Model):
+ """Webhook base.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ AzureDevOpsWebhook
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar event_type: Send callback on a specified notification event.
+ :vartype event_type: str
+ :ivar webhook_type: [Required] Specifies the type of service to send a callback. Required.
+ "AzureDevOps"
+ :vartype webhook_type: str or ~azure.mgmt.machinelearningservices.models.WebhookType
+ """
+
+ _validation = {
+ "webhook_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "event_type": {"key": "eventType", "type": "str"},
+ "webhook_type": {"key": "webhookType", "type": "str"},
+ }
+
+ _subtype_map = {"webhook_type": {"AzureDevOps": "AzureDevOpsWebhook"}}
+
+ def __init__(self, *, event_type: Optional[str] = None, **kwargs: Any) -> None:
+ """
+ :keyword event_type: Send callback on a specified notification event.
+ :paramtype event_type: str
+ """
+ super().__init__(**kwargs)
+ self.event_type = event_type
+ self.webhook_type: Optional[str] = None
+
+
+class AzureDevOpsWebhook(Webhook):
+ """Webhook details specific for Azure DevOps.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar event_type: Send callback on a specified notification event.
+ :vartype event_type: str
+ :ivar webhook_type: [Required] Specifies the type of service to send a callback. Required.
+ "AzureDevOps"
+ :vartype webhook_type: str or ~azure.mgmt.machinelearningservices.models.WebhookType
+ """
+
+ _validation = {
+ "webhook_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "event_type": {"key": "eventType", "type": "str"},
+ "webhook_type": {"key": "webhookType", "type": "str"},
+ }
+
+ def __init__(self, *, event_type: Optional[str] = None, **kwargs: Any) -> None:
+ """
+ :keyword event_type: Send callback on a specified notification event.
+ :paramtype event_type: str
+ """
+ super().__init__(event_type=event_type, **kwargs)
+ self.webhook_type: str = "AzureDevOps"
-class AzureFileDatastore(DatastoreProperties): # pylint: disable=too-many-instance-attributes
+class AzureFileDatastore(AzureDatastore, DatastoreProperties): # pylint: disable=too-many-instance-attributes
"""Azure File datastore configuration.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -2731,6 +2989,10 @@ class AzureFileDatastore(DatastoreProperties): # pylint: disable=too-many-insta
:ivar is_default: Readonly property to indicate if datastore is the workspace default
datastore.
:vartype is_default: bool
+ :ivar resource_group: Azure Resource Group name.
+ :vartype resource_group: str
+ :ivar subscription_id: Azure Subscription Id.
+ :vartype subscription_id: str
:ivar account_name: [Required] Storage account name. Required.
:vartype account_name: str
:ivar endpoint: Azure cloud endpoint for the storage account.
@@ -2762,6 +3024,8 @@ class AzureFileDatastore(DatastoreProperties): # pylint: disable=too-many-insta
"credentials": {"key": "credentials", "type": "DatastoreCredentials"},
"datastore_type": {"key": "datastoreType", "type": "str"},
"is_default": {"key": "isDefault", "type": "bool"},
+ "resource_group": {"key": "resourceGroup", "type": "str"},
+ "subscription_id": {"key": "subscriptionId", "type": "str"},
"account_name": {"key": "accountName", "type": "str"},
"endpoint": {"key": "endpoint", "type": "str"},
"file_share_name": {"key": "fileShareName", "type": "str"},
@@ -2778,6 +3042,8 @@ def __init__(
description: Optional[str] = None,
properties: Optional[Dict[str, str]] = None,
tags: Optional[Dict[str, str]] = None,
+ resource_group: Optional[str] = None,
+ subscription_id: Optional[str] = None,
endpoint: Optional[str] = None,
protocol: Optional[str] = None,
service_data_access_auth_identity: Optional[Union[str, "_models.ServiceDataAccessAuthIdentity"]] = None,
@@ -2792,6 +3058,10 @@ def __init__(
:paramtype tags: dict[str, str]
:keyword credentials: [Required] Account credentials. Required.
:paramtype credentials: ~azure.mgmt.machinelearningservices.models.DatastoreCredentials
+ :keyword resource_group: Azure Resource Group name.
+ :paramtype resource_group: str
+ :keyword subscription_id: Azure Subscription Id.
+ :paramtype subscription_id: str
:keyword account_name: [Required] Storage account name. Required.
:paramtype account_name: str
:keyword endpoint: Azure cloud endpoint for the storage account.
@@ -2807,13 +3077,28 @@ def __init__(
:paramtype service_data_access_auth_identity: str or
~azure.mgmt.machinelearningservices.models.ServiceDataAccessAuthIdentity
"""
- super().__init__(description=description, properties=properties, tags=tags, credentials=credentials, **kwargs)
+ super().__init__(
+ resource_group=resource_group,
+ subscription_id=subscription_id,
+ description=description,
+ properties=properties,
+ tags=tags,
+ credentials=credentials,
+ **kwargs
+ )
+ self.description = description
+ self.properties = properties
+ self.tags = tags
+ self.credentials = credentials
self.datastore_type: str = "AzureFile"
+ self.is_default = None
self.account_name = account_name
self.endpoint = endpoint
self.file_share_name = file_share_name
self.protocol = protocol
self.service_data_access_auth_identity = service_data_access_auth_identity
+ self.resource_group = resource_group
+ self.subscription_id = subscription_id
class EarlyTerminationPolicy(_serialization.Model):
@@ -3872,6 +4157,280 @@ def __init__(self, *, context_uri: str, dockerfile_path: str = "Dockerfile", **k
self.dockerfile_path = dockerfile_path
+class DataDriftMetricThresholdBase(_serialization.Model):
+ """DataDriftMetricThresholdBase.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ CategoricalDataDriftMetricThreshold, NumericalDataDriftMetricThreshold
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar data_type: [Required] Specifies the data type of the metric threshold. Required. Known
+ values are: "Numerical" and "Categorical".
+ :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType
+ :ivar threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :vartype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ """
+
+ _validation = {
+ "data_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "data_type": {"key": "dataType", "type": "str"},
+ "threshold": {"key": "threshold", "type": "MonitoringThreshold"},
+ }
+
+ _subtype_map = {
+ "data_type": {
+ "Categorical": "CategoricalDataDriftMetricThreshold",
+ "Numerical": "NumericalDataDriftMetricThreshold",
+ }
+ }
+
+ def __init__(self, *, threshold: Optional["_models.MonitoringThreshold"] = None, **kwargs: Any) -> None:
+ """
+ :keyword threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :paramtype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ """
+ super().__init__(**kwargs)
+ self.data_type: Optional[str] = None
+ self.threshold = threshold
+
+
+class CategoricalDataDriftMetricThreshold(DataDriftMetricThresholdBase):
+ """CategoricalDataDriftMetricThreshold.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar data_type: [Required] Specifies the data type of the metric threshold. Required. Known
+ values are: "Numerical" and "Categorical".
+ :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType
+ :ivar threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :vartype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ :ivar metric: [Required] The categorical data drift metric to calculate. Required. Known values
+ are: "JensenShannonDistance", "PopulationStabilityIndex", and "PearsonsChiSquaredTest".
+ :vartype metric: str or ~azure.mgmt.machinelearningservices.models.CategoricalDataDriftMetric
+ """
+
+ _validation = {
+ "data_type": {"required": True},
+ "metric": {"required": True},
+ }
+
+ _attribute_map = {
+ "data_type": {"key": "dataType", "type": "str"},
+ "threshold": {"key": "threshold", "type": "MonitoringThreshold"},
+ "metric": {"key": "metric", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric: Union[str, "_models.CategoricalDataDriftMetric"],
+ threshold: Optional["_models.MonitoringThreshold"] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :paramtype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ :keyword metric: [Required] The categorical data drift metric to calculate. Required. Known
+ values are: "JensenShannonDistance", "PopulationStabilityIndex", and "PearsonsChiSquaredTest".
+ :paramtype metric: str or ~azure.mgmt.machinelearningservices.models.CategoricalDataDriftMetric
+ """
+ super().__init__(threshold=threshold, **kwargs)
+ self.data_type: str = "Categorical"
+ self.metric = metric
+
+
+class DataQualityMetricThresholdBase(_serialization.Model):
+ """DataQualityMetricThresholdBase.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ CategoricalDataQualityMetricThreshold, NumericalDataQualityMetricThreshold
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar data_type: [Required] Specifies the data type of the metric threshold. Required. Known
+ values are: "Numerical" and "Categorical".
+ :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType
+ :ivar threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :vartype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ """
+
+ _validation = {
+ "data_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "data_type": {"key": "dataType", "type": "str"},
+ "threshold": {"key": "threshold", "type": "MonitoringThreshold"},
+ }
+
+ _subtype_map = {
+ "data_type": {
+ "Categorical": "CategoricalDataQualityMetricThreshold",
+ "Numerical": "NumericalDataQualityMetricThreshold",
+ }
+ }
+
+ def __init__(self, *, threshold: Optional["_models.MonitoringThreshold"] = None, **kwargs: Any) -> None:
+ """
+ :keyword threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :paramtype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ """
+ super().__init__(**kwargs)
+ self.data_type: Optional[str] = None
+ self.threshold = threshold
+
+
+class CategoricalDataQualityMetricThreshold(DataQualityMetricThresholdBase):
+ """CategoricalDataQualityMetricThreshold.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar data_type: [Required] Specifies the data type of the metric threshold. Required. Known
+ values are: "Numerical" and "Categorical".
+ :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType
+ :ivar threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :vartype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ :ivar metric: [Required] The categorical data quality metric to calculate. Required. Known
+ values are: "NullValueRate", "DataTypeErrorRate", and "OutOfBoundsRate".
+ :vartype metric: str or ~azure.mgmt.machinelearningservices.models.CategoricalDataQualityMetric
+ """
+
+ _validation = {
+ "data_type": {"required": True},
+ "metric": {"required": True},
+ }
+
+ _attribute_map = {
+ "data_type": {"key": "dataType", "type": "str"},
+ "threshold": {"key": "threshold", "type": "MonitoringThreshold"},
+ "metric": {"key": "metric", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric: Union[str, "_models.CategoricalDataQualityMetric"],
+ threshold: Optional["_models.MonitoringThreshold"] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :paramtype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ :keyword metric: [Required] The categorical data quality metric to calculate. Required. Known
+ values are: "NullValueRate", "DataTypeErrorRate", and "OutOfBoundsRate".
+ :paramtype metric: str or
+ ~azure.mgmt.machinelearningservices.models.CategoricalDataQualityMetric
+ """
+ super().__init__(threshold=threshold, **kwargs)
+ self.data_type: str = "Categorical"
+ self.metric = metric
+
+
+class PredictionDriftMetricThresholdBase(_serialization.Model):
+ """PredictionDriftMetricThresholdBase.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ CategoricalPredictionDriftMetricThreshold, NumericalPredictionDriftMetricThreshold
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar data_type: [Required] Specifies the data type of the metric threshold. Required. Known
+ values are: "Numerical" and "Categorical".
+ :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType
+ :ivar threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :vartype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ """
+
+ _validation = {
+ "data_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "data_type": {"key": "dataType", "type": "str"},
+ "threshold": {"key": "threshold", "type": "MonitoringThreshold"},
+ }
+
+ _subtype_map = {
+ "data_type": {
+ "Categorical": "CategoricalPredictionDriftMetricThreshold",
+ "Numerical": "NumericalPredictionDriftMetricThreshold",
+ }
+ }
+
+ def __init__(self, *, threshold: Optional["_models.MonitoringThreshold"] = None, **kwargs: Any) -> None:
+ """
+ :keyword threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :paramtype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ """
+ super().__init__(**kwargs)
+ self.data_type: Optional[str] = None
+ self.threshold = threshold
+
+
+class CategoricalPredictionDriftMetricThreshold(PredictionDriftMetricThresholdBase):
+ """CategoricalPredictionDriftMetricThreshold.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar data_type: [Required] Specifies the data type of the metric threshold. Required. Known
+ values are: "Numerical" and "Categorical".
+ :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType
+ :ivar threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :vartype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ :ivar metric: [Required] The categorical prediction drift metric to calculate. Required. Known
+ values are: "JensenShannonDistance", "PopulationStabilityIndex", and "PearsonsChiSquaredTest".
+ :vartype metric: str or
+ ~azure.mgmt.machinelearningservices.models.CategoricalPredictionDriftMetric
+ """
+
+ _validation = {
+ "data_type": {"required": True},
+ "metric": {"required": True},
+ }
+
+ _attribute_map = {
+ "data_type": {"key": "dataType", "type": "str"},
+ "threshold": {"key": "threshold", "type": "MonitoringThreshold"},
+ "metric": {"key": "metric", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric: Union[str, "_models.CategoricalPredictionDriftMetric"],
+ threshold: Optional["_models.MonitoringThreshold"] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :paramtype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ :keyword metric: [Required] The categorical prediction drift metric to calculate. Required.
+ Known values are: "JensenShannonDistance", "PopulationStabilityIndex", and
+ "PearsonsChiSquaredTest".
+ :paramtype metric: str or
+ ~azure.mgmt.machinelearningservices.models.CategoricalPredictionDriftMetric
+ """
+ super().__init__(threshold=threshold, **kwargs)
+ self.data_type: str = "Categorical"
+ self.metric = metric
+
+
class CertificateDatastoreCredentials(DatastoreCredentials):
"""Certificate datastore credentials configuration.
@@ -4481,7 +5040,45 @@ def __init__(self, *, scoring_script: str, code_id: Optional[str] = None, **kwar
self.scoring_script = scoring_script
-class CodeContainer(Resource):
+class ProxyResource(Resource):
+ """The resource model definition for a Azure Resource Manager proxy resource. It will not have
+ tags and a location.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar id: Fully qualified resource ID for the resource. Ex -
+ /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
+ :vartype id: str
+ :ivar name: The name of the resource.
+ :vartype name: str
+ :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
+ "Microsoft.Storage/storageAccounts".
+ :vartype type: str
+ :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
+ information.
+ :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
+ """
+
+ _validation = {
+ "id": {"readonly": True},
+ "name": {"readonly": True},
+ "type": {"readonly": True},
+ "system_data": {"readonly": True},
+ }
+
+ _attribute_map = {
+ "id": {"key": "id", "type": "str"},
+ "name": {"key": "name", "type": "str"},
+ "type": {"key": "type", "type": "str"},
+ "system_data": {"key": "systemData", "type": "SystemData"},
+ }
+
+ def __init__(self, **kwargs: Any) -> None:
+ """ """
+ super().__init__(**kwargs)
+
+
+class CodeContainer(ProxyResource):
"""Azure Resource Manager resource envelope.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -4620,7 +5217,7 @@ def __init__(
self.value = value
-class CodeVersion(Resource):
+class CodeVersion(ProxyResource):
"""Azure Resource Manager resource envelope.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -4858,6 +5455,8 @@ class CommandJob(JobBaseProperties): # pylint: disable=too-many-instance-attrib
:vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput]
:ivar parameters: Input parameters.
:vartype parameters: JSON
+ :ivar queue_settings: Queue settings for the job.
+ :vartype queue_settings: ~azure.mgmt.machinelearningservices.models.QueueSettings
:ivar resources: Compute Resource configuration for the job.
:vartype resources: ~azure.mgmt.machinelearningservices.models.JobResourceConfiguration
"""
@@ -4892,6 +5491,7 @@ class CommandJob(JobBaseProperties): # pylint: disable=too-many-instance-attrib
"limits": {"key": "limits", "type": "CommandJobLimits"},
"outputs": {"key": "outputs", "type": "{JobOutput}"},
"parameters": {"key": "parameters", "type": "object"},
+ "queue_settings": {"key": "queueSettings", "type": "QueueSettings"},
"resources": {"key": "resources", "type": "JobResourceConfiguration"},
}
@@ -4916,6 +5516,7 @@ def __init__(
inputs: Optional[Dict[str, "_models.JobInput"]] = None,
limits: Optional["_models.CommandJobLimits"] = None,
outputs: Optional[Dict[str, "_models.JobOutput"]] = None,
+ queue_settings: Optional["_models.QueueSettings"] = None,
resources: Optional["_models.JobResourceConfiguration"] = None,
**kwargs: Any
) -> None:
@@ -4963,6 +5564,8 @@ def __init__(
:paramtype limits: ~azure.mgmt.machinelearningservices.models.CommandJobLimits
:keyword outputs: Mapping of output data bindings used in the job.
:paramtype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput]
+ :keyword queue_settings: Queue settings for the job.
+ :paramtype queue_settings: ~azure.mgmt.machinelearningservices.models.QueueSettings
:keyword resources: Compute Resource configuration for the job.
:paramtype resources: ~azure.mgmt.machinelearningservices.models.JobResourceConfiguration
"""
@@ -4989,6 +5592,7 @@ def __init__(
self.limits = limits
self.outputs = outputs
self.parameters = None
+ self.queue_settings = queue_settings
self.resources = resources
@@ -5062,7 +5666,7 @@ def __init__(self, *, timeout: Optional[datetime.timedelta] = None, **kwargs: An
self.job_limits_type: str = "Command"
-class ComponentContainer(Resource):
+class ComponentContainer(ProxyResource):
"""Azure Resource Manager resource envelope.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -5212,7 +5816,7 @@ def __init__(
self.value = value
-class ComponentVersion(Resource):
+class ComponentVersion(ProxyResource):
"""Azure Resource Manager resource envelope.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -6434,14 +7038,81 @@ def __init__(self, *, collections_throughput: Optional[int] = None, **kwargs: An
self.collections_throughput = collections_throughput
-class Cron(_serialization.Model):
- """The workflow trigger cron for ComputeStartStop schedule type.
+class ScheduleActionBase(_serialization.Model):
+ """ScheduleActionBase.
- :ivar start_time: The start time in yyyy-MM-ddTHH:mm:ss format.
- :vartype start_time: str
- :ivar time_zone: Specifies time zone in which the schedule runs.
- TimeZone should follow Windows time zone format. Refer:
- https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11.
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ JobScheduleAction, CreateMonitorAction, EndpointScheduleAction
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar action_type: [Required] Specifies the action type of the schedule. Required. Known values
+ are: "CreateJob", "InvokeBatchEndpoint", and "CreateMonitor".
+ :vartype action_type: str or ~azure.mgmt.machinelearningservices.models.ScheduleActionType
+ """
+
+ _validation = {
+ "action_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "action_type": {"key": "actionType", "type": "str"},
+ }
+
+ _subtype_map = {
+ "action_type": {
+ "CreateJob": "JobScheduleAction",
+ "CreateMonitor": "CreateMonitorAction",
+ "InvokeBatchEndpoint": "EndpointScheduleAction",
+ }
+ }
+
+ def __init__(self, **kwargs: Any) -> None:
+ """ """
+ super().__init__(**kwargs)
+ self.action_type: Optional[str] = None
+
+
+class CreateMonitorAction(ScheduleActionBase):
+ """CreateMonitorAction.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar action_type: [Required] Specifies the action type of the schedule. Required. Known values
+ are: "CreateJob", "InvokeBatchEndpoint", and "CreateMonitor".
+ :vartype action_type: str or ~azure.mgmt.machinelearningservices.models.ScheduleActionType
+ :ivar monitor_definition: [Required] Defines the monitor. Required.
+ :vartype monitor_definition: ~azure.mgmt.machinelearningservices.models.MonitorDefinition
+ """
+
+ _validation = {
+ "action_type": {"required": True},
+ "monitor_definition": {"required": True},
+ }
+
+ _attribute_map = {
+ "action_type": {"key": "actionType", "type": "str"},
+ "monitor_definition": {"key": "monitorDefinition", "type": "MonitorDefinition"},
+ }
+
+ def __init__(self, *, monitor_definition: "_models.MonitorDefinition", **kwargs: Any) -> None:
+ """
+ :keyword monitor_definition: [Required] Defines the monitor. Required.
+ :paramtype monitor_definition: ~azure.mgmt.machinelearningservices.models.MonitorDefinition
+ """
+ super().__init__(**kwargs)
+ self.action_type: str = "CreateMonitor"
+ self.monitor_definition = monitor_definition
+
+
+class Cron(_serialization.Model):
+ """The workflow trigger cron for ComputeStartStop schedule type.
+
+ :ivar start_time: The start time in yyyy-MM-ddTHH:mm:ss format.
+ :vartype start_time: str
+ :ivar time_zone: Specifies time zone in which the schedule runs.
+ TimeZone should follow Windows time zone format. Refer:
+ https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11.
:vartype time_zone: str
:ivar expression: [Required] Specifies cron expression of schedule.
The expression should follow NCronTab format.
@@ -6640,6 +7311,42 @@ def __init__(self, *, value: int, **kwargs: Any) -> None:
self.value = value
+class CustomMetricThreshold(_serialization.Model):
+ """CustomMetricThreshold.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar metric: [Required] The user-defined metric to calculate. Required.
+ :vartype metric: str
+ :ivar threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :vartype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ """
+
+ _validation = {
+ "metric": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
+ }
+
+ _attribute_map = {
+ "metric": {"key": "metric", "type": "str"},
+ "threshold": {"key": "threshold", "type": "MonitoringThreshold"},
+ }
+
+ def __init__(
+ self, *, metric: str, threshold: Optional["_models.MonitoringThreshold"] = None, **kwargs: Any
+ ) -> None:
+ """
+ :keyword metric: [Required] The user-defined metric to calculate. Required.
+ :paramtype metric: str
+ :keyword threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :paramtype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ """
+ super().__init__(**kwargs)
+ self.metric = metric
+ self.threshold = threshold
+
+
class JobInput(_serialization.Model):
"""Command job definition.
@@ -6838,6 +7545,150 @@ def __init__(
self.uri = uri
+class MonitoringSignalBase(_serialization.Model):
+ """MonitoringSignalBase.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ CustomMonitoringSignal, DataDriftMonitoringSignal, DataQualityMonitoringSignal,
+ FeatureAttributionDriftMonitoringSignal, PredictionDriftMonitoringSignal
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar notification_types: The current notification mode for this signal.
+ :vartype notification_types: list[str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringNotificationType]
+ :ivar properties: Property dictionary. Properties can be added, but not removed or altered.
+ :vartype properties: dict[str, str]
+ :ivar signal_type: [Required] Specifies the type of signal to monitor. Required. Known values
+ are: "DataDrift", "PredictionDrift", "DataQuality", "FeatureAttributionDrift", and "Custom".
+ :vartype signal_type: str or ~azure.mgmt.machinelearningservices.models.MonitoringSignalType
+ """
+
+ _validation = {
+ "signal_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "notification_types": {"key": "notificationTypes", "type": "[str]"},
+ "properties": {"key": "properties", "type": "{str}"},
+ "signal_type": {"key": "signalType", "type": "str"},
+ }
+
+ _subtype_map = {
+ "signal_type": {
+ "Custom": "CustomMonitoringSignal",
+ "DataDrift": "DataDriftMonitoringSignal",
+ "DataQuality": "DataQualityMonitoringSignal",
+ "FeatureAttributionDrift": "FeatureAttributionDriftMonitoringSignal",
+ "PredictionDrift": "PredictionDriftMonitoringSignal",
+ }
+ }
+
+ def __init__(
+ self,
+ *,
+ notification_types: Optional[List[Union[str, "_models.MonitoringNotificationType"]]] = None,
+ properties: Optional[Dict[str, str]] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword notification_types: The current notification mode for this signal.
+ :paramtype notification_types: list[str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringNotificationType]
+ :keyword properties: Property dictionary. Properties can be added, but not removed or altered.
+ :paramtype properties: dict[str, str]
+ """
+ super().__init__(**kwargs)
+ self.notification_types = notification_types
+ self.properties = properties
+ self.signal_type: Optional[str] = None
+
+
+class CustomMonitoringSignal(MonitoringSignalBase):
+ """CustomMonitoringSignal.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar notification_types: The current notification mode for this signal.
+ :vartype notification_types: list[str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringNotificationType]
+ :ivar properties: Property dictionary. Properties can be added, but not removed or altered.
+ :vartype properties: dict[str, str]
+ :ivar signal_type: [Required] Specifies the type of signal to monitor. Required. Known values
+ are: "DataDrift", "PredictionDrift", "DataQuality", "FeatureAttributionDrift", and "Custom".
+ :vartype signal_type: str or ~azure.mgmt.machinelearningservices.models.MonitoringSignalType
+ :ivar component_id: [Required] Reference to the component asset used to calculate the custom
+ metrics. Required.
+ :vartype component_id: str
+ :ivar input_assets: Monitoring assets to take as input. Key is the component input port name,
+ value is the data asset.
+ :vartype input_assets: dict[str,
+ ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase]
+ :ivar inputs: Extra component parameters to take as input. Key is the component literal input
+ port name, value is the parameter value.
+ :vartype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobInput]
+ :ivar metric_thresholds: [Required] A list of metrics to calculate and their associated
+ thresholds. Required.
+ :vartype metric_thresholds:
+ list[~azure.mgmt.machinelearningservices.models.CustomMetricThreshold]
+ """
+
+ _validation = {
+ "signal_type": {"required": True},
+ "component_id": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
+ "metric_thresholds": {"required": True},
+ }
+
+ _attribute_map = {
+ "notification_types": {"key": "notificationTypes", "type": "[str]"},
+ "properties": {"key": "properties", "type": "{str}"},
+ "signal_type": {"key": "signalType", "type": "str"},
+ "component_id": {"key": "componentId", "type": "str"},
+ "input_assets": {"key": "inputAssets", "type": "{MonitoringInputDataBase}"},
+ "inputs": {"key": "inputs", "type": "{JobInput}"},
+ "metric_thresholds": {"key": "metricThresholds", "type": "[CustomMetricThreshold]"},
+ }
+
+ def __init__(
+ self,
+ *,
+ component_id: str,
+ metric_thresholds: List["_models.CustomMetricThreshold"],
+ notification_types: Optional[List[Union[str, "_models.MonitoringNotificationType"]]] = None,
+ properties: Optional[Dict[str, str]] = None,
+ input_assets: Optional[Dict[str, "_models.MonitoringInputDataBase"]] = None,
+ inputs: Optional[Dict[str, "_models.JobInput"]] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword notification_types: The current notification mode for this signal.
+ :paramtype notification_types: list[str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringNotificationType]
+ :keyword properties: Property dictionary. Properties can be added, but not removed or altered.
+ :paramtype properties: dict[str, str]
+ :keyword component_id: [Required] Reference to the component asset used to calculate the custom
+ metrics. Required.
+ :paramtype component_id: str
+ :keyword input_assets: Monitoring assets to take as input. Key is the component input port
+ name, value is the data asset.
+ :paramtype input_assets: dict[str,
+ ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase]
+ :keyword inputs: Extra component parameters to take as input. Key is the component literal
+ input port name, value is the parameter value.
+ :paramtype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobInput]
+ :keyword metric_thresholds: [Required] A list of metrics to calculate and their associated
+ thresholds. Required.
+ :paramtype metric_thresholds:
+ list[~azure.mgmt.machinelearningservices.models.CustomMetricThreshold]
+ """
+ super().__init__(notification_types=notification_types, properties=properties, **kwargs)
+ self.signal_type: str = "Custom"
+ self.component_id = component_id
+ self.input_assets = input_assets
+ self.inputs = inputs
+ self.metric_thresholds = metric_thresholds
+
+
class CustomNCrossValidations(NCrossValidations):
"""N-Cross validations are specified by user.
@@ -7241,7 +8092,7 @@ def __init__(
self.workspace_url = workspace_url
-class DataContainer(Resource):
+class DataContainer(ProxyResource):
"""Azure Resource Manager resource envelope.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -7385,6 +8236,104 @@ def __init__(
self.value = value
+class DataDriftMonitoringSignal(MonitoringSignalBase):
+ """DataDriftMonitoringSignal.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar notification_types: The current notification mode for this signal.
+ :vartype notification_types: list[str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringNotificationType]
+ :ivar properties: Property dictionary. Properties can be added, but not removed or altered.
+ :vartype properties: dict[str, str]
+ :ivar signal_type: [Required] Specifies the type of signal to monitor. Required. Known values
+ are: "DataDrift", "PredictionDrift", "DataQuality", "FeatureAttributionDrift", and "Custom".
+ :vartype signal_type: str or ~azure.mgmt.machinelearningservices.models.MonitoringSignalType
+ :ivar feature_data_type_override: A dictionary that maps feature names to their respective data
+ types.
+ :vartype feature_data_type_override: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType]
+ :ivar feature_importance_settings: The settings for computing feature importance.
+ :vartype feature_importance_settings:
+ ~azure.mgmt.machinelearningservices.models.FeatureImportanceSettings
+ :ivar features: The feature filter which identifies which feature to calculate drift over.
+ :vartype features: ~azure.mgmt.machinelearningservices.models.MonitoringFeatureFilterBase
+ :ivar metric_thresholds: [Required] A list of metrics to calculate and their associated
+ thresholds. Required.
+ :vartype metric_thresholds:
+ list[~azure.mgmt.machinelearningservices.models.DataDriftMetricThresholdBase]
+ :ivar production_data: [Required] The data which drift will be calculated for. Required.
+ :vartype production_data: ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase
+ :ivar reference_data: [Required] The data to calculate drift against. Required.
+ :vartype reference_data: ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase
+ """
+
+ _validation = {
+ "signal_type": {"required": True},
+ "metric_thresholds": {"required": True},
+ "production_data": {"required": True},
+ "reference_data": {"required": True},
+ }
+
+ _attribute_map = {
+ "notification_types": {"key": "notificationTypes", "type": "[str]"},
+ "properties": {"key": "properties", "type": "{str}"},
+ "signal_type": {"key": "signalType", "type": "str"},
+ "feature_data_type_override": {"key": "featureDataTypeOverride", "type": "{str}"},
+ "feature_importance_settings": {"key": "featureImportanceSettings", "type": "FeatureImportanceSettings"},
+ "features": {"key": "features", "type": "MonitoringFeatureFilterBase"},
+ "metric_thresholds": {"key": "metricThresholds", "type": "[DataDriftMetricThresholdBase]"},
+ "production_data": {"key": "productionData", "type": "MonitoringInputDataBase"},
+ "reference_data": {"key": "referenceData", "type": "MonitoringInputDataBase"},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric_thresholds: List["_models.DataDriftMetricThresholdBase"],
+ production_data: "_models.MonitoringInputDataBase",
+ reference_data: "_models.MonitoringInputDataBase",
+ notification_types: Optional[List[Union[str, "_models.MonitoringNotificationType"]]] = None,
+ properties: Optional[Dict[str, str]] = None,
+ feature_data_type_override: Optional[Dict[str, Union[str, "_models.MonitoringFeatureDataType"]]] = None,
+ feature_importance_settings: Optional["_models.FeatureImportanceSettings"] = None,
+ features: Optional["_models.MonitoringFeatureFilterBase"] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword notification_types: The current notification mode for this signal.
+ :paramtype notification_types: list[str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringNotificationType]
+ :keyword properties: Property dictionary. Properties can be added, but not removed or altered.
+ :paramtype properties: dict[str, str]
+ :keyword feature_data_type_override: A dictionary that maps feature names to their respective
+ data types.
+ :paramtype feature_data_type_override: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType]
+ :keyword feature_importance_settings: The settings for computing feature importance.
+ :paramtype feature_importance_settings:
+ ~azure.mgmt.machinelearningservices.models.FeatureImportanceSettings
+ :keyword features: The feature filter which identifies which feature to calculate drift over.
+ :paramtype features: ~azure.mgmt.machinelearningservices.models.MonitoringFeatureFilterBase
+ :keyword metric_thresholds: [Required] A list of metrics to calculate and their associated
+ thresholds. Required.
+ :paramtype metric_thresholds:
+ list[~azure.mgmt.machinelearningservices.models.DataDriftMetricThresholdBase]
+ :keyword production_data: [Required] The data which drift will be calculated for. Required.
+ :paramtype production_data: ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase
+ :keyword reference_data: [Required] The data to calculate drift against. Required.
+ :paramtype reference_data: ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase
+ """
+ super().__init__(notification_types=notification_types, properties=properties, **kwargs)
+ self.signal_type: str = "DataDrift"
+ self.feature_data_type_override = feature_data_type_override
+ self.feature_importance_settings = feature_importance_settings
+ self.features = features
+ self.metric_thresholds = metric_thresholds
+ self.production_data = production_data
+ self.reference_data = reference_data
+
+
class DataFactory(Compute):
"""A DataFactory compute.
@@ -7661,7 +8610,107 @@ def __init__(self, *, datastore_id: Optional[str] = None, path: Optional[str] =
self.path = path
-class Datastore(Resource):
+class DataQualityMonitoringSignal(MonitoringSignalBase):
+ """DataQualityMonitoringSignal.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar notification_types: The current notification mode for this signal.
+ :vartype notification_types: list[str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringNotificationType]
+ :ivar properties: Property dictionary. Properties can be added, but not removed or altered.
+ :vartype properties: dict[str, str]
+ :ivar signal_type: [Required] Specifies the type of signal to monitor. Required. Known values
+ are: "DataDrift", "PredictionDrift", "DataQuality", "FeatureAttributionDrift", and "Custom".
+ :vartype signal_type: str or ~azure.mgmt.machinelearningservices.models.MonitoringSignalType
+ :ivar feature_data_type_override: A dictionary that maps feature names to their respective data
+ types.
+ :vartype feature_data_type_override: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType]
+ :ivar feature_importance_settings: The settings for computing feature importance.
+ :vartype feature_importance_settings:
+ ~azure.mgmt.machinelearningservices.models.FeatureImportanceSettings
+ :ivar features: The features to calculate drift over.
+ :vartype features: ~azure.mgmt.machinelearningservices.models.MonitoringFeatureFilterBase
+ :ivar metric_thresholds: [Required] A list of metrics to calculate and their associated
+ thresholds. Required.
+ :vartype metric_thresholds:
+ list[~azure.mgmt.machinelearningservices.models.DataQualityMetricThresholdBase]
+ :ivar production_data: [Required] The data produced by the production service which drift will
+ be calculated for. Required.
+ :vartype production_data: ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase
+ :ivar reference_data: [Required] The data to calculate drift against. Required.
+ :vartype reference_data: ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase
+ """
+
+ _validation = {
+ "signal_type": {"required": True},
+ "metric_thresholds": {"required": True},
+ "production_data": {"required": True},
+ "reference_data": {"required": True},
+ }
+
+ _attribute_map = {
+ "notification_types": {"key": "notificationTypes", "type": "[str]"},
+ "properties": {"key": "properties", "type": "{str}"},
+ "signal_type": {"key": "signalType", "type": "str"},
+ "feature_data_type_override": {"key": "featureDataTypeOverride", "type": "{str}"},
+ "feature_importance_settings": {"key": "featureImportanceSettings", "type": "FeatureImportanceSettings"},
+ "features": {"key": "features", "type": "MonitoringFeatureFilterBase"},
+ "metric_thresholds": {"key": "metricThresholds", "type": "[DataQualityMetricThresholdBase]"},
+ "production_data": {"key": "productionData", "type": "MonitoringInputDataBase"},
+ "reference_data": {"key": "referenceData", "type": "MonitoringInputDataBase"},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric_thresholds: List["_models.DataQualityMetricThresholdBase"],
+ production_data: "_models.MonitoringInputDataBase",
+ reference_data: "_models.MonitoringInputDataBase",
+ notification_types: Optional[List[Union[str, "_models.MonitoringNotificationType"]]] = None,
+ properties: Optional[Dict[str, str]] = None,
+ feature_data_type_override: Optional[Dict[str, Union[str, "_models.MonitoringFeatureDataType"]]] = None,
+ feature_importance_settings: Optional["_models.FeatureImportanceSettings"] = None,
+ features: Optional["_models.MonitoringFeatureFilterBase"] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword notification_types: The current notification mode for this signal.
+ :paramtype notification_types: list[str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringNotificationType]
+ :keyword properties: Property dictionary. Properties can be added, but not removed or altered.
+ :paramtype properties: dict[str, str]
+ :keyword feature_data_type_override: A dictionary that maps feature names to their respective
+ data types.
+ :paramtype feature_data_type_override: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType]
+ :keyword feature_importance_settings: The settings for computing feature importance.
+ :paramtype feature_importance_settings:
+ ~azure.mgmt.machinelearningservices.models.FeatureImportanceSettings
+ :keyword features: The features to calculate drift over.
+ :paramtype features: ~azure.mgmt.machinelearningservices.models.MonitoringFeatureFilterBase
+ :keyword metric_thresholds: [Required] A list of metrics to calculate and their associated
+ thresholds. Required.
+ :paramtype metric_thresholds:
+ list[~azure.mgmt.machinelearningservices.models.DataQualityMetricThresholdBase]
+ :keyword production_data: [Required] The data produced by the production service which drift
+ will be calculated for. Required.
+ :paramtype production_data: ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase
+ :keyword reference_data: [Required] The data to calculate drift against. Required.
+ :paramtype reference_data: ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase
+ """
+ super().__init__(notification_types=notification_types, properties=properties, **kwargs)
+ self.signal_type: str = "DataQuality"
+ self.feature_data_type_override = feature_data_type_override
+ self.feature_importance_settings = feature_importance_settings
+ self.features = features
+ self.metric_thresholds = metric_thresholds
+ self.production_data = production_data
+ self.reference_data = reference_data
+
+
+class Datastore(ProxyResource):
"""Azure Resource Manager resource envelope.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -7738,7 +8787,7 @@ def __init__(
self.value = value
-class DataVersionBase(Resource):
+class DataVersionBase(ProxyResource):
"""Azure Resource Manager resource envelope.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -8082,6 +9131,45 @@ def __init__(
super().__init__(instance_count=instance_count, instance_type=instance_type, properties=properties, **kwargs)
+class DestinationAsset(_serialization.Model):
+ """Publishing destination registry asset information.
+
+ :ivar destination_name: Destination asset name.
+ :vartype destination_name: str
+ :ivar destination_version: Destination asset version.
+ :vartype destination_version: str
+ :ivar registry_name: Destination registry name.
+ :vartype registry_name: str
+ """
+
+ _attribute_map = {
+ "destination_name": {"key": "destinationName", "type": "str"},
+ "destination_version": {"key": "destinationVersion", "type": "str"},
+ "registry_name": {"key": "registryName", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ destination_name: Optional[str] = None,
+ destination_version: Optional[str] = None,
+ registry_name: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword destination_name: Destination asset name.
+ :paramtype destination_name: str
+ :keyword destination_version: Destination asset version.
+ :paramtype destination_version: str
+ :keyword registry_name: Destination registry name.
+ :paramtype registry_name: str
+ """
+ super().__init__(**kwargs)
+ self.destination_name = destination_name
+ self.destination_version = destination_version
+ self.registry_name = registry_name
+
+
class DiagnoseRequestProperties(_serialization.Model):
"""DiagnoseRequestProperties.
@@ -8394,6 +9482,44 @@ def __init__(
self.privileged = privileged
+class DockerCredential(DataReferenceCredential):
+ """Credential for docker with username and password.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar credential_type: [Required] Credential type used to authentication with storage.
+ Required. Known values are: "SAS", "DockerCredentials", "ManagedIdentity", and "NoCredentials".
+ :vartype credential_type: str or
+ ~azure.mgmt.machinelearningservices.models.DataReferenceCredentialType
+ :ivar password: DockerCredential user password.
+ :vartype password: str
+ :ivar user_name: DockerCredential user name.
+ :vartype user_name: str
+ """
+
+ _validation = {
+ "credential_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "credential_type": {"key": "credentialType", "type": "str"},
+ "password": {"key": "password", "type": "str"},
+ "user_name": {"key": "userName", "type": "str"},
+ }
+
+ def __init__(self, *, password: Optional[str] = None, user_name: Optional[str] = None, **kwargs: Any) -> None:
+ """
+ :keyword password: DockerCredential user password.
+ :paramtype password: str
+ :keyword user_name: DockerCredential user name.
+ :paramtype user_name: str
+ """
+ super().__init__(**kwargs)
+ self.credential_type: str = "DockerCredentials"
+ self.password = password
+ self.user_name = user_name
+
+
class EncryptionKeyVaultProperties(_serialization.Model):
"""EncryptionKeyVaultProperties.
@@ -8619,68 +9745,39 @@ def __init__(
self.token_type = token_type
-class ScheduleActionBase(_serialization.Model):
- """ScheduleActionBase.
-
- You probably want to use the sub-classes and not this class directly. Known sub-classes are:
- JobScheduleAction, EndpointScheduleAction
+class EndpointScheduleAction(ScheduleActionBase):
+ """EndpointScheduleAction.
All required parameters must be populated in order to send to Azure.
:ivar action_type: [Required] Specifies the action type of the schedule. Required. Known values
- are: "CreateJob" and "InvokeBatchEndpoint".
+ are: "CreateJob", "InvokeBatchEndpoint", and "CreateMonitor".
:vartype action_type: str or ~azure.mgmt.machinelearningservices.models.ScheduleActionType
+ :ivar endpoint_invocation_definition: [Required] Defines Schedule action definition details.
+
+
+ .. raw:: html
+
+ . Required.
+ :vartype endpoint_invocation_definition: JSON
"""
_validation = {
"action_type": {"required": True},
+ "endpoint_invocation_definition": {"required": True},
}
_attribute_map = {
"action_type": {"key": "actionType", "type": "str"},
+ "endpoint_invocation_definition": {"key": "endpointInvocationDefinition", "type": "object"},
}
- _subtype_map = {"action_type": {"CreateJob": "JobScheduleAction", "InvokeBatchEndpoint": "EndpointScheduleAction"}}
+ def __init__(self, *, endpoint_invocation_definition: JSON, **kwargs: Any) -> None:
+ """
+ :keyword endpoint_invocation_definition: [Required] Defines Schedule action definition details.
- def __init__(self, **kwargs: Any) -> None:
- """ """
- super().__init__(**kwargs)
- self.action_type: Optional[str] = None
-
-class EndpointScheduleAction(ScheduleActionBase):
- """EndpointScheduleAction.
-
- All required parameters must be populated in order to send to Azure.
-
- :ivar action_type: [Required] Specifies the action type of the schedule. Required. Known values
- are: "CreateJob" and "InvokeBatchEndpoint".
- :vartype action_type: str or ~azure.mgmt.machinelearningservices.models.ScheduleActionType
- :ivar endpoint_invocation_definition: [Required] Defines Schedule action definition details.
-
-
- .. raw:: html
-
- . Required.
- :vartype endpoint_invocation_definition: JSON
- """
-
- _validation = {
- "action_type": {"required": True},
- "endpoint_invocation_definition": {"required": True},
- }
-
- _attribute_map = {
- "action_type": {"key": "actionType", "type": "str"},
- "endpoint_invocation_definition": {"key": "endpointInvocationDefinition", "type": "object"},
- }
-
- def __init__(self, *, endpoint_invocation_definition: JSON, **kwargs: Any) -> None:
- """
- :keyword endpoint_invocation_definition: [Required] Defines Schedule action definition details.
-
-
- .. raw:: html
+ .. raw:: html
. Required.
:paramtype endpoint_invocation_definition: JSON
@@ -8690,7 +9787,7 @@ def __init__(self, *, endpoint_invocation_definition: JSON, **kwargs: Any) -> No
self.endpoint_invocation_definition = endpoint_invocation_definition
-class EnvironmentContainer(Resource):
+class EnvironmentContainer(ProxyResource):
"""Azure Resource Manager resource envelope.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -8877,7 +9974,7 @@ def __init__(
self.value = value
-class EnvironmentVersion(Resource):
+class EnvironmentVersion(ProxyResource):
"""Azure Resource Manager resource envelope.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -9312,29 +10409,1151 @@ def __init__(
:paramtype values: list[~azure.mgmt.machinelearningservices.models.EstimatedVMPrice]
"""
super().__init__(**kwargs)
- self.billing_currency = billing_currency
- self.unit_of_measure = unit_of_measure
- self.values = values
+ self.billing_currency = billing_currency
+ self.unit_of_measure = unit_of_measure
+ self.values = values
+
+
+class ExternalFQDNResponse(_serialization.Model):
+ """ExternalFQDNResponse.
+
+ :ivar value:
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.FQDNEndpoints]
+ """
+
+ _attribute_map = {
+ "value": {"key": "value", "type": "[FQDNEndpoints]"},
+ }
+
+ def __init__(self, *, value: Optional[List["_models.FQDNEndpoints"]] = None, **kwargs: Any) -> None:
+ """
+ :keyword value:
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.FQDNEndpoints]
+ """
+ super().__init__(**kwargs)
+ self.value = value
+
+
+class Feature(ProxyResource):
+ """Azure Resource Manager resource envelope.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar id: Fully qualified resource ID for the resource. Ex -
+ /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
+ :vartype id: str
+ :ivar name: The name of the resource.
+ :vartype name: str
+ :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
+ "Microsoft.Storage/storageAccounts".
+ :vartype type: str
+ :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
+ information.
+ :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
+ :ivar properties: [Required] Additional attributes of the entity. Required.
+ :vartype properties: ~azure.mgmt.machinelearningservices.models.FeatureProperties
+ """
+
+ _validation = {
+ "id": {"readonly": True},
+ "name": {"readonly": True},
+ "type": {"readonly": True},
+ "system_data": {"readonly": True},
+ "properties": {"required": True},
+ }
+
+ _attribute_map = {
+ "id": {"key": "id", "type": "str"},
+ "name": {"key": "name", "type": "str"},
+ "type": {"key": "type", "type": "str"},
+ "system_data": {"key": "systemData", "type": "SystemData"},
+ "properties": {"key": "properties", "type": "FeatureProperties"},
+ }
+
+ def __init__(self, *, properties: "_models.FeatureProperties", **kwargs: Any) -> None:
+ """
+ :keyword properties: [Required] Additional attributes of the entity. Required.
+ :paramtype properties: ~azure.mgmt.machinelearningservices.models.FeatureProperties
+ """
+ super().__init__(**kwargs)
+ self.properties = properties
+
+
+class FeatureAttributionDriftMonitoringSignal(MonitoringSignalBase):
+ """FeatureAttributionDriftMonitoringSignal.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar notification_types: The current notification mode for this signal.
+ :vartype notification_types: list[str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringNotificationType]
+ :ivar properties: Property dictionary. Properties can be added, but not removed or altered.
+ :vartype properties: dict[str, str]
+ :ivar signal_type: [Required] Specifies the type of signal to monitor. Required. Known values
+ are: "DataDrift", "PredictionDrift", "DataQuality", "FeatureAttributionDrift", and "Custom".
+ :vartype signal_type: str or ~azure.mgmt.machinelearningservices.models.MonitoringSignalType
+ :ivar feature_data_type_override: A dictionary that maps feature names to their respective data
+ types.
+ :vartype feature_data_type_override: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType]
+ :ivar feature_importance_settings: [Required] The settings for computing feature importance.
+ Required.
+ :vartype feature_importance_settings:
+ ~azure.mgmt.machinelearningservices.models.FeatureImportanceSettings
+ :ivar metric_threshold: [Required] A list of metrics to calculate and their associated
+ thresholds. Required.
+ :vartype metric_threshold:
+ ~azure.mgmt.machinelearningservices.models.FeatureAttributionMetricThreshold
+ :ivar production_data: [Required] The data which drift will be calculated for. Required.
+ :vartype production_data:
+ list[~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase]
+ :ivar reference_data: [Required] The data to calculate drift against. Required.
+ :vartype reference_data: ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase
+ """
+
+ _validation = {
+ "signal_type": {"required": True},
+ "feature_importance_settings": {"required": True},
+ "metric_threshold": {"required": True},
+ "production_data": {"required": True},
+ "reference_data": {"required": True},
+ }
+
+ _attribute_map = {
+ "notification_types": {"key": "notificationTypes", "type": "[str]"},
+ "properties": {"key": "properties", "type": "{str}"},
+ "signal_type": {"key": "signalType", "type": "str"},
+ "feature_data_type_override": {"key": "featureDataTypeOverride", "type": "{str}"},
+ "feature_importance_settings": {"key": "featureImportanceSettings", "type": "FeatureImportanceSettings"},
+ "metric_threshold": {"key": "metricThreshold", "type": "FeatureAttributionMetricThreshold"},
+ "production_data": {"key": "productionData", "type": "[MonitoringInputDataBase]"},
+ "reference_data": {"key": "referenceData", "type": "MonitoringInputDataBase"},
+ }
+
+ def __init__(
+ self,
+ *,
+ feature_importance_settings: "_models.FeatureImportanceSettings",
+ metric_threshold: "_models.FeatureAttributionMetricThreshold",
+ production_data: List["_models.MonitoringInputDataBase"],
+ reference_data: "_models.MonitoringInputDataBase",
+ notification_types: Optional[List[Union[str, "_models.MonitoringNotificationType"]]] = None,
+ properties: Optional[Dict[str, str]] = None,
+ feature_data_type_override: Optional[Dict[str, Union[str, "_models.MonitoringFeatureDataType"]]] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword notification_types: The current notification mode for this signal.
+ :paramtype notification_types: list[str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringNotificationType]
+ :keyword properties: Property dictionary. Properties can be added, but not removed or altered.
+ :paramtype properties: dict[str, str]
+ :keyword feature_data_type_override: A dictionary that maps feature names to their respective
+ data types.
+ :paramtype feature_data_type_override: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType]
+ :keyword feature_importance_settings: [Required] The settings for computing feature importance.
+ Required.
+ :paramtype feature_importance_settings:
+ ~azure.mgmt.machinelearningservices.models.FeatureImportanceSettings
+ :keyword metric_threshold: [Required] A list of metrics to calculate and their associated
+ thresholds. Required.
+ :paramtype metric_threshold:
+ ~azure.mgmt.machinelearningservices.models.FeatureAttributionMetricThreshold
+ :keyword production_data: [Required] The data which drift will be calculated for. Required.
+ :paramtype production_data:
+ list[~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase]
+ :keyword reference_data: [Required] The data to calculate drift against. Required.
+ :paramtype reference_data: ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase
+ """
+ super().__init__(notification_types=notification_types, properties=properties, **kwargs)
+ self.signal_type: str = "FeatureAttributionDrift"
+ self.feature_data_type_override = feature_data_type_override
+ self.feature_importance_settings = feature_importance_settings
+ self.metric_threshold = metric_threshold
+ self.production_data = production_data
+ self.reference_data = reference_data
+
+
+class FeatureAttributionMetricThreshold(_serialization.Model):
+ """FeatureAttributionMetricThreshold.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar metric: [Required] The feature attribution metric to calculate. Required.
+ "NormalizedDiscountedCumulativeGain"
+ :vartype metric: str or ~azure.mgmt.machinelearningservices.models.FeatureAttributionMetric
+ :ivar threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :vartype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ """
+
+ _validation = {
+ "metric": {"required": True},
+ }
+
+ _attribute_map = {
+ "metric": {"key": "metric", "type": "str"},
+ "threshold": {"key": "threshold", "type": "MonitoringThreshold"},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric: Union[str, "_models.FeatureAttributionMetric"],
+ threshold: Optional["_models.MonitoringThreshold"] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword metric: [Required] The feature attribution metric to calculate. Required.
+ "NormalizedDiscountedCumulativeGain"
+ :paramtype metric: str or ~azure.mgmt.machinelearningservices.models.FeatureAttributionMetric
+ :keyword threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :paramtype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ """
+ super().__init__(**kwargs)
+ self.metric = metric
+ self.threshold = threshold
+
+
+class FeatureImportanceSettings(_serialization.Model):
+ """FeatureImportanceSettings.
+
+ :ivar mode: The mode of operation for computing feature importance. Known values are:
+ "Disabled" and "Enabled".
+ :vartype mode: str or ~azure.mgmt.machinelearningservices.models.FeatureImportanceMode
+ :ivar target_column: The name of the target column within the input data asset.
+ :vartype target_column: str
+ """
+
+ _attribute_map = {
+ "mode": {"key": "mode", "type": "str"},
+ "target_column": {"key": "targetColumn", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ mode: Optional[Union[str, "_models.FeatureImportanceMode"]] = None,
+ target_column: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword mode: The mode of operation for computing feature importance. Known values are:
+ "Disabled" and "Enabled".
+ :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.FeatureImportanceMode
+ :keyword target_column: The name of the target column within the input data asset.
+ :paramtype target_column: str
+ """
+ super().__init__(**kwargs)
+ self.mode = mode
+ self.target_column = target_column
+
+
+class FeatureProperties(ResourceBase):
+ """DTO object representing feature.
+
+ :ivar description: The asset description text.
+ :vartype description: str
+ :ivar properties: The asset property dictionary.
+ :vartype properties: dict[str, str]
+ :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
+ :vartype tags: dict[str, str]
+ :ivar data_type: Specifies type. Known values are: "String", "Integer", "Long", "Float",
+ "Double", "Binary", "Datetime", and "Boolean".
+ :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.FeatureDataType
+ :ivar feature_name: Specifies name.
+ :vartype feature_name: str
+ """
+
+ _attribute_map = {
+ "description": {"key": "description", "type": "str"},
+ "properties": {"key": "properties", "type": "{str}"},
+ "tags": {"key": "tags", "type": "{str}"},
+ "data_type": {"key": "dataType", "type": "str"},
+ "feature_name": {"key": "featureName", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ description: Optional[str] = None,
+ properties: Optional[Dict[str, str]] = None,
+ tags: Optional[Dict[str, str]] = None,
+ data_type: Optional[Union[str, "_models.FeatureDataType"]] = None,
+ feature_name: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword description: The asset description text.
+ :paramtype description: str
+ :keyword properties: The asset property dictionary.
+ :paramtype properties: dict[str, str]
+ :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
+ :paramtype tags: dict[str, str]
+ :keyword data_type: Specifies type. Known values are: "String", "Integer", "Long", "Float",
+ "Double", "Binary", "Datetime", and "Boolean".
+ :paramtype data_type: str or ~azure.mgmt.machinelearningservices.models.FeatureDataType
+ :keyword feature_name: Specifies name.
+ :paramtype feature_name: str
+ """
+ super().__init__(description=description, properties=properties, tags=tags, **kwargs)
+ self.data_type = data_type
+ self.feature_name = feature_name
+
+
+class FeatureResourceArmPaginatedResult(_serialization.Model):
+ """A paginated list of Feature entities.
+
+ :ivar next_link: The link to the next page of Feature objects. If null, there are no additional
+ pages.
+ :vartype next_link: str
+ :ivar value: An array of objects of type Feature.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Feature]
+ """
+
+ _attribute_map = {
+ "next_link": {"key": "nextLink", "type": "str"},
+ "value": {"key": "value", "type": "[Feature]"},
+ }
+
+ def __init__(
+ self, *, next_link: Optional[str] = None, value: Optional[List["_models.Feature"]] = None, **kwargs: Any
+ ) -> None:
+ """
+ :keyword next_link: The link to the next page of Feature objects. If null, there are no
+ additional pages.
+ :paramtype next_link: str
+ :keyword value: An array of objects of type Feature.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.Feature]
+ """
+ super().__init__(**kwargs)
+ self.next_link = next_link
+ self.value = value
+
+
+class FeaturesetContainer(ProxyResource):
+ """Azure Resource Manager resource envelope.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar id: Fully qualified resource ID for the resource. Ex -
+ /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
+ :vartype id: str
+ :ivar name: The name of the resource.
+ :vartype name: str
+ :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
+ "Microsoft.Storage/storageAccounts".
+ :vartype type: str
+ :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
+ information.
+ :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
+ :ivar properties: [Required] Additional attributes of the entity. Required.
+ :vartype properties: ~azure.mgmt.machinelearningservices.models.FeaturesetContainerProperties
+ """
+
+ _validation = {
+ "id": {"readonly": True},
+ "name": {"readonly": True},
+ "type": {"readonly": True},
+ "system_data": {"readonly": True},
+ "properties": {"required": True},
+ }
+
+ _attribute_map = {
+ "id": {"key": "id", "type": "str"},
+ "name": {"key": "name", "type": "str"},
+ "type": {"key": "type", "type": "str"},
+ "system_data": {"key": "systemData", "type": "SystemData"},
+ "properties": {"key": "properties", "type": "FeaturesetContainerProperties"},
+ }
+
+ def __init__(self, *, properties: "_models.FeaturesetContainerProperties", **kwargs: Any) -> None:
+ """
+ :keyword properties: [Required] Additional attributes of the entity. Required.
+ :paramtype properties: ~azure.mgmt.machinelearningservices.models.FeaturesetContainerProperties
+ """
+ super().__init__(**kwargs)
+ self.properties = properties
+
+
+class FeaturesetContainerProperties(AssetContainer):
+ """DTO object representing feature set.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar description: The asset description text.
+ :vartype description: str
+ :ivar properties: The asset property dictionary.
+ :vartype properties: dict[str, str]
+ :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
+ :vartype tags: dict[str, str]
+ :ivar is_archived: Is the asset archived?.
+ :vartype is_archived: bool
+ :ivar latest_version: The latest version inside this container.
+ :vartype latest_version: str
+ :ivar next_version: The next auto incremental version.
+ :vartype next_version: str
+ :ivar provisioning_state: Provisioning state for the featureset container. Known values are:
+ "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting".
+ :vartype provisioning_state: str or
+ ~azure.mgmt.machinelearningservices.models.AssetProvisioningState
+ """
+
+ _validation = {
+ "latest_version": {"readonly": True},
+ "next_version": {"readonly": True},
+ "provisioning_state": {"readonly": True},
+ }
+
+ _attribute_map = {
+ "description": {"key": "description", "type": "str"},
+ "properties": {"key": "properties", "type": "{str}"},
+ "tags": {"key": "tags", "type": "{str}"},
+ "is_archived": {"key": "isArchived", "type": "bool"},
+ "latest_version": {"key": "latestVersion", "type": "str"},
+ "next_version": {"key": "nextVersion", "type": "str"},
+ "provisioning_state": {"key": "provisioningState", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ description: Optional[str] = None,
+ properties: Optional[Dict[str, str]] = None,
+ tags: Optional[Dict[str, str]] = None,
+ is_archived: bool = False,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword description: The asset description text.
+ :paramtype description: str
+ :keyword properties: The asset property dictionary.
+ :paramtype properties: dict[str, str]
+ :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
+ :paramtype tags: dict[str, str]
+ :keyword is_archived: Is the asset archived?.
+ :paramtype is_archived: bool
+ """
+ super().__init__(description=description, properties=properties, tags=tags, is_archived=is_archived, **kwargs)
+ self.provisioning_state = None
+
+
+class FeaturesetContainerResourceArmPaginatedResult(_serialization.Model):
+ """A paginated list of FeaturesetContainer entities.
+
+ :ivar next_link: The link to the next page of FeaturesetContainer objects. If null, there are
+ no additional pages.
+ :vartype next_link: str
+ :ivar value: An array of objects of type FeaturesetContainer.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.FeaturesetContainer]
+ """
+
+ _attribute_map = {
+ "next_link": {"key": "nextLink", "type": "str"},
+ "value": {"key": "value", "type": "[FeaturesetContainer]"},
+ }
+
+ def __init__(
+ self,
+ *,
+ next_link: Optional[str] = None,
+ value: Optional[List["_models.FeaturesetContainer"]] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword next_link: The link to the next page of FeaturesetContainer objects. If null, there
+ are no additional pages.
+ :paramtype next_link: str
+ :keyword value: An array of objects of type FeaturesetContainer.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.FeaturesetContainer]
+ """
+ super().__init__(**kwargs)
+ self.next_link = next_link
+ self.value = value
+
+
+class FeaturesetSpecification(_serialization.Model):
+ """DTO object representing specification.
+
+ :ivar path: Specifies the spec path.
+ :vartype path: str
+ """
+
+ _attribute_map = {
+ "path": {"key": "path", "type": "str"},
+ }
+
+ def __init__(self, *, path: Optional[str] = None, **kwargs: Any) -> None:
+ """
+ :keyword path: Specifies the spec path.
+ :paramtype path: str
+ """
+ super().__init__(**kwargs)
+ self.path = path
+
+
+class FeaturesetVersion(ProxyResource):
+ """Azure Resource Manager resource envelope.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar id: Fully qualified resource ID for the resource. Ex -
+ /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
+ :vartype id: str
+ :ivar name: The name of the resource.
+ :vartype name: str
+ :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
+ "Microsoft.Storage/storageAccounts".
+ :vartype type: str
+ :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
+ information.
+ :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
+ :ivar properties: [Required] Additional attributes of the entity. Required.
+ :vartype properties: ~azure.mgmt.machinelearningservices.models.FeaturesetVersionProperties
+ """
+
+ _validation = {
+ "id": {"readonly": True},
+ "name": {"readonly": True},
+ "type": {"readonly": True},
+ "system_data": {"readonly": True},
+ "properties": {"required": True},
+ }
+
+ _attribute_map = {
+ "id": {"key": "id", "type": "str"},
+ "name": {"key": "name", "type": "str"},
+ "type": {"key": "type", "type": "str"},
+ "system_data": {"key": "systemData", "type": "SystemData"},
+ "properties": {"key": "properties", "type": "FeaturesetVersionProperties"},
+ }
+
+ def __init__(self, *, properties: "_models.FeaturesetVersionProperties", **kwargs: Any) -> None:
+ """
+ :keyword properties: [Required] Additional attributes of the entity. Required.
+ :paramtype properties: ~azure.mgmt.machinelearningservices.models.FeaturesetVersionProperties
+ """
+ super().__init__(**kwargs)
+ self.properties = properties
+
+
+class FeaturesetVersionBackfillRequest(_serialization.Model):
+ """Request payload for creating a backfill request for a given feature set version.
+
+ :ivar data_availability_status: Specified the data availability status that you want to
+ backfill.
+ :vartype data_availability_status: list[str or
+ ~azure.mgmt.machinelearningservices.models.DataAvailabilityStatus]
+ :ivar description: Specifies description.
+ :vartype description: str
+ :ivar display_name: Specifies description.
+ :vartype display_name: str
+ :ivar feature_window: Specifies the backfill feature window to be materialized.
+ :vartype feature_window: ~azure.mgmt.machinelearningservices.models.FeatureWindow
+ :ivar job_id: Specify the jobId to retry the failed materialization.
+ :vartype job_id: str
+ :ivar properties: Specifies the properties.
+ :vartype properties: dict[str, str]
+ :ivar resource: Specifies the compute resource settings.
+ :vartype resource: ~azure.mgmt.machinelearningservices.models.MaterializationComputeResource
+ :ivar spark_configuration: Specifies the spark compute settings.
+ :vartype spark_configuration: dict[str, str]
+ :ivar tags: Specifies the tags.
+ :vartype tags: dict[str, str]
+ """
+
+ _attribute_map = {
+ "data_availability_status": {"key": "dataAvailabilityStatus", "type": "[str]"},
+ "description": {"key": "description", "type": "str"},
+ "display_name": {"key": "displayName", "type": "str"},
+ "feature_window": {"key": "featureWindow", "type": "FeatureWindow"},
+ "job_id": {"key": "jobId", "type": "str"},
+ "properties": {"key": "properties", "type": "{str}"},
+ "resource": {"key": "resource", "type": "MaterializationComputeResource"},
+ "spark_configuration": {"key": "sparkConfiguration", "type": "{str}"},
+ "tags": {"key": "tags", "type": "{str}"},
+ }
+
+ def __init__(
+ self,
+ *,
+ data_availability_status: Optional[List[Union[str, "_models.DataAvailabilityStatus"]]] = None,
+ description: Optional[str] = None,
+ display_name: Optional[str] = None,
+ feature_window: Optional["_models.FeatureWindow"] = None,
+ job_id: Optional[str] = None,
+ properties: Optional[Dict[str, str]] = None,
+ resource: Optional["_models.MaterializationComputeResource"] = None,
+ spark_configuration: Optional[Dict[str, str]] = None,
+ tags: Optional[Dict[str, str]] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword data_availability_status: Specified the data availability status that you want to
+ backfill.
+ :paramtype data_availability_status: list[str or
+ ~azure.mgmt.machinelearningservices.models.DataAvailabilityStatus]
+ :keyword description: Specifies description.
+ :paramtype description: str
+ :keyword display_name: Specifies description.
+ :paramtype display_name: str
+ :keyword feature_window: Specifies the backfill feature window to be materialized.
+ :paramtype feature_window: ~azure.mgmt.machinelearningservices.models.FeatureWindow
+ :keyword job_id: Specify the jobId to retry the failed materialization.
+ :paramtype job_id: str
+ :keyword properties: Specifies the properties.
+ :paramtype properties: dict[str, str]
+ :keyword resource: Specifies the compute resource settings.
+ :paramtype resource: ~azure.mgmt.machinelearningservices.models.MaterializationComputeResource
+ :keyword spark_configuration: Specifies the spark compute settings.
+ :paramtype spark_configuration: dict[str, str]
+ :keyword tags: Specifies the tags.
+ :paramtype tags: dict[str, str]
+ """
+ super().__init__(**kwargs)
+ self.data_availability_status = data_availability_status
+ self.description = description
+ self.display_name = display_name
+ self.feature_window = feature_window
+ self.job_id = job_id
+ self.properties = properties
+ self.resource = resource
+ self.spark_configuration = spark_configuration
+ self.tags = tags
+
+
+class FeaturesetVersionBackfillResponse(_serialization.Model):
+ """Response payload for creating a backfill request for a given feature set version.
+
+ :ivar job_ids: List of jobs submitted as part of the backfill request.
+ :vartype job_ids: list[str]
+ """
+
+ _attribute_map = {
+ "job_ids": {"key": "jobIds", "type": "[str]"},
+ }
+
+ def __init__(self, *, job_ids: Optional[List[str]] = None, **kwargs: Any) -> None:
+ """
+ :keyword job_ids: List of jobs submitted as part of the backfill request.
+ :paramtype job_ids: list[str]
+ """
+ super().__init__(**kwargs)
+ self.job_ids = job_ids
+
+
+class FeaturesetVersionProperties(AssetBase):
+ """DTO object representing feature set version.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar description: The asset description text.
+ :vartype description: str
+ :ivar properties: The asset property dictionary.
+ :vartype properties: dict[str, str]
+ :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
+ :vartype tags: dict[str, str]
+ :ivar is_anonymous: If the name version are system generated (anonymous registration).
+ :vartype is_anonymous: bool
+ :ivar is_archived: Is the asset archived?.
+ :vartype is_archived: bool
+ :ivar entities: Specifies list of entities.
+ :vartype entities: list[str]
+ :ivar materialization_settings: Specifies the materialization settings.
+ :vartype materialization_settings:
+ ~azure.mgmt.machinelearningservices.models.MaterializationSettings
+ :ivar provisioning_state: Provisioning state for the featureset version container. Known values
+ are: "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting".
+ :vartype provisioning_state: str or
+ ~azure.mgmt.machinelearningservices.models.AssetProvisioningState
+ :ivar specification: Specifies the feature spec details.
+ :vartype specification: ~azure.mgmt.machinelearningservices.models.FeaturesetSpecification
+ :ivar stage: Specifies the asset stage.
+ :vartype stage: str
+ """
+
+ _validation = {
+ "provisioning_state": {"readonly": True},
+ }
+
+ _attribute_map = {
+ "description": {"key": "description", "type": "str"},
+ "properties": {"key": "properties", "type": "{str}"},
+ "tags": {"key": "tags", "type": "{str}"},
+ "is_anonymous": {"key": "isAnonymous", "type": "bool"},
+ "is_archived": {"key": "isArchived", "type": "bool"},
+ "entities": {"key": "entities", "type": "[str]"},
+ "materialization_settings": {"key": "materializationSettings", "type": "MaterializationSettings"},
+ "provisioning_state": {"key": "provisioningState", "type": "str"},
+ "specification": {"key": "specification", "type": "FeaturesetSpecification"},
+ "stage": {"key": "stage", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ description: Optional[str] = None,
+ properties: Optional[Dict[str, str]] = None,
+ tags: Optional[Dict[str, str]] = None,
+ is_anonymous: bool = False,
+ is_archived: bool = False,
+ entities: Optional[List[str]] = None,
+ materialization_settings: Optional["_models.MaterializationSettings"] = None,
+ specification: Optional["_models.FeaturesetSpecification"] = None,
+ stage: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword description: The asset description text.
+ :paramtype description: str
+ :keyword properties: The asset property dictionary.
+ :paramtype properties: dict[str, str]
+ :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
+ :paramtype tags: dict[str, str]
+ :keyword is_anonymous: If the name version are system generated (anonymous registration).
+ :paramtype is_anonymous: bool
+ :keyword is_archived: Is the asset archived?.
+ :paramtype is_archived: bool
+ :keyword entities: Specifies list of entities.
+ :paramtype entities: list[str]
+ :keyword materialization_settings: Specifies the materialization settings.
+ :paramtype materialization_settings:
+ ~azure.mgmt.machinelearningservices.models.MaterializationSettings
+ :keyword specification: Specifies the feature spec details.
+ :paramtype specification: ~azure.mgmt.machinelearningservices.models.FeaturesetSpecification
+ :keyword stage: Specifies the asset stage.
+ :paramtype stage: str
+ """
+ super().__init__(
+ description=description,
+ properties=properties,
+ tags=tags,
+ is_anonymous=is_anonymous,
+ is_archived=is_archived,
+ **kwargs
+ )
+ self.entities = entities
+ self.materialization_settings = materialization_settings
+ self.provisioning_state = None
+ self.specification = specification
+ self.stage = stage
+
+
+class FeaturesetVersionResourceArmPaginatedResult(_serialization.Model):
+ """A paginated list of FeaturesetVersion entities.
+
+ :ivar next_link: The link to the next page of FeaturesetVersion objects. If null, there are no
+ additional pages.
+ :vartype next_link: str
+ :ivar value: An array of objects of type FeaturesetVersion.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.FeaturesetVersion]
+ """
+
+ _attribute_map = {
+ "next_link": {"key": "nextLink", "type": "str"},
+ "value": {"key": "value", "type": "[FeaturesetVersion]"},
+ }
+
+ def __init__(
+ self,
+ *,
+ next_link: Optional[str] = None,
+ value: Optional[List["_models.FeaturesetVersion"]] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword next_link: The link to the next page of FeaturesetVersion objects. If null, there are
+ no additional pages.
+ :paramtype next_link: str
+ :keyword value: An array of objects of type FeaturesetVersion.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.FeaturesetVersion]
+ """
+ super().__init__(**kwargs)
+ self.next_link = next_link
+ self.value = value
+
+
+class FeaturestoreEntityContainer(ProxyResource):
+ """Azure Resource Manager resource envelope.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar id: Fully qualified resource ID for the resource. Ex -
+ /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
+ :vartype id: str
+ :ivar name: The name of the resource.
+ :vartype name: str
+ :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
+ "Microsoft.Storage/storageAccounts".
+ :vartype type: str
+ :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
+ information.
+ :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
+ :ivar properties: [Required] Additional attributes of the entity. Required.
+ :vartype properties:
+ ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainerProperties
+ """
+
+ _validation = {
+ "id": {"readonly": True},
+ "name": {"readonly": True},
+ "type": {"readonly": True},
+ "system_data": {"readonly": True},
+ "properties": {"required": True},
+ }
+
+ _attribute_map = {
+ "id": {"key": "id", "type": "str"},
+ "name": {"key": "name", "type": "str"},
+ "type": {"key": "type", "type": "str"},
+ "system_data": {"key": "systemData", "type": "SystemData"},
+ "properties": {"key": "properties", "type": "FeaturestoreEntityContainerProperties"},
+ }
+
+ def __init__(self, *, properties: "_models.FeaturestoreEntityContainerProperties", **kwargs: Any) -> None:
+ """
+ :keyword properties: [Required] Additional attributes of the entity. Required.
+ :paramtype properties:
+ ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainerProperties
+ """
+ super().__init__(**kwargs)
+ self.properties = properties
+
+
+class FeaturestoreEntityContainerProperties(AssetContainer):
+ """DTO object representing feature entity.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar description: The asset description text.
+ :vartype description: str
+ :ivar properties: The asset property dictionary.
+ :vartype properties: dict[str, str]
+ :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
+ :vartype tags: dict[str, str]
+ :ivar is_archived: Is the asset archived?.
+ :vartype is_archived: bool
+ :ivar latest_version: The latest version inside this container.
+ :vartype latest_version: str
+ :ivar next_version: The next auto incremental version.
+ :vartype next_version: str
+ :ivar provisioning_state: Provisioning state for the featurestore entity container. Known
+ values are: "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting".
+ :vartype provisioning_state: str or
+ ~azure.mgmt.machinelearningservices.models.AssetProvisioningState
+ """
+
+ _validation = {
+ "latest_version": {"readonly": True},
+ "next_version": {"readonly": True},
+ "provisioning_state": {"readonly": True},
+ }
+
+ _attribute_map = {
+ "description": {"key": "description", "type": "str"},
+ "properties": {"key": "properties", "type": "{str}"},
+ "tags": {"key": "tags", "type": "{str}"},
+ "is_archived": {"key": "isArchived", "type": "bool"},
+ "latest_version": {"key": "latestVersion", "type": "str"},
+ "next_version": {"key": "nextVersion", "type": "str"},
+ "provisioning_state": {"key": "provisioningState", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ description: Optional[str] = None,
+ properties: Optional[Dict[str, str]] = None,
+ tags: Optional[Dict[str, str]] = None,
+ is_archived: bool = False,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword description: The asset description text.
+ :paramtype description: str
+ :keyword properties: The asset property dictionary.
+ :paramtype properties: dict[str, str]
+ :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
+ :paramtype tags: dict[str, str]
+ :keyword is_archived: Is the asset archived?.
+ :paramtype is_archived: bool
+ """
+ super().__init__(description=description, properties=properties, tags=tags, is_archived=is_archived, **kwargs)
+ self.provisioning_state = None
+
+
+class FeaturestoreEntityContainerResourceArmPaginatedResult(_serialization.Model):
+ """A paginated list of FeaturestoreEntityContainer entities.
+
+ :ivar next_link: The link to the next page of FeaturestoreEntityContainer objects. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ :ivar value: An array of objects of type FeaturestoreEntityContainer.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer]
+ """
+
+ _attribute_map = {
+ "next_link": {"key": "nextLink", "type": "str"},
+ "value": {"key": "value", "type": "[FeaturestoreEntityContainer]"},
+ }
+
+ def __init__(
+ self,
+ *,
+ next_link: Optional[str] = None,
+ value: Optional[List["_models.FeaturestoreEntityContainer"]] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword next_link: The link to the next page of FeaturestoreEntityContainer objects. If null,
+ there are no additional pages.
+ :paramtype next_link: str
+ :keyword value: An array of objects of type FeaturestoreEntityContainer.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer]
+ """
+ super().__init__(**kwargs)
+ self.next_link = next_link
+ self.value = value
+
+
+class FeaturestoreEntityVersion(ProxyResource):
+ """Azure Resource Manager resource envelope.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar id: Fully qualified resource ID for the resource. Ex -
+ /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
+ :vartype id: str
+ :ivar name: The name of the resource.
+ :vartype name: str
+ :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
+ "Microsoft.Storage/storageAccounts".
+ :vartype type: str
+ :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
+ information.
+ :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
+ :ivar properties: [Required] Additional attributes of the entity. Required.
+ :vartype properties:
+ ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersionProperties
+ """
+
+ _validation = {
+ "id": {"readonly": True},
+ "name": {"readonly": True},
+ "type": {"readonly": True},
+ "system_data": {"readonly": True},
+ "properties": {"required": True},
+ }
+
+ _attribute_map = {
+ "id": {"key": "id", "type": "str"},
+ "name": {"key": "name", "type": "str"},
+ "type": {"key": "type", "type": "str"},
+ "system_data": {"key": "systemData", "type": "SystemData"},
+ "properties": {"key": "properties", "type": "FeaturestoreEntityVersionProperties"},
+ }
+
+ def __init__(self, *, properties: "_models.FeaturestoreEntityVersionProperties", **kwargs: Any) -> None:
+ """
+ :keyword properties: [Required] Additional attributes of the entity. Required.
+ :paramtype properties:
+ ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersionProperties
+ """
+ super().__init__(**kwargs)
+ self.properties = properties
+
+
+class FeaturestoreEntityVersionProperties(AssetBase):
+ """DTO object representing feature entity version.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar description: The asset description text.
+ :vartype description: str
+ :ivar properties: The asset property dictionary.
+ :vartype properties: dict[str, str]
+ :ivar tags: Tag dictionary. Tags can be added, removed, and updated.
+ :vartype tags: dict[str, str]
+ :ivar is_anonymous: If the name version are system generated (anonymous registration).
+ :vartype is_anonymous: bool
+ :ivar is_archived: Is the asset archived?.
+ :vartype is_archived: bool
+ :ivar index_columns: Specifies index columns.
+ :vartype index_columns: list[~azure.mgmt.machinelearningservices.models.IndexColumn]
+ :ivar provisioning_state: Provisioning state for the featurestore entity version. Known values
+ are: "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting".
+ :vartype provisioning_state: str or
+ ~azure.mgmt.machinelearningservices.models.AssetProvisioningState
+ :ivar stage: Specifies the asset stage.
+ :vartype stage: str
+ """
+
+ _validation = {
+ "provisioning_state": {"readonly": True},
+ }
+
+ _attribute_map = {
+ "description": {"key": "description", "type": "str"},
+ "properties": {"key": "properties", "type": "{str}"},
+ "tags": {"key": "tags", "type": "{str}"},
+ "is_anonymous": {"key": "isAnonymous", "type": "bool"},
+ "is_archived": {"key": "isArchived", "type": "bool"},
+ "index_columns": {"key": "indexColumns", "type": "[IndexColumn]"},
+ "provisioning_state": {"key": "provisioningState", "type": "str"},
+ "stage": {"key": "stage", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ description: Optional[str] = None,
+ properties: Optional[Dict[str, str]] = None,
+ tags: Optional[Dict[str, str]] = None,
+ is_anonymous: bool = False,
+ is_archived: bool = False,
+ index_columns: Optional[List["_models.IndexColumn"]] = None,
+ stage: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword description: The asset description text.
+ :paramtype description: str
+ :keyword properties: The asset property dictionary.
+ :paramtype properties: dict[str, str]
+ :keyword tags: Tag dictionary. Tags can be added, removed, and updated.
+ :paramtype tags: dict[str, str]
+ :keyword is_anonymous: If the name version are system generated (anonymous registration).
+ :paramtype is_anonymous: bool
+ :keyword is_archived: Is the asset archived?.
+ :paramtype is_archived: bool
+ :keyword index_columns: Specifies index columns.
+ :paramtype index_columns: list[~azure.mgmt.machinelearningservices.models.IndexColumn]
+ :keyword stage: Specifies the asset stage.
+ :paramtype stage: str
+ """
+ super().__init__(
+ description=description,
+ properties=properties,
+ tags=tags,
+ is_anonymous=is_anonymous,
+ is_archived=is_archived,
+ **kwargs
+ )
+ self.index_columns = index_columns
+ self.provisioning_state = None
+ self.stage = stage
+
+
+class FeaturestoreEntityVersionResourceArmPaginatedResult(_serialization.Model):
+ """A paginated list of FeaturestoreEntityVersion entities.
+
+ :ivar next_link: The link to the next page of FeaturestoreEntityVersion objects. If null, there
+ are no additional pages.
+ :vartype next_link: str
+ :ivar value: An array of objects of type FeaturestoreEntityVersion.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion]
+ """
+
+ _attribute_map = {
+ "next_link": {"key": "nextLink", "type": "str"},
+ "value": {"key": "value", "type": "[FeaturestoreEntityVersion]"},
+ }
+
+ def __init__(
+ self,
+ *,
+ next_link: Optional[str] = None,
+ value: Optional[List["_models.FeaturestoreEntityVersion"]] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword next_link: The link to the next page of FeaturestoreEntityVersion objects. If null,
+ there are no additional pages.
+ :paramtype next_link: str
+ :keyword value: An array of objects of type FeaturestoreEntityVersion.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion]
+ """
+ super().__init__(**kwargs)
+ self.next_link = next_link
+ self.value = value
+
+
+class FeatureSubset(MonitoringFeatureFilterBase):
+ """FeatureSubset.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar filter_type: [Required] Specifies the feature filter to leverage when selecting features
+ to calculate metrics over. Required. Known values are: "AllFeatures", "TopNByAttribution", and
+ "FeatureSubset".
+ :vartype filter_type: str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringFeatureFilterType
+ :ivar features: [Required] The list of features to include. Required.
+ :vartype features: list[str]
+ """
+
+ _validation = {
+ "filter_type": {"required": True},
+ "features": {"required": True},
+ }
+
+ _attribute_map = {
+ "filter_type": {"key": "filterType", "type": "str"},
+ "features": {"key": "features", "type": "[str]"},
+ }
+
+ def __init__(self, *, features: List[str], **kwargs: Any) -> None:
+ """
+ :keyword features: [Required] The list of features to include. Required.
+ :paramtype features: list[str]
+ """
+ super().__init__(**kwargs)
+ self.filter_type: str = "FeatureSubset"
+ self.features = features
-class ExternalFQDNResponse(_serialization.Model):
- """ExternalFQDNResponse.
+class FeatureWindow(_serialization.Model):
+ """Specifies the feature window.
- :ivar value:
- :vartype value: list[~azure.mgmt.machinelearningservices.models.FQDNEndpoints]
+ :ivar feature_window_end: Specifies the feature window end time.
+ :vartype feature_window_end: ~datetime.datetime
+ :ivar feature_window_start: Specifies the feature window start time.
+ :vartype feature_window_start: ~datetime.datetime
"""
_attribute_map = {
- "value": {"key": "value", "type": "[FQDNEndpoints]"},
+ "feature_window_end": {"key": "featureWindowEnd", "type": "iso-8601"},
+ "feature_window_start": {"key": "featureWindowStart", "type": "iso-8601"},
}
- def __init__(self, *, value: Optional[List["_models.FQDNEndpoints"]] = None, **kwargs: Any) -> None:
+ def __init__(
+ self,
+ *,
+ feature_window_end: Optional[datetime.datetime] = None,
+ feature_window_start: Optional[datetime.datetime] = None,
+ **kwargs: Any
+ ) -> None:
"""
- :keyword value:
- :paramtype value: list[~azure.mgmt.machinelearningservices.models.FQDNEndpoints]
+ :keyword feature_window_end: Specifies the feature window end time.
+ :paramtype feature_window_end: ~datetime.datetime
+ :keyword feature_window_start: Specifies the feature window start time.
+ :paramtype feature_window_start: ~datetime.datetime
"""
super().__init__(**kwargs)
- self.value = value
+ self.feature_window_end = feature_window_end
+ self.feature_window_start = feature_window_start
class FeaturizationSettings(_serialization.Model):
@@ -9357,6 +11576,137 @@ def __init__(self, *, dataset_language: Optional[str] = None, **kwargs: Any) ->
self.dataset_language = dataset_language
+class MonitoringInputDataBase(_serialization.Model):
+ """Monitoring input data base definition.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ FixedInputData, RollingInputData, StaticInputData
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar columns: Mapping of column names to special uses.
+ :vartype columns: dict[str, str]
+ :ivar data_context: The context metadata of the data source.
+ :vartype data_context: str
+ :ivar input_data_type: [Required] Specifies the type of signal to monitor. Required. Known
+ values are: "Static", "Rolling", and "Fixed".
+ :vartype input_data_type: str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringInputDataType
+ :ivar job_input_type: [Required] Specifies the type of job. Required. Known values are:
+ "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
+ "triton_model".
+ :vartype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
+ :ivar uri: [Required] Input Asset URI. Required.
+ :vartype uri: str
+ """
+
+ _validation = {
+ "input_data_type": {"required": True},
+ "job_input_type": {"required": True},
+ "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
+ }
+
+ _attribute_map = {
+ "columns": {"key": "columns", "type": "{str}"},
+ "data_context": {"key": "dataContext", "type": "str"},
+ "input_data_type": {"key": "inputDataType", "type": "str"},
+ "job_input_type": {"key": "jobInputType", "type": "str"},
+ "uri": {"key": "uri", "type": "str"},
+ }
+
+ _subtype_map = {
+ "input_data_type": {"Fixed": "FixedInputData", "Rolling": "RollingInputData", "Static": "StaticInputData"}
+ }
+
+ def __init__(
+ self,
+ *,
+ job_input_type: Union[str, "_models.JobInputType"],
+ uri: str,
+ columns: Optional[Dict[str, str]] = None,
+ data_context: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword columns: Mapping of column names to special uses.
+ :paramtype columns: dict[str, str]
+ :keyword data_context: The context metadata of the data source.
+ :paramtype data_context: str
+ :keyword job_input_type: [Required] Specifies the type of job. Required. Known values are:
+ "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
+ "triton_model".
+ :paramtype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
+ :keyword uri: [Required] Input Asset URI. Required.
+ :paramtype uri: str
+ """
+ super().__init__(**kwargs)
+ self.columns = columns
+ self.data_context = data_context
+ self.input_data_type: Optional[str] = None
+ self.job_input_type = job_input_type
+ self.uri = uri
+
+
+class FixedInputData(MonitoringInputDataBase):
+ """Fixed input data definition.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar columns: Mapping of column names to special uses.
+ :vartype columns: dict[str, str]
+ :ivar data_context: The context metadata of the data source.
+ :vartype data_context: str
+ :ivar input_data_type: [Required] Specifies the type of signal to monitor. Required. Known
+ values are: "Static", "Rolling", and "Fixed".
+ :vartype input_data_type: str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringInputDataType
+ :ivar job_input_type: [Required] Specifies the type of job. Required. Known values are:
+ "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
+ "triton_model".
+ :vartype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
+ :ivar uri: [Required] Input Asset URI. Required.
+ :vartype uri: str
+ """
+
+ _validation = {
+ "input_data_type": {"required": True},
+ "job_input_type": {"required": True},
+ "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
+ }
+
+ _attribute_map = {
+ "columns": {"key": "columns", "type": "{str}"},
+ "data_context": {"key": "dataContext", "type": "str"},
+ "input_data_type": {"key": "inputDataType", "type": "str"},
+ "job_input_type": {"key": "jobInputType", "type": "str"},
+ "uri": {"key": "uri", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ job_input_type: Union[str, "_models.JobInputType"],
+ uri: str,
+ columns: Optional[Dict[str, str]] = None,
+ data_context: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword columns: Mapping of column names to special uses.
+ :paramtype columns: dict[str, str]
+ :keyword data_context: The context metadata of the data source.
+ :paramtype data_context: str
+ :keyword job_input_type: [Required] Specifies the type of job. Required. Known values are:
+ "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
+ "triton_model".
+ :paramtype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
+ :keyword uri: [Required] Input Asset URI. Required.
+ :paramtype uri: str
+ """
+ super().__init__(columns=columns, data_context=data_context, job_input_type=job_input_type, uri=uri, **kwargs)
+ self.input_data_type: str = "Fixed"
+
+
class FlavorData(_serialization.Model):
"""FlavorData.
@@ -9911,6 +12261,211 @@ def __init__(
self.endpoints = endpoints
+class OutboundRule(_serialization.Model):
+ """Outbound Rule for the managed network of a machine learning workspace.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ FqdnOutboundRule, PrivateEndpointOutboundRule, ServiceTagOutboundRule
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar category: Category of a managed network Outbound Rule of a machine learning workspace.
+ Known values are: "Required", "Recommended", and "UserDefined".
+ :vartype category: str or ~azure.mgmt.machinelearningservices.models.RuleCategory
+ :ivar status: Type of a managed network Outbound Rule of a machine learning workspace. Known
+ values are: "Inactive" and "Active".
+ :vartype status: str or ~azure.mgmt.machinelearningservices.models.RuleStatus
+ :ivar type: Type of a managed network Outbound Rule of a machine learning workspace. Required.
+ Known values are: "FQDN", "PrivateEndpoint", and "ServiceTag".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.RuleType
+ """
+
+ _validation = {
+ "type": {"required": True},
+ }
+
+ _attribute_map = {
+ "category": {"key": "category", "type": "str"},
+ "status": {"key": "status", "type": "str"},
+ "type": {"key": "type", "type": "str"},
+ }
+
+ _subtype_map = {
+ "type": {
+ "FQDN": "FqdnOutboundRule",
+ "PrivateEndpoint": "PrivateEndpointOutboundRule",
+ "ServiceTag": "ServiceTagOutboundRule",
+ }
+ }
+
+ def __init__(
+ self,
+ *,
+ category: Optional[Union[str, "_models.RuleCategory"]] = None,
+ status: Optional[Union[str, "_models.RuleStatus"]] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword category: Category of a managed network Outbound Rule of a machine learning workspace.
+ Known values are: "Required", "Recommended", and "UserDefined".
+ :paramtype category: str or ~azure.mgmt.machinelearningservices.models.RuleCategory
+ :keyword status: Type of a managed network Outbound Rule of a machine learning workspace. Known
+ values are: "Inactive" and "Active".
+ :paramtype status: str or ~azure.mgmt.machinelearningservices.models.RuleStatus
+ """
+ super().__init__(**kwargs)
+ self.category = category
+ self.status = status
+ self.type: Optional[str] = None
+
+
+class FqdnOutboundRule(OutboundRule):
+ """FQDN Outbound Rule for the managed network of a machine learning workspace.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar category: Category of a managed network Outbound Rule of a machine learning workspace.
+ Known values are: "Required", "Recommended", and "UserDefined".
+ :vartype category: str or ~azure.mgmt.machinelearningservices.models.RuleCategory
+ :ivar status: Type of a managed network Outbound Rule of a machine learning workspace. Known
+ values are: "Inactive" and "Active".
+ :vartype status: str or ~azure.mgmt.machinelearningservices.models.RuleStatus
+ :ivar type: Type of a managed network Outbound Rule of a machine learning workspace. Required.
+ Known values are: "FQDN", "PrivateEndpoint", and "ServiceTag".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.RuleType
+ :ivar destination:
+ :vartype destination: str
+ """
+
+ _validation = {
+ "type": {"required": True},
+ }
+
+ _attribute_map = {
+ "category": {"key": "category", "type": "str"},
+ "status": {"key": "status", "type": "str"},
+ "type": {"key": "type", "type": "str"},
+ "destination": {"key": "destination", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ category: Optional[Union[str, "_models.RuleCategory"]] = None,
+ status: Optional[Union[str, "_models.RuleStatus"]] = None,
+ destination: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword category: Category of a managed network Outbound Rule of a machine learning workspace.
+ Known values are: "Required", "Recommended", and "UserDefined".
+ :paramtype category: str or ~azure.mgmt.machinelearningservices.models.RuleCategory
+ :keyword status: Type of a managed network Outbound Rule of a machine learning workspace. Known
+ values are: "Inactive" and "Active".
+ :paramtype status: str or ~azure.mgmt.machinelearningservices.models.RuleStatus
+ :keyword destination:
+ :paramtype destination: str
+ """
+ super().__init__(category=category, status=status, **kwargs)
+ self.type: str = "FQDN"
+ self.destination = destination
+
+
+class GetBlobReferenceForConsumptionDto(_serialization.Model):
+ """GetBlobReferenceForConsumptionDto.
+
+ :ivar blob_uri: Blob uri, example: https://blob.windows.core.net/Container/Path.
+ :vartype blob_uri: str
+ :ivar credential: Credential info to access storage account.
+ :vartype credential: ~azure.mgmt.machinelearningservices.models.DataReferenceCredential
+ :ivar storage_account_arm_id: The ARM id of the storage account.
+ :vartype storage_account_arm_id: str
+ """
+
+ _attribute_map = {
+ "blob_uri": {"key": "blobUri", "type": "str"},
+ "credential": {"key": "credential", "type": "DataReferenceCredential"},
+ "storage_account_arm_id": {"key": "storageAccountArmId", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ blob_uri: Optional[str] = None,
+ credential: Optional["_models.DataReferenceCredential"] = None,
+ storage_account_arm_id: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword blob_uri: Blob uri, example: https://blob.windows.core.net/Container/Path.
+ :paramtype blob_uri: str
+ :keyword credential: Credential info to access storage account.
+ :paramtype credential: ~azure.mgmt.machinelearningservices.models.DataReferenceCredential
+ :keyword storage_account_arm_id: The ARM id of the storage account.
+ :paramtype storage_account_arm_id: str
+ """
+ super().__init__(**kwargs)
+ self.blob_uri = blob_uri
+ self.credential = credential
+ self.storage_account_arm_id = storage_account_arm_id
+
+
+class GetBlobReferenceSASRequestDto(_serialization.Model):
+ """BlobReferenceSASRequest for getBlobReferenceSAS API.
+
+ :ivar asset_id: Id of the asset to be accessed.
+ :vartype asset_id: str
+ :ivar blob_uri: Blob uri of the asset to be accessed.
+ :vartype blob_uri: str
+ """
+
+ _attribute_map = {
+ "asset_id": {"key": "assetId", "type": "str"},
+ "blob_uri": {"key": "blobUri", "type": "str"},
+ }
+
+ def __init__(self, *, asset_id: Optional[str] = None, blob_uri: Optional[str] = None, **kwargs: Any) -> None:
+ """
+ :keyword asset_id: Id of the asset to be accessed.
+ :paramtype asset_id: str
+ :keyword blob_uri: Blob uri of the asset to be accessed.
+ :paramtype blob_uri: str
+ """
+ super().__init__(**kwargs)
+ self.asset_id = asset_id
+ self.blob_uri = blob_uri
+
+
+class GetBlobReferenceSASResponseDto(_serialization.Model):
+ """BlobReferenceSASResponse for getBlobReferenceSAS API.
+
+ :ivar blob_reference_for_consumption: Blob reference for consumption details.
+ :vartype blob_reference_for_consumption:
+ ~azure.mgmt.machinelearningservices.models.GetBlobReferenceForConsumptionDto
+ """
+
+ _attribute_map = {
+ "blob_reference_for_consumption": {
+ "key": "blobReferenceForConsumption",
+ "type": "GetBlobReferenceForConsumptionDto",
+ },
+ }
+
+ def __init__(
+ self,
+ *,
+ blob_reference_for_consumption: Optional["_models.GetBlobReferenceForConsumptionDto"] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword blob_reference_for_consumption: Blob reference for consumption details.
+ :paramtype blob_reference_for_consumption:
+ ~azure.mgmt.machinelearningservices.models.GetBlobReferenceForConsumptionDto
+ """
+ super().__init__(**kwargs)
+ self.blob_reference_for_consumption = blob_reference_for_consumption
+
+
class GridSamplingAlgorithm(SamplingAlgorithm):
"""Defines a Sampling Algorithm that exhaustively generates every value combination in the space.
@@ -13190,6 +15745,40 @@ def __init__(
self.sampling_algorithm = sampling_algorithm
+class IndexColumn(_serialization.Model):
+ """DTO object representing index column.
+
+ :ivar column_name: Specifies the column name.
+ :vartype column_name: str
+ :ivar data_type: Specifies the data type. Known values are: "String", "Integer", "Long",
+ "Float", "Double", "Binary", "Datetime", and "Boolean".
+ :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.FeatureDataType
+ """
+
+ _attribute_map = {
+ "column_name": {"key": "columnName", "type": "str"},
+ "data_type": {"key": "dataType", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ column_name: Optional[str] = None,
+ data_type: Optional[Union[str, "_models.FeatureDataType"]] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword column_name: Specifies the column name.
+ :paramtype column_name: str
+ :keyword data_type: Specifies the data type. Known values are: "String", "Integer", "Long",
+ "Float", "Double", "Binary", "Datetime", and "Boolean".
+ :paramtype data_type: str or ~azure.mgmt.machinelearningservices.models.FeatureDataType
+ """
+ super().__init__(**kwargs)
+ self.column_name = column_name
+ self.data_type = data_type
+
+
class InferenceContainerProperties(_serialization.Model):
"""InferenceContainerProperties.
@@ -13291,7 +15880,7 @@ def __init__(
self.limits = limits
-class JobBase(Resource):
+class JobBase(ProxyResource):
"""Azure Resource Manager resource envelope.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -13436,7 +16025,7 @@ class JobScheduleAction(ScheduleActionBase):
All required parameters must be populated in order to send to Azure.
:ivar action_type: [Required] Specifies the action type of the schedule. Required. Known values
- are: "CreateJob" and "InvokeBatchEndpoint".
+ are: "CreateJob", "InvokeBatchEndpoint", and "CreateMonitor".
:vartype action_type: str or ~azure.mgmt.machinelearningservices.models.ScheduleActionType
:ivar job_definition: [Required] Defines Schedule action definition details. Required.
:vartype job_definition: ~azure.mgmt.machinelearningservices.models.JobBaseProperties
@@ -14287,6 +16876,38 @@ def __init__(self, *, value: str, description: Optional[str] = None, **kwargs: A
self.value = value
+class ManagedComputeIdentity(MonitorComputeIdentityBase):
+ """Managed compute identity definition.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar compute_identity_type: [Required] Specifies the type of identity to use within the
+ monitoring jobs. Required. Known values are: "AmlToken" and "ManagedIdentity".
+ :vartype compute_identity_type: str or
+ ~azure.mgmt.machinelearningservices.models.MonitorComputeIdentityType
+ :ivar identity: The identity which will be leveraged by the monitoring jobs.
+ :vartype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
+ """
+
+ _validation = {
+ "compute_identity_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "compute_identity_type": {"key": "computeIdentityType", "type": "str"},
+ "identity": {"key": "identity", "type": "ManagedServiceIdentity"},
+ }
+
+ def __init__(self, *, identity: Optional["_models.ManagedServiceIdentity"] = None, **kwargs: Any) -> None:
+ """
+ :keyword identity: The identity which will be leveraged by the monitoring jobs.
+ :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity
+ """
+ super().__init__(**kwargs)
+ self.compute_identity_type: str = "ManagedIdentity"
+ self.identity = identity
+
+
class ManagedIdentity(IdentityConfiguration):
"""Managed identity configuration.
@@ -14482,6 +17103,187 @@ def __init__(
self.credentials = credentials
+class ManagedIdentityCredential(DataReferenceCredential):
+ """Credential for user managed identity.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar credential_type: [Required] Credential type used to authentication with storage.
+ Required. Known values are: "SAS", "DockerCredentials", "ManagedIdentity", and "NoCredentials".
+ :vartype credential_type: str or
+ ~azure.mgmt.machinelearningservices.models.DataReferenceCredentialType
+ :ivar managed_identity_type: ManagedIdentityCredential identity type.
+ :vartype managed_identity_type: str
+ :ivar user_managed_identity_client_id: ClientId for the UAMI. For ManagedIdentityType =
+ SystemManaged, this field is null.
+ :vartype user_managed_identity_client_id: str
+ :ivar user_managed_identity_principal_id: PrincipalId for the UAMI. For ManagedIdentityType =
+ SystemManaged, this field is null.
+ :vartype user_managed_identity_principal_id: str
+ :ivar user_managed_identity_resource_id: Full arm scope for the Id. For ManagedIdentityType =
+ SystemManaged, this field is null.
+ :vartype user_managed_identity_resource_id: str
+ :ivar user_managed_identity_tenant_id: TenantId for the UAMI. For ManagedIdentityType =
+ SystemManaged, this field is null.
+ :vartype user_managed_identity_tenant_id: str
+ """
+
+ _validation = {
+ "credential_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "credential_type": {"key": "credentialType", "type": "str"},
+ "managed_identity_type": {"key": "managedIdentityType", "type": "str"},
+ "user_managed_identity_client_id": {"key": "userManagedIdentityClientId", "type": "str"},
+ "user_managed_identity_principal_id": {"key": "userManagedIdentityPrincipalId", "type": "str"},
+ "user_managed_identity_resource_id": {"key": "userManagedIdentityResourceId", "type": "str"},
+ "user_managed_identity_tenant_id": {"key": "userManagedIdentityTenantId", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ managed_identity_type: Optional[str] = None,
+ user_managed_identity_client_id: Optional[str] = None,
+ user_managed_identity_principal_id: Optional[str] = None,
+ user_managed_identity_resource_id: Optional[str] = None,
+ user_managed_identity_tenant_id: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword managed_identity_type: ManagedIdentityCredential identity type.
+ :paramtype managed_identity_type: str
+ :keyword user_managed_identity_client_id: ClientId for the UAMI. For ManagedIdentityType =
+ SystemManaged, this field is null.
+ :paramtype user_managed_identity_client_id: str
+ :keyword user_managed_identity_principal_id: PrincipalId for the UAMI. For ManagedIdentityType
+ = SystemManaged, this field is null.
+ :paramtype user_managed_identity_principal_id: str
+ :keyword user_managed_identity_resource_id: Full arm scope for the Id. For ManagedIdentityType
+ = SystemManaged, this field is null.
+ :paramtype user_managed_identity_resource_id: str
+ :keyword user_managed_identity_tenant_id: TenantId for the UAMI. For ManagedIdentityType =
+ SystemManaged, this field is null.
+ :paramtype user_managed_identity_tenant_id: str
+ """
+ super().__init__(**kwargs)
+ self.credential_type: str = "ManagedIdentity"
+ self.managed_identity_type = managed_identity_type
+ self.user_managed_identity_client_id = user_managed_identity_client_id
+ self.user_managed_identity_principal_id = user_managed_identity_principal_id
+ self.user_managed_identity_resource_id = user_managed_identity_resource_id
+ self.user_managed_identity_tenant_id = user_managed_identity_tenant_id
+
+
+class ManagedNetworkProvisionOptions(_serialization.Model):
+ """Managed Network Provisioning options for managed network of a machine learning workspace.
+
+ :ivar include_spark:
+ :vartype include_spark: bool
+ """
+
+ _attribute_map = {
+ "include_spark": {"key": "includeSpark", "type": "bool"},
+ }
+
+ def __init__(self, *, include_spark: Optional[bool] = None, **kwargs: Any) -> None:
+ """
+ :keyword include_spark:
+ :paramtype include_spark: bool
+ """
+ super().__init__(**kwargs)
+ self.include_spark = include_spark
+
+
+class ManagedNetworkProvisionStatus(_serialization.Model):
+ """Status of the Provisioning for the managed network of a machine learning workspace.
+
+ :ivar spark_ready:
+ :vartype spark_ready: bool
+ :ivar status: Status for the managed network of a machine learning workspace. Known values are:
+ "Inactive" and "Active".
+ :vartype status: str or ~azure.mgmt.machinelearningservices.models.ManagedNetworkStatus
+ """
+
+ _attribute_map = {
+ "spark_ready": {"key": "sparkReady", "type": "bool"},
+ "status": {"key": "status", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ spark_ready: Optional[bool] = None,
+ status: Optional[Union[str, "_models.ManagedNetworkStatus"]] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword spark_ready:
+ :paramtype spark_ready: bool
+ :keyword status: Status for the managed network of a machine learning workspace. Known values
+ are: "Inactive" and "Active".
+ :paramtype status: str or ~azure.mgmt.machinelearningservices.models.ManagedNetworkStatus
+ """
+ super().__init__(**kwargs)
+ self.spark_ready = spark_ready
+ self.status = status
+
+
+class ManagedNetworkSettings(_serialization.Model):
+ """Managed Network settings for a machine learning workspace.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar isolation_mode: Isolation mode for the managed network of a machine learning workspace.
+ Known values are: "Disabled", "AllowInternetOutbound", and "AllowOnlyApprovedOutbound".
+ :vartype isolation_mode: str or ~azure.mgmt.machinelearningservices.models.IsolationMode
+ :ivar network_id:
+ :vartype network_id: str
+ :ivar outbound_rules: Dictionary of :code:``.
+ :vartype outbound_rules: dict[str, ~azure.mgmt.machinelearningservices.models.OutboundRule]
+ :ivar status: Status of the Provisioning for the managed network of a machine learning
+ workspace.
+ :vartype status: ~azure.mgmt.machinelearningservices.models.ManagedNetworkProvisionStatus
+ """
+
+ _validation = {
+ "network_id": {"readonly": True},
+ }
+
+ _attribute_map = {
+ "isolation_mode": {"key": "isolationMode", "type": "str"},
+ "network_id": {"key": "networkId", "type": "str"},
+ "outbound_rules": {"key": "outboundRules", "type": "{OutboundRule}"},
+ "status": {"key": "status", "type": "ManagedNetworkProvisionStatus"},
+ }
+
+ def __init__(
+ self,
+ *,
+ isolation_mode: Optional[Union[str, "_models.IsolationMode"]] = None,
+ outbound_rules: Optional[Dict[str, "_models.OutboundRule"]] = None,
+ status: Optional["_models.ManagedNetworkProvisionStatus"] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword isolation_mode: Isolation mode for the managed network of a machine learning
+ workspace. Known values are: "Disabled", "AllowInternetOutbound", and
+ "AllowOnlyApprovedOutbound".
+ :paramtype isolation_mode: str or ~azure.mgmt.machinelearningservices.models.IsolationMode
+ :keyword outbound_rules: Dictionary of :code:``.
+ :paramtype outbound_rules: dict[str, ~azure.mgmt.machinelearningservices.models.OutboundRule]
+ :keyword status: Status of the Provisioning for the managed network of a machine learning
+ workspace.
+ :paramtype status: ~azure.mgmt.machinelearningservices.models.ManagedNetworkProvisionStatus
+ """
+ super().__init__(**kwargs)
+ self.isolation_mode = isolation_mode
+ self.network_id = None
+ self.outbound_rules = outbound_rules
+ self.status = status
+
+
class ManagedOnlineDeployment(OnlineDeploymentProperties): # pylint: disable=too-many-instance-attributes
"""Properties specific to a ManagedOnlineDeployment.
@@ -14700,6 +17502,82 @@ def __init__(
self.user_assigned_identities = user_assigned_identities
+class MaterializationComputeResource(_serialization.Model):
+ """DTO object representing compute resource.
+
+ :ivar instance_type: Specifies the instance type.
+ :vartype instance_type: str
+ """
+
+ _attribute_map = {
+ "instance_type": {"key": "instanceType", "type": "str"},
+ }
+
+ def __init__(self, *, instance_type: Optional[str] = None, **kwargs: Any) -> None:
+ """
+ :keyword instance_type: Specifies the instance type.
+ :paramtype instance_type: str
+ """
+ super().__init__(**kwargs)
+ self.instance_type = instance_type
+
+
+class MaterializationSettings(_serialization.Model):
+ """MaterializationSettings.
+
+ :ivar notification: Specifies the notification details.
+ :vartype notification: ~azure.mgmt.machinelearningservices.models.NotificationSetting
+ :ivar resource: Specifies the compute resource settings.
+ :vartype resource: ~azure.mgmt.machinelearningservices.models.MaterializationComputeResource
+ :ivar schedule: Specifies the schedule details.
+ :vartype schedule: ~azure.mgmt.machinelearningservices.models.RecurrenceTrigger
+ :ivar spark_configuration: Specifies the spark compute settings.
+ :vartype spark_configuration: dict[str, str]
+ :ivar store_type: Specifies the stores to which materialization should happen. Known values
+ are: "None", "Online", "Offline", and "OnlineAndOffline".
+ :vartype store_type: str or ~azure.mgmt.machinelearningservices.models.MaterializationStoreType
+ """
+
+ _attribute_map = {
+ "notification": {"key": "notification", "type": "NotificationSetting"},
+ "resource": {"key": "resource", "type": "MaterializationComputeResource"},
+ "schedule": {"key": "schedule", "type": "RecurrenceTrigger"},
+ "spark_configuration": {"key": "sparkConfiguration", "type": "{str}"},
+ "store_type": {"key": "storeType", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ notification: Optional["_models.NotificationSetting"] = None,
+ resource: Optional["_models.MaterializationComputeResource"] = None,
+ schedule: Optional["_models.RecurrenceTrigger"] = None,
+ spark_configuration: Optional[Dict[str, str]] = None,
+ store_type: Optional[Union[str, "_models.MaterializationStoreType"]] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword notification: Specifies the notification details.
+ :paramtype notification: ~azure.mgmt.machinelearningservices.models.NotificationSetting
+ :keyword resource: Specifies the compute resource settings.
+ :paramtype resource: ~azure.mgmt.machinelearningservices.models.MaterializationComputeResource
+ :keyword schedule: Specifies the schedule details.
+ :paramtype schedule: ~azure.mgmt.machinelearningservices.models.RecurrenceTrigger
+ :keyword spark_configuration: Specifies the spark compute settings.
+ :paramtype spark_configuration: dict[str, str]
+ :keyword store_type: Specifies the stores to which materialization should happen. Known values
+ are: "None", "Online", "Offline", and "OnlineAndOffline".
+ :paramtype store_type: str or
+ ~azure.mgmt.machinelearningservices.models.MaterializationStoreType
+ """
+ super().__init__(**kwargs)
+ self.notification = notification
+ self.resource = resource
+ self.schedule = schedule
+ self.spark_configuration = spark_configuration
+ self.store_type = store_type
+
+
class MedianStoppingPolicy(EarlyTerminationPolicy):
"""Defines an early termination policy based on running averages of the primary metric of all
runs.
@@ -15028,7 +17906,7 @@ def __init__(
self.uri = uri
-class ModelContainer(Resource):
+class ModelContainer(ProxyResource):
"""Azure Resource Manager resource envelope.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -15167,7 +18045,7 @@ def __init__(
self.value = value
-class ModelVersion(Resource):
+class ModelVersion(ProxyResource):
"""Azure Resource Manager resource envelope.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -15300,50 +18178,306 @@ def __init__(
:keyword stage: Stage in the model lifecycle assigned to this model.
:paramtype stage: str
"""
- super().__init__(
- description=description,
- properties=properties,
- tags=tags,
- is_anonymous=is_anonymous,
- is_archived=is_archived,
- **kwargs
- )
- self.flavors = flavors
- self.job_name = job_name
- self.model_type = model_type
- self.model_uri = model_uri
- self.provisioning_state = None
- self.stage = stage
+ super().__init__(
+ description=description,
+ properties=properties,
+ tags=tags,
+ is_anonymous=is_anonymous,
+ is_archived=is_archived,
+ **kwargs
+ )
+ self.flavors = flavors
+ self.job_name = job_name
+ self.model_type = model_type
+ self.model_uri = model_uri
+ self.provisioning_state = None
+ self.stage = stage
+
+
+class ModelVersionResourceArmPaginatedResult(_serialization.Model):
+ """A paginated list of ModelVersion entities.
+
+ :ivar next_link: The link to the next page of ModelVersion objects. If null, there are no
+ additional pages.
+ :vartype next_link: str
+ :ivar value: An array of objects of type ModelVersion.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.ModelVersion]
+ """
+
+ _attribute_map = {
+ "next_link": {"key": "nextLink", "type": "str"},
+ "value": {"key": "value", "type": "[ModelVersion]"},
+ }
+
+ def __init__(
+ self, *, next_link: Optional[str] = None, value: Optional[List["_models.ModelVersion"]] = None, **kwargs: Any
+ ) -> None:
+ """
+ :keyword next_link: The link to the next page of ModelVersion objects. If null, there are no
+ additional pages.
+ :paramtype next_link: str
+ :keyword value: An array of objects of type ModelVersion.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.ModelVersion]
+ """
+ super().__init__(**kwargs)
+ self.next_link = next_link
+ self.value = value
+
+
+class MonitorComputeConfigurationBase(_serialization.Model):
+ """Monitor compute configuration base definition.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ MonitorServerlessSparkCompute
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar compute_type: [Required] Specifies the type of signal to monitor. Required.
+ "ServerlessSpark"
+ :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.MonitorComputeType
+ """
+
+ _validation = {
+ "compute_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "compute_type": {"key": "computeType", "type": "str"},
+ }
+
+ _subtype_map = {"compute_type": {"ServerlessSpark": "MonitorServerlessSparkCompute"}}
+
+ def __init__(self, **kwargs: Any) -> None:
+ """ """
+ super().__init__(**kwargs)
+ self.compute_type: Optional[str] = None
+
+
+class MonitorDefinition(_serialization.Model):
+ """MonitorDefinition.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar alert_notification_settings: The monitor's notification settings.
+ :vartype alert_notification_settings:
+ ~azure.mgmt.machinelearningservices.models.MonitorNotificationSettings
+ :ivar compute_configuration: [Required] The ARM resource ID of the compute resource to run the
+ monitoring job on. Required.
+ :vartype compute_configuration:
+ ~azure.mgmt.machinelearningservices.models.MonitorComputeConfigurationBase
+ :ivar monitoring_target: The entities targeted by the monitor.
+ :vartype monitoring_target: ~azure.mgmt.machinelearningservices.models.MonitoringTarget
+ :ivar signals: [Required] The signals to monitor. Required.
+ :vartype signals: dict[str, ~azure.mgmt.machinelearningservices.models.MonitoringSignalBase]
+ """
+
+ _validation = {
+ "compute_configuration": {"required": True},
+ "signals": {"required": True},
+ }
+
+ _attribute_map = {
+ "alert_notification_settings": {"key": "alertNotificationSettings", "type": "MonitorNotificationSettings"},
+ "compute_configuration": {"key": "computeConfiguration", "type": "MonitorComputeConfigurationBase"},
+ "monitoring_target": {"key": "monitoringTarget", "type": "MonitoringTarget"},
+ "signals": {"key": "signals", "type": "{MonitoringSignalBase}"},
+ }
+
+ def __init__(
+ self,
+ *,
+ compute_configuration: "_models.MonitorComputeConfigurationBase",
+ signals: Dict[str, "_models.MonitoringSignalBase"],
+ alert_notification_settings: Optional["_models.MonitorNotificationSettings"] = None,
+ monitoring_target: Optional["_models.MonitoringTarget"] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword alert_notification_settings: The monitor's notification settings.
+ :paramtype alert_notification_settings:
+ ~azure.mgmt.machinelearningservices.models.MonitorNotificationSettings
+ :keyword compute_configuration: [Required] The ARM resource ID of the compute resource to run
+ the monitoring job on. Required.
+ :paramtype compute_configuration:
+ ~azure.mgmt.machinelearningservices.models.MonitorComputeConfigurationBase
+ :keyword monitoring_target: The entities targeted by the monitor.
+ :paramtype monitoring_target: ~azure.mgmt.machinelearningservices.models.MonitoringTarget
+ :keyword signals: [Required] The signals to monitor. Required.
+ :paramtype signals: dict[str, ~azure.mgmt.machinelearningservices.models.MonitoringSignalBase]
+ """
+ super().__init__(**kwargs)
+ self.alert_notification_settings = alert_notification_settings
+ self.compute_configuration = compute_configuration
+ self.monitoring_target = monitoring_target
+ self.signals = signals
+
+
+class MonitorEmailNotificationSettings(_serialization.Model):
+ """MonitorEmailNotificationSettings.
+
+ :ivar emails: The email recipient list which has a limitation of 499 characters in total.
+ :vartype emails: list[str]
+ """
+
+ _attribute_map = {
+ "emails": {"key": "emails", "type": "[str]"},
+ }
+
+ def __init__(self, *, emails: Optional[List[str]] = None, **kwargs: Any) -> None:
+ """
+ :keyword emails: The email recipient list which has a limitation of 499 characters in total.
+ :paramtype emails: list[str]
+ """
+ super().__init__(**kwargs)
+ self.emails = emails
+
+
+class MonitoringTarget(_serialization.Model):
+ """Monitoring target definition.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar deployment_id: Reference to the deployment asset targeted by this monitor.
+ :vartype deployment_id: str
+ :ivar model_id: Reference to the model asset targeted by this monitor.
+ :vartype model_id: str
+ :ivar task_type: [Required] The machine learning task type of the monitored model. Required.
+ Known values are: "Classification" and "Regression".
+ :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.ModelTaskType
+ """
+
+ _validation = {
+ "task_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "deployment_id": {"key": "deploymentId", "type": "str"},
+ "model_id": {"key": "modelId", "type": "str"},
+ "task_type": {"key": "taskType", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ task_type: Union[str, "_models.ModelTaskType"],
+ deployment_id: Optional[str] = None,
+ model_id: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword deployment_id: Reference to the deployment asset targeted by this monitor.
+ :paramtype deployment_id: str
+ :keyword model_id: Reference to the model asset targeted by this monitor.
+ :paramtype model_id: str
+ :keyword task_type: [Required] The machine learning task type of the monitored model. Required.
+ Known values are: "Classification" and "Regression".
+ :paramtype task_type: str or ~azure.mgmt.machinelearningservices.models.ModelTaskType
+ """
+ super().__init__(**kwargs)
+ self.deployment_id = deployment_id
+ self.model_id = model_id
+ self.task_type = task_type
+
+
+class MonitoringThreshold(_serialization.Model):
+ """MonitoringThreshold.
+
+ :ivar value: The threshold value. If null, the set default is dependent on the metric type.
+ :vartype value: float
+ """
+
+ _attribute_map = {
+ "value": {"key": "value", "type": "float"},
+ }
+
+ def __init__(self, *, value: Optional[float] = None, **kwargs: Any) -> None:
+ """
+ :keyword value: The threshold value. If null, the set default is dependent on the metric type.
+ :paramtype value: float
+ """
+ super().__init__(**kwargs)
+ self.value = value
+
+
+class MonitorNotificationSettings(_serialization.Model):
+ """MonitorNotificationSettings.
+
+ :ivar email_notification_settings: The AML notification email settings.
+ :vartype email_notification_settings:
+ ~azure.mgmt.machinelearningservices.models.MonitorEmailNotificationSettings
+ """
+
+ _attribute_map = {
+ "email_notification_settings": {"key": "emailNotificationSettings", "type": "MonitorEmailNotificationSettings"},
+ }
+
+ def __init__(
+ self, *, email_notification_settings: Optional["_models.MonitorEmailNotificationSettings"] = None, **kwargs: Any
+ ) -> None:
+ """
+ :keyword email_notification_settings: The AML notification email settings.
+ :paramtype email_notification_settings:
+ ~azure.mgmt.machinelearningservices.models.MonitorEmailNotificationSettings
+ """
+ super().__init__(**kwargs)
+ self.email_notification_settings = email_notification_settings
-class ModelVersionResourceArmPaginatedResult(_serialization.Model):
- """A paginated list of ModelVersion entities.
+class MonitorServerlessSparkCompute(MonitorComputeConfigurationBase):
+ """Monitor serverless spark compute definition.
- :ivar next_link: The link to the next page of ModelVersion objects. If null, there are no
- additional pages.
- :vartype next_link: str
- :ivar value: An array of objects of type ModelVersion.
- :vartype value: list[~azure.mgmt.machinelearningservices.models.ModelVersion]
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar compute_type: [Required] Specifies the type of signal to monitor. Required.
+ "ServerlessSpark"
+ :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.MonitorComputeType
+ :ivar compute_identity: [Required] The identity scheme leveraged to by the spark jobs running
+ on serverless Spark. Required.
+ :vartype compute_identity:
+ ~azure.mgmt.machinelearningservices.models.MonitorComputeIdentityBase
+ :ivar instance_type: [Required] The instance type running the Spark job. Required.
+ :vartype instance_type: str
+ :ivar runtime_version: [Required] The Spark runtime version. Required.
+ :vartype runtime_version: str
"""
+ _validation = {
+ "compute_type": {"required": True},
+ "compute_identity": {"required": True},
+ "instance_type": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
+ "runtime_version": {"required": True, "min_length": 1, "pattern": r"^[0-9]+\.[0-9]+$"},
+ }
+
_attribute_map = {
- "next_link": {"key": "nextLink", "type": "str"},
- "value": {"key": "value", "type": "[ModelVersion]"},
+ "compute_type": {"key": "computeType", "type": "str"},
+ "compute_identity": {"key": "computeIdentity", "type": "MonitorComputeIdentityBase"},
+ "instance_type": {"key": "instanceType", "type": "str"},
+ "runtime_version": {"key": "runtimeVersion", "type": "str"},
}
def __init__(
- self, *, next_link: Optional[str] = None, value: Optional[List["_models.ModelVersion"]] = None, **kwargs: Any
+ self,
+ *,
+ compute_identity: "_models.MonitorComputeIdentityBase",
+ instance_type: str,
+ runtime_version: str,
+ **kwargs: Any
) -> None:
"""
- :keyword next_link: The link to the next page of ModelVersion objects. If null, there are no
- additional pages.
- :paramtype next_link: str
- :keyword value: An array of objects of type ModelVersion.
- :paramtype value: list[~azure.mgmt.machinelearningservices.models.ModelVersion]
+ :keyword compute_identity: [Required] The identity scheme leveraged to by the spark jobs
+ running on serverless Spark. Required.
+ :paramtype compute_identity:
+ ~azure.mgmt.machinelearningservices.models.MonitorComputeIdentityBase
+ :keyword instance_type: [Required] The instance type running the Spark job. Required.
+ :paramtype instance_type: str
+ :keyword runtime_version: [Required] The Spark runtime version. Required.
+ :paramtype runtime_version: str
"""
super().__init__(**kwargs)
- self.next_link = next_link
- self.value = value
+ self.compute_type: str = "ServerlessSpark"
+ self.compute_identity = compute_identity
+ self.instance_type = instance_type
+ self.runtime_version = runtime_version
class Mpi(DistributionConfiguration):
@@ -15726,6 +18860,198 @@ def __init__(
self.notebook_preparation_error = notebook_preparation_error
+class NotificationSetting(_serialization.Model):
+ """Configuration for notification.
+
+ :ivar email_on: Send email notification to user on specified notification type.
+ :vartype email_on: list[str or
+ ~azure.mgmt.machinelearningservices.models.EmailNotificationEnableType]
+ :ivar emails: This is the email recipient list which has a limitation of 499 characters in
+ total concat with comma separator.
+ :vartype emails: list[str]
+ :ivar webhooks: Send webhook callback to a service. Key is a user-provided name for the
+ webhook.
+ :vartype webhooks: dict[str, ~azure.mgmt.machinelearningservices.models.Webhook]
+ """
+
+ _attribute_map = {
+ "email_on": {"key": "emailOn", "type": "[str]"},
+ "emails": {"key": "emails", "type": "[str]"},
+ "webhooks": {"key": "webhooks", "type": "{Webhook}"},
+ }
+
+ def __init__(
+ self,
+ *,
+ email_on: Optional[List[Union[str, "_models.EmailNotificationEnableType"]]] = None,
+ emails: Optional[List[str]] = None,
+ webhooks: Optional[Dict[str, "_models.Webhook"]] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword email_on: Send email notification to user on specified notification type.
+ :paramtype email_on: list[str or
+ ~azure.mgmt.machinelearningservices.models.EmailNotificationEnableType]
+ :keyword emails: This is the email recipient list which has a limitation of 499 characters in
+ total concat with comma separator.
+ :paramtype emails: list[str]
+ :keyword webhooks: Send webhook callback to a service. Key is a user-provided name for the
+ webhook.
+ :paramtype webhooks: dict[str, ~azure.mgmt.machinelearningservices.models.Webhook]
+ """
+ super().__init__(**kwargs)
+ self.email_on = email_on
+ self.emails = emails
+ self.webhooks = webhooks
+
+
+class NumericalDataDriftMetricThreshold(DataDriftMetricThresholdBase):
+ """NumericalDataDriftMetricThreshold.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar data_type: [Required] Specifies the data type of the metric threshold. Required. Known
+ values are: "Numerical" and "Categorical".
+ :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType
+ :ivar threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :vartype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ :ivar metric: [Required] The numerical data drift metric to calculate. Required. Known values
+ are: "JensenShannonDistance", "PopulationStabilityIndex", "NormalizedWassersteinDistance", and
+ "TwoSampleKolmogorovSmirnovTest".
+ :vartype metric: str or ~azure.mgmt.machinelearningservices.models.NumericalDataDriftMetric
+ """
+
+ _validation = {
+ "data_type": {"required": True},
+ "metric": {"required": True},
+ }
+
+ _attribute_map = {
+ "data_type": {"key": "dataType", "type": "str"},
+ "threshold": {"key": "threshold", "type": "MonitoringThreshold"},
+ "metric": {"key": "metric", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric: Union[str, "_models.NumericalDataDriftMetric"],
+ threshold: Optional["_models.MonitoringThreshold"] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :paramtype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ :keyword metric: [Required] The numerical data drift metric to calculate. Required. Known
+ values are: "JensenShannonDistance", "PopulationStabilityIndex",
+ "NormalizedWassersteinDistance", and "TwoSampleKolmogorovSmirnovTest".
+ :paramtype metric: str or ~azure.mgmt.machinelearningservices.models.NumericalDataDriftMetric
+ """
+ super().__init__(threshold=threshold, **kwargs)
+ self.data_type: str = "Numerical"
+ self.metric = metric
+
+
+class NumericalDataQualityMetricThreshold(DataQualityMetricThresholdBase):
+ """NumericalDataQualityMetricThreshold.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar data_type: [Required] Specifies the data type of the metric threshold. Required. Known
+ values are: "Numerical" and "Categorical".
+ :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType
+ :ivar threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :vartype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ :ivar metric: [Required] The numerical data quality metric to calculate. Required. Known values
+ are: "NullValueRate", "DataTypeErrorRate", and "OutOfBoundsRate".
+ :vartype metric: str or ~azure.mgmt.machinelearningservices.models.NumericalDataQualityMetric
+ """
+
+ _validation = {
+ "data_type": {"required": True},
+ "metric": {"required": True},
+ }
+
+ _attribute_map = {
+ "data_type": {"key": "dataType", "type": "str"},
+ "threshold": {"key": "threshold", "type": "MonitoringThreshold"},
+ "metric": {"key": "metric", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric: Union[str, "_models.NumericalDataQualityMetric"],
+ threshold: Optional["_models.MonitoringThreshold"] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :paramtype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ :keyword metric: [Required] The numerical data quality metric to calculate. Required. Known
+ values are: "NullValueRate", "DataTypeErrorRate", and "OutOfBoundsRate".
+ :paramtype metric: str or ~azure.mgmt.machinelearningservices.models.NumericalDataQualityMetric
+ """
+ super().__init__(threshold=threshold, **kwargs)
+ self.data_type: str = "Numerical"
+ self.metric = metric
+
+
+class NumericalPredictionDriftMetricThreshold(PredictionDriftMetricThresholdBase):
+ """NumericalPredictionDriftMetricThreshold.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar data_type: [Required] Specifies the data type of the metric threshold. Required. Known
+ values are: "Numerical" and "Categorical".
+ :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType
+ :ivar threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :vartype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ :ivar metric: [Required] The numerical prediction drift metric to calculate. Required. Known
+ values are: "JensenShannonDistance", "PopulationStabilityIndex",
+ "NormalizedWassersteinDistance", and "TwoSampleKolmogorovSmirnovTest".
+ :vartype metric: str or
+ ~azure.mgmt.machinelearningservices.models.NumericalPredictionDriftMetric
+ """
+
+ _validation = {
+ "data_type": {"required": True},
+ "metric": {"required": True},
+ }
+
+ _attribute_map = {
+ "data_type": {"key": "dataType", "type": "str"},
+ "threshold": {"key": "threshold", "type": "MonitoringThreshold"},
+ "metric": {"key": "metric", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric: Union[str, "_models.NumericalPredictionDriftMetric"],
+ threshold: Optional["_models.MonitoringThreshold"] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword threshold: The threshold value. If null, a default value will be set depending on the
+ selected metric.
+ :paramtype threshold: ~azure.mgmt.machinelearningservices.models.MonitoringThreshold
+ :keyword metric: [Required] The numerical prediction drift metric to calculate. Required. Known
+ values are: "JensenShannonDistance", "PopulationStabilityIndex",
+ "NormalizedWassersteinDistance", and "TwoSampleKolmogorovSmirnovTest".
+ :paramtype metric: str or
+ ~azure.mgmt.machinelearningservices.models.NumericalPredictionDriftMetric
+ """
+ super().__init__(threshold=threshold, **kwargs)
+ self.data_type: str = "Numerical"
+ self.metric = metric
+
+
class Objective(_serialization.Model):
"""Optimization objective.
@@ -16154,9 +19480,215 @@ def __init__(
:paramtype request_timeout: ~datetime.timedelta
"""
super().__init__(**kwargs)
- self.max_concurrent_requests_per_instance = max_concurrent_requests_per_instance
- self.max_queue_wait = max_queue_wait
- self.request_timeout = request_timeout
+ self.max_concurrent_requests_per_instance = max_concurrent_requests_per_instance
+ self.max_queue_wait = max_queue_wait
+ self.request_timeout = request_timeout
+
+
+class Operation(_serialization.Model):
+ """Details of a REST API operation, returned from the Resource Provider Operations API.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar name: The name of the operation, as per Resource-Based Access Control (RBAC). Examples:
+ "Microsoft.Compute/virtualMachines/write", "Microsoft.Compute/virtualMachines/capture/action".
+ :vartype name: str
+ :ivar is_data_action: Whether the operation applies to data-plane. This is "true" for
+ data-plane operations and "false" for ARM/control-plane operations.
+ :vartype is_data_action: bool
+ :ivar display: Localized display information for this particular operation.
+ :vartype display: ~azure.mgmt.machinelearningservices.models.OperationDisplay
+ :ivar origin: The intended executor of the operation; as in Resource Based Access Control
+ (RBAC) and audit logs UX. Default value is "user,system". Known values are: "user", "system",
+ and "user,system".
+ :vartype origin: str or ~azure.mgmt.machinelearningservices.models.Origin
+ :ivar action_type: Enum. Indicates the action type. "Internal" refers to actions that are for
+ internal only APIs. "Internal"
+ :vartype action_type: str or ~azure.mgmt.machinelearningservices.models.ActionType
+ """
+
+ _validation = {
+ "name": {"readonly": True},
+ "is_data_action": {"readonly": True},
+ "origin": {"readonly": True},
+ "action_type": {"readonly": True},
+ }
+
+ _attribute_map = {
+ "name": {"key": "name", "type": "str"},
+ "is_data_action": {"key": "isDataAction", "type": "bool"},
+ "display": {"key": "display", "type": "OperationDisplay"},
+ "origin": {"key": "origin", "type": "str"},
+ "action_type": {"key": "actionType", "type": "str"},
+ }
+
+ def __init__(self, *, display: Optional["_models.OperationDisplay"] = None, **kwargs: Any) -> None:
+ """
+ :keyword display: Localized display information for this particular operation.
+ :paramtype display: ~azure.mgmt.machinelearningservices.models.OperationDisplay
+ """
+ super().__init__(**kwargs)
+ self.name = None
+ self.is_data_action = None
+ self.display = display
+ self.origin = None
+ self.action_type = None
+
+
+class OperationDisplay(_serialization.Model):
+ """Localized display information for this particular operation.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar provider: The localized friendly form of the resource provider name, e.g. "Microsoft
+ Monitoring Insights" or "Microsoft Compute".
+ :vartype provider: str
+ :ivar resource: The localized friendly name of the resource type related to this operation.
+ E.g. "Virtual Machines" or "Job Schedule Collections".
+ :vartype resource: str
+ :ivar operation: The concise, localized friendly name for the operation; suitable for
+ dropdowns. E.g. "Create or Update Virtual Machine", "Restart Virtual Machine".
+ :vartype operation: str
+ :ivar description: The short, localized friendly description of the operation; suitable for
+ tool tips and detailed views.
+ :vartype description: str
+ """
+
+ _validation = {
+ "provider": {"readonly": True},
+ "resource": {"readonly": True},
+ "operation": {"readonly": True},
+ "description": {"readonly": True},
+ }
+
+ _attribute_map = {
+ "provider": {"key": "provider", "type": "str"},
+ "resource": {"key": "resource", "type": "str"},
+ "operation": {"key": "operation", "type": "str"},
+ "description": {"key": "description", "type": "str"},
+ }
+
+ def __init__(self, **kwargs: Any) -> None:
+ """ """
+ super().__init__(**kwargs)
+ self.provider = None
+ self.resource = None
+ self.operation = None
+ self.description = None
+
+
+class OperationListResult(_serialization.Model):
+ """A list of REST API operations supported by an Azure Resource Provider. It contains an URL link
+ to get the next set of results.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar value: List of operations supported by the resource provider.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Operation]
+ :ivar next_link: URL to get the next set of operation list results (if there are any).
+ :vartype next_link: str
+ """
+
+ _validation = {
+ "value": {"readonly": True},
+ "next_link": {"readonly": True},
+ }
+
+ _attribute_map = {
+ "value": {"key": "value", "type": "[Operation]"},
+ "next_link": {"key": "nextLink", "type": "str"},
+ }
+
+ def __init__(self, **kwargs: Any) -> None:
+ """ """
+ super().__init__(**kwargs)
+ self.value = None
+ self.next_link = None
+
+
+class OutboundRuleBasicResource(Resource):
+ """Outbound Rule Basic Resource for the managed network of a machine learning workspace.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar id: Fully qualified resource ID for the resource. Ex -
+ /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}.
+ :vartype id: str
+ :ivar name: The name of the resource.
+ :vartype name: str
+ :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or
+ "Microsoft.Storage/storageAccounts".
+ :vartype type: str
+ :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy
+ information.
+ :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData
+ :ivar properties: Outbound Rule for the managed network of a machine learning workspace.
+ Required.
+ :vartype properties: ~azure.mgmt.machinelearningservices.models.OutboundRule
+ """
+
+ _validation = {
+ "id": {"readonly": True},
+ "name": {"readonly": True},
+ "type": {"readonly": True},
+ "system_data": {"readonly": True},
+ "properties": {"required": True},
+ }
+
+ _attribute_map = {
+ "id": {"key": "id", "type": "str"},
+ "name": {"key": "name", "type": "str"},
+ "type": {"key": "type", "type": "str"},
+ "system_data": {"key": "systemData", "type": "SystemData"},
+ "properties": {"key": "properties", "type": "OutboundRule"},
+ }
+
+ def __init__(self, *, properties: "_models.OutboundRule", **kwargs: Any) -> None:
+ """
+ :keyword properties: Outbound Rule for the managed network of a machine learning workspace.
+ Required.
+ :paramtype properties: ~azure.mgmt.machinelearningservices.models.OutboundRule
+ """
+ super().__init__(**kwargs)
+ self.properties = properties
+
+
+class OutboundRuleListResult(_serialization.Model):
+ """List of outbound rules for the managed network of a machine learning workspace.
+
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ :ivar value: The list of machine learning workspaces. Since this list may be incomplete, the
+ nextLink field should be used to request the next list of machine learning workspaces.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource]
+ """
+
+ _attribute_map = {
+ "next_link": {"key": "nextLink", "type": "str"},
+ "value": {"key": "value", "type": "[OutboundRuleBasicResource]"},
+ }
+
+ def __init__(
+ self,
+ *,
+ next_link: Optional[str] = None,
+ value: Optional[List["_models.OutboundRuleBasicResource"]] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ :keyword value: The list of machine learning workspaces. Since this list may be incomplete, the
+ nextLink field should be used to request the next list of machine learning workspaces.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource]
+ """
+ super().__init__(**kwargs)
+ self.next_link = next_link
+ self.value = value
class OutputPathAssetReference(AssetReferenceBase):
@@ -16876,6 +20408,88 @@ def __init__(
self.source_job_id = source_job_id
+class PredictionDriftMonitoringSignal(MonitoringSignalBase):
+ """PredictionDriftMonitoringSignal.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar notification_types: The current notification mode for this signal.
+ :vartype notification_types: list[str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringNotificationType]
+ :ivar properties: Property dictionary. Properties can be added, but not removed or altered.
+ :vartype properties: dict[str, str]
+ :ivar signal_type: [Required] Specifies the type of signal to monitor. Required. Known values
+ are: "DataDrift", "PredictionDrift", "DataQuality", "FeatureAttributionDrift", and "Custom".
+ :vartype signal_type: str or ~azure.mgmt.machinelearningservices.models.MonitoringSignalType
+ :ivar feature_data_type_override: A dictionary that maps feature names to their respective data
+ types.
+ :vartype feature_data_type_override: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType]
+ :ivar metric_thresholds: [Required] A list of metrics to calculate and their associated
+ thresholds. Required.
+ :vartype metric_thresholds:
+ list[~azure.mgmt.machinelearningservices.models.PredictionDriftMetricThresholdBase]
+ :ivar production_data: [Required] The data which drift will be calculated for. Required.
+ :vartype production_data: ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase
+ :ivar reference_data: [Required] The data to calculate drift against. Required.
+ :vartype reference_data: ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase
+ """
+
+ _validation = {
+ "signal_type": {"required": True},
+ "metric_thresholds": {"required": True},
+ "production_data": {"required": True},
+ "reference_data": {"required": True},
+ }
+
+ _attribute_map = {
+ "notification_types": {"key": "notificationTypes", "type": "[str]"},
+ "properties": {"key": "properties", "type": "{str}"},
+ "signal_type": {"key": "signalType", "type": "str"},
+ "feature_data_type_override": {"key": "featureDataTypeOverride", "type": "{str}"},
+ "metric_thresholds": {"key": "metricThresholds", "type": "[PredictionDriftMetricThresholdBase]"},
+ "production_data": {"key": "productionData", "type": "MonitoringInputDataBase"},
+ "reference_data": {"key": "referenceData", "type": "MonitoringInputDataBase"},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric_thresholds: List["_models.PredictionDriftMetricThresholdBase"],
+ production_data: "_models.MonitoringInputDataBase",
+ reference_data: "_models.MonitoringInputDataBase",
+ notification_types: Optional[List[Union[str, "_models.MonitoringNotificationType"]]] = None,
+ properties: Optional[Dict[str, str]] = None,
+ feature_data_type_override: Optional[Dict[str, Union[str, "_models.MonitoringFeatureDataType"]]] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword notification_types: The current notification mode for this signal.
+ :paramtype notification_types: list[str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringNotificationType]
+ :keyword properties: Property dictionary. Properties can be added, but not removed or altered.
+ :paramtype properties: dict[str, str]
+ :keyword feature_data_type_override: A dictionary that maps feature names to their respective
+ data types.
+ :paramtype feature_data_type_override: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringFeatureDataType]
+ :keyword metric_thresholds: [Required] A list of metrics to calculate and their associated
+ thresholds. Required.
+ :paramtype metric_thresholds:
+ list[~azure.mgmt.machinelearningservices.models.PredictionDriftMetricThresholdBase]
+ :keyword production_data: [Required] The data which drift will be calculated for. Required.
+ :paramtype production_data: ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase
+ :keyword reference_data: [Required] The data to calculate drift against. Required.
+ :paramtype reference_data: ~azure.mgmt.machinelearningservices.models.MonitoringInputDataBase
+ """
+ super().__init__(notification_types=notification_types, properties=properties, **kwargs)
+ self.signal_type: str = "PredictionDrift"
+ self.feature_data_type_override = feature_data_type_override
+ self.metric_thresholds = metric_thresholds
+ self.production_data = production_data
+ self.reference_data = reference_data
+
+
class PrivateEndpoint(_serialization.Model):
"""The Private Endpoint resource.
@@ -17017,6 +20631,109 @@ def __init__(self, *, value: Optional[List["_models.PrivateEndpointConnection"]]
self.value = value
+class PrivateEndpointDestination(_serialization.Model):
+ """Private Endpoint destination for a Private Endpoint Outbound Rule for the managed network of a
+ machine learning workspace.
+
+ :ivar service_resource_id:
+ :vartype service_resource_id: str
+ :ivar spark_enabled:
+ :vartype spark_enabled: bool
+ :ivar spark_status: Type of a managed network Outbound Rule of a machine learning workspace.
+ Known values are: "Inactive" and "Active".
+ :vartype spark_status: str or ~azure.mgmt.machinelearningservices.models.RuleStatus
+ :ivar subresource_target:
+ :vartype subresource_target: str
+ """
+
+ _attribute_map = {
+ "service_resource_id": {"key": "serviceResourceId", "type": "str"},
+ "spark_enabled": {"key": "sparkEnabled", "type": "bool"},
+ "spark_status": {"key": "sparkStatus", "type": "str"},
+ "subresource_target": {"key": "subresourceTarget", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ service_resource_id: Optional[str] = None,
+ spark_enabled: Optional[bool] = None,
+ spark_status: Optional[Union[str, "_models.RuleStatus"]] = None,
+ subresource_target: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword service_resource_id:
+ :paramtype service_resource_id: str
+ :keyword spark_enabled:
+ :paramtype spark_enabled: bool
+ :keyword spark_status: Type of a managed network Outbound Rule of a machine learning workspace.
+ Known values are: "Inactive" and "Active".
+ :paramtype spark_status: str or ~azure.mgmt.machinelearningservices.models.RuleStatus
+ :keyword subresource_target:
+ :paramtype subresource_target: str
+ """
+ super().__init__(**kwargs)
+ self.service_resource_id = service_resource_id
+ self.spark_enabled = spark_enabled
+ self.spark_status = spark_status
+ self.subresource_target = subresource_target
+
+
+class PrivateEndpointOutboundRule(OutboundRule):
+ """Private Endpoint Outbound Rule for the managed network of a machine learning workspace.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar category: Category of a managed network Outbound Rule of a machine learning workspace.
+ Known values are: "Required", "Recommended", and "UserDefined".
+ :vartype category: str or ~azure.mgmt.machinelearningservices.models.RuleCategory
+ :ivar status: Type of a managed network Outbound Rule of a machine learning workspace. Known
+ values are: "Inactive" and "Active".
+ :vartype status: str or ~azure.mgmt.machinelearningservices.models.RuleStatus
+ :ivar type: Type of a managed network Outbound Rule of a machine learning workspace. Required.
+ Known values are: "FQDN", "PrivateEndpoint", and "ServiceTag".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.RuleType
+ :ivar destination: Private Endpoint destination for a Private Endpoint Outbound Rule for the
+ managed network of a machine learning workspace.
+ :vartype destination: ~azure.mgmt.machinelearningservices.models.PrivateEndpointDestination
+ """
+
+ _validation = {
+ "type": {"required": True},
+ }
+
+ _attribute_map = {
+ "category": {"key": "category", "type": "str"},
+ "status": {"key": "status", "type": "str"},
+ "type": {"key": "type", "type": "str"},
+ "destination": {"key": "destination", "type": "PrivateEndpointDestination"},
+ }
+
+ def __init__(
+ self,
+ *,
+ category: Optional[Union[str, "_models.RuleCategory"]] = None,
+ status: Optional[Union[str, "_models.RuleStatus"]] = None,
+ destination: Optional["_models.PrivateEndpointDestination"] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword category: Category of a managed network Outbound Rule of a machine learning workspace.
+ Known values are: "Required", "Recommended", and "UserDefined".
+ :paramtype category: str or ~azure.mgmt.machinelearningservices.models.RuleCategory
+ :keyword status: Type of a managed network Outbound Rule of a machine learning workspace. Known
+ values are: "Inactive" and "Active".
+ :paramtype status: str or ~azure.mgmt.machinelearningservices.models.RuleStatus
+ :keyword destination: Private Endpoint destination for a Private Endpoint Outbound Rule for the
+ managed network of a machine learning workspace.
+ :paramtype destination: ~azure.mgmt.machinelearningservices.models.PrivateEndpointDestination
+ """
+ super().__init__(category=category, status=status, **kwargs)
+ self.type: str = "PrivateEndpoint"
+ self.destination = destination
+
+
class PrivateEndpointResource(PrivateEndpoint):
"""The PE network resource that is linked to this PE connection.
@@ -17286,6 +21003,28 @@ def __init__(self, *, process_count_per_instance: Optional[int] = None, **kwargs
self.process_count_per_instance = process_count_per_instance
+class QueueSettings(_serialization.Model):
+ """QueueSettings.
+
+ :ivar job_tier: Controls the compute job tier. Known values are: "Null", "Spot", "Basic",
+ "Standard", and "Premium".
+ :vartype job_tier: str or ~azure.mgmt.machinelearningservices.models.JobTier
+ """
+
+ _attribute_map = {
+ "job_tier": {"key": "jobTier", "type": "str"},
+ }
+
+ def __init__(self, *, job_tier: Optional[Union[str, "_models.JobTier"]] = None, **kwargs: Any) -> None:
+ """
+ :keyword job_tier: Controls the compute job tier. Known values are: "Null", "Spot", "Basic",
+ "Standard", and "Premium".
+ :paramtype job_tier: str or ~azure.mgmt.machinelearningservices.models.JobTier
+ """
+ super().__init__(**kwargs)
+ self.job_tier = job_tier
+
+
class QuotaBaseProperties(_serialization.Model):
"""The properties for Quota update or retrieval.
@@ -18438,6 +22177,92 @@ def __init__(self, **kwargs: Any) -> None:
self.unit = None
+class RollingInputData(MonitoringInputDataBase):
+ """Rolling input data definition.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar columns: Mapping of column names to special uses.
+ :vartype columns: dict[str, str]
+ :ivar data_context: The context metadata of the data source.
+ :vartype data_context: str
+ :ivar input_data_type: [Required] Specifies the type of signal to monitor. Required. Known
+ values are: "Static", "Rolling", and "Fixed".
+ :vartype input_data_type: str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringInputDataType
+ :ivar job_input_type: [Required] Specifies the type of job. Required. Known values are:
+ "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
+ "triton_model".
+ :vartype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
+ :ivar uri: [Required] Input Asset URI. Required.
+ :vartype uri: str
+ :ivar preprocessing_component_id: Reference to the component asset used to preprocess the data.
+ :vartype preprocessing_component_id: str
+ :ivar window_offset: [Required] The time offset between the end of the data window and the
+ monitor's current run time. Required.
+ :vartype window_offset: ~datetime.timedelta
+ :ivar window_size: [Required] The size of the rolling data window. Required.
+ :vartype window_size: ~datetime.timedelta
+ """
+
+ _validation = {
+ "input_data_type": {"required": True},
+ "job_input_type": {"required": True},
+ "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
+ "window_offset": {"required": True},
+ "window_size": {"required": True},
+ }
+
+ _attribute_map = {
+ "columns": {"key": "columns", "type": "{str}"},
+ "data_context": {"key": "dataContext", "type": "str"},
+ "input_data_type": {"key": "inputDataType", "type": "str"},
+ "job_input_type": {"key": "jobInputType", "type": "str"},
+ "uri": {"key": "uri", "type": "str"},
+ "preprocessing_component_id": {"key": "preprocessingComponentId", "type": "str"},
+ "window_offset": {"key": "windowOffset", "type": "duration"},
+ "window_size": {"key": "windowSize", "type": "duration"},
+ }
+
+ def __init__(
+ self,
+ *,
+ job_input_type: Union[str, "_models.JobInputType"],
+ uri: str,
+ window_offset: datetime.timedelta,
+ window_size: datetime.timedelta,
+ columns: Optional[Dict[str, str]] = None,
+ data_context: Optional[str] = None,
+ preprocessing_component_id: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword columns: Mapping of column names to special uses.
+ :paramtype columns: dict[str, str]
+ :keyword data_context: The context metadata of the data source.
+ :paramtype data_context: str
+ :keyword job_input_type: [Required] Specifies the type of job. Required. Known values are:
+ "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
+ "triton_model".
+ :paramtype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
+ :keyword uri: [Required] Input Asset URI. Required.
+ :paramtype uri: str
+ :keyword preprocessing_component_id: Reference to the component asset used to preprocess the
+ data.
+ :paramtype preprocessing_component_id: str
+ :keyword window_offset: [Required] The time offset between the end of the data window and the
+ monitor's current run time. Required.
+ :paramtype window_offset: ~datetime.timedelta
+ :keyword window_size: [Required] The size of the rolling data window. Required.
+ :paramtype window_size: ~datetime.timedelta
+ """
+ super().__init__(columns=columns, data_context=data_context, job_input_type=job_input_type, uri=uri, **kwargs)
+ self.input_data_type: str = "Rolling"
+ self.preprocessing_component_id = preprocessing_component_id
+ self.window_offset = window_offset
+ self.window_size = window_size
+
+
class Route(_serialization.Model):
"""Route.
@@ -18535,6 +22360,38 @@ def __init__(
self.credentials = credentials
+class SASCredential(DataReferenceCredential):
+ """Access with full SAS uri.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar credential_type: [Required] Credential type used to authentication with storage.
+ Required. Known values are: "SAS", "DockerCredentials", "ManagedIdentity", and "NoCredentials".
+ :vartype credential_type: str or
+ ~azure.mgmt.machinelearningservices.models.DataReferenceCredentialType
+ :ivar sas_uri: Full SAS Uri, including the storage, container/blob path and SAS token.
+ :vartype sas_uri: str
+ """
+
+ _validation = {
+ "credential_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "credential_type": {"key": "credentialType", "type": "str"},
+ "sas_uri": {"key": "sasUri", "type": "str"},
+ }
+
+ def __init__(self, *, sas_uri: Optional[str] = None, **kwargs: Any) -> None:
+ """
+ :keyword sas_uri: Full SAS Uri, including the storage, container/blob path and SAS token.
+ :paramtype sas_uri: str
+ """
+ super().__init__(**kwargs)
+ self.credential_type: str = "SAS"
+ self.sas_uri = sas_uri
+
+
class SASCredentialDto(PendingUploadCredentialDto):
"""SASCredentialDto.
@@ -18697,7 +22554,7 @@ def __init__(self, *, scale_settings: Optional["_models.ScaleSettings"] = None,
self.scale_settings = scale_settings
-class Schedule(Resource):
+class Schedule(ProxyResource):
"""Azure Resource Manager resource envelope.
Variables are only populated by the server, and will be ignored when sending a request.
@@ -19095,6 +22952,117 @@ def __init__(self, *, client_secret: Optional[str] = None, **kwargs: Any) -> Non
self.client_secret = client_secret
+class ServiceTagDestination(_serialization.Model):
+ """Service Tag destination for a Service Tag Outbound Rule for the managed network of a machine
+ learning workspace.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar action: The action enum for networking rule. Known values are: "Allow" and "Deny".
+ :vartype action: str or ~azure.mgmt.machinelearningservices.models.RuleAction
+ :ivar address_prefixes: Optional, if provided, the ServiceTag property will be ignored.
+ :vartype address_prefixes: list[str]
+ :ivar port_ranges:
+ :vartype port_ranges: str
+ :ivar protocol:
+ :vartype protocol: str
+ :ivar service_tag:
+ :vartype service_tag: str
+ """
+
+ _validation = {
+ "address_prefixes": {"readonly": True},
+ }
+
+ _attribute_map = {
+ "action": {"key": "action", "type": "str"},
+ "address_prefixes": {"key": "addressPrefixes", "type": "[str]"},
+ "port_ranges": {"key": "portRanges", "type": "str"},
+ "protocol": {"key": "protocol", "type": "str"},
+ "service_tag": {"key": "serviceTag", "type": "str"},
+ }
+
+ def __init__(
+ self,
+ *,
+ action: Optional[Union[str, "_models.RuleAction"]] = None,
+ port_ranges: Optional[str] = None,
+ protocol: Optional[str] = None,
+ service_tag: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword action: The action enum for networking rule. Known values are: "Allow" and "Deny".
+ :paramtype action: str or ~azure.mgmt.machinelearningservices.models.RuleAction
+ :keyword port_ranges:
+ :paramtype port_ranges: str
+ :keyword protocol:
+ :paramtype protocol: str
+ :keyword service_tag:
+ :paramtype service_tag: str
+ """
+ super().__init__(**kwargs)
+ self.action = action
+ self.address_prefixes = None
+ self.port_ranges = port_ranges
+ self.protocol = protocol
+ self.service_tag = service_tag
+
+
+class ServiceTagOutboundRule(OutboundRule):
+ """Service Tag Outbound Rule for the managed network of a machine learning workspace.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar category: Category of a managed network Outbound Rule of a machine learning workspace.
+ Known values are: "Required", "Recommended", and "UserDefined".
+ :vartype category: str or ~azure.mgmt.machinelearningservices.models.RuleCategory
+ :ivar status: Type of a managed network Outbound Rule of a machine learning workspace. Known
+ values are: "Inactive" and "Active".
+ :vartype status: str or ~azure.mgmt.machinelearningservices.models.RuleStatus
+ :ivar type: Type of a managed network Outbound Rule of a machine learning workspace. Required.
+ Known values are: "FQDN", "PrivateEndpoint", and "ServiceTag".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.RuleType
+ :ivar destination: Service Tag destination for a Service Tag Outbound Rule for the managed
+ network of a machine learning workspace.
+ :vartype destination: ~azure.mgmt.machinelearningservices.models.ServiceTagDestination
+ """
+
+ _validation = {
+ "type": {"required": True},
+ }
+
+ _attribute_map = {
+ "category": {"key": "category", "type": "str"},
+ "status": {"key": "status", "type": "str"},
+ "type": {"key": "type", "type": "str"},
+ "destination": {"key": "destination", "type": "ServiceTagDestination"},
+ }
+
+ def __init__(
+ self,
+ *,
+ category: Optional[Union[str, "_models.RuleCategory"]] = None,
+ status: Optional[Union[str, "_models.RuleStatus"]] = None,
+ destination: Optional["_models.ServiceTagDestination"] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword category: Category of a managed network Outbound Rule of a machine learning workspace.
+ Known values are: "Required", "Recommended", and "UserDefined".
+ :paramtype category: str or ~azure.mgmt.machinelearningservices.models.RuleCategory
+ :keyword status: Type of a managed network Outbound Rule of a machine learning workspace. Known
+ values are: "Inactive" and "Active".
+ :paramtype status: str or ~azure.mgmt.machinelearningservices.models.RuleStatus
+ :keyword destination: Service Tag destination for a Service Tag Outbound Rule for the managed
+ network of a machine learning workspace.
+ :paramtype destination: ~azure.mgmt.machinelearningservices.models.ServiceTagDestination
+ """
+ super().__init__(category=category, status=status, **kwargs)
+ self.type: str = "ServiceTag"
+ self.destination = destination
+
+
class SetupScripts(_serialization.Model):
"""Details of customized scripts to execute for setting up the cluster.
@@ -19516,6 +23484,90 @@ def __init__(
self.stack_meta_learner_type = stack_meta_learner_type
+class StaticInputData(MonitoringInputDataBase):
+ """Static input data definition.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar columns: Mapping of column names to special uses.
+ :vartype columns: dict[str, str]
+ :ivar data_context: The context metadata of the data source.
+ :vartype data_context: str
+ :ivar input_data_type: [Required] Specifies the type of signal to monitor. Required. Known
+ values are: "Static", "Rolling", and "Fixed".
+ :vartype input_data_type: str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringInputDataType
+ :ivar job_input_type: [Required] Specifies the type of job. Required. Known values are:
+ "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
+ "triton_model".
+ :vartype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
+ :ivar uri: [Required] Input Asset URI. Required.
+ :vartype uri: str
+ :ivar preprocessing_component_id: Reference to the component asset used to preprocess the data.
+ :vartype preprocessing_component_id: str
+ :ivar window_end: [Required] The end date of the data window. Required.
+ :vartype window_end: ~datetime.datetime
+ :ivar window_start: [Required] The start date of the data window. Required.
+ :vartype window_start: ~datetime.datetime
+ """
+
+ _validation = {
+ "input_data_type": {"required": True},
+ "job_input_type": {"required": True},
+ "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"},
+ "window_end": {"required": True},
+ "window_start": {"required": True},
+ }
+
+ _attribute_map = {
+ "columns": {"key": "columns", "type": "{str}"},
+ "data_context": {"key": "dataContext", "type": "str"},
+ "input_data_type": {"key": "inputDataType", "type": "str"},
+ "job_input_type": {"key": "jobInputType", "type": "str"},
+ "uri": {"key": "uri", "type": "str"},
+ "preprocessing_component_id": {"key": "preprocessingComponentId", "type": "str"},
+ "window_end": {"key": "windowEnd", "type": "iso-8601"},
+ "window_start": {"key": "windowStart", "type": "iso-8601"},
+ }
+
+ def __init__(
+ self,
+ *,
+ job_input_type: Union[str, "_models.JobInputType"],
+ uri: str,
+ window_end: datetime.datetime,
+ window_start: datetime.datetime,
+ columns: Optional[Dict[str, str]] = None,
+ data_context: Optional[str] = None,
+ preprocessing_component_id: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """
+ :keyword columns: Mapping of column names to special uses.
+ :paramtype columns: dict[str, str]
+ :keyword data_context: The context metadata of the data source.
+ :paramtype data_context: str
+ :keyword job_input_type: [Required] Specifies the type of job. Required. Known values are:
+ "literal", "uri_file", "uri_folder", "mltable", "custom_model", "mlflow_model", and
+ "triton_model".
+ :paramtype job_input_type: str or ~azure.mgmt.machinelearningservices.models.JobInputType
+ :keyword uri: [Required] Input Asset URI. Required.
+ :paramtype uri: str
+ :keyword preprocessing_component_id: Reference to the component asset used to preprocess the
+ data.
+ :paramtype preprocessing_component_id: str
+ :keyword window_end: [Required] The end date of the data window. Required.
+ :paramtype window_end: ~datetime.datetime
+ :keyword window_start: [Required] The start date of the data window. Required.
+ :paramtype window_start: ~datetime.datetime
+ """
+ super().__init__(columns=columns, data_context=data_context, job_input_type=job_input_type, uri=uri, **kwargs)
+ self.input_data_type: str = "Static"
+ self.preprocessing_component_id = preprocessing_component_id
+ self.window_end = window_end
+ self.window_start = window_start
+
+
class StorageAccountDetails(_serialization.Model):
"""Details of storage account to be used for the Registry.
@@ -19605,6 +23657,8 @@ class SweepJob(JobBaseProperties): # pylint: disable=too-many-instance-attribut
:vartype objective: ~azure.mgmt.machinelearningservices.models.Objective
:ivar outputs: Mapping of output data bindings used in the job.
:vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput]
+ :ivar queue_settings: Queue settings for the job.
+ :vartype queue_settings: ~azure.mgmt.machinelearningservices.models.QueueSettings
:ivar sampling_algorithm: [Required] The hyperparameter sampling algorithm. Required.
:vartype sampling_algorithm: ~azure.mgmt.machinelearningservices.models.SamplingAlgorithm
:ivar search_space: [Required] A dictionary containing each parameter and its distribution. The
@@ -19641,6 +23695,7 @@ class SweepJob(JobBaseProperties): # pylint: disable=too-many-instance-attribut
"limits": {"key": "limits", "type": "SweepJobLimits"},
"objective": {"key": "objective", "type": "Objective"},
"outputs": {"key": "outputs", "type": "{JobOutput}"},
+ "queue_settings": {"key": "queueSettings", "type": "QueueSettings"},
"sampling_algorithm": {"key": "samplingAlgorithm", "type": "SamplingAlgorithm"},
"search_space": {"key": "searchSpace", "type": "object"},
"trial": {"key": "trial", "type": "TrialComponent"},
@@ -19667,6 +23722,7 @@ def __init__(
inputs: Optional[Dict[str, "_models.JobInput"]] = None,
limits: Optional["_models.SweepJobLimits"] = None,
outputs: Optional[Dict[str, "_models.JobOutput"]] = None,
+ queue_settings: Optional["_models.QueueSettings"] = None,
**kwargs: Any
) -> None:
"""
@@ -19705,6 +23761,8 @@ def __init__(
:paramtype objective: ~azure.mgmt.machinelearningservices.models.Objective
:keyword outputs: Mapping of output data bindings used in the job.
:paramtype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput]
+ :keyword queue_settings: Queue settings for the job.
+ :paramtype queue_settings: ~azure.mgmt.machinelearningservices.models.QueueSettings
:keyword sampling_algorithm: [Required] The hyperparameter sampling algorithm. Required.
:paramtype sampling_algorithm: ~azure.mgmt.machinelearningservices.models.SamplingAlgorithm
:keyword search_space: [Required] A dictionary containing each parameter and its distribution.
@@ -19732,6 +23790,7 @@ def __init__(
self.limits = limits
self.objective = objective
self.outputs = outputs
+ self.queue_settings = queue_settings
self.sampling_algorithm = sampling_algorithm
self.search_space = search_space
self.trial = trial
@@ -20753,6 +24812,39 @@ def __init__(self, *, size: Optional[int] = None, **kwargs: Any) -> None:
self.size = size
+class TopNFeaturesByAttribution(MonitoringFeatureFilterBase):
+ """TopNFeaturesByAttribution.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar filter_type: [Required] Specifies the feature filter to leverage when selecting features
+ to calculate metrics over. Required. Known values are: "AllFeatures", "TopNByAttribution", and
+ "FeatureSubset".
+ :vartype filter_type: str or
+ ~azure.mgmt.machinelearningservices.models.MonitoringFeatureFilterType
+ :ivar top: The number of top features to include.
+ :vartype top: int
+ """
+
+ _validation = {
+ "filter_type": {"required": True},
+ }
+
+ _attribute_map = {
+ "filter_type": {"key": "filterType", "type": "str"},
+ "top": {"key": "top", "type": "int"},
+ }
+
+ def __init__(self, *, top: int = 10, **kwargs: Any) -> None:
+ """
+ :keyword top: The number of top features to include.
+ :paramtype top: int
+ """
+ super().__init__(**kwargs)
+ self.filter_type: str = "TopNByAttribution"
+ self.top = top
+
+
class TrialComponent(_serialization.Model):
"""Trial component definition.
@@ -22296,6 +26388,12 @@ class Workspace(Resource): # pylint: disable=too-many-instance-attributes
:ivar private_endpoint_connections: The list of private endpoint connections in the workspace.
:vartype private_endpoint_connections:
list[~azure.mgmt.machinelearningservices.models.PrivateEndpointConnection]
+ :ivar serverless_compute_custom_subnet: The resource ID of an existing virtual network subnet
+ in which serverless compute nodes should be deployed.
+ :vartype serverless_compute_custom_subnet: str
+ :ivar serverless_compute_no_public_ip: The flag to signal if serverless compute nodes deployed
+ in custom vNet would have no public IP addresses for a workspace with private endpoint.
+ :vartype serverless_compute_no_public_ip: bool
:ivar shared_private_link_resources: The list of shared private link resources in this
workspace.
:vartype shared_private_link_resources:
@@ -22319,6 +26417,8 @@ class Workspace(Resource): # pylint: disable=too-many-instance-attributes
:ivar v1_legacy_mode: Enabling v1_legacy_mode may prevent you from using features provided by
the v2 API.
:vartype v1_legacy_mode: bool
+ :ivar managed_network: Managed Network settings for a machine learning workspace.
+ :vartype managed_network: ~azure.mgmt.machinelearningservices.models.ManagedNetworkSettings
"""
_validation = {
@@ -22366,6 +26466,8 @@ class Workspace(Resource): # pylint: disable=too-many-instance-attributes
"key": "properties.privateEndpointConnections",
"type": "[PrivateEndpointConnection]",
},
+ "serverless_compute_custom_subnet": {"key": "properties.serverlessComputeCustomSubnet", "type": "str"},
+ "serverless_compute_no_public_ip": {"key": "properties.serverlessComputeNoPublicIP", "type": "bool"},
"shared_private_link_resources": {
"key": "properties.sharedPrivateLinkResources",
"type": "[SharedPrivateLinkResource]",
@@ -22380,6 +26482,7 @@ class Workspace(Resource): # pylint: disable=too-many-instance-attributes
"storage_hns_enabled": {"key": "properties.storageHnsEnabled", "type": "bool"},
"ml_flow_tracking_uri": {"key": "properties.mlFlowTrackingUri", "type": "str"},
"v1_legacy_mode": {"key": "properties.v1LegacyMode", "type": "bool"},
+ "managed_network": {"key": "properties.managedNetwork", "type": "ManagedNetworkSettings"},
}
def __init__( # pylint: disable=too-many-locals
@@ -22401,10 +26504,13 @@ def __init__( # pylint: disable=too-many-locals
image_build_compute: Optional[str] = None,
allow_public_access_when_behind_vnet: bool = False,
public_network_access: Optional[Union[str, "_models.PublicNetworkAccess"]] = None,
+ serverless_compute_custom_subnet: Optional[str] = None,
+ serverless_compute_no_public_ip: Optional[bool] = None,
shared_private_link_resources: Optional[List["_models.SharedPrivateLinkResource"]] = None,
service_managed_resources_settings: Optional["_models.ServiceManagedResourcesSettings"] = None,
primary_user_assigned_identity: Optional[str] = None,
v1_legacy_mode: bool = False,
+ managed_network: Optional["_models.ManagedNetworkSettings"] = None,
**kwargs: Any
) -> None:
"""
@@ -22448,6 +26554,13 @@ def __init__( # pylint: disable=too-many-locals
are: "Enabled" and "Disabled".
:paramtype public_network_access: str or
~azure.mgmt.machinelearningservices.models.PublicNetworkAccess
+ :keyword serverless_compute_custom_subnet: The resource ID of an existing virtual network
+ subnet in which serverless compute nodes should be deployed.
+ :paramtype serverless_compute_custom_subnet: str
+ :keyword serverless_compute_no_public_ip: The flag to signal if serverless compute nodes
+ deployed in custom vNet would have no public IP addresses for a workspace with private
+ endpoint.
+ :paramtype serverless_compute_no_public_ip: bool
:keyword shared_private_link_resources: The list of shared private link resources in this
workspace.
:paramtype shared_private_link_resources:
@@ -22461,6 +26574,8 @@ def __init__( # pylint: disable=too-many-locals
:keyword v1_legacy_mode: Enabling v1_legacy_mode may prevent you from using features provided
by the v2 API.
:paramtype v1_legacy_mode: bool
+ :keyword managed_network: Managed Network settings for a machine learning workspace.
+ :paramtype managed_network: ~azure.mgmt.machinelearningservices.models.ManagedNetworkSettings
"""
super().__init__(**kwargs)
self.identity = identity
@@ -22484,6 +26599,8 @@ def __init__( # pylint: disable=too-many-locals
self.allow_public_access_when_behind_vnet = allow_public_access_when_behind_vnet
self.public_network_access = public_network_access
self.private_endpoint_connections = None
+ self.serverless_compute_custom_subnet = serverless_compute_custom_subnet
+ self.serverless_compute_no_public_ip = serverless_compute_no_public_ip
self.shared_private_link_resources = shared_private_link_resources
self.notebook_info = None
self.service_managed_resources_settings = service_managed_resources_settings
@@ -22492,6 +26609,7 @@ def __init__( # pylint: disable=too-many-locals
self.storage_hns_enabled = None
self.ml_flow_tracking_uri = None
self.v1_legacy_mode = v1_legacy_mode
+ self.managed_network = managed_network
class WorkspaceConnectionManagedIdentity(_serialization.Model):
@@ -22721,6 +26839,12 @@ class WorkspaceUpdateParameters(_serialization.Model): # pylint: disable=too-ma
:ivar primary_user_assigned_identity: The user assigned identity resource id that represents
the workspace identity.
:vartype primary_user_assigned_identity: str
+ :ivar serverless_compute_custom_subnet: The resource ID of an existing virtual network subnet
+ in which serverless compute nodes should be deployed.
+ :vartype serverless_compute_custom_subnet: str
+ :ivar serverless_compute_no_public_ip: The flag to signal if serverless compute nodes deployed
+ in custom vNet would have no public IP addresses for a workspace with private endpoint.
+ :vartype serverless_compute_no_public_ip: bool
:ivar public_network_access: Whether requests from Public Network are allowed. Known values
are: "Enabled" and "Disabled".
:vartype public_network_access: str or
@@ -22743,6 +26867,8 @@ class WorkspaceUpdateParameters(_serialization.Model): # pylint: disable=too-ma
"type": "ServiceManagedResourcesSettings",
},
"primary_user_assigned_identity": {"key": "properties.primaryUserAssignedIdentity", "type": "str"},
+ "serverless_compute_custom_subnet": {"key": "properties.serverlessComputeCustomSubnet", "type": "str"},
+ "serverless_compute_no_public_ip": {"key": "properties.serverlessComputeNoPublicIP", "type": "bool"},
"public_network_access": {"key": "properties.publicNetworkAccess", "type": "str"},
"application_insights": {"key": "properties.applicationInsights", "type": "str"},
"container_registry": {"key": "properties.containerRegistry", "type": "str"},
@@ -22759,6 +26885,8 @@ def __init__(
image_build_compute: Optional[str] = None,
service_managed_resources_settings: Optional["_models.ServiceManagedResourcesSettings"] = None,
primary_user_assigned_identity: Optional[str] = None,
+ serverless_compute_custom_subnet: Optional[str] = None,
+ serverless_compute_no_public_ip: Optional[bool] = None,
public_network_access: Optional[Union[str, "_models.PublicNetworkAccess"]] = None,
application_insights: Optional[str] = None,
container_registry: Optional[str] = None,
@@ -22783,6 +26911,13 @@ def __init__(
:keyword primary_user_assigned_identity: The user assigned identity resource id that represents
the workspace identity.
:paramtype primary_user_assigned_identity: str
+ :keyword serverless_compute_custom_subnet: The resource ID of an existing virtual network
+ subnet in which serverless compute nodes should be deployed.
+ :paramtype serverless_compute_custom_subnet: str
+ :keyword serverless_compute_no_public_ip: The flag to signal if serverless compute nodes
+ deployed in custom vNet would have no public IP addresses for a workspace with private
+ endpoint.
+ :paramtype serverless_compute_no_public_ip: bool
:keyword public_network_access: Whether requests from Public Network are allowed. Known values
are: "Enabled" and "Disabled".
:paramtype public_network_access: str or
@@ -22802,6 +26937,8 @@ def __init__(
self.image_build_compute = image_build_compute
self.service_managed_resources_settings = service_managed_resources_settings
self.primary_user_assigned_identity = primary_user_assigned_identity
+ self.serverless_compute_custom_subnet = serverless_compute_custom_subnet
+ self.serverless_compute_no_public_ip = serverless_compute_no_public_ip
self.public_network_access = public_network_access
self.application_insights = application_insights
self.container_registry = container_registry
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/__init__.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/__init__.py
index 4967e3af6930..6792c518adf9 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/__init__.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/__init__.py
@@ -15,12 +15,15 @@
from ._private_endpoint_connections_operations import PrivateEndpointConnectionsOperations
from ._private_link_resources_operations import PrivateLinkResourcesOperations
from ._workspace_connections_operations import WorkspaceConnectionsOperations
+from ._managed_network_settings_rule_operations import ManagedNetworkSettingsRuleOperations
+from ._managed_network_provisions_operations import ManagedNetworkProvisionsOperations
from ._registry_code_containers_operations import RegistryCodeContainersOperations
from ._registry_code_versions_operations import RegistryCodeVersionsOperations
from ._registry_component_containers_operations import RegistryComponentContainersOperations
from ._registry_component_versions_operations import RegistryComponentVersionsOperations
from ._registry_data_containers_operations import RegistryDataContainersOperations
from ._registry_data_versions_operations import RegistryDataVersionsOperations
+from ._registry_data_references_operations import RegistryDataReferencesOperations
from ._registry_environment_containers_operations import RegistryEnvironmentContainersOperations
from ._registry_environment_versions_operations import RegistryEnvironmentVersionsOperations
from ._registry_model_containers_operations import RegistryModelContainersOperations
@@ -36,6 +39,11 @@
from ._datastores_operations import DatastoresOperations
from ._environment_containers_operations import EnvironmentContainersOperations
from ._environment_versions_operations import EnvironmentVersionsOperations
+from ._featureset_containers_operations import FeaturesetContainersOperations
+from ._features_operations import FeaturesOperations
+from ._featureset_versions_operations import FeaturesetVersionsOperations
+from ._featurestore_entity_containers_operations import FeaturestoreEntityContainersOperations
+from ._featurestore_entity_versions_operations import FeaturestoreEntityVersionsOperations
from ._jobs_operations import JobsOperations
from ._model_containers_operations import ModelContainersOperations
from ._model_versions_operations import ModelVersionsOperations
@@ -59,12 +67,15 @@
"PrivateEndpointConnectionsOperations",
"PrivateLinkResourcesOperations",
"WorkspaceConnectionsOperations",
+ "ManagedNetworkSettingsRuleOperations",
+ "ManagedNetworkProvisionsOperations",
"RegistryCodeContainersOperations",
"RegistryCodeVersionsOperations",
"RegistryComponentContainersOperations",
"RegistryComponentVersionsOperations",
"RegistryDataContainersOperations",
"RegistryDataVersionsOperations",
+ "RegistryDataReferencesOperations",
"RegistryEnvironmentContainersOperations",
"RegistryEnvironmentVersionsOperations",
"RegistryModelContainersOperations",
@@ -80,6 +91,11 @@
"DatastoresOperations",
"EnvironmentContainersOperations",
"EnvironmentVersionsOperations",
+ "FeaturesetContainersOperations",
+ "FeaturesOperations",
+ "FeaturesetVersionsOperations",
+ "FeaturestoreEntityContainersOperations",
+ "FeaturestoreEntityVersionsOperations",
"JobsOperations",
"ModelContainersOperations",
"ModelVersionsOperations",
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_deployments_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_deployments_operations.py
index 7fcc2d9cfc00..223cad5e7aec 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_deployments_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_deployments_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -53,7 +53,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -72,7 +72,7 @@ def build_list_request(
"endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -100,7 +100,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -120,7 +120,7 @@ def build_delete_request(
"deploymentName": _SERIALIZER.url("deployment_name", deployment_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -142,7 +142,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -162,7 +162,7 @@ def build_get_request(
"deploymentName": _SERIALIZER.url("deployment_name", deployment_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -184,7 +184,7 @@ def build_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -209,7 +209,7 @@ def build_update_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -233,7 +233,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -258,7 +258,7 @@ def build_create_or_update_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_endpoints_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_endpoints_operations.py
index afa2aebfed20..a16892a1475a 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_endpoints_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_endpoints_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -51,7 +51,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -69,7 +69,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -90,7 +90,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -109,7 +109,7 @@ def build_delete_request(
"endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -126,7 +126,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -145,7 +145,7 @@ def build_get_request(
"endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -162,7 +162,7 @@ def build_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -184,7 +184,7 @@ def build_update_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -203,7 +203,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -225,7 +225,7 @@ def build_create_or_update_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -244,7 +244,7 @@ def build_list_keys_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -263,7 +263,7 @@ def build_list_keys_request(
"endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_containers_operations.py
index bd3a7ea7d400..017341a5ed93 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_containers_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_containers_operations.py
@@ -28,7 +28,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -43,7 +43,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -61,7 +61,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -80,7 +80,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -99,7 +99,7 @@ def build_delete_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -116,7 +116,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -135,7 +135,7 @@ def build_get_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -152,7 +152,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -172,7 +172,7 @@ def build_create_or_update_request(
"name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_versions_operations.py
index 85aa291231f0..6d2d3f49febd 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_versions_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_versions_operations.py
@@ -7,7 +7,7 @@
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from io import IOBase
-from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload
+from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload
import urllib.parse
from azure.core.exceptions import (
@@ -21,14 +21,16 @@
from azure.core.paging import ItemPaged
from azure.core.pipeline import PipelineResponse
from azure.core.pipeline.transport import HttpResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
from azure.core.rest import HttpRequest
from azure.core.tracing.decorator import distributed_trace
from azure.core.utils import case_insensitive_dict
from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.arm_polling import ARMPolling
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -53,7 +55,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -72,7 +74,7 @@ def build_list_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -99,7 +101,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -119,7 +121,7 @@ def build_delete_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -136,7 +138,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -156,7 +158,7 @@ def build_get_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -173,7 +175,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -194,7 +196,7 @@ def build_create_or_update_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -207,13 +209,53 @@ def build_create_or_update_request(
return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs)
+def build_publish_request(
+ resource_group_name: str, workspace_name: str, name: str, version: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}/publish",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ "version": _SERIALIZER.url("version", version, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ if content_type is not None:
+ _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs)
+
+
def build_create_or_get_start_pending_upload_request(
resource_group_name: str, workspace_name: str, name: str, version: str, subscription_id: str, **kwargs: Any
) -> HttpRequest:
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -234,7 +276,7 @@ def build_create_or_get_start_pending_upload_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -703,6 +745,256 @@ def create_or_update(
"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}"
}
+ def _publish_initial( # pylint: disable=inconsistent-return-statements
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "DestinationAsset")
+
+ request = build_publish_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._publish_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _publish_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}/publish"
+ }
+
+ @overload
+ def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.DestinationAsset,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace
+ def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Is either a DestinationAsset type or a IO type.
+ Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._publish_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_publish.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}/publish"
+ }
+
@overload
def create_or_get_start_pending_upload(
self,
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_containers_operations.py
index 0bc38057f344..b0adb8b74915 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_containers_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_containers_operations.py
@@ -28,7 +28,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -49,7 +49,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -67,7 +67,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -88,7 +88,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -107,7 +107,7 @@ def build_delete_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -124,7 +124,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -143,7 +143,7 @@ def build_get_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -160,7 +160,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -180,7 +180,7 @@ def build_create_or_update_request(
"name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_versions_operations.py
index 932e842e43de..3ec4a5e586b6 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_versions_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_versions_operations.py
@@ -7,7 +7,7 @@
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from io import IOBase
-from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload
+from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload
import urllib.parse
from azure.core.exceptions import (
@@ -21,14 +21,16 @@
from azure.core.paging import ItemPaged
from azure.core.pipeline import PipelineResponse
from azure.core.pipeline.transport import HttpResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
from azure.core.rest import HttpRequest
from azure.core.tracing.decorator import distributed_trace
from azure.core.utils import case_insensitive_dict
from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.arm_polling import ARMPolling
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -52,7 +54,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -71,7 +73,7 @@ def build_list_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -96,7 +98,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -116,7 +118,7 @@ def build_delete_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -133,7 +135,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -153,7 +155,7 @@ def build_get_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -170,7 +172,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -191,7 +193,7 @@ def build_create_or_update_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -204,6 +206,46 @@ def build_create_or_update_request(
return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs)
+def build_publish_request(
+ resource_group_name: str, workspace_name: str, name: str, version: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/components/{name}/versions/{version}/publish",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ "version": _SERIALIZER.url("version", version, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ if content_type is not None:
+ _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs)
+
+
class ComponentVersionsOperations:
"""
.. warning::
@@ -656,3 +698,253 @@ def create_or_update(
create_or_update.metadata = {
"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/components/{name}/versions/{version}"
}
+
+ def _publish_initial( # pylint: disable=inconsistent-return-statements
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "DestinationAsset")
+
+ request = build_publish_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._publish_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _publish_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/components/{name}/versions/{version}/publish"
+ }
+
+ @overload
+ def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.DestinationAsset,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace
+ def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Is either a DestinationAsset type or a IO type.
+ Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._publish_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_publish.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/components/{name}/versions/{version}/publish"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_compute_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_compute_operations.py
index 349245e851f3..087e61190d11 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_compute_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_compute_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -45,7 +45,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -63,7 +63,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -82,7 +82,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -101,7 +101,7 @@ def build_get_request(
"computeName": _SERIALIZER.url("compute_name", compute_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -118,7 +118,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -138,7 +138,7 @@ def build_create_or_update_request(
"computeName": _SERIALIZER.url("compute_name", compute_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -157,7 +157,7 @@ def build_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -177,7 +177,7 @@ def build_update_request(
"computeName": _SERIALIZER.url("compute_name", compute_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -202,7 +202,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -221,7 +221,7 @@ def build_delete_request(
"computeName": _SERIALIZER.url("compute_name", compute_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -241,7 +241,7 @@ def build_list_nodes_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -260,7 +260,7 @@ def build_list_nodes_request(
"computeName": _SERIALIZER.url("compute_name", compute_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -277,7 +277,7 @@ def build_list_keys_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -296,7 +296,7 @@ def build_list_keys_request(
"computeName": _SERIALIZER.url("compute_name", compute_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -313,7 +313,7 @@ def build_start_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -332,7 +332,7 @@ def build_start_request(
"computeName": _SERIALIZER.url("compute_name", compute_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -349,7 +349,7 @@ def build_stop_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -368,7 +368,7 @@ def build_stop_request(
"computeName": _SERIALIZER.url("compute_name", compute_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -385,7 +385,7 @@ def build_restart_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -404,7 +404,7 @@ def build_restart_request(
"computeName": _SERIALIZER.url("compute_name", compute_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_containers_operations.py
index 48c5dee07f2c..4de064e1b5da 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_containers_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_containers_operations.py
@@ -28,7 +28,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -49,7 +49,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -67,7 +67,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -88,7 +88,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -107,7 +107,7 @@ def build_delete_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -124,7 +124,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -143,7 +143,7 @@ def build_get_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -160,7 +160,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -180,7 +180,7 @@ def build_create_or_update_request(
"name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_versions_operations.py
index e355736e9350..cb9dea1c6635 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_versions_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_versions_operations.py
@@ -7,7 +7,7 @@
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from io import IOBase
-from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload
+from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload
import urllib.parse
from azure.core.exceptions import (
@@ -21,14 +21,16 @@
from azure.core.paging import ItemPaged
from azure.core.pipeline import PipelineResponse
from azure.core.pipeline.transport import HttpResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
from azure.core.rest import HttpRequest
from azure.core.tracing.decorator import distributed_trace
from azure.core.utils import case_insensitive_dict
from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.arm_polling import ARMPolling
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -53,7 +55,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -72,7 +74,7 @@ def build_list_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -99,7 +101,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -119,7 +121,7 @@ def build_delete_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -136,7 +138,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -156,7 +158,7 @@ def build_get_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -173,7 +175,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -194,7 +196,7 @@ def build_create_or_update_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -207,6 +209,46 @@ def build_create_or_update_request(
return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs)
+def build_publish_request(
+ resource_group_name: str, workspace_name: str, name: str, version: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/data/{name}/versions/{version}/publish",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ "version": _SERIALIZER.url("version", version, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ if content_type is not None:
+ _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs)
+
+
class DataVersionsOperations:
"""
.. warning::
@@ -668,3 +710,253 @@ def create_or_update(
create_or_update.metadata = {
"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/data/{name}/versions/{version}"
}
+
+ def _publish_initial( # pylint: disable=inconsistent-return-statements
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "DestinationAsset")
+
+ request = build_publish_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._publish_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _publish_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/data/{name}/versions/{version}/publish"
+ }
+
+ @overload
+ def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.DestinationAsset,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace
+ def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Is either a DestinationAsset type or a IO type.
+ Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._publish_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_publish.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/data/{name}/versions/{version}/publish"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_datastores_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_datastores_operations.py
index 651ac883ae0f..b6dc2df2f427 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_datastores_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_datastores_operations.py
@@ -28,7 +28,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -54,7 +54,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -72,7 +72,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -103,7 +103,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -122,7 +122,7 @@ def build_delete_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -139,7 +139,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -158,7 +158,7 @@ def build_get_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -181,7 +181,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -201,7 +201,7 @@ def build_create_or_update_request(
"name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -222,7 +222,7 @@ def build_list_secrets_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -241,7 +241,7 @@ def build_list_secrets_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_containers_operations.py
index d65ee4225ec4..35df4bad1283 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_containers_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_containers_operations.py
@@ -28,7 +28,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -49,7 +49,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -67,7 +67,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -88,7 +88,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -107,7 +107,7 @@ def build_delete_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -124,7 +124,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -143,7 +143,7 @@ def build_get_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -160,7 +160,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -180,7 +180,7 @@ def build_create_or_update_request(
"name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_versions_operations.py
index fc163b0b3bb7..5a4d2bce218a 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_versions_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_versions_operations.py
@@ -7,7 +7,7 @@
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from io import IOBase
-from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload
+from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload
import urllib.parse
from azure.core.exceptions import (
@@ -21,14 +21,16 @@
from azure.core.paging import ItemPaged
from azure.core.pipeline import PipelineResponse
from azure.core.pipeline.transport import HttpResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
from azure.core.rest import HttpRequest
from azure.core.tracing.decorator import distributed_trace
from azure.core.utils import case_insensitive_dict
from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.arm_polling import ARMPolling
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -52,7 +54,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -71,7 +73,7 @@ def build_list_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -96,7 +98,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -116,7 +118,7 @@ def build_delete_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -133,7 +135,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -153,7 +155,7 @@ def build_get_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -170,7 +172,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -191,7 +193,7 @@ def build_create_or_update_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -204,6 +206,46 @@ def build_create_or_update_request(
return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs)
+def build_publish_request(
+ resource_group_name: str, workspace_name: str, name: str, version: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/environments/{name}/versions/{version}/publish",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ "version": _SERIALIZER.url("version", version, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ if content_type is not None:
+ _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs)
+
+
class EnvironmentVersionsOperations:
"""
.. warning::
@@ -656,3 +698,253 @@ def create_or_update(
create_or_update.metadata = {
"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/environments/{name}/versions/{version}"
}
+
+ def _publish_initial( # pylint: disable=inconsistent-return-statements
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "DestinationAsset")
+
+ request = build_publish_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._publish_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _publish_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/environments/{name}/versions/{version}/publish"
+ }
+
+ @overload
+ def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.DestinationAsset,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace
+ def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Is either a DestinationAsset type or a IO type.
+ Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._publish_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_publish.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/environments/{name}/versions/{version}/publish"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_features_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_features_operations.py
new file mode 100644
index 000000000000..ca13dec0ecb3
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_features_operations.py
@@ -0,0 +1,381 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import Any, Callable, Dict, Iterable, Optional, TypeVar, Union
+import urllib.parse
+
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from .. import models as _models
+from .._serialization import Serializer
+from .._vendor import _convert_request
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+
+
+def build_list_request(
+ resource_group_name: str,
+ workspace_name: str,
+ featureset_name: str,
+ featureset_version: str,
+ subscription_id: str,
+ *,
+ skip: Optional[str] = None,
+ tags: Optional[str] = None,
+ feature_name: Optional[str] = None,
+ description: Optional[str] = None,
+ list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ page_size: int = 1000,
+ **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{featuresetName}/versions/{featuresetVersion}/features",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "featuresetName": _SERIALIZER.url(
+ "featureset_name", featureset_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"
+ ),
+ "featuresetVersion": _SERIALIZER.url("featureset_version", featureset_version, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+ if skip is not None:
+ _params["$skip"] = _SERIALIZER.query("skip", skip, "str")
+ if tags is not None:
+ _params["tags"] = _SERIALIZER.query("tags", tags, "str")
+ if feature_name is not None:
+ _params["featureName"] = _SERIALIZER.query("feature_name", feature_name, "str")
+ if description is not None:
+ _params["description"] = _SERIALIZER.query("description", description, "str")
+ if list_view_type is not None:
+ _params["listViewType"] = _SERIALIZER.query("list_view_type", list_view_type, "str")
+ if page_size is not None:
+ _params["pageSize"] = _SERIALIZER.query("page_size", page_size, "int")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_get_request(
+ resource_group_name: str,
+ workspace_name: str,
+ featureset_name: str,
+ featureset_version: str,
+ feature_name: str,
+ subscription_id: str,
+ **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{featuresetName}/versions/{featuresetVersion}/features/{featureName}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "featuresetName": _SERIALIZER.url(
+ "featureset_name", featureset_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"
+ ),
+ "featuresetVersion": _SERIALIZER.url("featureset_version", featureset_version, "str"),
+ "featureName": _SERIALIZER.url(
+ "feature_name", feature_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"
+ ),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+class FeaturesOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s
+ :attr:`features` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs):
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ @distributed_trace
+ def list(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ featureset_name: str,
+ featureset_version: str,
+ skip: Optional[str] = None,
+ tags: Optional[str] = None,
+ feature_name: Optional[str] = None,
+ description: Optional[str] = None,
+ list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ page_size: int = 1000,
+ **kwargs: Any
+ ) -> Iterable["_models.Feature"]:
+ """List Features.
+
+ List Features.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param featureset_name: Featureset name. This is case-sensitive. Required.
+ :type featureset_name: str
+ :param featureset_version: Featureset Version identifier. This is case-sensitive. Required.
+ :type featureset_version: str
+ :param skip: Continuation token for pagination. Default value is None.
+ :type skip: str
+ :param tags: Comma-separated list of tag names (and optionally values). Example:
+ tag1,tag2=value2. Default value is None.
+ :type tags: str
+ :param feature_name: feature name. Default value is None.
+ :type feature_name: str
+ :param description: Description of the featureset. Default value is None.
+ :type description: str
+ :param list_view_type: [ListViewType.ActiveOnly, ListViewType.ArchivedOnly,
+ ListViewType.All]View type for including/excluding (for example) archived entities. Known
+ values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None.
+ :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ :param page_size: Page size. Default value is 1000.
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either Feature or the result of cls(response)
+ :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.Feature]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeatureResourceArmPaginatedResult] = kwargs.pop("cls", None)
+
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ featureset_name=featureset_name,
+ featureset_version=featureset_version,
+ subscription_id=self._config.subscription_id,
+ skip=skip,
+ tags=tags,
+ feature_name=feature_name,
+ description=description,
+ list_view_type=list_view_type,
+ page_size=page_size,
+ api_version=api_version,
+ template_url=self.list.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ # make call to next link with the client's api-version
+ _parsed_next_link = urllib.parse.urlparse(next_link)
+ _next_request_params = case_insensitive_dict(
+ {
+ key: [urllib.parse.quote(v) for v in value]
+ for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
+ }
+ )
+ _next_request_params["api-version"] = self._config.api_version
+ request = HttpRequest(
+ "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("FeatureResourceArmPaginatedResult", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem) # type: ignore
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+ return ItemPaged(get_next, extract_data)
+
+ list.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{featuresetName}/versions/{featuresetVersion}/features"
+ }
+
+ @distributed_trace
+ def get(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ featureset_name: str,
+ featureset_version: str,
+ feature_name: str,
+ **kwargs: Any
+ ) -> _models.Feature:
+ """Get feature.
+
+ Get feature.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param featureset_name: Feature set name. This is case-sensitive. Required.
+ :type featureset_name: str
+ :param featureset_version: Feature set version identifier. This is case-sensitive. Required.
+ :type featureset_version: str
+ :param feature_name: Feature Name. This is case-sensitive. Required.
+ :type feature_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Feature or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Feature
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.Feature] = kwargs.pop("cls", None)
+
+ request = build_get_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ featureset_name=featureset_name,
+ featureset_version=featureset_version,
+ feature_name=feature_name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self.get.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize("Feature", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{featuresetName}/versions/{featuresetVersion}/features/{featureName}"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_featureset_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_featureset_containers_operations.py
new file mode 100644
index 000000000000..560a89b17b74
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_featureset_containers_operations.py
@@ -0,0 +1,814 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from io import IOBase
+from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload
+import urllib.parse
+
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.arm_polling import ARMPolling
+
+from .. import models as _models
+from .._serialization import Serializer
+from .._vendor import _convert_request
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+
+
+def build_list_request(
+ resource_group_name: str,
+ workspace_name: str,
+ subscription_id: str,
+ *,
+ skip: Optional[str] = None,
+ tags: Optional[str] = None,
+ list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ page_size: int = 20,
+ name: Optional[str] = None,
+ description: Optional[str] = None,
+ created_by: Optional[str] = None,
+ **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+ if skip is not None:
+ _params["$skip"] = _SERIALIZER.query("skip", skip, "str")
+ if tags is not None:
+ _params["tags"] = _SERIALIZER.query("tags", tags, "str")
+ if list_view_type is not None:
+ _params["listViewType"] = _SERIALIZER.query("list_view_type", list_view_type, "str")
+ if page_size is not None:
+ _params["pageSize"] = _SERIALIZER.query("page_size", page_size, "int")
+ if name is not None:
+ _params["name"] = _SERIALIZER.query("name", name, "str")
+ if description is not None:
+ _params["description"] = _SERIALIZER.query("description", description, "str")
+ if created_by is not None:
+ _params["createdBy"] = _SERIALIZER.query("created_by", created_by, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_delete_request(
+ resource_group_name: str, workspace_name: str, name: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_get_entity_request(
+ resource_group_name: str, workspace_name: str, name: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_create_or_update_request(
+ resource_group_name: str, workspace_name: str, name: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ if content_type is not None:
+ _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+class FeaturesetContainersOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s
+ :attr:`featureset_containers` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs):
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ @distributed_trace
+ def list(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ skip: Optional[str] = None,
+ tags: Optional[str] = None,
+ list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ page_size: int = 20,
+ name: Optional[str] = None,
+ description: Optional[str] = None,
+ created_by: Optional[str] = None,
+ **kwargs: Any
+ ) -> Iterable["_models.FeaturesetContainer"]:
+ """List featurestore entity containers.
+
+ List featurestore entity containers.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param skip: Continuation token for pagination. Default value is None.
+ :type skip: str
+ :param tags: Comma-separated list of tag names (and optionally values). Example:
+ tag1,tag2=value2. Default value is None.
+ :type tags: str
+ :param list_view_type: [ListViewType.ActiveOnly, ListViewType.ArchivedOnly,
+ ListViewType.All]View type for including/excluding (for example) archived entities. Known
+ values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None.
+ :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ :param page_size: page size. Default value is 20.
+ :type page_size: int
+ :param name: name for the featureset. Default value is None.
+ :type name: str
+ :param description: description for the feature set. Default value is None.
+ :type description: str
+ :param created_by: createdBy user name. Default value is None.
+ :type created_by: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either FeaturesetContainer or the result of cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.FeaturesetContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturesetContainerResourceArmPaginatedResult] = kwargs.pop("cls", None)
+
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ subscription_id=self._config.subscription_id,
+ skip=skip,
+ tags=tags,
+ list_view_type=list_view_type,
+ page_size=page_size,
+ name=name,
+ description=description,
+ created_by=created_by,
+ api_version=api_version,
+ template_url=self.list.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ # make call to next link with the client's api-version
+ _parsed_next_link = urllib.parse.urlparse(next_link)
+ _next_request_params = case_insensitive_dict(
+ {
+ key: [urllib.parse.quote(v) for v in value]
+ for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
+ }
+ )
+ _next_request_params["api-version"] = self._config.api_version
+ request = HttpRequest(
+ "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("FeaturesetContainerResourceArmPaginatedResult", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem) # type: ignore
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+ return ItemPaged(get_next, extract_data)
+
+ list.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets"
+ }
+
+ def _delete_initial( # pylint: disable=inconsistent-return-statements
+ self, resource_group_name: str, workspace_name: str, name: str, **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ request = build_delete_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self._delete_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _delete_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}"
+ }
+
+ @distributed_trace
+ def begin_delete(self, resource_group_name: str, workspace_name: str, name: str, **kwargs: Any) -> LROPoller[None]:
+ """Delete container.
+
+ Delete container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._delete_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ api_version=api_version,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_delete.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}"
+ }
+
+ @distributed_trace
+ def get_entity(
+ self, resource_group_name: str, workspace_name: str, name: str, **kwargs: Any
+ ) -> _models.FeaturesetContainer:
+ """Get container.
+
+ Get container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: FeaturesetContainer or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.FeaturesetContainer
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturesetContainer] = kwargs.pop("cls", None)
+
+ request = build_get_entity_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self.get_entity.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize("FeaturesetContainer", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_entity.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}"
+ }
+
+ def _create_or_update_initial(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: Union[_models.FeaturesetContainer, IO],
+ **kwargs: Any
+ ) -> _models.FeaturesetContainer:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturesetContainer] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "FeaturesetContainer")
+
+ request = build_create_or_update_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._create_or_update_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 201]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize("FeaturesetContainer", pipeline_response)
+
+ if response.status_code == 201:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Azure-AsyncOperation"] = self._deserialize(
+ "str", response.headers.get("Azure-AsyncOperation")
+ )
+
+ deserialized = self._deserialize("FeaturesetContainer", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers) # type: ignore
+
+ return deserialized # type: ignore
+
+ _create_or_update_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}"
+ }
+
+ @overload
+ def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: _models.FeaturesetContainer,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[_models.FeaturesetContainer]:
+ """Create or update container.
+
+ Create or update container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param body: Container entity to create or update. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturesetContainer
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either FeaturesetContainer or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[_models.FeaturesetContainer]:
+ """Create or update container.
+
+ Create or update container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param body: Container entity to create or update. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either FeaturesetContainer or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace
+ def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: Union[_models.FeaturesetContainer, IO],
+ **kwargs: Any
+ ) -> LROPoller[_models.FeaturesetContainer]:
+ """Create or update container.
+
+ Create or update container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param body: Container entity to create or update. Is either a FeaturesetContainer type or a IO
+ type. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturesetContainer or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either FeaturesetContainer or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturesetContainer] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._create_or_update_initial(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response):
+ deserialized = self._deserialize("FeaturesetContainer", pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_create_or_update.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_featureset_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_featureset_versions_operations.py
new file mode 100644
index 000000000000..4bedab12641a
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_featureset_versions_operations.py
@@ -0,0 +1,1162 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from io import IOBase
+from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload
+import urllib.parse
+
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.arm_polling import ARMPolling
+
+from .. import models as _models
+from .._serialization import Serializer
+from .._vendor import _convert_request
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+
+
+def build_list_request(
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ subscription_id: str,
+ *,
+ skip: Optional[str] = None,
+ tags: Optional[str] = None,
+ list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ page_size: int = 20,
+ version_name: Optional[str] = None,
+ version: Optional[str] = None,
+ description: Optional[str] = None,
+ created_by: Optional[str] = None,
+ stage: Optional[str] = None,
+ **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+ if skip is not None:
+ _params["$skip"] = _SERIALIZER.query("skip", skip, "str")
+ if tags is not None:
+ _params["tags"] = _SERIALIZER.query("tags", tags, "str")
+ if list_view_type is not None:
+ _params["listViewType"] = _SERIALIZER.query("list_view_type", list_view_type, "str")
+ if page_size is not None:
+ _params["pageSize"] = _SERIALIZER.query("page_size", page_size, "int")
+ if version_name is not None:
+ _params["versionName"] = _SERIALIZER.query("version_name", version_name, "str")
+ if version is not None:
+ _params["version"] = _SERIALIZER.query("version", version, "str")
+ if description is not None:
+ _params["description"] = _SERIALIZER.query("description", description, "str")
+ if created_by is not None:
+ _params["createdBy"] = _SERIALIZER.query("created_by", created_by, "str")
+ if stage is not None:
+ _params["stage"] = _SERIALIZER.query("stage", stage, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_delete_request(
+ resource_group_name: str, workspace_name: str, name: str, version: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ "version": _SERIALIZER.url("version", version, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_get_request(
+ resource_group_name: str, workspace_name: str, name: str, version: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ "version": _SERIALIZER.url("version", version, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_create_or_update_request(
+ resource_group_name: str, workspace_name: str, name: str, version: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
+ "version": _SERIALIZER.url("version", version, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ if content_type is not None:
+ _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_backfill_request(
+ resource_group_name: str, workspace_name: str, name: str, version: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}/backfill",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ "version": _SERIALIZER.url("version", version, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ if content_type is not None:
+ _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+class FeaturesetVersionsOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s
+ :attr:`featureset_versions` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs):
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ @distributed_trace
+ def list(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ skip: Optional[str] = None,
+ tags: Optional[str] = None,
+ list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ page_size: int = 20,
+ version_name: Optional[str] = None,
+ version: Optional[str] = None,
+ description: Optional[str] = None,
+ created_by: Optional[str] = None,
+ stage: Optional[str] = None,
+ **kwargs: Any
+ ) -> Iterable["_models.FeaturesetVersion"]:
+ """List versions.
+
+ List versions.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Featureset name. This is case-sensitive. Required.
+ :type name: str
+ :param skip: Continuation token for pagination. Default value is None.
+ :type skip: str
+ :param tags: Comma-separated list of tag names (and optionally values). Example:
+ tag1,tag2=value2. Default value is None.
+ :type tags: str
+ :param list_view_type: [ListViewType.ActiveOnly, ListViewType.ArchivedOnly,
+ ListViewType.All]View type for including/excluding (for example) archived entities. Known
+ values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None.
+ :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ :param page_size: page size. Default value is 20.
+ :type page_size: int
+ :param version_name: name for the featureset version. Default value is None.
+ :type version_name: str
+ :param version: featureset version. Default value is None.
+ :type version: str
+ :param description: description for the feature set version. Default value is None.
+ :type description: str
+ :param created_by: createdBy user name. Default value is None.
+ :type created_by: str
+ :param stage: Specifies the featurestore stage. Default value is None.
+ :type stage: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either FeaturesetVersion or the result of cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.FeaturesetVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturesetVersionResourceArmPaginatedResult] = kwargs.pop("cls", None)
+
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ skip=skip,
+ tags=tags,
+ list_view_type=list_view_type,
+ page_size=page_size,
+ version_name=version_name,
+ version=version,
+ description=description,
+ created_by=created_by,
+ stage=stage,
+ api_version=api_version,
+ template_url=self.list.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ # make call to next link with the client's api-version
+ _parsed_next_link = urllib.parse.urlparse(next_link)
+ _next_request_params = case_insensitive_dict(
+ {
+ key: [urllib.parse.quote(v) for v in value]
+ for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
+ }
+ )
+ _next_request_params["api-version"] = self._config.api_version
+ request = HttpRequest(
+ "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("FeaturesetVersionResourceArmPaginatedResult", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem) # type: ignore
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+ return ItemPaged(get_next, extract_data)
+
+ list.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions"
+ }
+
+ def _delete_initial( # pylint: disable=inconsistent-return-statements
+ self, resource_group_name: str, workspace_name: str, name: str, version: str, **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ request = build_delete_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self._delete_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _delete_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}"
+ }
+
+ @distributed_trace
+ def begin_delete(
+ self, resource_group_name: str, workspace_name: str, name: str, version: str, **kwargs: Any
+ ) -> LROPoller[None]:
+ """Delete version.
+
+ Delete version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._delete_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ api_version=api_version,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_delete.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}"
+ }
+
+ @distributed_trace
+ def get(
+ self, resource_group_name: str, workspace_name: str, name: str, version: str, **kwargs: Any
+ ) -> _models.FeaturesetVersion:
+ """Get version.
+
+ Get version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: FeaturesetVersion or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.FeaturesetVersion
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturesetVersion] = kwargs.pop("cls", None)
+
+ request = build_get_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self.get.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize("FeaturesetVersion", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}"
+ }
+
+ def _create_or_update_initial(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.FeaturesetVersion, IO],
+ **kwargs: Any
+ ) -> _models.FeaturesetVersion:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturesetVersion] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "FeaturesetVersion")
+
+ request = build_create_or_update_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._create_or_update_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 201]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize("FeaturesetVersion", pipeline_response)
+
+ if response.status_code == 201:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Azure-AsyncOperation"] = self._deserialize(
+ "str", response.headers.get("Azure-AsyncOperation")
+ )
+
+ deserialized = self._deserialize("FeaturesetVersion", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers) # type: ignore
+
+ return deserialized # type: ignore
+
+ _create_or_update_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}"
+ }
+
+ @overload
+ def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.FeaturesetVersion,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[_models.FeaturesetVersion]:
+ """Create or update version.
+
+ Create or update version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Version entity to create or update. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturesetVersion
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either FeaturesetVersion or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[_models.FeaturesetVersion]:
+ """Create or update version.
+
+ Create or update version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Version entity to create or update. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either FeaturesetVersion or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace
+ def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.FeaturesetVersion, IO],
+ **kwargs: Any
+ ) -> LROPoller[_models.FeaturesetVersion]:
+ """Create or update version.
+
+ Create or update version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Version entity to create or update. Is either a FeaturesetVersion type or a IO
+ type. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturesetVersion or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either FeaturesetVersion or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturesetVersion] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._create_or_update_initial(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response):
+ deserialized = self._deserialize("FeaturesetVersion", pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_create_or_update.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}"
+ }
+
+ def _backfill_initial(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.FeaturesetVersionBackfillRequest, IO],
+ **kwargs: Any
+ ) -> Optional[_models.FeaturesetVersionBackfillResponse]:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[Optional[_models.FeaturesetVersionBackfillResponse]] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "FeaturesetVersionBackfillRequest")
+
+ request = build_backfill_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._backfill_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = None
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize("FeaturesetVersionBackfillResponse", pipeline_response)
+
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers)
+
+ return deserialized
+
+ _backfill_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}/backfill"
+ }
+
+ @overload
+ def begin_backfill(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.FeaturesetVersionBackfillRequest,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[_models.FeaturesetVersionBackfillResponse]:
+ """Backfill.
+
+ Backfill.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Feature set version backfill request entity. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturesetVersionBackfillRequest
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either FeaturesetVersionBackfillResponse or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetVersionBackfillResponse]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def begin_backfill(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[_models.FeaturesetVersionBackfillResponse]:
+ """Backfill.
+
+ Backfill.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Feature set version backfill request entity. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either FeaturesetVersionBackfillResponse or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetVersionBackfillResponse]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace
+ def begin_backfill(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.FeaturesetVersionBackfillRequest, IO],
+ **kwargs: Any
+ ) -> LROPoller[_models.FeaturesetVersionBackfillResponse]:
+ """Backfill.
+
+ Backfill.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Feature set version backfill request entity. Is either a
+ FeaturesetVersionBackfillRequest type or a IO type. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturesetVersionBackfillRequest or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either FeaturesetVersionBackfillResponse or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.FeaturesetVersionBackfillResponse]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturesetVersionBackfillResponse] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._backfill_initial(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response):
+ deserialized = self._deserialize("FeaturesetVersionBackfillResponse", pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_backfill.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featuresets/{name}/versions/{version}/backfill"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_featurestore_entity_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_featurestore_entity_containers_operations.py
new file mode 100644
index 000000000000..8487bbc8a3fa
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_featurestore_entity_containers_operations.py
@@ -0,0 +1,815 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from io import IOBase
+from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload
+import urllib.parse
+
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.arm_polling import ARMPolling
+
+from .. import models as _models
+from .._serialization import Serializer
+from .._vendor import _convert_request
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+
+
+def build_list_request(
+ resource_group_name: str,
+ workspace_name: str,
+ subscription_id: str,
+ *,
+ skip: Optional[str] = None,
+ tags: Optional[str] = None,
+ list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ page_size: int = 20,
+ name: Optional[str] = None,
+ description: Optional[str] = None,
+ created_by: Optional[str] = None,
+ **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+ if skip is not None:
+ _params["$skip"] = _SERIALIZER.query("skip", skip, "str")
+ if tags is not None:
+ _params["tags"] = _SERIALIZER.query("tags", tags, "str")
+ if list_view_type is not None:
+ _params["listViewType"] = _SERIALIZER.query("list_view_type", list_view_type, "str")
+ if page_size is not None:
+ _params["pageSize"] = _SERIALIZER.query("page_size", page_size, "int")
+ if name is not None:
+ _params["name"] = _SERIALIZER.query("name", name, "str")
+ if description is not None:
+ _params["description"] = _SERIALIZER.query("description", description, "str")
+ if created_by is not None:
+ _params["createdBy"] = _SERIALIZER.query("created_by", created_by, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_delete_request(
+ resource_group_name: str, workspace_name: str, name: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_get_entity_request(
+ resource_group_name: str, workspace_name: str, name: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_create_or_update_request(
+ resource_group_name: str, workspace_name: str, name: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ if content_type is not None:
+ _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+class FeaturestoreEntityContainersOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s
+ :attr:`featurestore_entity_containers` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs):
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ @distributed_trace
+ def list(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ skip: Optional[str] = None,
+ tags: Optional[str] = None,
+ list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ page_size: int = 20,
+ name: Optional[str] = None,
+ description: Optional[str] = None,
+ created_by: Optional[str] = None,
+ **kwargs: Any
+ ) -> Iterable["_models.FeaturestoreEntityContainer"]:
+ """List featurestore entity containers.
+
+ List featurestore entity containers.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param skip: Continuation token for pagination. Default value is None.
+ :type skip: str
+ :param tags: Comma-separated list of tag names (and optionally values). Example:
+ tag1,tag2=value2. Default value is None.
+ :type tags: str
+ :param list_view_type: [ListViewType.ActiveOnly, ListViewType.ArchivedOnly,
+ ListViewType.All]View type for including/excluding (for example) archived entities. Known
+ values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None.
+ :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ :param page_size: page size. Default value is 20.
+ :type page_size: int
+ :param name: name for the featurestore entity. Default value is None.
+ :type name: str
+ :param description: description for the featurestore entity. Default value is None.
+ :type description: str
+ :param created_by: createdBy user name. Default value is None.
+ :type created_by: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either FeaturestoreEntityContainer or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturestoreEntityContainerResourceArmPaginatedResult] = kwargs.pop("cls", None)
+
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ subscription_id=self._config.subscription_id,
+ skip=skip,
+ tags=tags,
+ list_view_type=list_view_type,
+ page_size=page_size,
+ name=name,
+ description=description,
+ created_by=created_by,
+ api_version=api_version,
+ template_url=self.list.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ # make call to next link with the client's api-version
+ _parsed_next_link = urllib.parse.urlparse(next_link)
+ _next_request_params = case_insensitive_dict(
+ {
+ key: [urllib.parse.quote(v) for v in value]
+ for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
+ }
+ )
+ _next_request_params["api-version"] = self._config.api_version
+ request = HttpRequest(
+ "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("FeaturestoreEntityContainerResourceArmPaginatedResult", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem) # type: ignore
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+ return ItemPaged(get_next, extract_data)
+
+ list.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities"
+ }
+
+ def _delete_initial( # pylint: disable=inconsistent-return-statements
+ self, resource_group_name: str, workspace_name: str, name: str, **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ request = build_delete_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self._delete_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _delete_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}"
+ }
+
+ @distributed_trace
+ def begin_delete(self, resource_group_name: str, workspace_name: str, name: str, **kwargs: Any) -> LROPoller[None]:
+ """Delete container.
+
+ Delete container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._delete_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ api_version=api_version,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_delete.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}"
+ }
+
+ @distributed_trace
+ def get_entity(
+ self, resource_group_name: str, workspace_name: str, name: str, **kwargs: Any
+ ) -> _models.FeaturestoreEntityContainer:
+ """Get container.
+
+ Get container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: FeaturestoreEntityContainer or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturestoreEntityContainer] = kwargs.pop("cls", None)
+
+ request = build_get_entity_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self.get_entity.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize("FeaturestoreEntityContainer", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_entity.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}"
+ }
+
+ def _create_or_update_initial(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: Union[_models.FeaturestoreEntityContainer, IO],
+ **kwargs: Any
+ ) -> _models.FeaturestoreEntityContainer:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturestoreEntityContainer] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "FeaturestoreEntityContainer")
+
+ request = build_create_or_update_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._create_or_update_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 201]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize("FeaturestoreEntityContainer", pipeline_response)
+
+ if response.status_code == 201:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Azure-AsyncOperation"] = self._deserialize(
+ "str", response.headers.get("Azure-AsyncOperation")
+ )
+
+ deserialized = self._deserialize("FeaturestoreEntityContainer", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers) # type: ignore
+
+ return deserialized # type: ignore
+
+ _create_or_update_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}"
+ }
+
+ @overload
+ def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: _models.FeaturestoreEntityContainer,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[_models.FeaturestoreEntityContainer]:
+ """Create or update container.
+
+ Create or update container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param body: Container entity to create or update. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either FeaturestoreEntityContainer or the result
+ of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[_models.FeaturestoreEntityContainer]:
+ """Create or update container.
+
+ Create or update container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param body: Container entity to create or update. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either FeaturestoreEntityContainer or the result
+ of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace
+ def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: Union[_models.FeaturestoreEntityContainer, IO],
+ **kwargs: Any
+ ) -> LROPoller[_models.FeaturestoreEntityContainer]:
+ """Create or update container.
+
+ Create or update container.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param body: Container entity to create or update. Is either a FeaturestoreEntityContainer type
+ or a IO type. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either FeaturestoreEntityContainer or the result
+ of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityContainer]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturestoreEntityContainer] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._create_or_update_initial(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response):
+ deserialized = self._deserialize("FeaturestoreEntityContainer", pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_create_or_update.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_featurestore_entity_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_featurestore_entity_versions_operations.py
new file mode 100644
index 000000000000..cc5a0f437d93
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_featurestore_entity_versions_operations.py
@@ -0,0 +1,859 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from io import IOBase
+from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload
+import urllib.parse
+
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.arm_polling import ARMPolling
+
+from .. import models as _models
+from .._serialization import Serializer
+from .._vendor import _convert_request
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+
+
+def build_list_request(
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ subscription_id: str,
+ *,
+ skip: Optional[str] = None,
+ tags: Optional[str] = None,
+ list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ page_size: int = 20,
+ version_name: Optional[str] = None,
+ version: Optional[str] = None,
+ description: Optional[str] = None,
+ created_by: Optional[str] = None,
+ stage: Optional[str] = None,
+ **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+ if skip is not None:
+ _params["$skip"] = _SERIALIZER.query("skip", skip, "str")
+ if tags is not None:
+ _params["tags"] = _SERIALIZER.query("tags", tags, "str")
+ if list_view_type is not None:
+ _params["listViewType"] = _SERIALIZER.query("list_view_type", list_view_type, "str")
+ if page_size is not None:
+ _params["pageSize"] = _SERIALIZER.query("page_size", page_size, "int")
+ if version_name is not None:
+ _params["versionName"] = _SERIALIZER.query("version_name", version_name, "str")
+ if version is not None:
+ _params["version"] = _SERIALIZER.query("version", version, "str")
+ if description is not None:
+ _params["description"] = _SERIALIZER.query("description", description, "str")
+ if created_by is not None:
+ _params["createdBy"] = _SERIALIZER.query("created_by", created_by, "str")
+ if stage is not None:
+ _params["stage"] = _SERIALIZER.query("stage", stage, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_delete_request(
+ resource_group_name: str, workspace_name: str, name: str, version: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions/{version}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ "version": _SERIALIZER.url("version", version, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_get_request(
+ resource_group_name: str, workspace_name: str, name: str, version: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions/{version}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ "version": _SERIALIZER.url("version", version, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_create_or_update_request(
+ resource_group_name: str, workspace_name: str, name: str, version: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions/{version}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
+ "version": _SERIALIZER.url("version", version, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ if content_type is not None:
+ _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+class FeaturestoreEntityVersionsOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s
+ :attr:`featurestore_entity_versions` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs):
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ @distributed_trace
+ def list(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ skip: Optional[str] = None,
+ tags: Optional[str] = None,
+ list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ page_size: int = 20,
+ version_name: Optional[str] = None,
+ version: Optional[str] = None,
+ description: Optional[str] = None,
+ created_by: Optional[str] = None,
+ stage: Optional[str] = None,
+ **kwargs: Any
+ ) -> Iterable["_models.FeaturestoreEntityVersion"]:
+ """List versions.
+
+ List versions.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Feature entity name. This is case-sensitive. Required.
+ :type name: str
+ :param skip: Continuation token for pagination. Default value is None.
+ :type skip: str
+ :param tags: Comma-separated list of tag names (and optionally values). Example:
+ tag1,tag2=value2. Default value is None.
+ :type tags: str
+ :param list_view_type: [ListViewType.ActiveOnly, ListViewType.ArchivedOnly,
+ ListViewType.All]View type for including/excluding (for example) archived entities. Known
+ values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None.
+ :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ :param page_size: page size. Default value is 20.
+ :type page_size: int
+ :param version_name: name for the featurestore entity version. Default value is None.
+ :type version_name: str
+ :param version: featurestore entity version. Default value is None.
+ :type version: str
+ :param description: description for the feature entity version. Default value is None.
+ :type description: str
+ :param created_by: createdBy user name. Default value is None.
+ :type created_by: str
+ :param stage: Specifies the featurestore stage. Default value is None.
+ :type stage: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either FeaturestoreEntityVersion or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturestoreEntityVersionResourceArmPaginatedResult] = kwargs.pop("cls", None)
+
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ subscription_id=self._config.subscription_id,
+ skip=skip,
+ tags=tags,
+ list_view_type=list_view_type,
+ page_size=page_size,
+ version_name=version_name,
+ version=version,
+ description=description,
+ created_by=created_by,
+ stage=stage,
+ api_version=api_version,
+ template_url=self.list.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ # make call to next link with the client's api-version
+ _parsed_next_link = urllib.parse.urlparse(next_link)
+ _next_request_params = case_insensitive_dict(
+ {
+ key: [urllib.parse.quote(v) for v in value]
+ for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
+ }
+ )
+ _next_request_params["api-version"] = self._config.api_version
+ request = HttpRequest(
+ "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("FeaturestoreEntityVersionResourceArmPaginatedResult", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem) # type: ignore
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+ return ItemPaged(get_next, extract_data)
+
+ list.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions"
+ }
+
+ def _delete_initial( # pylint: disable=inconsistent-return-statements
+ self, resource_group_name: str, workspace_name: str, name: str, version: str, **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ request = build_delete_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self._delete_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _delete_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions/{version}"
+ }
+
+ @distributed_trace
+ def begin_delete(
+ self, resource_group_name: str, workspace_name: str, name: str, version: str, **kwargs: Any
+ ) -> LROPoller[None]:
+ """Delete version.
+
+ Delete version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._delete_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ api_version=api_version,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_delete.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions/{version}"
+ }
+
+ @distributed_trace
+ def get(
+ self, resource_group_name: str, workspace_name: str, name: str, version: str, **kwargs: Any
+ ) -> _models.FeaturestoreEntityVersion:
+ """Get version.
+
+ Get version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: FeaturestoreEntityVersion or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.FeaturestoreEntityVersion] = kwargs.pop("cls", None)
+
+ request = build_get_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self.get.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize("FeaturestoreEntityVersion", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions/{version}"
+ }
+
+ def _create_or_update_initial(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.FeaturestoreEntityVersion, IO],
+ **kwargs: Any
+ ) -> _models.FeaturestoreEntityVersion:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturestoreEntityVersion] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "FeaturestoreEntityVersion")
+
+ request = build_create_or_update_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._create_or_update_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 201]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize("FeaturestoreEntityVersion", pipeline_response)
+
+ if response.status_code == 201:
+ response_headers["x-ms-async-operation-timeout"] = self._deserialize(
+ "duration", response.headers.get("x-ms-async-operation-timeout")
+ )
+ response_headers["Azure-AsyncOperation"] = self._deserialize(
+ "str", response.headers.get("Azure-AsyncOperation")
+ )
+
+ deserialized = self._deserialize("FeaturestoreEntityVersion", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers) # type: ignore
+
+ return deserialized # type: ignore
+
+ _create_or_update_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions/{version}"
+ }
+
+ @overload
+ def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.FeaturestoreEntityVersion,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[_models.FeaturestoreEntityVersion]:
+ """Create or update version.
+
+ Create or update version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Version entity to create or update. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either FeaturestoreEntityVersion or the result
+ of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[_models.FeaturestoreEntityVersion]:
+ """Create or update version.
+
+ Create or update version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Version entity to create or update. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either FeaturestoreEntityVersion or the result
+ of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace
+ def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.FeaturestoreEntityVersion, IO],
+ **kwargs: Any
+ ) -> LROPoller[_models.FeaturestoreEntityVersion]:
+ """Create or update version.
+
+ Create or update version.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. This is case-sensitive. Required.
+ :type name: str
+ :param version: Version identifier. This is case-sensitive. Required.
+ :type version: str
+ :param body: Version entity to create or update. Is either a FeaturestoreEntityVersion type or
+ a IO type. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either FeaturestoreEntityVersion or the result
+ of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.FeaturestoreEntityVersion]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.FeaturestoreEntityVersion] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._create_or_update_initial(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response):
+ deserialized = self._deserialize("FeaturestoreEntityVersion", pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_create_or_update.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/featurestoreEntities/{name}/versions/{version}"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_jobs_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_jobs_operations.py
index 83dc12a1ff03..b2d076b79966 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_jobs_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_jobs_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -48,12 +48,13 @@ def build_list_request(
job_type: Optional[str] = None,
tag: Optional[str] = None,
list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ properties: Optional[str] = None,
**kwargs: Any
) -> HttpRequest:
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -71,7 +72,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -83,6 +84,8 @@ def build_list_request(
_params["tag"] = _SERIALIZER.query("tag", tag, "str")
if list_view_type is not None:
_params["listViewType"] = _SERIALIZER.query("list_view_type", list_view_type, "str")
+ if properties is not None:
+ _params["properties"] = _SERIALIZER.query("properties", properties, "str")
# Construct headers
_headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
@@ -96,7 +99,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -115,7 +118,7 @@ def build_delete_request(
"id": _SERIALIZER.url("id", id, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -132,7 +135,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -151,7 +154,7 @@ def build_get_request(
"id": _SERIALIZER.url("id", id, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -168,7 +171,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -188,7 +191,7 @@ def build_create_or_update_request(
"id": _SERIALIZER.url("id", id, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -207,7 +210,7 @@ def build_cancel_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -226,7 +229,7 @@ def build_cancel_request(
"id": _SERIALIZER.url("id", id, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -265,6 +268,7 @@ def list(
job_type: Optional[str] = None,
tag: Optional[str] = None,
list_view_type: Optional[Union[str, _models.ListViewType]] = None,
+ properties: Optional[str] = None,
**kwargs: Any
) -> Iterable["_models.JobBase"]:
"""Lists Jobs in the workspace.
@@ -285,6 +289,9 @@ def list(
:param list_view_type: View type for including/excluding (for example) archived entities. Known
values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None.
:type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ :param properties: Comma-separated list of user property names (and optionally values).
+ Example: prop1,prop2=value2. Default value is None.
+ :type properties: str
:keyword callable cls: A custom type or function that will be passed the direct response
:return: An iterator like instance of either JobBase or the result of cls(response)
:rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.JobBase]
@@ -315,6 +322,7 @@ def prepare_request(next_link=None):
job_type=job_type,
tag=tag,
list_view_type=list_view_type,
+ properties=properties,
api_version=api_version,
template_url=self.list.metadata["url"],
headers=_headers,
@@ -578,8 +586,10 @@ def create_or_update(
**kwargs: Any
) -> _models.JobBase:
"""Creates and executes a Job.
+ For update case, the Tags in the definition passed in will replace Tags in the existing job.
Creates and executes a Job.
+ For update case, the Tags in the definition passed in will replace Tags in the existing job.
:param resource_group_name: The name of the resource group. The name is case insensitive.
Required.
@@ -611,8 +621,10 @@ def create_or_update(
**kwargs: Any
) -> _models.JobBase:
"""Creates and executes a Job.
+ For update case, the Tags in the definition passed in will replace Tags in the existing job.
Creates and executes a Job.
+ For update case, the Tags in the definition passed in will replace Tags in the existing job.
:param resource_group_name: The name of the resource group. The name is case insensitive.
Required.
@@ -637,8 +649,10 @@ def create_or_update(
self, resource_group_name: str, workspace_name: str, id: str, body: Union[_models.JobBase, IO], **kwargs: Any
) -> _models.JobBase:
"""Creates and executes a Job.
+ For update case, the Tags in the definition passed in will replace Tags in the existing job.
Creates and executes a Job.
+ For update case, the Tags in the definition passed in will replace Tags in the existing job.
:param resource_group_name: The name of the resource group. The name is case insensitive.
Required.
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_managed_network_provisions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_managed_network_provisions_operations.py
new file mode 100644
index 000000000000..9f3cce5d87c2
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_managed_network_provisions_operations.py
@@ -0,0 +1,340 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from io import IOBase
+from typing import Any, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload
+
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.arm_polling import ARMPolling
+
+from .. import models as _models
+from .._serialization import Serializer
+from .._vendor import _convert_request
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+
+
+def build_provision_managed_network_request(
+ resource_group_name: str, workspace_name: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/provisionManagedNetwork",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ if content_type is not None:
+ _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+class ManagedNetworkProvisionsOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s
+ :attr:`managed_network_provisions` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs):
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ def _provision_managed_network_initial(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional[Union[_models.ManagedNetworkProvisionOptions, IO]] = None,
+ **kwargs: Any
+ ) -> Optional[_models.ManagedNetworkProvisionStatus]:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[Optional[_models.ManagedNetworkProvisionStatus]] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ if body is not None:
+ _json = self._serialize.body(body, "ManagedNetworkProvisionOptions")
+ else:
+ _json = None
+
+ request = build_provision_managed_network_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._provision_managed_network_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = None
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize("ManagedNetworkProvisionStatus", pipeline_response)
+
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers)
+
+ return deserialized
+
+ _provision_managed_network_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/provisionManagedNetwork"
+ }
+
+ @overload
+ def begin_provision_managed_network(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional[_models.ManagedNetworkProvisionOptions] = None,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[_models.ManagedNetworkProvisionStatus]:
+ """Provisions the managed network of a machine learning workspace.
+
+ Provisions the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param body: Managed Network Provisioning Options for a machine learning workspace. Default
+ value is None.
+ :type body: ~azure.mgmt.machinelearningservices.models.ManagedNetworkProvisionOptions
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either ManagedNetworkProvisionStatus or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.ManagedNetworkProvisionStatus]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def begin_provision_managed_network(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional[IO] = None,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[_models.ManagedNetworkProvisionStatus]:
+ """Provisions the managed network of a machine learning workspace.
+
+ Provisions the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param body: Managed Network Provisioning Options for a machine learning workspace. Default
+ value is None.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either ManagedNetworkProvisionStatus or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.ManagedNetworkProvisionStatus]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace
+ def begin_provision_managed_network(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional[Union[_models.ManagedNetworkProvisionOptions, IO]] = None,
+ **kwargs: Any
+ ) -> LROPoller[_models.ManagedNetworkProvisionStatus]:
+ """Provisions the managed network of a machine learning workspace.
+
+ Provisions the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param body: Managed Network Provisioning Options for a machine learning workspace. Is either a
+ ManagedNetworkProvisionOptions type or a IO type. Default value is None.
+ :type body: ~azure.mgmt.machinelearningservices.models.ManagedNetworkProvisionOptions or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either ManagedNetworkProvisionStatus or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.ManagedNetworkProvisionStatus]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.ManagedNetworkProvisionStatus] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._provision_managed_network_initial(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response):
+ deserialized = self._deserialize("ManagedNetworkProvisionStatus", pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_provision_managed_network.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/provisionManagedNetwork"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_managed_network_settings_rule_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_managed_network_settings_rule_operations.py
new file mode 100644
index 000000000000..8222be87c76b
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_managed_network_settings_rule_operations.py
@@ -0,0 +1,749 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from io import IOBase
+from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload
+import urllib.parse
+
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.arm_polling import ARMPolling
+
+from .. import models as _models
+from .._serialization import Serializer
+from .._vendor import _convert_request
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+
+
+def build_list_request(
+ resource_group_name: str, workspace_name: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_delete_request(
+ resource_group_name: str, workspace_name: str, rule_name: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules/{ruleName}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "ruleName": _SERIALIZER.url("rule_name", rule_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_get_request(
+ resource_group_name: str, workspace_name: str, rule_name: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules/{ruleName}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "ruleName": _SERIALIZER.url("rule_name", rule_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_create_or_update_request(
+ resource_group_name: str, workspace_name: str, rule_name: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules/{ruleName}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "ruleName": _SERIALIZER.url("rule_name", rule_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ if content_type is not None:
+ _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+class ManagedNetworkSettingsRuleOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s
+ :attr:`managed_network_settings_rule` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs):
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ @distributed_trace
+ def list(
+ self, resource_group_name: str, workspace_name: str, **kwargs: Any
+ ) -> Iterable["_models.OutboundRuleBasicResource"]:
+ """Lists the managed network outbound rules for a machine learning workspace.
+
+ Lists the managed network outbound rules for a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either OutboundRuleBasicResource or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.OutboundRuleListResult] = kwargs.pop("cls", None)
+
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self.list.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ # make call to next link with the client's api-version
+ _parsed_next_link = urllib.parse.urlparse(next_link)
+ _next_request_params = case_insensitive_dict(
+ {
+ key: [urllib.parse.quote(v) for v in value]
+ for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
+ }
+ )
+ _next_request_params["api-version"] = self._config.api_version
+ request = HttpRequest(
+ "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("OutboundRuleListResult", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem) # type: ignore
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+ return ItemPaged(get_next, extract_data)
+
+ list.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules"
+ }
+
+ def _delete_initial( # pylint: disable=inconsistent-return-statements
+ self, resource_group_name: str, workspace_name: str, rule_name: str, **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ request = build_delete_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ rule_name=rule_name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self._delete_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _delete_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules/{ruleName}"
+ }
+
+ @distributed_trace
+ def begin_delete(
+ self, resource_group_name: str, workspace_name: str, rule_name: str, **kwargs: Any
+ ) -> LROPoller[None]:
+ """Deletes an outbound rule from the managed network of a machine learning workspace.
+
+ Deletes an outbound rule from the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param rule_name: Name of the workspace managed network outbound rule. Required.
+ :type rule_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._delete_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ rule_name=rule_name,
+ api_version=api_version,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: PollingMethod = cast(PollingMethod, ARMPolling(lro_delay, **kwargs))
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_delete.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules/{ruleName}"
+ }
+
+ @distributed_trace
+ def get(
+ self, resource_group_name: str, workspace_name: str, rule_name: str, **kwargs: Any
+ ) -> _models.OutboundRuleBasicResource:
+ """Gets an outbound rule from the managed network of a machine learning workspace.
+
+ Gets an outbound rule from the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param rule_name: Name of the workspace managed network outbound rule. Required.
+ :type rule_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: OutboundRuleBasicResource or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ cls: ClsType[_models.OutboundRuleBasicResource] = kwargs.pop("cls", None)
+
+ request = build_get_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ rule_name=rule_name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ template_url=self.get.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize("OutboundRuleBasicResource", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules/{ruleName}"
+ }
+
+ def _create_or_update_initial(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ rule_name: str,
+ body: Union[_models.OutboundRuleBasicResource, IO],
+ **kwargs: Any
+ ) -> Optional[_models.OutboundRuleBasicResource]:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[Optional[_models.OutboundRuleBasicResource]] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "OutboundRuleBasicResource")
+
+ request = build_create_or_update_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ rule_name=rule_name,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._create_or_update_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = None
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize("OutboundRuleBasicResource", pipeline_response)
+
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers)
+
+ return deserialized
+
+ _create_or_update_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules/{ruleName}"
+ }
+
+ @overload
+ def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ rule_name: str,
+ body: _models.OutboundRuleBasicResource,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[_models.OutboundRuleBasicResource]:
+ """Creates or updates an outbound rule in the managed network of a machine learning workspace.
+
+ Creates or updates an outbound rule in the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param rule_name: Name of the workspace managed network outbound rule. Required.
+ :type rule_name: str
+ :param body: Outbound Rule to be created or updated in the managed network of a machine
+ learning workspace. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either OutboundRuleBasicResource or the result
+ of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ rule_name: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[_models.OutboundRuleBasicResource]:
+ """Creates or updates an outbound rule in the managed network of a machine learning workspace.
+
+ Creates or updates an outbound rule in the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param rule_name: Name of the workspace managed network outbound rule. Required.
+ :type rule_name: str
+ :param body: Outbound Rule to be created or updated in the managed network of a machine
+ learning workspace. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either OutboundRuleBasicResource or the result
+ of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace
+ def begin_create_or_update(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ rule_name: str,
+ body: Union[_models.OutboundRuleBasicResource, IO],
+ **kwargs: Any
+ ) -> LROPoller[_models.OutboundRuleBasicResource]:
+ """Creates or updates an outbound rule in the managed network of a machine learning workspace.
+
+ Creates or updates an outbound rule in the managed network of a machine learning workspace.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param rule_name: Name of the workspace managed network outbound rule. Required.
+ :type rule_name: str
+ :param body: Outbound Rule to be created or updated in the managed network of a machine
+ learning workspace. Is either a OutboundRuleBasicResource type or a IO type. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either OutboundRuleBasicResource or the result
+ of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.OutboundRuleBasicResource]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.OutboundRuleBasicResource] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._create_or_update_initial(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ rule_name=rule_name,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response):
+ deserialized = self._deserialize("OutboundRuleBasicResource", pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_create_or_update.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/outboundRules/{ruleName}"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_containers_operations.py
index bdc20a437ab9..26938e9679c7 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_containers_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_containers_operations.py
@@ -28,7 +28,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -50,7 +50,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -68,7 +68,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -91,7 +91,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -110,7 +110,7 @@ def build_delete_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -127,7 +127,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -146,7 +146,7 @@ def build_get_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -163,7 +163,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -183,7 +183,7 @@ def build_create_or_update_request(
"name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_versions_operations.py
index 94082df98347..9c33c3bc900e 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_versions_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_versions_operations.py
@@ -7,7 +7,7 @@
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from io import IOBase
-from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload
+from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload
import urllib.parse
from azure.core.exceptions import (
@@ -21,14 +21,16 @@
from azure.core.paging import ItemPaged
from azure.core.pipeline import PipelineResponse
from azure.core.pipeline.transport import HttpResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
from azure.core.rest import HttpRequest
from azure.core.tracing.decorator import distributed_trace
from azure.core.utils import case_insensitive_dict
from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.arm_polling import ARMPolling
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -58,7 +60,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -77,7 +79,7 @@ def build_list_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -114,7 +116,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -134,7 +136,7 @@ def build_delete_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -151,7 +153,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -171,7 +173,7 @@ def build_get_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -188,7 +190,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -209,7 +211,7 @@ def build_create_or_update_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -222,6 +224,46 @@ def build_create_or_update_request(
return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs)
+def build_publish_request(
+ resource_group_name: str, workspace_name: str, name: str, version: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{name}/versions/{version}/publish",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "workspaceName": _SERIALIZER.url(
+ "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str"),
+ "version": _SERIALIZER.url("version", version, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ if content_type is not None:
+ _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs)
+
+
class ModelVersionsOperations:
"""
.. warning::
@@ -699,3 +741,253 @@ def create_or_update(
create_or_update.metadata = {
"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{name}/versions/{version}"
}
+
+ def _publish_initial( # pylint: disable=inconsistent-return-statements
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> None:
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "DestinationAsset")
+
+ request = build_publish_request(
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self._publish_initial.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
+ if cls:
+ return cls(pipeline_response, None, response_headers)
+
+ _publish_initial.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{name}/versions/{version}/publish"
+ }
+
+ @overload
+ def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: _models.DestinationAsset,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace
+ def begin_publish(
+ self,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.DestinationAsset, IO],
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Publish version asset into registry.
+
+ Publish version asset into registry.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param workspace_name: Name of Azure Machine Learning workspace. Required.
+ :type workspace_name: str
+ :param name: Container name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Destination registry info. Is either a DestinationAsset type or a IO type.
+ Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.DestinationAsset or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either None or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._publish_initial( # type: ignore
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ body=body,
+ api_version=api_version,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ begin_publish.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{name}/versions/{version}/publish"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_deployments_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_deployments_operations.py
index 618d15662d98..a623a616aca9 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_deployments_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_deployments_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -53,7 +53,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -72,7 +72,7 @@ def build_list_request(
"endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -100,7 +100,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -120,7 +120,7 @@ def build_delete_request(
"deploymentName": _SERIALIZER.url("deployment_name", deployment_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -142,7 +142,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -162,7 +162,7 @@ def build_get_request(
"deploymentName": _SERIALIZER.url("deployment_name", deployment_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -184,7 +184,7 @@ def build_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -209,7 +209,7 @@ def build_update_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -233,7 +233,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -258,7 +258,7 @@ def build_create_or_update_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -282,7 +282,7 @@ def build_get_logs_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -303,7 +303,7 @@ def build_get_logs_request(
"deploymentName": _SERIALIZER.url("deployment_name", deployment_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -330,7 +330,7 @@ def build_list_skus_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -350,7 +350,7 @@ def build_list_skus_request(
"deploymentName": _SERIALIZER.url("deployment_name", deployment_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_endpoints_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_endpoints_operations.py
index 6fbb16092160..0f979cc64923 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_endpoints_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_endpoints_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -56,7 +56,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -74,7 +74,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -105,7 +105,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -124,7 +124,7 @@ def build_delete_request(
"endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -141,7 +141,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -160,7 +160,7 @@ def build_get_request(
"endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -177,7 +177,7 @@ def build_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -197,7 +197,7 @@ def build_update_request(
"endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -216,7 +216,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -238,7 +238,7 @@ def build_create_or_update_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -257,7 +257,7 @@ def build_list_keys_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -276,7 +276,7 @@ def build_list_keys_request(
"endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -293,7 +293,7 @@ def build_regenerate_keys_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -313,7 +313,7 @@ def build_regenerate_keys_request(
"endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -332,7 +332,7 @@ def build_get_token_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -351,7 +351,7 @@ def build_get_token_request(
"endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_operations.py
index 7dbac1fe15f1..b9b2f2cb864d 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_operations.py
@@ -40,7 +40,7 @@ def build_list_request(**kwargs: Any) -> HttpRequest:
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -75,19 +75,19 @@ def __init__(self, *args, **kwargs):
self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
@distributed_trace
- def list(self, **kwargs: Any) -> Iterable["_models.AmlOperation"]:
+ def list(self, **kwargs: Any) -> Iterable["_models.Operation"]:
"""Lists all of the available Azure Machine Learning Workspaces REST API operations.
:keyword callable cls: A custom type or function that will be passed the direct response
- :return: An iterator like instance of either AmlOperation or the result of cls(response)
- :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.AmlOperation]
+ :return: An iterator like instance of either Operation or the result of cls(response)
+ :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.Operation]
:raises ~azure.core.exceptions.HttpResponseError:
"""
_headers = kwargs.pop("headers", {}) or {}
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
- cls: ClsType[_models.AmlOperationListResult] = kwargs.pop("cls", None)
+ cls: ClsType[_models.OperationListResult] = kwargs.pop("cls", None)
error_map = {
401: ClientAuthenticationError,
@@ -128,7 +128,7 @@ def prepare_request(next_link=None):
return request
def extract_data(pipeline_response):
- deserialized = self._deserialize("AmlOperationListResult", pipeline_response)
+ deserialized = self._deserialize("OperationListResult", pipeline_response)
list_of_elem = deserialized.value
if cls:
list_of_elem = cls(list_of_elem) # type: ignore
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_endpoint_connections_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_endpoint_connections_operations.py
index a5d73b4be943..69562a60402f 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_endpoint_connections_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_endpoint_connections_operations.py
@@ -28,7 +28,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -43,7 +43,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -61,7 +61,7 @@ def build_list_request(
"subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -82,7 +82,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -103,7 +103,7 @@ def build_get_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -124,7 +124,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -146,7 +146,7 @@ def build_create_or_update_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -169,7 +169,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -190,7 +190,7 @@ def build_delete_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_link_resources_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_link_resources_operations.py
index a262b6f295cc..6765638af89a 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_link_resources_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_link_resources_operations.py
@@ -25,7 +25,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -40,7 +40,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -58,7 +58,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_quotas_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_quotas_operations.py
index 1896a7522c0b..6fb7c668f0c3 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_quotas_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_quotas_operations.py
@@ -28,7 +28,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -41,7 +41,7 @@ def build_update_request(location: str, subscription_id: str, **kwargs: Any) ->
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -55,7 +55,7 @@ def build_update_request(location: str, subscription_id: str, **kwargs: Any) ->
"subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -72,7 +72,7 @@ def build_list_request(location: str, subscription_id: str, **kwargs: Any) -> Ht
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -85,7 +85,7 @@ def build_list_request(location: str, subscription_id: str, **kwargs: Any) -> Ht
"location": _SERIALIZER.url("location", location, "str", pattern=r"^[-\w\._]+$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registries_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registries_operations.py
index 089d9208e62c..886771a87340 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registries_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registries_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -43,7 +43,7 @@ def build_list_by_subscription_request(subscription_id: str, **kwargs: Any) -> H
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -54,7 +54,7 @@ def build_list_by_subscription_request(subscription_id: str, **kwargs: Any) -> H
"subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -69,7 +69,7 @@ def build_list_request(resource_group_name: str, subscription_id: str, **kwargs:
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -84,7 +84,7 @@ def build_list_request(resource_group_name: str, subscription_id: str, **kwargs:
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -101,7 +101,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -119,7 +119,7 @@ def build_delete_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -134,7 +134,7 @@ def build_get_request(resource_group_name: str, registry_name: str, subscription
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -152,7 +152,7 @@ def build_get_request(resource_group_name: str, registry_name: str, subscription
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -169,7 +169,7 @@ def build_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -188,7 +188,7 @@ def build_update_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -207,7 +207,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -226,7 +226,7 @@ def build_create_or_update_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -245,7 +245,7 @@ def build_remove_regions_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -264,7 +264,7 @@ def build_remove_regions_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_code_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_code_containers_operations.py
index c925671f74d2..634d93d82b07 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_code_containers_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_code_containers_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -45,7 +45,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -63,7 +63,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -82,7 +82,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -101,7 +101,7 @@ def build_delete_request(
"codeName": _SERIALIZER.url("code_name", code_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -118,7 +118,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -137,7 +137,7 @@ def build_get_request(
"codeName": _SERIALIZER.url("code_name", code_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -154,7 +154,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -174,7 +174,7 @@ def build_create_or_update_request(
"codeName": _SERIALIZER.url("code_name", code_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_code_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_code_versions_operations.py
index 431682513a37..84511b06f38f 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_code_versions_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_code_versions_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -53,7 +53,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -72,7 +72,7 @@ def build_list_request(
"codeName": _SERIALIZER.url("code_name", code_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -95,7 +95,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -115,7 +115,7 @@ def build_delete_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -132,7 +132,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -152,7 +152,7 @@ def build_get_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -169,7 +169,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -190,7 +190,7 @@ def build_create_or_update_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -209,7 +209,7 @@ def build_create_or_get_start_pending_upload_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -230,7 +230,7 @@ def build_create_or_get_start_pending_upload_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_component_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_component_containers_operations.py
index 8fa9042f77a3..17fb9729380a 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_component_containers_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_component_containers_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -45,7 +45,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -63,7 +63,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -82,7 +82,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -103,7 +103,7 @@ def build_delete_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -120,7 +120,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -141,7 +141,7 @@ def build_get_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -158,7 +158,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -180,7 +180,7 @@ def build_create_or_update_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_component_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_component_versions_operations.py
index 7bb69cf38e1a..eeab2fad6016 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_component_versions_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_component_versions_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -53,7 +53,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -74,7 +74,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -97,7 +97,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -119,7 +119,7 @@ def build_delete_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -136,7 +136,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -158,7 +158,7 @@ def build_get_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -175,7 +175,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -198,7 +198,7 @@ def build_create_or_update_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_containers_operations.py
index a5a3f85fe645..32b1203a5e66 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_containers_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_containers_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -51,7 +51,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -69,7 +69,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -90,7 +90,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -109,7 +109,7 @@ def build_delete_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -126,7 +126,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -145,7 +145,7 @@ def build_get_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -162,7 +162,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -182,7 +182,7 @@ def build_create_or_update_request(
"name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_references_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_references_operations.py
new file mode 100644
index 000000000000..aa1d5efe193c
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_references_operations.py
@@ -0,0 +1,267 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from io import IOBase
+from typing import Any, Callable, Dict, IO, Optional, TypeVar, Union, overload
+
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ map_error,
+)
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.utils import case_insensitive_dict
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from .. import models as _models
+from .._serialization import Serializer
+from .._vendor import _convert_request
+
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+
+
+def build_get_blob_reference_sas_request(
+ resource_group_name: str, registry_name: str, name: str, version: str, subscription_id: str, **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = kwargs.pop(
+ "template_url",
+ "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/datareferences/{name}/versions/{version}",
+ ) # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
+ "resourceGroupName": _SERIALIZER.url(
+ "resource_group_name", resource_group_name, "str", max_length=90, min_length=1
+ ),
+ "registryName": _SERIALIZER.url(
+ "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$"
+ ),
+ "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
+ "version": _SERIALIZER.url("version", version, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ if content_type is not None:
+ _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+class RegistryDataReferencesOperations:
+ """
+ .. warning::
+ **DO NOT** instantiate this class directly.
+
+ Instead, you should access the following operations through
+ :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s
+ :attr:`registry_data_references` attribute.
+ """
+
+ models = _models
+
+ def __init__(self, *args, **kwargs):
+ input_args = list(args)
+ self._client = input_args.pop(0) if input_args else kwargs.pop("client")
+ self._config = input_args.pop(0) if input_args else kwargs.pop("config")
+ self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer")
+ self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer")
+
+ @overload
+ def get_blob_reference_sas(
+ self,
+ resource_group_name: str,
+ registry_name: str,
+ name: str,
+ version: str,
+ body: _models.GetBlobReferenceSASRequestDto,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> _models.GetBlobReferenceSASResponseDto:
+ """Get blob reference SAS Uri.
+
+ Get blob reference SAS Uri.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive.
+ Required.
+ :type registry_name: str
+ :param name: Data reference name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Asset id and blob uri. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.GetBlobReferenceSASRequestDto
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: GetBlobReferenceSASResponseDto or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.GetBlobReferenceSASResponseDto
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def get_blob_reference_sas(
+ self,
+ resource_group_name: str,
+ registry_name: str,
+ name: str,
+ version: str,
+ body: IO,
+ *,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> _models.GetBlobReferenceSASResponseDto:
+ """Get blob reference SAS Uri.
+
+ Get blob reference SAS Uri.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive.
+ Required.
+ :type registry_name: str
+ :param name: Data reference name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Asset id and blob uri. Required.
+ :type body: IO
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: GetBlobReferenceSASResponseDto or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.GetBlobReferenceSASResponseDto
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace
+ def get_blob_reference_sas(
+ self,
+ resource_group_name: str,
+ registry_name: str,
+ name: str,
+ version: str,
+ body: Union[_models.GetBlobReferenceSASRequestDto, IO],
+ **kwargs: Any
+ ) -> _models.GetBlobReferenceSASResponseDto:
+ """Get blob reference SAS Uri.
+
+ Get blob reference SAS Uri.
+
+ :param resource_group_name: The name of the resource group. The name is case insensitive.
+ Required.
+ :type resource_group_name: str
+ :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive.
+ Required.
+ :type registry_name: str
+ :param name: Data reference name. Required.
+ :type name: str
+ :param version: Version identifier. Required.
+ :type version: str
+ :param body: Asset id and blob uri. Is either a GetBlobReferenceSASRequestDto type or a IO
+ type. Required.
+ :type body: ~azure.mgmt.machinelearningservices.models.GetBlobReferenceSASRequestDto or IO
+ :keyword content_type: Body Parameter content-type. Known values are: 'application/json'.
+ Default value is None.
+ :paramtype content_type: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: GetBlobReferenceSASResponseDto or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.GetBlobReferenceSASResponseDto
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version))
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.GetBlobReferenceSASResponseDto] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _json = None
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _json = self._serialize.body(body, "GetBlobReferenceSASRequestDto")
+
+ request = build_get_blob_reference_sas_request(
+ resource_group_name=resource_group_name,
+ registry_name=registry_name,
+ name=name,
+ version=version,
+ subscription_id=self._config.subscription_id,
+ api_version=api_version,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.get_blob_reference_sas.metadata["url"],
+ headers=_headers,
+ params=_params,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ _stream = False
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize("GetBlobReferenceSASResponseDto", pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_blob_reference_sas.metadata = {
+ "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/datareferences/{name}/versions/{version}"
+ }
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_versions_operations.py
index 7fda48b37788..7baac446615b 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_versions_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_versions_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -55,7 +55,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -74,7 +74,7 @@ def build_list_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -101,7 +101,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -121,7 +121,7 @@ def build_delete_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -138,7 +138,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -158,7 +158,7 @@ def build_get_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -175,7 +175,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -196,7 +196,7 @@ def build_create_or_update_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -215,7 +215,7 @@ def build_create_or_get_start_pending_upload_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -236,7 +236,7 @@ def build_create_or_get_start_pending_upload_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_environment_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_environment_containers_operations.py
index 3a3ff9edbad1..82e0bacc1adc 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_environment_containers_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_environment_containers_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -51,7 +51,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -69,7 +69,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -90,7 +90,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -111,7 +111,7 @@ def build_delete_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -128,7 +128,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -149,7 +149,7 @@ def build_get_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -166,7 +166,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -188,7 +188,7 @@ def build_create_or_update_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_environment_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_environment_versions_operations.py
index 727a7a9602ce..ba8ec5bcb211 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_environment_versions_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_environment_versions_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -54,7 +54,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -75,7 +75,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -105,7 +105,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -127,7 +127,7 @@ def build_delete_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -149,7 +149,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -171,7 +171,7 @@ def build_get_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -193,7 +193,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -216,7 +216,7 @@ def build_create_or_update_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_model_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_model_containers_operations.py
index 8c44417d63e7..ed17c976e326 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_model_containers_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_model_containers_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -51,7 +51,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -69,7 +69,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -90,7 +90,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -109,7 +109,7 @@ def build_delete_request(
"modelName": _SERIALIZER.url("model_name", model_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -126,7 +126,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -145,7 +145,7 @@ def build_get_request(
"modelName": _SERIALIZER.url("model_name", model_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -162,7 +162,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -182,7 +182,7 @@ def build_create_or_update_request(
"modelName": _SERIALIZER.url("model_name", model_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_model_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_model_versions_operations.py
index d883c93e7433..878a20d06141 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_model_versions_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_model_versions_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -58,7 +58,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -77,7 +77,7 @@ def build_list_request(
"modelName": _SERIALIZER.url("model_name", model_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -110,7 +110,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -130,7 +130,7 @@ def build_delete_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -147,7 +147,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -167,7 +167,7 @@ def build_get_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -184,7 +184,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -205,7 +205,7 @@ def build_create_or_update_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -224,7 +224,7 @@ def build_create_or_get_start_pending_upload_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -245,7 +245,7 @@ def build_create_or_get_start_pending_upload_request(
"version": _SERIALIZER.url("version", version, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_schedules_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_schedules_operations.py
index 2e25ec11855a..1ef00676787b 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_schedules_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_schedules_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -51,7 +51,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -69,7 +69,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -90,7 +90,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -109,7 +109,7 @@ def build_delete_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -126,7 +126,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -145,7 +145,7 @@ def build_get_request(
"name": _SERIALIZER.url("name", name, "str"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -162,7 +162,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -182,7 +182,7 @@ def build_create_or_update_request(
"name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_usages_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_usages_operations.py
index 3dc29c049f1d..2a088c73bdd2 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_usages_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_usages_operations.py
@@ -27,7 +27,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -40,7 +40,7 @@ def build_list_request(location: str, subscription_id: str, **kwargs: Any) -> Ht
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -53,7 +53,7 @@ def build_list_request(location: str, subscription_id: str, **kwargs: Any) -> Ht
"location": _SERIALIZER.url("location", location, "str", pattern=r"^[-\w\._]+$"),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_virtual_machine_sizes_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_virtual_machine_sizes_operations.py
index 27bb7d3b448a..e359f9c017db 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_virtual_machine_sizes_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_virtual_machine_sizes_operations.py
@@ -25,7 +25,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -38,7 +38,7 @@ def build_list_request(location: str, subscription_id: str, **kwargs: Any) -> Ht
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -51,7 +51,7 @@ def build_list_request(location: str, subscription_id: str, **kwargs: Any) -> Ht
"subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_connections_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_connections_operations.py
index 28c7857fccfb..f320685dd54e 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_connections_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_connections_operations.py
@@ -28,7 +28,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -43,7 +43,7 @@ def build_create_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -60,10 +60,12 @@ def build_create_request(
"workspaceName": _SERIALIZER.url(
"workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
),
- "connectionName": _SERIALIZER.url("connection_name", connection_name, "str"),
+ "connectionName": _SERIALIZER.url(
+ "connection_name", connection_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -82,7 +84,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -98,10 +100,12 @@ def build_get_request(
"workspaceName": _SERIALIZER.url(
"workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
),
- "connectionName": _SERIALIZER.url("connection_name", connection_name, "str"),
+ "connectionName": _SERIALIZER.url(
+ "connection_name", connection_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -118,7 +122,7 @@ def build_delete_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -134,10 +138,12 @@ def build_delete_request(
"workspaceName": _SERIALIZER.url(
"workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
),
- "connectionName": _SERIALIZER.url("connection_name", connection_name, "str"),
+ "connectionName": _SERIALIZER.url(
+ "connection_name", connection_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$"
+ ),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -160,7 +166,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -178,7 +184,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
if target is not None:
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_features_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_features_operations.py
index a8b05127e633..b8d07a7ee57f 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_features_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_features_operations.py
@@ -27,7 +27,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -42,7 +42,7 @@ def build_list_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -60,7 +60,7 @@ def build_list_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspaces_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspaces_operations.py
index 3531e4cd54cc..1c83ca461202 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspaces_operations.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspaces_operations.py
@@ -30,7 +30,7 @@
from .. import models as _models
from .._serialization import Serializer
-from .._vendor import _convert_request, _format_url_section
+from .._vendor import _convert_request
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
@@ -45,7 +45,7 @@ def build_get_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -63,7 +63,7 @@ def build_get_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -80,7 +80,7 @@ def build_create_or_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -99,7 +99,7 @@ def build_create_or_update_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -113,12 +113,12 @@ def build_create_or_update_request(
def build_delete_request(
- resource_group_name: str, workspace_name: str, subscription_id: str, **kwargs: Any
+ resource_group_name: str, workspace_name: str, subscription_id: str, *, force_to_purge: bool = False, **kwargs: Any
) -> HttpRequest:
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -136,10 +136,12 @@ def build_delete_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+ if force_to_purge is not None:
+ _params["forceToPurge"] = _SERIALIZER.query("force_to_purge", force_to_purge, "bool")
# Construct headers
_headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
@@ -153,7 +155,7 @@ def build_update_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -172,7 +174,7 @@ def build_update_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -191,7 +193,7 @@ def build_list_by_resource_group_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -206,7 +208,7 @@ def build_list_by_resource_group_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -225,7 +227,7 @@ def build_diagnose_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
accept = _headers.pop("Accept", "application/json")
@@ -244,7 +246,7 @@ def build_diagnose_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -263,7 +265,7 @@ def build_list_keys_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -281,7 +283,7 @@ def build_list_keys_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -298,7 +300,7 @@ def build_resync_keys_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -316,7 +318,7 @@ def build_resync_keys_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -333,7 +335,7 @@ def build_list_by_subscription_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -344,7 +346,7 @@ def build_list_by_subscription_request(
"subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -363,7 +365,7 @@ def build_list_notebook_access_token_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -381,7 +383,7 @@ def build_list_notebook_access_token_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -398,7 +400,7 @@ def build_prepare_notebook_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -416,7 +418,7 @@ def build_prepare_notebook_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -433,7 +435,7 @@ def build_list_storage_account_keys_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -451,7 +453,7 @@ def build_list_storage_account_keys_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -468,7 +470,7 @@ def build_list_notebook_keys_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -486,7 +488,7 @@ def build_list_notebook_keys_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -503,7 +505,7 @@ def build_list_outbound_network_dependencies_endpoints_request(
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
- api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01"))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-10-01"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
@@ -521,7 +523,7 @@ def build_list_outbound_network_dependencies_endpoints_request(
),
}
- _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore
+ _url: str = _url.format(**path_format_arguments) # type: ignore
# Construct parameters
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
@@ -668,11 +670,16 @@ def _create_or_update_initial(
raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
deserialized = None
+ response_headers = {}
if response.status_code == 200:
deserialized = self._deserialize("Workspace", pipeline_response)
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
if cls:
- return cls(pipeline_response, deserialized, {})
+ return cls(pipeline_response, deserialized, response_headers)
return deserialized
@@ -830,7 +837,7 @@ def get_long_running_output(pipeline_response):
}
def _delete_initial( # pylint: disable=inconsistent-return-statements
- self, resource_group_name: str, workspace_name: str, **kwargs: Any
+ self, resource_group_name: str, workspace_name: str, force_to_purge: bool = False, **kwargs: Any
) -> None:
error_map = {
401: ClientAuthenticationError,
@@ -850,6 +857,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements
resource_group_name=resource_group_name,
workspace_name=workspace_name,
subscription_id=self._config.subscription_id,
+ force_to_purge=force_to_purge,
api_version=api_version,
template_url=self._delete_initial.metadata["url"],
headers=_headers,
@@ -878,7 +886,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements
}
@distributed_trace
- def begin_delete(self, resource_group_name: str, workspace_name: str, **kwargs: Any) -> LROPoller[None]:
+ def begin_delete(
+ self, resource_group_name: str, workspace_name: str, force_to_purge: bool = False, **kwargs: Any
+ ) -> LROPoller[None]:
"""Deletes a machine learning workspace.
:param resource_group_name: The name of the resource group. The name is case insensitive.
@@ -886,6 +896,8 @@ def begin_delete(self, resource_group_name: str, workspace_name: str, **kwargs:
:type resource_group_name: str
:param workspace_name: Name of Azure Machine Learning workspace. Required.
:type workspace_name: str
+ :param force_to_purge: Flag to indicate delete is a purge request. Default value is False.
+ :type force_to_purge: bool
:keyword callable cls: A custom type or function that will be passed the direct response
:keyword str continuation_token: A continuation token to restart a poller from a saved state.
:keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
@@ -910,6 +922,7 @@ def begin_delete(self, resource_group_name: str, workspace_name: str, **kwargs:
raw_result = self._delete_initial( # type: ignore
resource_group_name=resource_group_name,
workspace_name=workspace_name,
+ force_to_purge=force_to_purge,
api_version=api_version,
cls=lambda x, y, z: x,
headers=_headers,
@@ -999,11 +1012,16 @@ def _update_initial(
raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
deserialized = None
+ response_headers = {}
if response.status_code == 200:
deserialized = self._deserialize("Workspace", pipeline_response)
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
if cls:
- return cls(pipeline_response, deserialized, {})
+ return cls(pipeline_response, deserialized, response_headers)
return deserialized
@@ -1604,8 +1622,13 @@ def _resync_keys_initial( # pylint: disable=inconsistent-return-statements
error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+ response_headers = {}
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
if cls:
- return cls(pipeline_response, None, {})
+ return cls(pipeline_response, None, response_headers)
_resync_keys_initial.metadata = {
"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/resyncKeys"
@@ -1869,11 +1892,16 @@ def _prepare_notebook_initial(
raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
deserialized = None
+ response_headers = {}
if response.status_code == 200:
deserialized = self._deserialize("NotebookResourceInfo", pipeline_response)
+ if response.status_code == 202:
+ response_headers["Location"] = self._deserialize("str", response.headers.get("Location"))
+ response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After"))
+
if cls:
- return cls(pipeline_response, deserialized, {})
+ return cls(pipeline_response, deserialized, response_headers)
return deserialized
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/aks_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/aks_compute.py
index 6dca84bdc7dd..39bf5b77a990 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/aks_compute.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/aks_compute.py
@@ -46,6 +46,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/AKSCompute.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/createOrUpdate/AKSCompute.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/aml_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/aml_compute.py
index efbef7e090e7..6526edc00987 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/aml_compute.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/aml_compute.py
@@ -47,6 +47,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/AmlCompute.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/createOrUpdate/AmlCompute.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/basic_aks_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/basic_aks_compute.py
index c4f5100e5166..874abf2fcba0 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/basic_aks_compute.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/basic_aks_compute.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/BasicAKSCompute.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/createOrUpdate/BasicAKSCompute.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/basic_aml_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/basic_aml_compute.py
index 4e8789e3ef24..da35ee25ce63 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/basic_aml_compute.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/basic_aml_compute.py
@@ -55,6 +55,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/BasicAmlCompute.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/createOrUpdate/BasicAmlCompute.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/basic_data_factory_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/basic_data_factory_compute.py
index 322dec99f0ea..766cf5f6e69b 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/basic_data_factory_compute.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/basic_data_factory_compute.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/BasicDataFactoryCompute.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/createOrUpdate/BasicDataFactoryCompute.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/compute_instance.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/compute_instance.py
index d2e8342bc1ad..1710297c72c3 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/compute_instance.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/compute_instance.py
@@ -73,6 +73,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/ComputeInstance.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/createOrUpdate/ComputeInstance.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/compute_instance_minimal.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/compute_instance_minimal.py
index 575439d32563..458d5b00ce1d 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/compute_instance_minimal.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/compute_instance_minimal.py
@@ -41,6 +41,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/ComputeInstanceMinimal.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/createOrUpdate/ComputeInstanceMinimal.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/compute_instance_with_schedules.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/compute_instance_with_schedules.py
index 4134df53117f..8710c1489d5c 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/compute_instance_with_schedules.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/compute_instance_with_schedules.py
@@ -69,6 +69,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/ComputeInstanceWithSchedules.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/createOrUpdate/ComputeInstanceWithSchedules.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/kubernetes_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/kubernetes_compute.py
index 07fc5057133b..b0a228c1f9f3 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/kubernetes_compute.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/create_or_update/kubernetes_compute.py
@@ -58,6 +58,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/KubernetesCompute.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/createOrUpdate/KubernetesCompute.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/delete.py
index 03e8f509fbae..1428b3e4fc93 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/delete.py
@@ -37,6 +37,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/aks_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/aks_compute.py
index 4692f63ff9d7..03c09079a37b 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/aks_compute.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/aks_compute.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/get/AKSCompute.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/get/AKSCompute.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/aml_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/aml_compute.py
index 59ea7d05e296..7c1668b7419f 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/aml_compute.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/aml_compute.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/get/AmlCompute.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/get/AmlCompute.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/compute_instance.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/compute_instance.py
index fe66677f7193..7621abbf5942 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/compute_instance.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/compute_instance.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/get/ComputeInstance.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/get/ComputeInstance.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/kubernetes_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/kubernetes_compute.py
index b09cac4f3f62..eff1f5a66fa1 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/kubernetes_compute.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/get/kubernetes_compute.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/get/KubernetesCompute.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/get/KubernetesCompute.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/list.py
index 884ceeb73b59..a7243e30db0a 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/list_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/list_keys.py
index ed185cc80326..98f6eec49940 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/list_keys.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/list_keys.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/listKeys.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/listKeys.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/list_nodes.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/list_nodes.py
index 66ee6a0f4bee..03ce470ca561 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/list_nodes.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/list_nodes.py
@@ -38,6 +38,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/listNodes.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/listNodes.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/patch.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/patch.py
index 344934f7929b..cb7309fd8e37 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/patch.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/patch.py
@@ -44,6 +44,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/patch.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/patch.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/restart.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/restart.py
index 6f314eb40ed9..3c1ddcdf26b8 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/restart.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/restart.py
@@ -36,6 +36,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/restart.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/restart.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/start.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/start.py
index 9e6d787b739b..4375f5254cd2 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/start.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/start.py
@@ -36,6 +36,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/start.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/start.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/stop.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/stop.py
index 431311991b67..66cc856399ad 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/stop.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute/stop.py
@@ -36,6 +36,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/stop.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Compute/stop.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/data_reference/get_blob_reference_sas.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/data_reference/get_blob_reference_sas.py
new file mode 100644
index 000000000000..26af22d4ea60
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/data_reference/get_blob_reference_sas.py
@@ -0,0 +1,44 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python get_blob_reference_sas.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.registry_data_references.get_blob_reference_sas(
+ resource_group_name="test-rg",
+ registry_name="registryName",
+ name="string",
+ version="string",
+ body={"assetId": "string", "blobUri": "https://www.contoso.com/example"},
+ )
+ print(response)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/DataReference/getBlobReferenceSAS.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_blob_waccount_key/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_blob_waccount_key/create_or_update.py
index f51f887bbd51..2c484d600c32 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_blob_waccount_key/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_blob_waccount_key/create_or_update.py
@@ -53,6 +53,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Datastore/AzureBlobWAccountKey/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Datastore/AzureBlobWAccountKey/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_data_lake_gen1_wservice_principal/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_data_lake_gen1_wservice_principal/create_or_update.py
index bfbb9e2ecda5..ac84c7dd2f57 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_data_lake_gen1_wservice_principal/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_data_lake_gen1_wservice_principal/create_or_update.py
@@ -54,6 +54,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Datastore/AzureDataLakeGen1WServicePrincipal/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Datastore/AzureDataLakeGen1WServicePrincipal/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_data_lake_gen2_wservice_principal/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_data_lake_gen2_wservice_principal/create_or_update.py
index d221f4673621..623b12f913b9 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_data_lake_gen2_wservice_principal/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_data_lake_gen2_wservice_principal/create_or_update.py
@@ -57,6 +57,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Datastore/AzureDataLakeGen2WServicePrincipal/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Datastore/AzureDataLakeGen2WServicePrincipal/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_file_waccount_key/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_file_waccount_key/create_or_update.py
index 0ae6c4a4789c..bae194e825c1 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_file_waccount_key/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/azure_file_waccount_key/create_or_update.py
@@ -53,6 +53,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Datastore/AzureFileWAccountKey/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Datastore/AzureFileWAccountKey/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/delete.py
index 78dd652ab719..1a6961e95cbc 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/delete.py
@@ -36,6 +36,6 @@ def main():
)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Datastore/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Datastore/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/get.py
index 93e17e5a0997..69101401f987 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Datastore/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Datastore/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/list.py
index 4b5de229b6e2..b9950ad93872 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Datastore/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Datastore/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/list_secrets.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/list_secrets.py
index 74fe51d50b35..2936eaec5999 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/list_secrets.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/datastore/list_secrets.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Datastore/listSecrets.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Datastore/listSecrets.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/external_fqdn/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/external_fqdn/get.py
index aa82632feffb..c4c5efe54396 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/external_fqdn/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/external_fqdn/get.py
@@ -36,6 +36,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/ExternalFQDN/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/ExternalFQDN/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/feature/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/feature/get.py
new file mode 100644
index 000000000000..43fdc7c9bd7e
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/feature/get.py
@@ -0,0 +1,44 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python get.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.features.get(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ featureset_name="string",
+ featureset_version="string",
+ feature_name="string",
+ )
+ print(response)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Feature/get.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/feature/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/feature/list.py
new file mode 100644
index 000000000000..9521581d8d18
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/feature/list.py
@@ -0,0 +1,44 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python list.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.features.list(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ featureset_name="string",
+ featureset_version="string",
+ )
+ for item in response:
+ print(item)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Feature/list.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/auto_ml_job/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/auto_ml_job/create_or_update.py
index 47f02ffa0535..53ce593da591 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/auto_ml_job/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/auto_ml_job/create_or_update.py
@@ -81,6 +81,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/AutoMLJob/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Job/AutoMLJob/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/auto_ml_job/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/auto_ml_job/get.py
index 5744ad654a74..75637461407b 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/auto_ml_job/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/auto_ml_job/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/AutoMLJob/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Job/AutoMLJob/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/auto_ml_job/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/auto_ml_job/list.py
index 2b84eaeaa4ea..3a84a1e6b0f3 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/auto_ml_job/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/auto_ml_job/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/AutoMLJob/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Job/AutoMLJob/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/cancel.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/cancel.py
index 92009c446172..1d32a85c0dd9 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/cancel.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/cancel.py
@@ -36,6 +36,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/cancel.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Job/cancel.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/command_job/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/command_job/create_or_update.py
index d37efcce8ad5..cf3bb066fae2 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/command_job/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/command_job/create_or_update.py
@@ -77,6 +77,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/CommandJob/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Job/CommandJob/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/command_job/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/command_job/get.py
index da20b17f687c..d0fc201ad70c 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/command_job/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/command_job/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/CommandJob/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Job/CommandJob/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/command_job/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/command_job/list.py
index 603f7bbbc412..0da884875415 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/command_job/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/command_job/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/CommandJob/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Job/CommandJob/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/delete.py
index 80e82b2866eb..1cef72e9b864 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/delete.py
@@ -36,6 +36,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Job/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/pipeline_job/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/pipeline_job/create_or_update.py
index 8d093b05a24b..36f6e6668f56 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/pipeline_job/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/pipeline_job/create_or_update.py
@@ -61,6 +61,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/PipelineJob/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Job/PipelineJob/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/pipeline_job/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/pipeline_job/get.py
index 69dd018de1ad..a33dad2b0fc4 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/pipeline_job/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/pipeline_job/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/PipelineJob/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Job/PipelineJob/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/pipeline_job/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/pipeline_job/list.py
index 2ee9adaf0c1e..a1d9e7cfebfe 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/pipeline_job/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/pipeline_job/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/PipelineJob/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Job/PipelineJob/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/sweep_job/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/sweep_job/create_or_update.py
index 39198f670f47..f5e812425648 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/sweep_job/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/sweep_job/create_or_update.py
@@ -78,6 +78,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/SweepJob/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Job/SweepJob/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/sweep_job/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/sweep_job/get.py
index 4c424fedc4e7..9146bd75332a 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/sweep_job/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/sweep_job/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/SweepJob/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Job/SweepJob/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/sweep_job/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/sweep_job/list.py
index 3081f0d1b58d..2f12a68ff02d 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/sweep_job/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/job/sweep_job/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/SweepJob/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Job/SweepJob/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/managed_network/create_or_update_rule.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/managed_network/create_or_update_rule.py
new file mode 100644
index 000000000000..23a8eea0046f
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/managed_network/create_or_update_rule.py
@@ -0,0 +1,50 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python create_or_update_rule.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.managed_network_settings_rule.begin_create_or_update(
+ resource_group_name="test-rg",
+ workspace_name="aml-workspace-name",
+ rule_name="rule_name_1",
+ body={
+ "properties": {
+ "category": "UserDefined",
+ "destination": "destination_endpoint",
+ "status": "Active",
+ "type": "FQDN",
+ }
+ },
+ ).result()
+ print(response)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/ManagedNetwork/createOrUpdateRule.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/managed_network/delete_rule.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/managed_network/delete_rule.py
new file mode 100644
index 000000000000..942b2761bb2c
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/managed_network/delete_rule.py
@@ -0,0 +1,41 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python delete_rule.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ client.managed_network_settings_rule.begin_delete(
+ resource_group_name="test-rg",
+ workspace_name="aml-workspace-name",
+ rule_name="rule-name",
+ ).result()
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/ManagedNetwork/deleteRule.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/managed_network/get_rule.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/managed_network/get_rule.py
new file mode 100644
index 000000000000..7c317b7c8f3f
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/managed_network/get_rule.py
@@ -0,0 +1,42 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python get_rule.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.managed_network_settings_rule.get(
+ resource_group_name="test-rg",
+ workspace_name="aml-workspace-name",
+ rule_name="name_of_the_fqdn_rule",
+ )
+ print(response)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/ManagedNetwork/getRule.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/managed_network/list_rule.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/managed_network/list_rule.py
new file mode 100644
index 000000000000..f20832b0dd33
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/managed_network/list_rule.py
@@ -0,0 +1,42 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python list_rule.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.managed_network_settings_rule.list(
+ resource_group_name="test-rg",
+ workspace_name="aml-workspace-name",
+ )
+ for item in response:
+ print(item)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/ManagedNetwork/listRule.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/managed_network/provision.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/managed_network/provision.py
new file mode 100644
index 000000000000..7da6c9ca38da
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/managed_network/provision.py
@@ -0,0 +1,41 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python provision.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.managed_network_provisions.begin_provision_managed_network(
+ resource_group_name="test-rg",
+ workspace_name="aml-workspace-name",
+ ).result()
+ print(response)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/ManagedNetwork/provision.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/notebook/list_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/notebook/list_keys.py
index 66a02eb6b469..4d7406b710d4 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/notebook/list_keys.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/notebook/list_keys.py
@@ -36,6 +36,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Notebook/listKeys.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Notebook/listKeys.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/notebook/prepare.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/notebook/prepare.py
index 009f750c227c..1209309c9598 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/notebook/prepare.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/notebook/prepare.py
@@ -36,6 +36,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Notebook/prepare.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Notebook/prepare.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/get_logs.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/get_logs.py
index 2bae655720a4..3c339466909b 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/get_logs.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/get_logs.py
@@ -39,6 +39,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineDeployment/getLogs.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/OnlineDeployment/getLogs.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/create_or_update.py
index da3956267da7..81320619aeaa 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/create_or_update.py
@@ -74,6 +74,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineDeployment/KubernetesOnlineDeployment/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/OnlineDeployment/KubernetesOnlineDeployment/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/get.py
index bccba8918be1..9554b6174a23 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/get.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineDeployment/KubernetesOnlineDeployment/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/OnlineDeployment/KubernetesOnlineDeployment/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/list_skus.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/list_skus.py
index 532af7db70b6..631d546eccef 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/list_skus.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/list_skus.py
@@ -39,6 +39,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineDeployment/KubernetesOnlineDeployment/listSkus.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/OnlineDeployment/KubernetesOnlineDeployment/listSkus.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/update.py
index ef4bd08cf870..31cbddcdab89 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/kubernetes_online_deployment/update.py
@@ -42,6 +42,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineDeployment/KubernetesOnlineDeployment/update.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/OnlineDeployment/KubernetesOnlineDeployment/update.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/list.py
index 7df4af070406..ff534e76e7d6 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/list.py
@@ -38,6 +38,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineDeployment/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/OnlineDeployment/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/create_or_update.py
index c890a3f55278..440413bfcc89 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/create_or_update.py
@@ -77,6 +77,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineDeployment/ManagedOnlineDeployment/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/OnlineDeployment/ManagedOnlineDeployment/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/get.py
index ccfa935e7f46..d4152a0cc594 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/get.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineDeployment/ManagedOnlineDeployment/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/OnlineDeployment/ManagedOnlineDeployment/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/list_skus.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/list_skus.py
index ef2b493c784f..1846c0a64823 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/list_skus.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/list_skus.py
@@ -39,6 +39,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineDeployment/ManagedOnlineDeployment/listSkus.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/OnlineDeployment/ManagedOnlineDeployment/listSkus.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/update.py
index e7ec5681f716..558f5469a29e 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/online_deployment/managed_online_deployment/update.py
@@ -42,6 +42,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineDeployment/ManagedOnlineDeployment/update.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/OnlineDeployment/ManagedOnlineDeployment/update.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/create_or_update.py
index 4f95d6a5bdef..66d5708f5468 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/create_or_update.py
@@ -40,6 +40,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/PrivateEndpointConnection/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/PrivateEndpointConnection/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/delete.py
index d071ba7e4df5..4e133274c512 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/delete.py
@@ -36,6 +36,6 @@ def main():
)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/PrivateEndpointConnection/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/PrivateEndpointConnection/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/get.py
index f3a4e42b1c2b..aa64cc24ed02 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/PrivateEndpointConnection/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/PrivateEndpointConnection/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/list.py
index 8a893d04e41b..5e1ed0fee74a 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_endpoint_connection/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/PrivateEndpointConnection/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/PrivateEndpointConnection/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_link_resource/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_link_resource/list.py
index 71a768ec1c85..d2a5180bbf1c 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_link_resource/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/private_link_resource/list.py
@@ -36,6 +36,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/PrivateLinkResource/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/PrivateLinkResource/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/quota/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/quota/list.py
index ba614e993d14..1a682734e195 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/quota/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/quota/list.py
@@ -36,6 +36,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Quota/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Quota/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/quota/update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/quota/update.py
index d135e3ae3a58..2b8b2e7f19e1 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/quota/update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/quota/update.py
@@ -51,6 +51,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Quota/update.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Quota/update.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/create_or_update_system_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/create_or_update_system_created.py
index 577787fee2b8..ad4f74589d52 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/create_or_update_system_created.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/create_or_update_system_created.py
@@ -91,6 +91,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/createOrUpdate-SystemCreated.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registries/createOrUpdate-SystemCreated.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/create_or_update_user_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/create_or_update_user_created.py
index 4fb0f626522f..c5311160e3d0 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/create_or_update_user_created.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/create_or_update_user_created.py
@@ -75,6 +75,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/createOrUpdate-UserCreated.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registries/createOrUpdate-UserCreated.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/delete.py
index 2e4a8a929e44..35f02ded70ae 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/delete.py
@@ -35,6 +35,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registries/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/get_system_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/get_system_created.py
index fd5b114248b7..ee4d32febc45 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/get_system_created.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/get_system_created.py
@@ -36,6 +36,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/get-SystemCreated.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registries/get-SystemCreated.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/get_user_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/get_user_created.py
index bd86983df7e3..32c3bbc8a92a 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/get_user_created.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/get_user_created.py
@@ -36,6 +36,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/get-UserCreated.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registries/get-UserCreated.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/list_by_subscription.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/list_by_subscription.py
index d017c80aa223..7a59fd065f79 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/list_by_subscription.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/list_by_subscription.py
@@ -34,6 +34,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/listBySubscription.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registries/listBySubscription.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/list_system_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/list_system_created.py
index d9ef5482f599..2e34c49e9774 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/list_system_created.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/list_system_created.py
@@ -36,6 +36,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/list-SystemCreated.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registries/list-SystemCreated.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/list_user_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/list_user_created.py
index 193089df5170..c82b96a83e64 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/list_user_created.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/list_user_created.py
@@ -36,6 +36,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/list-UserCreated.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registries/list-UserCreated.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/remove_regions.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/remove_regions.py
index 75dd8c55aac0..a2a91f43a505 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/remove_regions.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/remove_regions.py
@@ -93,6 +93,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/removeRegions.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registries/removeRegions.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/update_system_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/update_system_created.py
index bda97b4ad6d5..8fdd9d509704 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/update_system_created.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/update_system_created.py
@@ -41,6 +41,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/update-SystemCreated.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registries/update-SystemCreated.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/update_user_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/update_user_created.py
index d8ecdb855c20..d9bf879a8b14 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/update_user_created.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registries/update_user_created.py
@@ -41,6 +41,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/update-UserCreated.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registries/update-UserCreated.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/create_or_update.py
index 3b5010d9d181..e6e479c3d20a 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/create_or_update.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/CodeContainer/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/CodeContainer/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/delete.py
index b72a96432c9f..e2b48ab1448c 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/delete.py
@@ -36,6 +36,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/CodeContainer/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/CodeContainer/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/get.py
index c8b1ce0c2a7c..f72e2d96aa06 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/CodeContainer/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/CodeContainer/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/list.py
index 8f5972265e01..756b3c5ccd0a 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_container/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/CodeContainer/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/CodeContainer/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/create_or_get_start_pending_upload.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/create_or_get_start_pending_upload.py
index e3e974c61eb9..5c3d2a5105f2 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/create_or_get_start_pending_upload.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/create_or_get_start_pending_upload.py
@@ -39,6 +39,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/CodeVersion/createOrGetStartPendingUpload.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/CodeVersion/createOrGetStartPendingUpload.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/create_or_update.py
index 1df9f062fc28..e1ca825abbf6 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/create_or_update.py
@@ -47,6 +47,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/CodeVersion/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/CodeVersion/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/delete.py
index 3e012305c57c..779234defaab 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/delete.py
@@ -37,6 +37,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/CodeVersion/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/CodeVersion/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/get.py
index f62658b63374..1cc6938bf9e8 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/get.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/CodeVersion/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/CodeVersion/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/list.py
index 4453204ec59d..1c94994e60e0 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/list.py
@@ -38,6 +38,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/CodeVersion/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/CodeVersion/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/create_or_update.py
index 6c3efd5e6a13..1683850a5d18 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/create_or_update.py
@@ -40,6 +40,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ComponentContainer/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ComponentContainer/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/delete.py
index aea7dc0c0dea..a30f32dda66e 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/delete.py
@@ -36,6 +36,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ComponentContainer/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ComponentContainer/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/get.py
index 652246d77411..aa0c61df8ed8 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ComponentContainer/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ComponentContainer/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/list.py
index af03b40d6482..5936c6210a84 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_container/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ComponentContainer/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ComponentContainer/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/create_or_update.py
index 3ef241cc2c8d..bc4dfd07d686 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/create_or_update.py
@@ -47,6 +47,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ComponentVersion/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ComponentVersion/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/delete.py
index 24e8ba968dcd..773a0b27b95d 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/delete.py
@@ -37,6 +37,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ComponentVersion/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ComponentVersion/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/get.py
index 906686be462b..f921ab32c998 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/get.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ComponentVersion/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ComponentVersion/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/list.py
index 39d93fd0de0c..bfbe67a30361 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/component_version/list.py
@@ -38,6 +38,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ComponentVersion/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ComponentVersion/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/create_or_update.py
index 2619016ab138..adbd3f143718 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/create_or_update.py
@@ -46,6 +46,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/DataContainer/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/DataContainer/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/delete.py
index db9823083c38..581981ff35bd 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/delete.py
@@ -36,6 +36,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/DataContainer/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/DataContainer/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/get.py
index cd457746f179..7fb90410bf39 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/DataContainer/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/DataContainer/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/registry_list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/registry_list.py
index 1b5917eb34e7..df52d254947c 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/registry_list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_container/registry_list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/DataContainer/registryList.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/DataContainer/registryList.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/create_or_get_start_pending_upload.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/create_or_get_start_pending_upload.py
index 9142baba5fad..554b129645d1 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/create_or_get_start_pending_upload.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/create_or_get_start_pending_upload.py
@@ -39,6 +39,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/DataVersionBase/createOrGetStartPendingUpload.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/DataVersionBase/createOrGetStartPendingUpload.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/create_or_update.py
index 01da03f03e19..c9681a414063 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/create_or_update.py
@@ -50,6 +50,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/DataVersionBase/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/DataVersionBase/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/delete.py
index d8772f5b25d5..29ff39d68650 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/delete.py
@@ -37,6 +37,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/DataVersionBase/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/DataVersionBase/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/get.py
index fdf5e3b6453f..f938a18d20ec 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/get.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/DataVersionBase/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/DataVersionBase/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/registry_list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/registry_list.py
index 54d19354ab1b..8279b4f0ad17 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/registry_list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/data_version_base/registry_list.py
@@ -38,6 +38,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/DataVersionBase/registryList.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/DataVersionBase/registryList.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/create_or_update.py
index 931d285c42d8..98d0bb834c85 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/create_or_update.py
@@ -40,6 +40,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ModelContainer/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ModelContainer/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/delete.py
index 098883e9fffe..b0ae45efc6e7 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/delete.py
@@ -36,6 +36,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ModelContainer/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ModelContainer/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/get.py
index bc742dec3e1b..ce735b5012e0 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ModelContainer/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ModelContainer/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/list.py
index 75d05a51b957..ff97be0a17d2 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_container/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ModelContainer/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ModelContainer/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/create_or_get_start_pending_upload.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/create_or_get_start_pending_upload.py
index a24b50119143..1e31843d2dd8 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/create_or_get_start_pending_upload.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/create_or_get_start_pending_upload.py
@@ -39,6 +39,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ModelVersion/createOrGetStartPendingUpload.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ModelVersion/createOrGetStartPendingUpload.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/create_or_update.py
index a2caeebafdd8..bb3c5dbf6676 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/create_or_update.py
@@ -49,6 +49,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ModelVersion/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ModelVersion/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/delete.py
index 243da0a3dc5e..466dfee28e9e 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/delete.py
@@ -37,6 +37,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ModelVersion/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ModelVersion/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/get.py
index 3f718017c063..bf0f0b3e94a1 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/get.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ModelVersion/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ModelVersion/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/list.py
index ca64f031391d..46b889cfb960 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/model_version/list.py
@@ -38,6 +38,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/ModelVersion/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Registry/ModelVersion/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/create_or_update.py
index 351a1bcdea58..71d3fa691460 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/create_or_update.py
@@ -57,6 +57,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Schedule/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Schedule/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/delete.py
index 69da5de82fe1..37e7930667c6 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/delete.py
@@ -36,6 +36,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Schedule/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Schedule/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/get.py
index 7772e8800fa9..3e5f23491276 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Schedule/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Schedule/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/list.py
index 0610eab1d68d..66354fb92651 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/schedule/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Schedule/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Schedule/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/usage/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/usage/list.py
index ccff07e2fa36..1c6fd50fe841 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/usage/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/usage/list.py
@@ -36,6 +36,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Usage/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Usage/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/virtual_machine_size/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/virtual_machine_size/list.py
index e84b655dbd1e..586ca32e09be 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/virtual_machine_size/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/virtual_machine_size/list.py
@@ -35,6 +35,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/VirtualMachineSize/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/VirtualMachineSize/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/create_or_update.py
index 64b1e00ff40c..d84582d56c71 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/create_or_update.py
@@ -66,6 +66,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/BatchDeployment/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/BatchDeployment/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/delete.py
index e4e9b5706e42..55387b64e1e1 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/delete.py
@@ -37,6 +37,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/BatchDeployment/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/BatchDeployment/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/get.py
index d1617e809898..67e193b3a1f2 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/get.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/BatchDeployment/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/BatchDeployment/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/list.py
index f1242ba35f7e..7e87bf08437e 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/list.py
@@ -38,6 +38,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/BatchDeployment/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/BatchDeployment/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/update.py
index 102b3fe0734c..25953984912b 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_deployment/update.py
@@ -39,6 +39,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/BatchDeployment/update.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/BatchDeployment/update.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/create_or_update.py
index 2074040353b4..6bbafa9918d1 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/create_or_update.py
@@ -50,6 +50,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/BatchEndpoint/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/BatchEndpoint/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/delete.py
index 80701cf2af60..935071762c14 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/delete.py
@@ -36,6 +36,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/BatchEndpoint/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/BatchEndpoint/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/get.py
index 990f55858aee..8593546bd708 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/BatchEndpoint/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/BatchEndpoint/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/list.py
index e3e3fe7fd1dc..e5b9902dd329 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/BatchEndpoint/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/BatchEndpoint/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/list_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/list_keys.py
index cc96bcdff698..b91fa0aa1154 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/list_keys.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/list_keys.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/BatchEndpoint/listKeys.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/BatchEndpoint/listKeys.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/update.py
index f6725836e685..22160af26886 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/batch_endpoint/update.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/BatchEndpoint/update.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/BatchEndpoint/update.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/create_or_update.py
index af061e818d47..aed53dc22f55 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/create_or_update.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/CodeContainer/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/CodeContainer/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/delete.py
index 7da2cb51b90a..3534bf975331 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/delete.py
@@ -36,6 +36,6 @@ def main():
)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/CodeContainer/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/CodeContainer/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/get.py
index f56a7a87e660..6c0f9ef8b209 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/CodeContainer/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/CodeContainer/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/list.py
index 001ce2be8571..79ce3db40db8 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_container/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/CodeContainer/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/CodeContainer/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/create_or_get_start_pending_upload.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/create_or_get_start_pending_upload.py
index cea171e25bfb..0eafdf4ea946 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/create_or_get_start_pending_upload.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/create_or_get_start_pending_upload.py
@@ -39,6 +39,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/CodeVersion/createOrGetStartPendingUpload.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/CodeVersion/createOrGetStartPendingUpload.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/create_or_update.py
index b894f4bda5f4..14e37975c9fa 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/create_or_update.py
@@ -47,6 +47,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/CodeVersion/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/CodeVersion/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/delete.py
index c78c15a8ed47..e2fd7ade7a2b 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/delete.py
@@ -37,6 +37,6 @@ def main():
)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/CodeVersion/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/CodeVersion/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/get.py
index ecae464c7718..f2900e46b5a9 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/get.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/CodeVersion/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/CodeVersion/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/list.py
index 52a9742de543..252fb5fbf99b 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/list.py
@@ -38,6 +38,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/CodeVersion/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/CodeVersion/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/publish.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/publish.py
new file mode 100644
index 000000000000..b7c59b476a8b
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/code_version/publish.py
@@ -0,0 +1,43 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python publish.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ client.code_versions.begin_publish(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ version="string",
+ body={"destinationName": "string", "destinationVersion": "string", "registryName": "string"},
+ ).result()
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/CodeVersion/publish.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/create_or_update.py
index 1c6f64c469e1..4df0c8cf0240 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/create_or_update.py
@@ -40,6 +40,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ComponentContainer/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ComponentContainer/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/delete.py
index 8826100a38e4..f790aefe5a7b 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/delete.py
@@ -36,6 +36,6 @@ def main():
)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ComponentContainer/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ComponentContainer/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/get.py
index 3954753f23ad..6e826c5d6d80 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ComponentContainer/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ComponentContainer/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/list.py
index 45d349e330cd..d4aff89a3330 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_container/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ComponentContainer/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ComponentContainer/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/create_or_update.py
index 724e7b3e919a..b27264beb5ca 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/create_or_update.py
@@ -47,6 +47,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ComponentVersion/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ComponentVersion/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/delete.py
index e3fe021ae631..fb159dce33d9 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/delete.py
@@ -37,6 +37,6 @@ def main():
)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ComponentVersion/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ComponentVersion/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/get.py
index 5d23ed45e902..8665c57301d3 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/get.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ComponentVersion/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ComponentVersion/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/list.py
index aaecb70ad47d..55546f049ff0 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/list.py
@@ -38,6 +38,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ComponentVersion/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ComponentVersion/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/publish.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/publish.py
new file mode 100644
index 000000000000..e6c35b34276c
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/component_version/publish.py
@@ -0,0 +1,43 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python publish.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ client.component_versions.begin_publish(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ version="string",
+ body={"destinationName": "string", "destinationVersion": "string", "registryName": "string"},
+ ).result()
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ComponentVersion/publish.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/create.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/create.py
index cd04a676e0e1..8b0628fa9b0d 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/create.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/create.py
@@ -76,6 +76,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/create.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/create.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/create_or_update.py
index 98d366c715e9..ebfd8541568c 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/create_or_update.py
@@ -45,6 +45,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/DataContainer/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/DataContainer/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/delete.py
index a135c9b5d424..bffc6a78c39e 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/delete.py
@@ -36,6 +36,6 @@ def main():
)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/DataContainer/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/DataContainer/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/get.py
index 53ef7b99be97..d827d0cbd7d7 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/DataContainer/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/DataContainer/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/list.py
index 3d48472b6ceb..997e1df9857a 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_container/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/DataContainer/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/DataContainer/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/create_or_update.py
index 8705b06141a3..d11b6c76825f 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/create_or_update.py
@@ -48,6 +48,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/DataVersionBase/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/DataVersionBase/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/delete.py
index 4b7c673a5232..6cce66a487dc 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/delete.py
@@ -37,6 +37,6 @@ def main():
)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/DataVersionBase/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/DataVersionBase/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/get.py
index d0e194b55997..d646508b5f5f 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/get.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/DataVersionBase/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/DataVersionBase/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/list.py
index 72bb1bc4b0e0..9ff108142f92 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/list.py
@@ -38,6 +38,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/DataVersionBase/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/DataVersionBase/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/publish.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/publish.py
new file mode 100644
index 000000000000..4f11cf32f8a4
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/data_version_base/publish.py
@@ -0,0 +1,43 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python publish.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ client.data_versions.begin_publish(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ version="string",
+ body={"destinationName": "string", "destinationVersion": "string", "registryName": "string"},
+ ).result()
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/DataVersionBase/publish.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/delete.py
index 205bca6f2e81..68eb6030f143 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/delete.py
@@ -35,6 +35,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/diagnose.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/diagnose.py
index 3077375cd454..a63ac6b5e088 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/diagnose.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/diagnose.py
@@ -36,6 +36,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/diagnose.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/diagnose.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_container/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_container/create_or_update.py
new file mode 100644
index 000000000000..5903645bffbc
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_container/create_or_update.py
@@ -0,0 +1,50 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python create_or_update.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.featureset_containers.begin_create_or_update(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ body={
+ "properties": {
+ "description": "string",
+ "isArchived": False,
+ "properties": {"string": "string"},
+ "tags": {"string": "string"},
+ }
+ },
+ ).result()
+ print(response)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturesetContainer/createOrUpdate.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_container/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_container/delete.py
new file mode 100644
index 000000000000..2b746689bdd7
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_container/delete.py
@@ -0,0 +1,41 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python delete.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ client.featureset_containers.begin_delete(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ ).result()
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturesetContainer/delete.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_container/get_entity.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_container/get_entity.py
new file mode 100644
index 000000000000..15bdc82ac34d
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_container/get_entity.py
@@ -0,0 +1,42 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python get_entity.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.featureset_containers.get_entity(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ )
+ print(response)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturesetContainer/getEntity.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_container/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_container/list.py
new file mode 100644
index 000000000000..7976d81adf49
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_container/list.py
@@ -0,0 +1,42 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python list.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.featureset_containers.list(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ )
+ for item in response:
+ print(item)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturesetContainer/list.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_version/backfill.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_version/backfill.py
new file mode 100644
index 000000000000..692f7d6743d8
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_version/backfill.py
@@ -0,0 +1,56 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python backfill.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.featureset_versions.begin_backfill(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ version="string",
+ body={
+ "dataAvailabilityStatus": ["None"],
+ "description": "string",
+ "displayName": "string",
+ "featureWindow": {
+ "featureWindowEnd": "2020-01-01T12:34:56.999+00:51",
+ "featureWindowStart": "2020-01-01T12:34:56.999+00:51",
+ },
+ "jobId": "string",
+ "resource": {"instanceType": "string"},
+ "sparkConfiguration": {"string": "string"},
+ "tags": {"string": "string"},
+ },
+ ).result()
+ print(response)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturesetVersion/backfill.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_version/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_version/create_or_update.py
new file mode 100644
index 000000000000..76397b4091f0
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_version/create_or_update.py
@@ -0,0 +1,70 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python create_or_update.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.featureset_versions.begin_create_or_update(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ version="string",
+ body={
+ "properties": {
+ "description": "string",
+ "entities": ["string"],
+ "isAnonymous": False,
+ "isArchived": False,
+ "materializationSettings": {
+ "notification": {"emailOn": ["JobFailed"], "emails": ["string"]},
+ "resource": {"instanceType": "string"},
+ "schedule": {
+ "endTime": "string",
+ "frequency": "Day",
+ "interval": 1,
+ "schedule": {"hours": [1], "minutes": [1], "monthDays": [1], "weekDays": ["Monday"]},
+ "startTime": "string",
+ "timeZone": "string",
+ "triggerType": "Recurrence",
+ },
+ "sparkConfiguration": {"string": "string"},
+ "storeType": "Online",
+ },
+ "properties": {"string": "string"},
+ "specification": {"path": "string"},
+ "stage": "string",
+ "tags": {"string": "string"},
+ }
+ },
+ ).result()
+ print(response)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturesetVersion/createOrUpdate.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_version/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_version/delete.py
new file mode 100644
index 000000000000..1add37739edc
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_version/delete.py
@@ -0,0 +1,42 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python delete.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ client.featureset_versions.begin_delete(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ version="string",
+ ).result()
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturesetVersion/delete.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_version/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_version/get.py
new file mode 100644
index 000000000000..88bf9e760d62
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_version/get.py
@@ -0,0 +1,43 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python get.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.featureset_versions.get(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ version="string",
+ )
+ print(response)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturesetVersion/get.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_version/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_version/list.py
new file mode 100644
index 000000000000..0a13cf3fa621
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featureset_version/list.py
@@ -0,0 +1,43 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python list.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.featureset_versions.list(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ )
+ for item in response:
+ print(item)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturesetVersion/list.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_container/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_container/create_or_update.py
new file mode 100644
index 000000000000..a831778b83a7
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_container/create_or_update.py
@@ -0,0 +1,50 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python create_or_update.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.featurestore_entity_containers.begin_create_or_update(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ body={
+ "properties": {
+ "description": "string",
+ "isArchived": False,
+ "properties": {"string": "string"},
+ "tags": {"string": "string"},
+ }
+ },
+ ).result()
+ print(response)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturestoreEntityContainer/createOrUpdate.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_container/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_container/delete.py
new file mode 100644
index 000000000000..f102fe47110a
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_container/delete.py
@@ -0,0 +1,41 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python delete.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ client.featurestore_entity_containers.begin_delete(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ ).result()
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturestoreEntityContainer/delete.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_container/get_entity.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_container/get_entity.py
new file mode 100644
index 000000000000..e38a55a01b24
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_container/get_entity.py
@@ -0,0 +1,42 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python get_entity.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.featurestore_entity_containers.get_entity(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ )
+ print(response)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturestoreEntityContainer/getEntity.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_container/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_container/list.py
new file mode 100644
index 000000000000..10ce20358ef0
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_container/list.py
@@ -0,0 +1,42 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python list.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.featurestore_entity_containers.list(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ )
+ for item in response:
+ print(item)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturestoreEntityContainer/list.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_version/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_version/create_or_update.py
new file mode 100644
index 000000000000..f068cf6a72e1
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_version/create_or_update.py
@@ -0,0 +1,53 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python create_or_update.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.featurestore_entity_versions.begin_create_or_update(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ version="string",
+ body={
+ "properties": {
+ "description": "string",
+ "indexColumns": [{"columnName": "string", "dataType": "Datetime"}],
+ "isAnonymous": False,
+ "isArchived": False,
+ "properties": {"string": "string"},
+ "tags": {"string": "string"},
+ }
+ },
+ ).result()
+ print(response)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturestoreEntityVersion/createOrUpdate.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_version/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_version/delete.py
new file mode 100644
index 000000000000..f9956aea629f
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_version/delete.py
@@ -0,0 +1,42 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python delete.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ client.featurestore_entity_versions.begin_delete(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ version="string",
+ ).result()
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturestoreEntityVersion/delete.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_version/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_version/get.py
new file mode 100644
index 000000000000..171d46a9b969
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_version/get.py
@@ -0,0 +1,43 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python get.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.featurestore_entity_versions.get(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ version="string",
+ )
+ print(response)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturestoreEntityVersion/get.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_version/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_version/list.py
new file mode 100644
index 000000000000..59f99e5c10eb
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/featurestore_entity_version/list.py
@@ -0,0 +1,43 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python list.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ response = client.featurestore_entity_versions.list(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ )
+ for item in response:
+ print(item)
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/FeaturestoreEntityVersion/list.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/get.py
index 4c2f399080e3..78559d647321 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/get.py
@@ -36,6 +36,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_by_resource_group.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_by_resource_group.py
index 48ad1779487f..9dfcc60c62b6 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_by_resource_group.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_by_resource_group.py
@@ -36,6 +36,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/listByResourceGroup.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/listByResourceGroup.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_by_subscription.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_by_subscription.py
index 921bfb2b59f6..f62cb4691ae3 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_by_subscription.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_by_subscription.py
@@ -34,6 +34,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/listBySubscription.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/listBySubscription.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_keys.py
index 9e0e183e60ef..941604afe611 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_keys.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_keys.py
@@ -36,6 +36,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/listKeys.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/listKeys.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_notebook_access_token.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_notebook_access_token.py
index d180f3ee30c2..d89fda63e55b 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_notebook_access_token.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_notebook_access_token.py
@@ -36,6 +36,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/listNotebookAccessToken.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/listNotebookAccessToken.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_storage_account_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_storage_account_keys.py
index dbc963513d84..17e6e99c0664 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_storage_account_keys.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/list_storage_account_keys.py
@@ -36,6 +36,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/listStorageAccountKeys.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/listStorageAccountKeys.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/create_or_update.py
index 3c3a3ce3aaf6..3afa4b1e8aef 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/create_or_update.py
@@ -40,6 +40,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ModelContainer/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ModelContainer/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/delete.py
index 7a5a7947d5a4..0a6aacf63cd2 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/delete.py
@@ -36,6 +36,6 @@ def main():
)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ModelContainer/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ModelContainer/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/get.py
index 9a5d2fcc742a..53e9d2e6ea5d 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ModelContainer/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ModelContainer/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/list.py
index 988fdad83e14..22d534115fdd 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_container/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ModelContainer/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ModelContainer/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/create_or_update.py
index 0d9996be1fbb..509921ef2ea7 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/create_or_update.py
@@ -49,6 +49,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ModelVersion/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ModelVersion/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/delete.py
index ddf28eee5525..0a369b5f8d7f 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/delete.py
@@ -37,6 +37,6 @@ def main():
)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ModelVersion/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ModelVersion/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/get.py
index 3322b8491634..46191cdcefaa 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/get.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ModelVersion/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ModelVersion/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/list.py
index b6fe6cc09d99..968ef50bb9f4 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/list.py
@@ -38,6 +38,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/ModelVersion/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ModelVersion/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/publish.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/publish.py
new file mode 100644
index 000000000000..8df596561ba7
--- /dev/null
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/model_version/publish.py
@@ -0,0 +1,43 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.identity import DefaultAzureCredential
+from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient
+
+"""
+# PREREQUISITES
+ pip install azure-identity
+ pip install azure-mgmt-machinelearningservices
+# USAGE
+ python publish.py
+
+ Before run the sample, please set the values of the client ID, tenant ID and client secret
+ of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
+ AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
+ https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
+"""
+
+
+def main():
+ client = MachineLearningServicesMgmtClient(
+ credential=DefaultAzureCredential(),
+ subscription_id="00000000-1111-2222-3333-444444444444",
+ )
+
+ client.model_versions.begin_publish(
+ resource_group_name="test-rg",
+ workspace_name="my-aml-workspace",
+ name="string",
+ version="string",
+ body={"destinationName": "string", "destinationVersion": "string", "registryName": "string"},
+ ).result()
+
+
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/ModelVersion/publish.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_deployment/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_deployment/delete.py
index 209f1dc99b4c..1c68eb6d64c1 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_deployment/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_deployment/delete.py
@@ -37,6 +37,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/OnlineDeployment/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/OnlineDeployment/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/create_or_update.py
index 0ad2062a3eef..60e323d78314 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/create_or_update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/create_or_update.py
@@ -51,6 +51,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/OnlineEndpoint/createOrUpdate.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/OnlineEndpoint/createOrUpdate.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/delete.py
index c00b39bfcf47..8bd5faf0a075 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/delete.py
@@ -36,6 +36,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/OnlineEndpoint/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/OnlineEndpoint/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/get.py
index c22efccb2c1e..a6912a57bc75 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/OnlineEndpoint/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/OnlineEndpoint/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/get_token.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/get_token.py
index f721177eb41c..ad781bb5becb 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/get_token.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/get_token.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/OnlineEndpoint/getToken.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/OnlineEndpoint/getToken.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/list.py
index 741567b8ceed..d9c6a0d03b28 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/OnlineEndpoint/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/OnlineEndpoint/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/list_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/list_keys.py
index 550945711c4b..8496747747a3 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/list_keys.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/list_keys.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/OnlineEndpoint/listKeys.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/OnlineEndpoint/listKeys.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/regenerate_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/regenerate_keys.py
index f6f874cb710c..3883696ed7ed 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/regenerate_keys.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/regenerate_keys.py
@@ -37,6 +37,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/OnlineEndpoint/regenerateKeys.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/OnlineEndpoint/regenerateKeys.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/update.py
index b1c25f72b06b..6818dba31570 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/online_endpoint/update.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/OnlineEndpoint/update.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/OnlineEndpoint/update.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/operations_list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/operations_list.py
index 91510c53d5b5..33b08b71c466 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/operations_list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/operations_list.py
@@ -34,6 +34,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/operationsList.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/operationsList.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/resync_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/resync_keys.py
index f332a4120926..fca68ba74591 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/resync_keys.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/resync_keys.py
@@ -35,6 +35,6 @@ def main():
).result()
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/resyncKeys.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/resyncKeys.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/update.py
index f8b3fae5c4cc..ade0594b3d1d 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/update.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace/update.py
@@ -43,6 +43,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/update.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/Workspace/update.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/create.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/create.py
index 110d4862cc3a..ec03a545aea0 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/create.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/create.py
@@ -38,6 +38,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/WorkspaceConnection/create.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/WorkspaceConnection/create.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/delete.py
index c154fbe498b6..acfea24b833e 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/delete.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/delete.py
@@ -36,6 +36,6 @@ def main():
)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/WorkspaceConnection/delete.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/WorkspaceConnection/delete.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/get.py
index 98aa005623e0..887b36a5ab3f 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/get.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/get.py
@@ -37,6 +37,6 @@ def main():
print(response)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/WorkspaceConnection/get.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/WorkspaceConnection/get.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/list.py
index 3f4299cf1809..b83a88a3b318 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_connection/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/WorkspaceConnection/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/WorkspaceConnection/list.json
if __name__ == "__main__":
main()
diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_feature/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_feature/list.py
index 3f1b7fa8da64..d0f9c44aa393 100644
--- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_feature/list.py
+++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/workspace_feature/list.py
@@ -37,6 +37,6 @@ def main():
print(item)
-# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/WorkspaceFeature/list.json
+# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-10-01/examples/WorkspaceFeature/list.json
if __name__ == "__main__":
main()