Skip to content

Latest commit

 

History

History
164 lines (119 loc) · 4.29 KB

152.maximum-product-subarray.md

File metadata and controls

164 lines (119 loc) · 4.29 KB

题目地址(152. 乘积最大子数组)

https://leetcode-cn.com/problems/maximum-product-subarray/

题目描述

给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。

 

示例 1:

输入: [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。
示例 2:

输入: [-2,0,-1]
输出: 0
解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。

前置知识

  • 滑动窗口

公司

  • 阿里
  • 腾讯
  • 百度
  • 字节

思路

这道题目要我们求解连续的 n 个数中乘积最大的积是多少。这里提到了连续,笔者首先想到的就是滑动窗口,但是这里比较特殊,我们不能仅仅维护一个最大值,因此最小值(比如-20)乘以一个比较小的数(比如-10) 可能就会很大。 因此这种思路并不方便。

首先来暴力求解,我们使用两层循环来枚举所有可能项,这种解法的时间复杂度是 O(n^2), 代码如下:

var maxProduct = function (nums) {
  let max = nums[0];
  let temp = null;
  for (let i = 0; i < nums.length; i++) {
    temp = nums[i];
    for (let j = i + 1; j < nums.length; j++) {
      temp *= nums[j];
      max = Math.max(temp, max);
    }
  }

  return max;
};

前面说了最小值(比如-20)乘以一个比较小的数(比如-10)可能就会很大 。因此我们需要同时记录乘积最大值和乘积最小值,然后比较元素和这两个的乘积,去不断更新最大值。当然,我们也可以选择只取当前元素。因此实际上我们的选择有三种,而如何选择就取决于哪个选择带来的价值最大(乘积最大或者最小)。

这种思路的解法由于只需要遍历一次,其时间复杂度是 O(n),代码见下方代码区。

关键点

  • 同时记录乘积最大值和乘积最小值

代码

代码支持:Python3,JavaScript, CPP

Python3 Code:

class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        n = len(nums)
        max__dp = [1] * (n + 1)
        min_dp = [1] * (n + 1)
        ans = float('-inf')

        for i in range(1, n + 1):
            max__dp[i] = max(max__dp[i - 1] * nums[i - 1],
                             min_dp[i - 1] * nums[i - 1], nums[i - 1])
            min_dp[i] = min(max__dp[i - 1] * nums[i - 1],
                            min_dp[i - 1] * nums[i - 1], nums[i - 1])
            ans = max(ans, max__dp[i])
        return ans

复杂度分析

  • 时间复杂度:$O(N)$
  • 空间复杂度:$O(N)$

当我们知道动态转移方程的时候,其实应该发现了。我们的 dp[i] 只和 dp[i - 1]有关,这是一个空间优化的信号,告诉我们可以借助两个额外变量记录即可

Python3 Code:

class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        n = len(nums)
        a = b = 1
        ans = float('-inf')

        for i in range(1, n + 1):
            temp = a
            a = max(a * nums[i - 1],
                    b * nums[i - 1], nums[i - 1])
            b = min(temp * nums[i - 1],
                    b * nums[i - 1], nums[i - 1])
            ans = max(ans, a)
        return ans

JavaScript Code:

var maxProduct = function (nums) {
  let max = nums[0];
  let min = nums[0];
  let res = nums[0];

  for (let i = 1; i < nums.length; i++) {
    let tmp = min;
    min = Math.min(nums[i], Math.min(max * nums[i], min * nums[i])); // 取最小
    max = Math.max(nums[i], Math.max(max * nums[i], tmp * nums[i])); /// 取最大
    res = Math.max(res, max);
  }
  return res;
};

CPP Code:

class Solution {
public:
    int maxProduct(vector<int>& A) {
        int maxProd = 1, minProd = 1, ans = INT_MIN;
        for (int n : A) {
            int a = n * maxProd, b = n * minProd;
            maxProd = max({n, a, b});
            minProd = min({n, a, b});
            ans = max(ans, maxProd);
        }
        return ans;
    }
};

复杂度分析

  • 时间复杂度:$O(N)$
  • 空间复杂度:$O(1)$

更多题解可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 30K star 啦。

大家也可以关注我的公众号《脑洞前端》获取更多更新鲜的 LeetCode 题解