{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Dynamic Recurrent Neural Network.\n", "\n", "TensorFlow implementation of a Recurrent Neural Network (LSTM) that performs dynamic computation over sequences with variable length. This example is using a toy dataset to classify linear sequences. The generated sequences have variable length.\n", "\n", "- Author: Aymeric Damien\n", "- Project: https://github.com/aymericdamien/TensorFlow-Examples/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## RNN Overview\n", "\n", "<img src=\"http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png\" alt=\"nn\" style=\"width: 600px;\"/>\n", "\n", "References:\n", "- [Long Short Term Memory](http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf), Sepp Hochreiter & Jurgen Schmidhuber, Neural Computation 9(8): 1735-1780, 1997." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from __future__ import print_function\n", "\n", "import tensorflow as tf\n", "import random" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# ====================\n", "# TOY DATA GENERATOR\n", "# ====================\n", "\n", "class ToySequenceData(object):\n", " \"\"\" Generate sequence of data with dynamic length.\n", " This class generate samples for training:\n", " - Class 0: linear sequences (i.e. [0, 1, 2, 3,...])\n", " - Class 1: random sequences (i.e. [1, 3, 10, 7,...])\n", "\n", " NOTICE:\n", " We have to pad each sequence to reach 'max_seq_len' for TensorFlow\n", " consistency (we cannot feed a numpy array with inconsistent\n", " dimensions). The dynamic calculation will then be perform thanks to\n", " 'seqlen' attribute that records every actual sequence length.\n", " \"\"\"\n", " def __init__(self, n_samples=1000, max_seq_len=20, min_seq_len=3,\n", " max_value=1000):\n", " self.data = []\n", " self.labels = []\n", " self.seqlen = []\n", " for i in range(n_samples):\n", " # Random sequence length\n", " len = random.randint(min_seq_len, max_seq_len)\n", " # Monitor sequence length for TensorFlow dynamic calculation\n", " self.seqlen.append(len)\n", " # Add a random or linear int sequence (50% prob)\n", " if random.random() < .5:\n", " # Generate a linear sequence\n", " rand_start = random.randint(0, max_value - len)\n", " s = [[float(i)/max_value] for i in\n", " range(rand_start, rand_start + len)]\n", " # Pad sequence for dimension consistency\n", " s += [[0.] for i in range(max_seq_len - len)]\n", " self.data.append(s)\n", " self.labels.append([1., 0.])\n", " else:\n", " # Generate a random sequence\n", " s = [[float(random.randint(0, max_value))/max_value]\n", " for i in range(len)]\n", " # Pad sequence for dimension consistency\n", " s += [[0.] for i in range(max_seq_len - len)]\n", " self.data.append(s)\n", " self.labels.append([0., 1.])\n", " self.batch_id = 0\n", "\n", " def next(self, batch_size):\n", " \"\"\" Return a batch of data. When dataset end is reached, start over.\n", " \"\"\"\n", " if self.batch_id == len(self.data):\n", " self.batch_id = 0\n", " batch_data = (self.data[self.batch_id:min(self.batch_id +\n", " batch_size, len(self.data))])\n", " batch_labels = (self.labels[self.batch_id:min(self.batch_id +\n", " batch_size, len(self.data))])\n", " batch_seqlen = (self.seqlen[self.batch_id:min(self.batch_id +\n", " batch_size, len(self.data))])\n", " self.batch_id = min(self.batch_id + batch_size, len(self.data))\n", " return batch_data, batch_labels, batch_seqlen" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# ==========\n", "# MODEL\n", "# ==========\n", "\n", "# Parameters\n", "learning_rate = 0.01\n", "training_steps = 10000\n", "batch_size = 128\n", "display_step = 200\n", "\n", "# Network Parameters\n", "seq_max_len = 20 # Sequence max length\n", "n_hidden = 64 # hidden layer num of features\n", "n_classes = 2 # linear sequence or not\n", "\n", "trainset = ToySequenceData(n_samples=1000, max_seq_len=seq_max_len)\n", "testset = ToySequenceData(n_samples=500, max_seq_len=seq_max_len)\n", "\n", "# tf Graph input\n", "x = tf.placeholder(\"float\", [None, seq_max_len, 1])\n", "y = tf.placeholder(\"float\", [None, n_classes])\n", "# A placeholder for indicating each sequence length\n", "seqlen = tf.placeholder(tf.int32, [None])\n", "\n", "# Define weights\n", "weights = {\n", " 'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))\n", "}\n", "biases = {\n", " 'out': tf.Variable(tf.random_normal([n_classes]))\n", "}" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def dynamicRNN(x, seqlen, weights, biases):\n", "\n", " # Prepare data shape to match `rnn` function requirements\n", " # Current data input shape: (batch_size, n_steps, n_input)\n", " # Required shape: 'n_steps' tensors list of shape (batch_size, n_input)\n", " \n", " # Unstack to get a list of 'n_steps' tensors of shape (batch_size, n_input)\n", " x = tf.unstack(x, seq_max_len, 1)\n", "\n", " # Define a lstm cell with tensorflow\n", " lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden)\n", "\n", " # Get lstm cell output, providing 'sequence_length' will perform dynamic\n", " # calculation.\n", " outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x, dtype=tf.float32,\n", " sequence_length=seqlen)\n", "\n", " # When performing dynamic calculation, we must retrieve the last\n", " # dynamically computed output, i.e., if a sequence length is 10, we need\n", " # to retrieve the 10th output.\n", " # However TensorFlow doesn't support advanced indexing yet, so we build\n", " # a custom op that for each sample in batch size, get its length and\n", " # get the corresponding relevant output.\n", "\n", " # 'outputs' is a list of output at every timestep, we pack them in a Tensor\n", " # and change back dimension to [batch_size, n_step, n_input]\n", " outputs = tf.stack(outputs)\n", " outputs = tf.transpose(outputs, [1, 0, 2])\n", "\n", " # Hack to build the indexing and retrieve the right output.\n", " batch_size = tf.shape(outputs)[0]\n", " # Start indices for each sample\n", " index = tf.range(0, batch_size) * seq_max_len + (seqlen - 1)\n", " # Indexing\n", " outputs = tf.gather(tf.reshape(outputs, [-1, n_hidden]), index)\n", "\n", " # Linear activation, using outputs computed above\n", " return tf.matmul(outputs, weights['out']) + biases['out']" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/aymeric.damien/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/gradients_impl.py:93: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n", " \"Converting sparse IndexedSlices to a dense Tensor of unknown shape. \"\n" ] } ], "source": [ "pred = dynamicRNN(x, seqlen, weights, biases)\n", "\n", "# Define loss and optimizer\n", "cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))\n", "optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)\n", "\n", "# Evaluate model\n", "correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))\n", "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))\n", "\n", "# Initialize the variables (i.e. assign their default value)\n", "init = tf.global_variables_initializer()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Step 1, Minibatch Loss= 0.864517, Training Accuracy= 0.42188\n", "Step 200, Minibatch Loss= 0.686012, Training Accuracy= 0.43269\n", "Step 400, Minibatch Loss= 0.682970, Training Accuracy= 0.48077\n", "Step 600, Minibatch Loss= 0.679640, Training Accuracy= 0.50962\n", "Step 800, Minibatch Loss= 0.675208, Training Accuracy= 0.53846\n", "Step 1000, Minibatch Loss= 0.668636, Training Accuracy= 0.56731\n", "Step 1200, Minibatch Loss= 0.657525, Training Accuracy= 0.62500\n", "Step 1400, Minibatch Loss= 0.635423, Training Accuracy= 0.67308\n", "Step 1600, Minibatch Loss= 0.580433, Training Accuracy= 0.75962\n", "Step 1800, Minibatch Loss= 0.475599, Training Accuracy= 0.81731\n", "Step 2000, Minibatch Loss= 0.434865, Training Accuracy= 0.83654\n", "Step 2200, Minibatch Loss= 0.423690, Training Accuracy= 0.85577\n", "Step 2400, Minibatch Loss= 0.417472, Training Accuracy= 0.85577\n", "Step 2600, Minibatch Loss= 0.412906, Training Accuracy= 0.85577\n", "Step 2800, Minibatch Loss= 0.409193, Training Accuracy= 0.85577\n", "Step 3000, Minibatch Loss= 0.406035, Training Accuracy= 0.86538\n", "Step 3200, Minibatch Loss= 0.403287, Training Accuracy= 0.87500\n", "Step 3400, Minibatch Loss= 0.400862, Training Accuracy= 0.87500\n", "Step 3600, Minibatch Loss= 0.398704, Training Accuracy= 0.86538\n", "Step 3800, Minibatch Loss= 0.396768, Training Accuracy= 0.86538\n", "Step 4000, Minibatch Loss= 0.395017, Training Accuracy= 0.86538\n", "Step 4200, Minibatch Loss= 0.393422, Training Accuracy= 0.86538\n", "Step 4400, Minibatch Loss= 0.391957, Training Accuracy= 0.85577\n", "Step 4600, Minibatch Loss= 0.390600, Training Accuracy= 0.85577\n", "Step 4800, Minibatch Loss= 0.389334, Training Accuracy= 0.86538\n", "Step 5000, Minibatch Loss= 0.388143, Training Accuracy= 0.86538\n", "Step 5200, Minibatch Loss= 0.387015, Training Accuracy= 0.86538\n", "Step 5400, Minibatch Loss= 0.385940, Training Accuracy= 0.86538\n", "Step 5600, Minibatch Loss= 0.384907, Training Accuracy= 0.86538\n", "Step 5800, Minibatch Loss= 0.383904, Training Accuracy= 0.85577\n", "Step 6000, Minibatch Loss= 0.382921, Training Accuracy= 0.86538\n", "Step 6200, Minibatch Loss= 0.381941, Training Accuracy= 0.86538\n", "Step 6400, Minibatch Loss= 0.380947, Training Accuracy= 0.86538\n", "Step 6600, Minibatch Loss= 0.379912, Training Accuracy= 0.86538\n", "Step 6800, Minibatch Loss= 0.378796, Training Accuracy= 0.86538\n", "Step 7000, Minibatch Loss= 0.377540, Training Accuracy= 0.86538\n", "Step 7200, Minibatch Loss= 0.376041, Training Accuracy= 0.86538\n", "Step 7400, Minibatch Loss= 0.374130, Training Accuracy= 0.85577\n", "Step 7600, Minibatch Loss= 0.371514, Training Accuracy= 0.85577\n", "Step 7800, Minibatch Loss= 0.367723, Training Accuracy= 0.85577\n", "Step 8000, Minibatch Loss= 0.362049, Training Accuracy= 0.85577\n", "Step 8200, Minibatch Loss= 0.353558, Training Accuracy= 0.85577\n", "Step 8400, Minibatch Loss= 0.341072, Training Accuracy= 0.86538\n", "Step 8600, Minibatch Loss= 0.323062, Training Accuracy= 0.87500\n", "Step 8800, Minibatch Loss= 0.299278, Training Accuracy= 0.89423\n", "Step 9000, Minibatch Loss= 0.273857, Training Accuracy= 0.90385\n", "Step 9200, Minibatch Loss= 0.248392, Training Accuracy= 0.91346\n", "Step 9400, Minibatch Loss= 0.221348, Training Accuracy= 0.92308\n", "Step 9600, Minibatch Loss= 0.191947, Training Accuracy= 0.92308\n", "Step 9800, Minibatch Loss= 0.159308, Training Accuracy= 0.93269\n", "Step 10000, Minibatch Loss= 0.136938, Training Accuracy= 0.96154\n", "Optimization Finished!\n", "Testing Accuracy: 0.952\n" ] } ], "source": [ "# Start training\n", "with tf.Session() as sess:\n", "\n", " # Run the initializer\n", " sess.run(init)\n", "\n", " for step in range(1, training_steps+1):\n", " batch_x, batch_y, batch_seqlen = trainset.next(batch_size)\n", " # Run optimization op (backprop)\n", " sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,\n", " seqlen: batch_seqlen})\n", " if step % display_step == 0 or step == 1:\n", " # Calculate batch accuracy & loss\n", " acc, loss = sess.run([accuracy, cost], feed_dict={x: batch_x, y: batch_y,\n", " seqlen: batch_seqlen})\n", " print(\"Step \" + str(step) + \", Minibatch Loss= \" + \\\n", " \"{:.6f}\".format(loss) + \", Training Accuracy= \" + \\\n", " \"{:.5f}\".format(acc))\n", "\n", " print(\"Optimization Finished!\")\n", "\n", " # Calculate accuracy\n", " test_data = testset.data\n", " test_label = testset.labels\n", " test_seqlen = testset.seqlen\n", " print(\"Testing Accuracy:\", \\\n", " sess.run(accuracy, feed_dict={x: test_data, y: test_label,\n", " seqlen: test_seqlen}))" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 1 }