-
Notifications
You must be signed in to change notification settings - Fork 14.9k
/
tensorboard_advanced.py
143 lines (120 loc) · 5.03 KB
/
tensorboard_advanced.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
'''
Graph and Loss visualization using Tensorboard.
This example is using the MNIST database of handwritten digits
(http://yann.lecun.com/exdb/mnist/)
Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
'''
from __future__ import print_function
import tensorflow as tf
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# Parameters
learning_rate = 0.01
training_epochs = 25
batch_size = 100
display_step = 1
logs_path = '/tmp/tensorflow_logs/example/'
# Network Parameters
n_hidden_1 = 256 # 1st layer number of features
n_hidden_2 = 256 # 2nd layer number of features
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)
# tf Graph Input
# mnist data image of shape 28*28=784
x = tf.placeholder(tf.float32, [None, 784], name='InputData')
# 0-9 digits recognition => 10 classes
y = tf.placeholder(tf.float32, [None, 10], name='LabelData')
# Create model
def multilayer_perceptron(x, weights, biases):
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['w1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
# Create a summary to visualize the first layer ReLU activation
tf.summary.histogram("relu1", layer_1)
# Hidden layer with RELU activation
layer_2 = tf.add(tf.matmul(layer_1, weights['w2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# Create another summary to visualize the second layer ReLU activation
tf.summary.histogram("relu2", layer_2)
# Output layer
out_layer = tf.add(tf.matmul(layer_2, weights['w3']), biases['b3'])
return out_layer
# Store layers weight & bias
weights = {
'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1]), name='W1'),
'w2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2]), name='W2'),
'w3': tf.Variable(tf.random_normal([n_hidden_2, n_classes]), name='W3')
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1]), name='b1'),
'b2': tf.Variable(tf.random_normal([n_hidden_2]), name='b2'),
'b3': tf.Variable(tf.random_normal([n_classes]), name='b3')
}
# Encapsulating all ops into scopes, making Tensorboard's Graph
# Visualization more convenient
with tf.name_scope('Model'):
# Build model
pred = multilayer_perceptron(x, weights, biases)
with tf.name_scope('Loss'):
# Softmax Cross entropy (cost function)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
with tf.name_scope('SGD'):
# Gradient Descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
# Op to calculate every variable gradient
grads = tf.gradients(loss, tf.trainable_variables())
grads = list(zip(grads, tf.trainable_variables()))
# Op to update all variables according to their gradient
apply_grads = optimizer.apply_gradients(grads_and_vars=grads)
with tf.name_scope('Accuracy'):
# Accuracy
acc = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
acc = tf.reduce_mean(tf.cast(acc, tf.float32))
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Create a summary to monitor cost tensor
tf.summary.scalar("loss", loss)
# Create a summary to monitor accuracy tensor
tf.summary.scalar("accuracy", acc)
# Create summaries to visualize weights
for var in tf.trainable_variables():
tf.summary.histogram(var.name, var)
# Summarize all gradients
for grad, var in grads:
tf.summary.histogram(var.name + '/gradient', grad)
# Merge all summaries into a single op
merged_summary_op = tf.summary.merge_all()
# Start training
with tf.Session() as sess:
# Run the initializer
sess.run(init)
# op to write logs to Tensorboard
summary_writer = tf.summary.FileWriter(logs_path,
graph=tf.get_default_graph())
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Run optimization op (backprop), cost op (to get loss value)
# and summary nodes
_, c, summary = sess.run([apply_grads, loss, merged_summary_op],
feed_dict={x: batch_xs, y: batch_ys})
# Write logs at every iteration
summary_writer.add_summary(summary, epoch * total_batch + i)
# Compute average loss
avg_cost += c / total_batch
# Display logs per epoch step
if (epoch+1) % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
print("Optimization Finished!")
# Test model
# Calculate accuracy
print("Accuracy:", acc.eval({x: mnist.test.images, y: mnist.test.labels}))
print("Run the command line:\n" \
"--> tensorboard --logdir=/tmp/tensorflow_logs " \
"\nThen open http://0.0.0.0:6006/ into your web browser")