-
Notifications
You must be signed in to change notification settings - Fork 14.9k
/
Copy pathvariational_autoencoder.py
143 lines (118 loc) · 5.19 KB
/
variational_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
""" Variational Auto-Encoder Example.
Using a variational auto-encoder to generate digits images from noise.
MNIST handwritten digits are used as training examples.
References:
- Auto-Encoding Variational Bayes The International Conference on Learning
Representations (ICLR), Banff, 2014. D.P. Kingma, M. Welling
- Understanding the difficulty of training deep feedforward neural networks.
X Glorot, Y Bengio. Aistats 9, 249-256
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based
learning applied to document recognition." Proceedings of the IEEE,
86(11):2278-2324, November 1998.
Links:
- [VAE Paper] https://arxiv.org/abs/1312.6114
- [Xavier Glorot Init](www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.../AISTATS2010_Glorot.pdf).
- [MNIST Dataset] http://yann.lecun.com/exdb/mnist/
Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
"""
from __future__ import division, print_function, absolute_import
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
import tensorflow as tf
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# Parameters
learning_rate = 0.001
num_steps = 30000
batch_size = 64
# Network Parameters
image_dim = 784 # MNIST images are 28x28 pixels
hidden_dim = 512
latent_dim = 2
# A custom initialization (see Xavier Glorot init)
def glorot_init(shape):
return tf.random_normal(shape=shape, stddev=1. / tf.sqrt(shape[0] / 2.))
# Variables
weights = {
'encoder_h1': tf.Variable(glorot_init([image_dim, hidden_dim])),
'z_mean': tf.Variable(glorot_init([hidden_dim, latent_dim])),
'z_std': tf.Variable(glorot_init([hidden_dim, latent_dim])),
'decoder_h1': tf.Variable(glorot_init([latent_dim, hidden_dim])),
'decoder_out': tf.Variable(glorot_init([hidden_dim, image_dim]))
}
biases = {
'encoder_b1': tf.Variable(glorot_init([hidden_dim])),
'z_mean': tf.Variable(glorot_init([latent_dim])),
'z_std': tf.Variable(glorot_init([latent_dim])),
'decoder_b1': tf.Variable(glorot_init([hidden_dim])),
'decoder_out': tf.Variable(glorot_init([image_dim]))
}
# Building the encoder
input_image = tf.placeholder(tf.float32, shape=[None, image_dim])
encoder = tf.matmul(input_image, weights['encoder_h1']) + biases['encoder_b1']
encoder = tf.nn.tanh(encoder)
z_mean = tf.matmul(encoder, weights['z_mean']) + biases['z_mean']
z_std = tf.matmul(encoder, weights['z_std']) + biases['z_std']
# Sampler: Normal (gaussian) random distribution
eps = tf.random_normal(tf.shape(z_std), dtype=tf.float32, mean=0., stddev=1.0,
name='epsilon')
z = z_mean + tf.exp(z_std / 2) * eps
# Building the decoder (with scope to re-use these layers later)
decoder = tf.matmul(z, weights['decoder_h1']) + biases['decoder_b1']
decoder = tf.nn.tanh(decoder)
decoder = tf.matmul(decoder, weights['decoder_out']) + biases['decoder_out']
decoder = tf.nn.sigmoid(decoder)
# Define VAE Loss
def vae_loss(x_reconstructed, x_true):
# Reconstruction loss
encode_decode_loss = x_true * tf.log(1e-10 + x_reconstructed) \
+ (1 - x_true) * tf.log(1e-10 + 1 - x_reconstructed)
encode_decode_loss = -tf.reduce_sum(encode_decode_loss, 1)
# KL Divergence loss
kl_div_loss = 1 + z_std - tf.square(z_mean) - tf.exp(z_std)
kl_div_loss = -0.5 * tf.reduce_sum(kl_div_loss, 1)
return tf.reduce_mean(encode_decode_loss + kl_div_loss)
loss_op = vae_loss(decoder, input_image)
optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Start training
with tf.Session() as sess:
# Run the initializer
sess.run(init)
for i in range(1, num_steps+1):
# Prepare Data
# Get the next batch of MNIST data (only images are needed, not labels)
batch_x, _ = mnist.train.next_batch(batch_size)
# Train
feed_dict = {input_image: batch_x}
_, l = sess.run([train_op, loss_op], feed_dict=feed_dict)
if i % 1000 == 0 or i == 1:
print('Step %i, Loss: %f' % (i, l))
# Testing
# Generator takes noise as input
noise_input = tf.placeholder(tf.float32, shape=[None, latent_dim])
# Rebuild the decoder to create image from noise
decoder = tf.matmul(noise_input, weights['decoder_h1']) + biases['decoder_b1']
decoder = tf.nn.tanh(decoder)
decoder = tf.matmul(decoder, weights['decoder_out']) + biases['decoder_out']
decoder = tf.nn.sigmoid(decoder)
# Building a manifold of generated digits
n = 20
x_axis = np.linspace(-3, 3, n)
y_axis = np.linspace(-3, 3, n)
canvas = np.empty((28 * n, 28 * n))
for i, yi in enumerate(x_axis):
for j, xi in enumerate(y_axis):
z_mu = np.array([[xi, yi]] * batch_size)
x_mean = sess.run(decoder, feed_dict={noise_input: z_mu})
canvas[(n - i - 1) * 28:(n - i) * 28, j * 28:(j + 1) * 28] = \
x_mean[0].reshape(28, 28)
plt.figure(figsize=(8, 10))
Xi, Yi = np.meshgrid(x_axis, y_axis)
plt.imshow(canvas, origin="upper", cmap="gray")
plt.show()