-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinpainting.py
139 lines (100 loc) · 4.77 KB
/
inpainting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import argparse
import pickle
import os
import imageio
from tqdm import tqdm
import numpy as np
import tensorflow as tf
import cv2
import dnnlib
import dnnlib.tflib as tflib
import config
from perceptual_model import PerceptualModel
STYLEGAN_MODEL_URL = 'https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ'
def generate_random_mask(img_shape, mask_size):
mask_2d = np.ones(img_shape, dtype=np.uint8)
vq = img_shape[0] // 4
top = np.random.randint(low=vq, high=3 * vq - mask_size[0])
hq = img_shape[1] // 4
left = np.random.randint(low=hq, high=3 * hq - mask_size[1])
mask_2d[top:top + mask_size[0], left:left + mask_size[1]] = 0
return mask_2d[..., np.newaxis]
def optimize_latent_codes(args):
tflib.init_tf()
with dnnlib.util.open_url(STYLEGAN_MODEL_URL, cache_dir=config.cache_dir) as f:
_G, _D, Gs = pickle.load(f)
latent_code = tf.get_variable(
name='latent_code', shape=(1, 18, 512), dtype='float32', initializer=tf.initializers.zeros()
)
generated_img = Gs.components.synthesis.get_output_for(latent_code, randomize_noise=False)
generated_img = tf.transpose(generated_img, [0, 2, 3, 1])
generated_img = ((generated_img + 1) / 2) * 255
original_img = tf.placeholder(tf.float32, [None, args.input_img_size[0], args.input_img_size[1], 3])
degradation_mask = tf.placeholder(tf.float32, [None, args.input_img_size[0], args.input_img_size[1], 1])
degraded_img_resized_for_perceptual = tf.image.resize_images(
original_img * degradation_mask, tuple(args.perceptual_img_size), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR
)
generated_img_resized_to_original = tf.image.resize_images(
generated_img, tuple(args.input_img_size), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR
)
generated_img_resized_for_perceptual = tf.image.resize_images(
generated_img_resized_to_original * degradation_mask, tuple(args.perceptual_img_size), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR
)
generated_img_for_display = tf.saturate_cast(generated_img_resized_to_original, tf.uint8)
perceptual_model = PerceptualModel(img_size=args.perceptual_img_size)
generated_img_features = perceptual_model(generated_img_resized_for_perceptual)
target_img_features = perceptual_model(degraded_img_resized_for_perceptual)
loss_op = tf.reduce_mean(tf.abs(generated_img_features - target_img_features))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=args.learning_rate)
train_op = optimizer.minimize(loss_op, var_list=[latent_code])
sess = tf.get_default_session()
img_names = sorted(os.listdir(args.imgs_dir))
for img_name in img_names:
img = imageio.imread(os.path.join(args.imgs_dir, img_name))
img = cv2.resize(img, dsize=tuple(args.input_img_size))
mask = generate_random_mask(img.shape[:2], mask_size=args.mask_size)
corrupted_img = img * mask
imageio.imwrite(os.path.join(args.corruptions_dir, img_name), corrupted_img)
imageio.imwrite(os.path.join(args.masks_dir, img_name), mask * 255)
sess.run(tf.variables_initializer([latent_code] + optimizer.variables()))
progress_bar_iterator = tqdm(
iterable=range(args.total_iterations),
bar_format='{desc}: {percentage:3.0f}% |{bar}| {n_fmt}/{total_fmt}{postfix}',
desc=img_name
)
for i in progress_bar_iterator:
loss, _ = sess.run(
fetches=[loss_op, train_op],
feed_dict={
original_img: img[np.newaxis, ...],
degradation_mask: mask[np.newaxis, ...]
}
)
progress_bar_iterator.set_postfix_str('loss=%.2f' % loss)
reconstructed_imgs, latent_codes = sess.run(
fetches=[generated_img_for_display, latent_code],
feed_dict={
original_img: img[np.newaxis, ...],
degradation_mask: mask[np.newaxis, ...]
}
)
imageio.imwrite(os.path.join(args.restorations_dir, img_name), reconstructed_imgs[0])
np.savez(file=os.path.join(args.latents_dir, img_name + '.npz'), latent_code=latent_codes[0])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--imgs-dir', type=str, required=True)
parser.add_argument('--masks-dir', type=str, required=True)
parser.add_argument('--corruptions-dir', type=str, required=True)
parser.add_argument('--restorations-dir', type=str, required=True)
parser.add_argument('--latents-dir', type=str, required=True)
parser.add_argument('--input-img-size', type=int, nargs=2, default=(256, 256))
parser.add_argument('--perceptual-img-size', type=int, nargs=2, default=(256, 256))
parser.add_argument('--mask-size', type=int, nargs=2, default=(64, 64))
parser.add_argument('--learning-rate', type=float, default=1e-2)
parser.add_argument('--total-iterations', type=int, default=1000)
args = parser.parse_args()
os.makedirs(args.masks_dir, exist_ok=True)
os.makedirs(args.corruptions_dir, exist_ok=True)
os.makedirs(args.restorations_dir, exist_ok=True)
os.makedirs(args.latents_dir, exist_ok=True)
optimize_latent_codes(args)