diff --git a/README.md b/README.md
index 86f3e8b..96b9672 100644
--- a/README.md
+++ b/README.md
@@ -1,4 +1,168 @@
# GRAF
-Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"
-Coming soon!
+
+

+
+
+This repository contains official code for the paper
+[GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis](https://avg.is.tuebingen.mpg.de/publications/schwarz2020neurips).
+
+You can find detailed usage instructions for training your own models and using pre-trained models below.
+
+
+If you find our code or paper useful, please consider citing
+
+ @inproceedings{Schwarz2020NEURIPS,
+ title = {GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis},
+ author = {Schwarz, Katja and Liao, Yiyi and Niemeyer, Michael and Geiger, Andreas},
+ booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
+ year = {2020}
+ }
+
+## Installation
+First you have to make sure that you have all dependencies in place.
+The simplest way to do so, is to use [anaconda](https://www.anaconda.com/).
+
+You can create an anaconda environment called `graf` using
+```
+conda env create -f environment.yaml
+conda activate graf
+```
+
+Next, for nerf-pytorch install torchsearchsorted. Note that this requires `torch>=1.4.0` and `CUDA >= v10.1`.
+You can install torchsearchsorted via
+```
+cd submodules/nerf_pytorch
+pip install -r requirements.txt
+cd torchsearchsorted
+pip install .
+cd ../../../
+```
+
+## Demo
+
+You can now test our code via:
+```
+python eval.py configs/carla.yaml --pretrained --rotation_elevation
+```
+This script should create a folder `results/carla_128_from_pretrained/eval/` where you can find generated videos varying camera pose for the Cars dataset.
+
+## Datasets
+
+If you only want to generate images using our pretrained models you do not need to download the datasets.
+The datasets are only needed if you want to train a model from scratch.
+
+### Cars
+
+To download the Cars dataset from the paper simply run
+```
+cd data
+./download_carla.sh
+cd ..
+```
+This creates a folder `data/carla/` and downloads the images as a zip file.
+Next extract the images to `data/carla/`.
+
+### Faces
+
+Download [celebA](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html).
+Then replace `data/celebA` in `configs/celebA.yaml` with `*PATH/TO/CELEBA*/Img/img_align_celebA`.
+
+Download [celebA_hq](https://github.com/tkarras/progressive_growing_of_gans).
+Then replace `data/celebA_hq` in `configs/celebAHQ.yaml` with `*PATH/TO/CELEBA_HQ*`.
+
+### Cats
+Download the [CatDataset](https://www.kaggle.com/crawford/cat-dataset).
+Run
+```
+cd data
+python preprocess_cats.py PATH/TO/CATS/DATASET
+cd ..
+```
+to preprocess the data and save it to `data/cats`.
+If successful this script should print: `Preprocessed 9407 images.`
+
+### Birds
+Download [CUB-200-2011](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html) and the corresponding [Segmentation Masks](https://drive.google.com/file/d/1EamOKGLoTuZdtcVYbHMWNpkn3iAVj8TP/view).
+Run
+```
+cd data
+python preprocess_cub.py PATH/TO/CUB-200-2011 PATH/TO/SEGMENTATION/MASKS
+cd ..
+```
+to preprocess the data and save it to `data/cub`.
+If successful this script should print: `Preprocessed 8444 images.`
+
+## Usage
+
+When you have installed all dependencies, you are ready to run our pre-trained models for 3D-aware image synthesis.
+
+### Generate images using a pretrained model
+
+To evaluate a pretrained model, run
+```
+python eval.py CONFIG.yaml --pretrained --fid_kid --rotation_elevation --shape_appearance
+```
+where you replace CONFIG.yaml with one of the config files in `./configs`.
+
+This script should create a folder `results/EXPNAME/eval` with FID and KID scores in `fid_kid.csv`, videos for rotation and elevation in the respective folders and an interpolation for shape and appearance, `shape_appearance.png`.
+
+Note that some pretrained models are available for different image sizes which you can choose by setting `data:imsize` in the config file to one of the following values:
+```
+configs/carla.yaml:
+ data:imsize 64 or 128 or 256 or 512
+configs/celebA.yaml:
+ data:imsize 64 or 128
+configs/celebAHQ.yaml:
+ data:imsize 256 or 512
+```
+
+### Train a model from scratch
+
+To train a 3D-aware generative model from scratch run
+```
+python train.py CONFIG.yaml
+```
+where you replace `CONFIG.yaml` with your config file.
+The easiest way is to use one of the existing config files in the `./configs` directory
+which correspond to the experiments presented in the paper.
+Note that this will train the model from scratch and will not resume training for a pretrained model.
+
+You can monitor on the training process using [tensorboard](https://www.tensorflow.org/guide/summaries_and_tensorboard):
+```
+cd OUTPUT_DIR
+tensorboard --logdir ./monitoring --port 6006
+```
+where you replace `OUTPUT_DIR` with the respective output directory.
+
+For available training options, please take a look at `configs/default.yaml`.
+
+### Evaluation of a new model
+
+For evaluation of the models run
+```
+python eval.py CONFIG.yaml --fid_kid --rotation_elevation --shape_appearance
+```
+where you replace `CONFIG.yaml` with your config file.
+
+## Multi-View Consistenty Check
+
+You can evaluate the multi-view consistency of the generated images by running a Multi-View-Stereo (MVS) algorithm on the generated images. This evaluation uses [COLMAP](https://colmap.github.io/) and make sure that you have COLMAP installed to run
+```
+python eval.py CONFIG.yaml --reconstruction
+```
+where you replace `CONFIG.yaml` with your config file. You can also evaluate our pretrained models via:
+```
+python eval.py configs/carla.yaml --pretrained --reconstruction
+```
+This script should create a folder `results/EXPNAME/eval/reconstruction/` where you can find generated multi-view images in `images/` and the corresponding 3D reconstructions in `models/`.
+
+## Further Information
+
+### GAN training
+
+This repository uses Lars Mescheder's awesome framework for [GAN training](https://github.com/LMescheder/GAN_stability).
+
+### NeRF
+
+We base our code for the Generator on this great [Pytorch reimplementation](https://github.com/yenchenlin/nerf-pytorch) of Neural Radiance Fields.
diff --git a/animations/carla_256.gif b/animations/carla_256.gif
new file mode 100644
index 0000000..5ad5720
Binary files /dev/null and b/animations/carla_256.gif differ
diff --git a/configs/carla.yaml b/configs/carla.yaml
new file mode 100644
index 0000000..c81c4eb
--- /dev/null
+++ b/configs/carla.yaml
@@ -0,0 +1,9 @@
+expname: carla_128
+data:
+ imsize: 128
+ datadir: data/carla
+ type: carla
+ radius: 10.
+ near: 7.5
+ far: 12.5
+ fov: 30.0
diff --git a/configs/cats.yaml b/configs/cats.yaml
new file mode 100644
index 0000000..a047bd2
--- /dev/null
+++ b/configs/cats.yaml
@@ -0,0 +1,15 @@
+expname: cats_64
+data:
+ datadir: data/cats
+ type: cats
+ imsize: 64
+ white_bkgd: False
+ radius: 10
+ near: 7.5
+ far: 12.5
+ fov: 10
+ umin: 0
+ umax: 0.19444444444444445 #70 deg
+ vmin: 0.32898992833716556 # 70 deg
+ vmax: 0.45642212862617093 # 85 deg
+
diff --git a/configs/celebA.yaml b/configs/celebA.yaml
new file mode 100644
index 0000000..82607ca
--- /dev/null
+++ b/configs/celebA.yaml
@@ -0,0 +1,15 @@
+expname: celebA_64
+data:
+ datadir: /PATH/TO/CELEBA/Img/img_align_celebA
+ type: celebA
+ imsize: 64
+ white_bkgd: False
+ radius: 9.5,10.5
+ near: 7.5
+ far: 12.5
+ fov: 10.
+ umin: 0
+ umax: 0.25
+ vmin: 0.32898992833716556 # 70 deg
+ vmax: 0.45642212862617093 # 85 deg
+
diff --git a/configs/celebAHQ.yaml b/configs/celebAHQ.yaml
new file mode 100644
index 0000000..3640868
--- /dev/null
+++ b/configs/celebAHQ.yaml
@@ -0,0 +1,19 @@
+expname: celebAHQ_256
+data:
+ datadir: /PATH/TO/CELEBA_HQ
+ type: celebA_hq
+ imsize: 256
+ white_bkgd: False
+ radius: 9.5,10.5
+ near: 7.5
+ far: 12.5
+ fov: 10
+ umin: 0
+ umax: 0.25
+ vmin: 0.32898992833716556 # 70 deg
+ vmax: 0.45642212862617093 # 85 deg
+ray_sampler:
+ min_scale: 0.125
+ scale_anneal: 0.0019
+training:
+ fid_every: 10000
diff --git a/configs/cub.yaml b/configs/cub.yaml
new file mode 100644
index 0000000..8563362
--- /dev/null
+++ b/configs/cub.yaml
@@ -0,0 +1,15 @@
+expname: cub_64
+data:
+ imsize: 64
+ datadir: data/cub
+ type: cub
+ radius: 9,11
+ near: 7.5
+ far: 12.5
+ fov: 30
+ vmin: 0.24999999999999994 # 60 deg
+ vmax: 0.5435778713738291 # 95 deg
+discriminator:
+ hflip: True
+nerf:
+ use_viewdirs: False
\ No newline at end of file
diff --git a/configs/debug.yaml b/configs/debug.yaml
new file mode 100644
index 0000000..7bac3a9
--- /dev/null
+++ b/configs/debug.yaml
@@ -0,0 +1,13 @@
+expname: debug
+data:
+ imsize: 64
+ datadir: data/cub
+ type: cub
+ radius: 10.
+ near: 7.5
+ far: 12.5
+ fov: 30.0
+training:
+ batch_size: 2
+ nworkers: 0
+ fid_every: -1
diff --git a/configs/default.yaml b/configs/default.yaml
new file mode 100644
index 0000000..02364ad
--- /dev/null
+++ b/configs/default.yaml
@@ -0,0 +1,70 @@
+expname: default
+data:
+ datadir: data/carla
+ type: carla
+ imsize: 64
+ white_bkgd: True
+ near: 1.
+ far: 6.
+ radius: 3.4 # set according to near and far plane
+ fov: 90.
+ orthographic: False
+ umin: 0. # 0 deg, convert to degree via 360. * u
+ umax: 1. # 360 deg, convert to degree via 360. * u
+ vmin: 0. # 0 deg, convert to degrees via arccos(1 - 2 * v) * 180. / pi
+ vmax: 0.45642212862617093 # 85 deg, convert to degrees via arccos(1 - 2 * v) * 180. / pi
+nerf:
+ i_embed: 0
+ use_viewdirs: True
+ multires: 10
+ multires_views: 4
+ N_samples: 64
+ N_importance: 0
+ netdepth: 8
+ netwidth: 256
+ netdepth_fine: 8
+ netwidth_fine: 256
+ perturb: 1.
+ raw_noise_std: 1.
+ decrease_noise: True
+z_dist:
+ type: gauss
+ dim: 256
+ dim_appearance: 128 # This dimension is subtracted from "dim"
+ray_sampler:
+ min_scale: 0.25
+ max_scale: 1.
+ scale_anneal: 0.0025 # no effect if scale_anneal<0, else the minimum scale decreases exponentially until converge to min_scale
+ N_samples: 1024 # 32*32, patchsize
+discriminator:
+ ndf: 64
+ hflip: False # Randomly flip discriminator input horizontally
+training:
+ outdir: ./results
+ model_file: model.pt
+ monitoring: tensorboard
+ nworkers: 6
+ batch_size: 8
+ chunk: 32768 # 1024*32
+ netchunk: 65536 # 1024*64
+ lr_g: 0.0005
+ lr_d: 0.0001
+ lr_anneal: 0.5
+ lr_anneal_every: 50000,100000,200000
+ equalize_lr: False
+ gan_type: standard
+ reg_type: real
+ reg_param: 10.
+ optimizer: rmsprop
+ n_test_samples_with_same_shape_code: 4
+ take_model_average: true
+ model_average_beta: 0.999
+ model_average_reinit: false
+ restart_every: -1
+ save_best: fid
+ fid_every: 5000 # Valid for FID and KID
+ print_every: 10
+ sample_every: 500
+ save_every: 900
+ backup_every: 50000
+ video_every: 10000
diff --git a/configs/pretrained_models.yaml b/configs/pretrained_models.yaml
new file mode 100644
index 0000000..06ab224
--- /dev/null
+++ b/configs/pretrained_models.yaml
@@ -0,0 +1,15 @@
+carla:
+ 64: https://s3.eu-central-1.amazonaws.com/avg-projects/graf/models/carla/carla_64.pt
+ 128: https://s3.eu-central-1.amazonaws.com/avg-projects/graf/models/carla/carla_128.pt
+ 256: https://s3.eu-central-1.amazonaws.com/avg-projects/graf/models/carla/carla_256.pt
+ 512: https://s3.eu-central-1.amazonaws.com/avg-projects/graf/models/carla/carla_512.pt
+celebA:
+ 64: https://s3.eu-central-1.amazonaws.com/avg-projects/graf/models/faces/celebA_64.pt
+ 128: https://s3.eu-central-1.amazonaws.com/avg-projects/graf/models/faces/celebA_128.pt
+celebA_hq:
+ 256: https://s3.eu-central-1.amazonaws.com/avg-projects/graf/models/faces/celebA_hq_256.pt
+ 512: https://s3.eu-central-1.amazonaws.com/avg-projects/graf/models/faces/celebA_hq_512.pt
+cats:
+ 64: https://s3.eu-central-1.amazonaws.com/avg-projects/graf/models/cats/cats_64.pt
+cub:
+ 64: https://s3.eu-central-1.amazonaws.com/avg-projects/graf/models/birds/cub_64.pt
\ No newline at end of file
diff --git a/data/cub/filtered_files.txt b/data/cub/filtered_files.txt
new file mode 100644
index 0000000..446e0b6
--- /dev/null
+++ b/data/cub/filtered_files.txt
@@ -0,0 +1,8444 @@
+2 001.Black_footed_Albatross/Black_Footed_Albatross_0009_34.jpg
+3 001.Black_footed_Albatross/Black_Footed_Albatross_0002_55.jpg
+4 001.Black_footed_Albatross/Black_Footed_Albatross_0074_59.jpg
+5 001.Black_footed_Albatross/Black_Footed_Albatross_0014_89.jpg
+6 001.Black_footed_Albatross/Black_Footed_Albatross_0085_92.jpg
+8 001.Black_footed_Albatross/Black_Footed_Albatross_0051_796103.jpg
+9 001.Black_footed_Albatross/Black_Footed_Albatross_0010_796097.jpg
+12 001.Black_footed_Albatross/Black_Footed_Albatross_0086_796062.jpg
+13 001.Black_footed_Albatross/Black_Footed_Albatross_0049_796063.jpg
+14 001.Black_footed_Albatross/Black_Footed_Albatross_0006_796065.jpg
+15 001.Black_footed_Albatross/Black_Footed_Albatross_0040_796066.jpg
+16 001.Black_footed_Albatross/Black_Footed_Albatross_0016_796067.jpg
+17 001.Black_footed_Albatross/Black_Footed_Albatross_0065_796068.jpg
+18 001.Black_footed_Albatross/Black_Footed_Albatross_0089_796069.jpg
+21 001.Black_footed_Albatross/Black_Footed_Albatross_0060_796076.jpg
+23 001.Black_footed_Albatross/Black_Footed_Albatross_0056_796078.jpg
+24 001.Black_footed_Albatross/Black_Footed_Albatross_0061_796082.jpg
+25 001.Black_footed_Albatross/Black_Footed_Albatross_0008_796083.jpg
+26 001.Black_footed_Albatross/Black_Footed_Albatross_0033_796086.jpg
+27 001.Black_footed_Albatross/Black_Footed_Albatross_0024_796089.jpg
+30 001.Black_footed_Albatross/Black_Footed_Albatross_0080_796096.jpg
+31 001.Black_footed_Albatross/Black_Footed_Albatross_0047_796064.jpg
+32 001.Black_footed_Albatross/Black_Footed_Albatross_0017_796098.jpg
+33 001.Black_footed_Albatross/Black_Footed_Albatross_0064_796101.jpg
+34 001.Black_footed_Albatross/Black_Footed_Albatross_0076_417.jpg
+35 001.Black_footed_Albatross/Black_Footed_Albatross_0019_796104.jpg
+36 001.Black_footed_Albatross/Black_Footed_Albatross_0057_796106.jpg
+37 001.Black_footed_Albatross/Black_Footed_Albatross_0041_796108.jpg
+39 001.Black_footed_Albatross/Black_Footed_Albatross_0001_796111.jpg
+40 001.Black_footed_Albatross/Black_Footed_Albatross_0071_796113.jpg
+41 001.Black_footed_Albatross/Black_Footed_Albatross_0077_796114.jpg
+42 001.Black_footed_Albatross/Black_Footed_Albatross_0032_796115.jpg
+43 001.Black_footed_Albatross/Black_Footed_Albatross_0038_212.jpg
+44 001.Black_footed_Albatross/Black_Footed_Albatross_0037_796120.jpg
+45 001.Black_footed_Albatross/Black_Footed_Albatross_0082_796121.jpg
+46 001.Black_footed_Albatross/Black_Footed_Albatross_0079_796122.jpg
+47 001.Black_footed_Albatross/Black_Footed_Albatross_0050_796125.jpg
+49 001.Black_footed_Albatross/Black_Footed_Albatross_0036_796127.jpg
+50 001.Black_footed_Albatross/Black_Footed_Albatross_0045_796129.jpg
+51 001.Black_footed_Albatross/Black_Footed_Albatross_0039_796132.jpg
+52 001.Black_footed_Albatross/Black_Footed_Albatross_0088_796133.jpg
+54 001.Black_footed_Albatross/Black_Footed_Albatross_0003_796136.jpg
+57 001.Black_footed_Albatross/Black_Footed_Albatross_0035_796140.jpg
+58 001.Black_footed_Albatross/Black_Footed_Albatross_0063_796141.jpg
+59 001.Black_footed_Albatross/Black_Footed_Albatross_0058_796074.jpg
+60 001.Black_footed_Albatross/Black_Footed_Albatross_0081_426.jpg
+63 002.Laysan_Albatross/Laysan_Albatross_0082_524.jpg
+64 002.Laysan_Albatross/Laysan_Albatross_0044_784.jpg
+66 002.Laysan_Albatross/Laysan_Albatross_0050_870.jpg
+67 002.Laysan_Albatross/Laysan_Albatross_0071_792.jpg
+68 002.Laysan_Albatross/Laysan_Albatross_0053_543.jpg
+69 002.Laysan_Albatross/Laysan_Albatross_0081_800.jpg
+70 002.Laysan_Albatross/Laysan_Albatross_0001_545.jpg
+72 002.Laysan_Albatross/Laysan_Albatross_0065_809.jpg
+73 002.Laysan_Albatross/Laysan_Albatross_0061_563.jpg
+74 002.Laysan_Albatross/Laysan_Albatross_0085_564.jpg
+75 002.Laysan_Albatross/Laysan_Albatross_0005_565.jpg
+77 002.Laysan_Albatross/Laysan_Albatross_0055_570.jpg
+78 002.Laysan_Albatross/Laysan_Albatross_0025_571.jpg
+79 002.Laysan_Albatross/Laysan_Albatross_0080_821.jpg
+81 002.Laysan_Albatross/Laysan_Albatross_0013_910.jpg
+82 002.Laysan_Albatross/Laysan_Albatross_0091_602.jpg
+83 002.Laysan_Albatross/Laysan_Albatross_0102_611.jpg
+84 002.Laysan_Albatross/Laysan_Albatross_0099_869.jpg
+86 002.Laysan_Albatross/Laysan_Albatross_0047_619.jpg
+88 002.Laysan_Albatross/Laysan_Albatross_0098_621.jpg
+90 002.Laysan_Albatross/Laysan_Albatross_0034_628.jpg
+91 002.Laysan_Albatross/Laysan_Albatross_0104_630.jpg
+92 002.Laysan_Albatross/Laysan_Albatross_0058_637.jpg
+93 002.Laysan_Albatross/Laysan_Albatross_0028_643.jpg
+94 002.Laysan_Albatross/Laysan_Albatross_0033_658.jpg
+95 002.Laysan_Albatross/Laysan_Albatross_0075_668.jpg
+97 002.Laysan_Albatross/Laysan_Albatross_0096_673.jpg
+98 002.Laysan_Albatross/Laysan_Albatross_0064_674.jpg
+99 002.Laysan_Albatross/Laysan_Albatross_0039_924.jpg
+100 002.Laysan_Albatross/Laysan_Albatross_0049_918.jpg
+102 002.Laysan_Albatross/Laysan_Albatross_0056_500.jpg
+103 002.Laysan_Albatross/Laysan_Albatross_0037_699.jpg
+104 002.Laysan_Albatross/Laysan_Albatross_0006_702.jpg
+105 002.Laysan_Albatross/Laysan_Albatross_0073_927.jpg
+108 002.Laysan_Albatross/Laysan_Albatross_0093_725.jpg
+111 002.Laysan_Albatross/Laysan_Albatross_0100_735.jpg
+112 002.Laysan_Albatross/Laysan_Albatross_0021_737.jpg
+113 002.Laysan_Albatross/Laysan_Albatross_0029_482.jpg
+114 002.Laysan_Albatross/Laysan_Albatross_0059_488.jpg
+115 002.Laysan_Albatross/Laysan_Albatross_0018_492.jpg
+116 002.Laysan_Albatross/Laysan_Albatross_0083_756.jpg
+117 002.Laysan_Albatross/Laysan_Albatross_0094_1013.jpg
+118 002.Laysan_Albatross/Laysan_Albatross_0103_504.jpg
+119 002.Laysan_Albatross/Laysan_Albatross_0079_506.jpg
+120 002.Laysan_Albatross/Laysan_Albatross_0051_1020.jpg
+121 003.Sooty_Albatross/Sooty_Albatross_0038_1065.jpg
+122 003.Sooty_Albatross/Sooty_Albatross_0031_1066.jpg
+123 003.Sooty_Albatross/Sooty_Albatross_0001_1071.jpg
+124 003.Sooty_Albatross/Sooty_Albatross_0016_1075.jpg
+126 003.Sooty_Albatross/Sooty_Albatross_0003_1078.jpg
+128 003.Sooty_Albatross/Sooty_Albatross_0063_1101.jpg
+130 003.Sooty_Albatross/Sooty_Albatross_0071_1116.jpg
+131 003.Sooty_Albatross/Sooty_Albatross_0070_796346.jpg
+133 003.Sooty_Albatross/Sooty_Albatross_0054_796347.jpg
+134 003.Sooty_Albatross/Sooty_Albatross_0033_1128.jpg
+135 003.Sooty_Albatross/Sooty_Albatross_0048_1130.jpg
+136 003.Sooty_Albatross/Sooty_Albatross_0032_1149.jpg
+137 003.Sooty_Albatross/Sooty_Albatross_0034_1154.jpg
+139 003.Sooty_Albatross/Sooty_Albatross_0024_1161.jpg
+141 003.Sooty_Albatross/Sooty_Albatross_0073_1171.jpg
+142 003.Sooty_Albatross/Sooty_Albatross_0074_1221.jpg
+143 003.Sooty_Albatross/Sooty_Albatross_0021_796339.jpg
+144 003.Sooty_Albatross/Sooty_Albatross_0005_796342.jpg
+145 003.Sooty_Albatross/Sooty_Albatross_0064_796343.jpg
+146 003.Sooty_Albatross/Sooty_Albatross_0042_1210.jpg
+148 003.Sooty_Albatross/Sooty_Albatross_0017_796349.jpg
+149 003.Sooty_Albatross/Sooty_Albatross_0049_796350.jpg
+150 003.Sooty_Albatross/Sooty_Albatross_0050_796351.jpg
+152 003.Sooty_Albatross/Sooty_Albatross_0068_796353.jpg
+153 003.Sooty_Albatross/Sooty_Albatross_0057_796354.jpg
+154 003.Sooty_Albatross/Sooty_Albatross_0010_796355.jpg
+155 003.Sooty_Albatross/Sooty_Albatross_0029_796357.jpg
+156 003.Sooty_Albatross/Sooty_Albatross_0069_796358.jpg
+157 003.Sooty_Albatross/Sooty_Albatross_0020_796359.jpg
+158 003.Sooty_Albatross/Sooty_Albatross_0058_796360.jpg
+160 003.Sooty_Albatross/Sooty_Albatross_0041_796364.jpg
+161 003.Sooty_Albatross/Sooty_Albatross_0076_796365.jpg
+162 003.Sooty_Albatross/Sooty_Albatross_0004_796366.jpg
+163 003.Sooty_Albatross/Sooty_Albatross_0065_796367.jpg
+167 003.Sooty_Albatross/Sooty_Albatross_0051_796374.jpg
+168 003.Sooty_Albatross/Sooty_Albatross_0040_796375.jpg
+169 003.Sooty_Albatross/Sooty_Albatross_0067_796376.jpg
+170 003.Sooty_Albatross/Sooty_Albatross_0066_796382.jpg
+171 003.Sooty_Albatross/Sooty_Albatross_0036_796387.jpg
+174 003.Sooty_Albatross/Sooty_Albatross_0019_796391.jpg
+176 003.Sooty_Albatross/Sooty_Albatross_0022_796398.jpg
+177 003.Sooty_Albatross/Sooty_Albatross_0023_796401.jpg
+178 003.Sooty_Albatross/Sooty_Albatross_0013_796402.jpg
+179 004.Groove_billed_Ani/Groove_Billed_Ani_0068_1538.jpg
+182 004.Groove_billed_Ani/Groove_Billed_Ani_0069_1546.jpg
+184 004.Groove_billed_Ani/Groove_Billed_Ani_0071_1559.jpg
+185 004.Groove_billed_Ani/Groove_Billed_Ani_0037_1560.jpg
+188 004.Groove_billed_Ani/Groove_Billed_Ani_0090_1567.jpg
+189 004.Groove_billed_Ani/Groove_Billed_Ani_0019_1585.jpg
+190 004.Groove_billed_Ani/Groove_Billed_Ani_0031_1588.jpg
+192 004.Groove_billed_Ani/Groove_Billed_Ani_0035_1591.jpg
+195 004.Groove_billed_Ani/Groove_Billed_Ani_0085_1612.jpg
+196 004.Groove_billed_Ani/Groove_Billed_Ani_0018_1613.jpg
+198 004.Groove_billed_Ani/Groove_Billed_Ani_0075_1617.jpg
+200 004.Groove_billed_Ani/Groove_Billed_Ani_0108_1639.jpg
+201 004.Groove_billed_Ani/Groove_Billed_Ani_0100_1646.jpg
+202 004.Groove_billed_Ani/Groove_Billed_Ani_0051_1650.jpg
+203 004.Groove_billed_Ani/Groove_Billed_Ani_0015_1653.jpg
+204 004.Groove_billed_Ani/Groove_Billed_Ani_0076_1661.jpg
+205 004.Groove_billed_Ani/Groove_Billed_Ani_0046_1663.jpg
+207 004.Groove_billed_Ani/Groove_Billed_Ani_0053_1672.jpg
+208 004.Groove_billed_Ani/Groove_Billed_Ani_0088_1678.jpg
+210 004.Groove_billed_Ani/Groove_Billed_Ani_0082_1697.jpg
+211 004.Groove_billed_Ani/Groove_Billed_Ani_0101_1700.jpg
+212 004.Groove_billed_Ani/Groove_Billed_Ani_0010_1704.jpg
+213 004.Groove_billed_Ani/Groove_Billed_Ani_0047_1706.jpg
+215 004.Groove_billed_Ani/Groove_Billed_Ani_0077_1724.jpg
+216 004.Groove_billed_Ani/Groove_Billed_Ani_0091_1728.jpg
+217 004.Groove_billed_Ani/Groove_Billed_Ani_0074_1730.jpg
+221 004.Groove_billed_Ani/Groove_Billed_Ani_0004_1528.jpg
+226 004.Groove_billed_Ani/Groove_Billed_Ani_0014_1755.jpg
+227 004.Groove_billed_Ani/Groove_Billed_Ani_0055_1501.jpg
+229 004.Groove_billed_Ani/Groove_Billed_Ani_0060_1505.jpg
+230 004.Groove_billed_Ani/Groove_Billed_Ani_0006_1763.jpg
+231 004.Groove_billed_Ani/Groove_Billed_Ani_0087_1765.jpg
+232 004.Groove_billed_Ani/Groove_Billed_Ani_0061_1510.jpg
+234 004.Groove_billed_Ani/Groove_Billed_Ani_0092_1516.jpg
+236 004.Groove_billed_Ani/Groove_Billed_Ani_0009_1522.jpg
+237 004.Groove_billed_Ani/Groove_Billed_Ani_0078_1780.jpg
+239 005.Crested_Auklet/Crested_Auklet_0006_1813.jpg
+240 005.Crested_Auklet/Crested_Auklet_0042_794902.jpg
+241 005.Crested_Auklet/Crested_Auklet_0061_794904.jpg
+243 005.Crested_Auklet/Crested_Auklet_0010_794907.jpg
+246 005.Crested_Auklet/Crested_Auklet_0044_1825.jpg
+247 005.Crested_Auklet/Crested_Auklet_0013_794914.jpg
+249 005.Crested_Auklet/Crested_Auklet_0005_794922.jpg
+250 005.Crested_Auklet/Crested_Auklet_0019_794925.jpg
+251 005.Crested_Auklet/Crested_Auklet_0011_794927.jpg
+254 005.Crested_Auklet/Crested_Auklet_0057_794932.jpg
+255 005.Crested_Auklet/Crested_Auklet_0021_794938.jpg
+256 005.Crested_Auklet/Crested_Auklet_0045_794940.jpg
+257 005.Crested_Auklet/Crested_Auklet_0001_794941.jpg
+258 005.Crested_Auklet/Crested_Auklet_0039_794944.jpg
+259 005.Crested_Auklet/Crested_Auklet_0074_794949.jpg
+260 005.Crested_Auklet/Crested_Auklet_0028_794951.jpg
+262 005.Crested_Auklet/Crested_Auklet_0012_794960.jpg
+263 005.Crested_Auklet/Crested_Auklet_0003_794962.jpg
+264 005.Crested_Auklet/Crested_Auklet_0033_794964.jpg
+265 005.Crested_Auklet/Crested_Auklet_0053_794966.jpg
+267 005.Crested_Auklet/Crested_Auklet_0073_785248.jpg
+268 005.Crested_Auklet/Crested_Auklet_0067_785249.jpg
+269 005.Crested_Auklet/Crested_Auklet_0066_785251.jpg
+270 005.Crested_Auklet/Crested_Auklet_0076_785252.jpg
+271 005.Crested_Auklet/Crested_Auklet_0068_785253.jpg
+273 005.Crested_Auklet/Crested_Auklet_0077_785257.jpg
+275 005.Crested_Auklet/Crested_Auklet_0075_785259.jpg
+276 005.Crested_Auklet/Crested_Auklet_0072_785260.jpg
+277 005.Crested_Auklet/Crested_Auklet_0070_785261.jpg
+278 005.Crested_Auklet/Crested_Auklet_0063_794901.jpg
+280 005.Crested_Auklet/Crested_Auklet_0030_794937.jpg
+283 006.Least_Auklet/Least_Auklet_0035_1888.jpg
+285 006.Least_Auklet/Least_Auklet_0058_1931.jpg
+286 006.Least_Auklet/Least_Auklet_0014_1901.jpg
+287 006.Least_Auklet/Least_Auklet_0016_1903.jpg
+288 006.Least_Auklet/Least_Auklet_0040_795100.jpg
+289 006.Least_Auklet/Least_Auklet_0015_795065.jpg
+290 006.Least_Auklet/Least_Auklet_0026_795066.jpg
+291 006.Least_Auklet/Least_Auklet_0043_795067.jpg
+292 006.Least_Auklet/Least_Auklet_0032_795068.jpg
+293 006.Least_Auklet/Least_Auklet_0045_795069.jpg
+295 006.Least_Auklet/Least_Auklet_0012_795074.jpg
+296 006.Least_Auklet/Least_Auklet_0018_795077.jpg
+297 006.Least_Auklet/Least_Auklet_0020_795080.jpg
+299 006.Least_Auklet/Least_Auklet_0017_795084.jpg
+300 006.Least_Auklet/Least_Auklet_0025_795087.jpg
+301 006.Least_Auklet/Least_Auklet_0052_795088.jpg
+302 006.Least_Auklet/Least_Auklet_0027_795091.jpg
+303 006.Least_Auklet/Least_Auklet_0010_795092.jpg
+304 006.Least_Auklet/Least_Auklet_0028_795094.jpg
+305 006.Least_Auklet/Least_Auklet_0060_795095.jpg
+306 006.Least_Auklet/Least_Auklet_0034_795096.jpg
+307 006.Least_Auklet/Least_Auklet_0042_1874.jpg
+308 006.Least_Auklet/Least_Auklet_0055_795106.jpg
+309 006.Least_Auklet/Least_Auklet_0041_795107.jpg
+311 006.Least_Auklet/Least_Auklet_0004_795112.jpg
+314 006.Least_Auklet/Least_Auklet_0046_795118.jpg
+315 006.Least_Auklet/Least_Auklet_0005_795119.jpg
+317 006.Least_Auklet/Least_Auklet_0029_795122.jpg
+319 006.Least_Auklet/Least_Auklet_0057_795126.jpg
+320 006.Least_Auklet/Least_Auklet_0021_795127.jpg
+321 006.Least_Auklet/Least_Auklet_0054_795130.jpg
+322 006.Least_Auklet/Least_Auklet_0038_795132.jpg
+324 007.Parakeet_Auklet/Parakeet_Auklet_0004_795921.jpg
+325 007.Parakeet_Auklet/Parakeet_Auklet_0017_795924.jpg
+326 007.Parakeet_Auklet/Parakeet_Auklet_0027_795925.jpg
+328 007.Parakeet_Auklet/Parakeet_Auklet_0012_795927.jpg
+329 007.Parakeet_Auklet/Parakeet_Auklet_0072_795929.jpg
+330 007.Parakeet_Auklet/Parakeet_Auklet_0030_795930.jpg
+331 007.Parakeet_Auklet/Parakeet_Auklet_0007_795932.jpg
+332 007.Parakeet_Auklet/Parakeet_Auklet_0041_795933.jpg
+333 007.Parakeet_Auklet/Parakeet_Auklet_0035_795934.jpg
+334 007.Parakeet_Auklet/Parakeet_Auklet_0038_795935.jpg
+335 007.Parakeet_Auklet/Parakeet_Auklet_0069_795936.jpg
+336 007.Parakeet_Auklet/Parakeet_Auklet_0073_795939.jpg
+337 007.Parakeet_Auklet/Parakeet_Auklet_0058_795942.jpg
+339 007.Parakeet_Auklet/Parakeet_Auklet_0028_795944.jpg
+340 007.Parakeet_Auklet/Parakeet_Auklet_0020_795947.jpg
+341 007.Parakeet_Auklet/Parakeet_Auklet_0043_795948.jpg
+342 007.Parakeet_Auklet/Parakeet_Auklet_0045_795953.jpg
+343 007.Parakeet_Auklet/Parakeet_Auklet_0064_795954.jpg
+344 007.Parakeet_Auklet/Parakeet_Auklet_0039_795955.jpg
+345 007.Parakeet_Auklet/Parakeet_Auklet_0047_795956.jpg
+347 007.Parakeet_Auklet/Parakeet_Auklet_0062_795958.jpg
+349 007.Parakeet_Auklet/Parakeet_Auklet_0042_795961.jpg
+351 007.Parakeet_Auklet/Parakeet_Auklet_0055_795963.jpg
+352 007.Parakeet_Auklet/Parakeet_Auklet_0067_795964.jpg
+353 007.Parakeet_Auklet/Parakeet_Auklet_0080_795965.jpg
+354 007.Parakeet_Auklet/Parakeet_Auklet_0015_795966.jpg
+355 007.Parakeet_Auklet/Parakeet_Auklet_0065_795969.jpg
+356 007.Parakeet_Auklet/Parakeet_Auklet_0013_795970.jpg
+357 007.Parakeet_Auklet/Parakeet_Auklet_0051_795971.jpg
+358 007.Parakeet_Auklet/Parakeet_Auklet_0001_795972.jpg
+359 007.Parakeet_Auklet/Parakeet_Auklet_0059_795973.jpg
+360 007.Parakeet_Auklet/Parakeet_Auklet_0040_795974.jpg
+361 007.Parakeet_Auklet/Parakeet_Auklet_0025_795975.jpg
+363 007.Parakeet_Auklet/Parakeet_Auklet_0016_795977.jpg
+364 007.Parakeet_Auklet/Parakeet_Auklet_0048_795980.jpg
+365 007.Parakeet_Auklet/Parakeet_Auklet_0075_795981.jpg
+366 007.Parakeet_Auklet/Parakeet_Auklet_0003_795982.jpg
+369 007.Parakeet_Auklet/Parakeet_Auklet_0061_795990.jpg
+371 007.Parakeet_Auklet/Parakeet_Auklet_0034_795994.jpg
+372 007.Parakeet_Auklet/Parakeet_Auklet_0010_795995.jpg
+374 007.Parakeet_Auklet/Parakeet_Auklet_0076_796001.jpg
+375 007.Parakeet_Auklet/Parakeet_Auklet_0078_2004.jpg
+376 007.Parakeet_Auklet/Parakeet_Auklet_0024_2045.jpg
+377 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0028_2056.jpg
+378 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0020_2195.jpg
+382 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0027_797496.jpg
+383 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0034_797497.jpg
+384 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0037_797499.jpg
+385 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0023_797501.jpg
+386 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0044_797502.jpg
+387 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0040_797503.jpg
+388 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0016_2114.jpg
+389 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0025_797508.jpg
+390 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0030_797509.jpg
+391 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0051_797510.jpg
+393 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0019_797513.jpg
+394 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0041_797515.jpg
+396 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0018_797517.jpg
+397 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0031_797518.jpg
+398 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0026_797519.jpg
+399 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0029_797520.jpg
+400 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0007_797521.jpg
+401 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0014_797522.jpg
+404 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0008_797531.jpg
+405 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0046_797532.jpg
+406 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0050_797534.jpg
+407 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0003_797535.jpg
+409 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0013_797537.jpg
+410 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0001_797538.jpg
+412 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0004_797541.jpg
+413 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0049_797543.jpg
+414 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0038_797544.jpg
+415 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0010_797545.jpg
+416 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0017_2155.jpg
+421 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0033_2169.jpg
+422 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0022_2170.jpg
+424 008.Rhinoceros_Auklet/Rhinoceros_Auklet_0039_2174.jpg
+427 009.Brewer_Blackbird/Brewer_Blackbird_0140_2586.jpg
+428 009.Brewer_Blackbird/Brewer_Blackbird_0082_2593.jpg
+429 009.Brewer_Blackbird/Brewer_Blackbird_0135_2607.jpg
+430 009.Brewer_Blackbird/Brewer_Blackbird_0106_2608.jpg
+431 009.Brewer_Blackbird/Brewer_Blackbird_0095_2610.jpg
+432 009.Brewer_Blackbird/Brewer_Blackbird_0035_2611.jpg
+433 009.Brewer_Blackbird/Brewer_Blackbird_0111_2613.jpg
+434 009.Brewer_Blackbird/Brewer_Blackbird_0009_2616.jpg
+435 009.Brewer_Blackbird/Brewer_Blackbird_0102_2620.jpg
+436 009.Brewer_Blackbird/Brewer_Blackbird_0087_2622.jpg
+437 009.Brewer_Blackbird/Brewer_Blackbird_0026_2625.jpg
+438 009.Brewer_Blackbird/Brewer_Blackbird_0101_2630.jpg
+439 009.Brewer_Blackbird/Brewer_Blackbird_0054_2631.jpg
+440 009.Brewer_Blackbird/Brewer_Blackbird_0096_2634.jpg
+441 009.Brewer_Blackbird/Brewer_Blackbird_0142_2636.jpg
+442 009.Brewer_Blackbird/Brewer_Blackbird_0041_2653.jpg
+443 009.Brewer_Blackbird/Brewer_Blackbird_0090_2658.jpg
+444 009.Brewer_Blackbird/Brewer_Blackbird_0078_2659.jpg
+445 009.Brewer_Blackbird/Brewer_Blackbird_0017_2668.jpg
+446 009.Brewer_Blackbird/Brewer_Blackbird_0014_2679.jpg
+447 009.Brewer_Blackbird/Brewer_Blackbird_0137_2680.jpg
+448 009.Brewer_Blackbird/Brewer_Blackbird_0028_2682.jpg
+449 009.Brewer_Blackbird/Brewer_Blackbird_0046_2688.jpg
+450 009.Brewer_Blackbird/Brewer_Blackbird_0012_2691.jpg
+451 009.Brewer_Blackbird/Brewer_Blackbird_0066_2693.jpg
+452 009.Brewer_Blackbird/Brewer_Blackbird_0032_2214.jpg
+453 009.Brewer_Blackbird/Brewer_Blackbird_0016_2225.jpg
+454 009.Brewer_Blackbird/Brewer_Blackbird_0104_2230.jpg
+455 009.Brewer_Blackbird/Brewer_Blackbird_0025_2231.jpg
+456 009.Brewer_Blackbird/Brewer_Blackbird_0109_2232.jpg
+457 009.Brewer_Blackbird/Brewer_Blackbird_0080_2234.jpg
+458 009.Brewer_Blackbird/Brewer_Blackbird_0127_2235.jpg
+459 009.Brewer_Blackbird/Brewer_Blackbird_0049_2258.jpg
+460 009.Brewer_Blackbird/Brewer_Blackbird_0018_2261.jpg
+462 009.Brewer_Blackbird/Brewer_Blackbird_0010_2269.jpg
+464 009.Brewer_Blackbird/Brewer_Blackbird_0103_2273.jpg
+465 009.Brewer_Blackbird/Brewer_Blackbird_0074_2277.jpg
+466 009.Brewer_Blackbird/Brewer_Blackbird_0002_2278.jpg
+467 009.Brewer_Blackbird/Brewer_Blackbird_0115_2279.jpg
+469 009.Brewer_Blackbird/Brewer_Blackbird_0131_2289.jpg
+470 009.Brewer_Blackbird/Brewer_Blackbird_0064_2290.jpg
+471 009.Brewer_Blackbird/Brewer_Blackbird_0132_2293.jpg
+472 009.Brewer_Blackbird/Brewer_Blackbird_0038_2294.jpg
+475 009.Brewer_Blackbird/Brewer_Blackbird_0065_2310.jpg
+477 009.Brewer_Blackbird/Brewer_Blackbird_0133_2324.jpg
+478 009.Brewer_Blackbird/Brewer_Blackbird_0070_2325.jpg
+479 009.Brewer_Blackbird/Brewer_Blackbird_0116_2327.jpg
+480 009.Brewer_Blackbird/Brewer_Blackbird_0027_2329.jpg
+481 009.Brewer_Blackbird/Brewer_Blackbird_0112_2340.jpg
+482 009.Brewer_Blackbird/Brewer_Blackbird_0079_2343.jpg
+483 009.Brewer_Blackbird/Brewer_Blackbird_0004_2345.jpg
+484 010.Red_winged_Blackbird/Red_Winged_Blackbird_0091_4096.jpg
+485 010.Red_winged_Blackbird/Red_Winged_Blackbird_0059_4612.jpg
+486 010.Red_winged_Blackbird/Red_Winged_Blackbird_0054_4625.jpg
+487 010.Red_winged_Blackbird/Red_Winged_Blackbird_0022_4483.jpg
+489 010.Red_winged_Blackbird/Red_Winged_Blackbird_0079_4527.jpg
+492 010.Red_winged_Blackbird/Red_Winged_Blackbird_0058_4141.jpg
+493 010.Red_winged_Blackbird/Red_Winged_Blackbird_0074_4146.jpg
+495 010.Red_winged_Blackbird/Red_Winged_Blackbird_0049_5598.jpg
+496 010.Red_winged_Blackbird/Red_Winged_Blackbird_0023_5257.jpg
+497 010.Red_winged_Blackbird/Red_Winged_Blackbird_0093_5948.jpg
+498 010.Red_winged_Blackbird/Red_Winged_Blackbird_0064_4936.jpg
+500 010.Red_winged_Blackbird/Red_Winged_Blackbird_0060_4688.jpg
+502 010.Red_winged_Blackbird/Red_Winged_Blackbird_0061_4196.jpg
+503 010.Red_winged_Blackbird/Red_Winged_Blackbird_0089_4188.jpg
+504 010.Red_winged_Blackbird/Red_Winged_Blackbird_0101_6244.jpg
+505 010.Red_winged_Blackbird/Red_Winged_Blackbird_0028_4709.jpg
+507 010.Red_winged_Blackbird/Red_Winged_Blackbird_0001_3695.jpg
+508 010.Red_winged_Blackbird/Red_Winged_Blackbird_0053_4072.jpg
+509 010.Red_winged_Blackbird/Red_Winged_Blackbird_0006_6005.jpg
+510 010.Red_winged_Blackbird/Red_Winged_Blackbird_0007_3706.jpg
+511 010.Red_winged_Blackbird/Red_Winged_Blackbird_0012_6015.jpg
+512 010.Red_winged_Blackbird/Red_Winged_Blackbird_0013_5762.jpg
+513 010.Red_winged_Blackbird/Red_Winged_Blackbird_0062_4233.jpg
+516 010.Red_winged_Blackbird/Red_Winged_Blackbird_0071_3988.jpg
+517 010.Red_winged_Blackbird/Red_Winged_Blackbird_0027_4123.jpg
+518 010.Red_winged_Blackbird/Red_Winged_Blackbird_0032_4004.jpg
+519 010.Red_winged_Blackbird/Red_Winged_Blackbird_0088_4007.jpg
+520 010.Red_winged_Blackbird/Red_Winged_Blackbird_0040_4522.jpg
+521 010.Red_winged_Blackbird/Red_Winged_Blackbird_0010_6386.jpg
+522 010.Red_winged_Blackbird/Red_Winged_Blackbird_0045_4526.jpg
+523 010.Red_winged_Blackbird/Red_Winged_Blackbird_0014_3761.jpg
+525 010.Red_winged_Blackbird/Red_Winged_Blackbird_0065_4026.jpg
+526 010.Red_winged_Blackbird/Red_Winged_Blackbird_0039_4285.jpg
+527 010.Red_winged_Blackbird/Red_Winged_Blackbird_0081_6081.jpg
+528 010.Red_winged_Blackbird/Red_Winged_Blackbird_0029_4804.jpg
+529 010.Red_winged_Blackbird/Red_Winged_Blackbird_0052_5575.jpg
+530 010.Red_winged_Blackbird/Red_Winged_Blackbird_0096_5019.jpg
+531 010.Red_winged_Blackbird/Red_Winged_Blackbird_0066_5070.jpg
+532 010.Red_winged_Blackbird/Red_Winged_Blackbird_0009_5841.jpg
+533 010.Red_winged_Blackbird/Red_Winged_Blackbird_0020_4050.jpg
+535 010.Red_winged_Blackbird/Red_Winged_Blackbird_0085_5846.jpg
+536 010.Red_winged_Blackbird/Red_Winged_Blackbird_0047_3802.jpg
+537 010.Red_winged_Blackbird/Red_Winged_Blackbird_0025_5342.jpg
+538 010.Red_winged_Blackbird/Red_Winged_Blackbird_0094_5856.jpg
+539 010.Red_winged_Blackbird/Red_Winged_Blackbird_0105_4842.jpg
+541 010.Red_winged_Blackbird/Red_Winged_Blackbird_0044_5621.jpg
+542 010.Red_winged_Blackbird/Red_Winged_Blackbird_0055_4345.jpg
+543 010.Red_winged_Blackbird/Red_Winged_Blackbird_0078_5372.jpg
+544 011.Rusty_Blackbird/Rusty_Blackbird_0086_6658.jpg
+545 011.Rusty_Blackbird/Rusty_Blackbird_0113_6664.jpg
+546 011.Rusty_Blackbird/Rusty_Blackbird_0055_6923.jpg
+547 011.Rusty_Blackbird/Rusty_Blackbird_0054_6676.jpg
+548 011.Rusty_Blackbird/Rusty_Blackbird_0020_6679.jpg
+549 011.Rusty_Blackbird/Rusty_Blackbird_0016_6684.jpg
+550 011.Rusty_Blackbird/Rusty_Blackbird_0104_6685.jpg
+551 011.Rusty_Blackbird/Rusty_Blackbird_0043_2597.jpg
+552 011.Rusty_Blackbird/Rusty_Blackbird_0091_6695.jpg
+553 011.Rusty_Blackbird/Rusty_Blackbird_0109_6698.jpg
+555 011.Rusty_Blackbird/Rusty_Blackbird_0019_6704.jpg
+556 011.Rusty_Blackbird/Rusty_Blackbird_0081_6967.jpg
+558 011.Rusty_Blackbird/Rusty_Blackbird_0051_6715.jpg
+559 011.Rusty_Blackbird/Rusty_Blackbird_0076_6716.jpg
+561 011.Rusty_Blackbird/Rusty_Blackbird_0087_6727.jpg
+562 011.Rusty_Blackbird/Rusty_Blackbird_0122_6736.jpg
+563 011.Rusty_Blackbird/Rusty_Blackbird_0112_3415.jpg
+564 011.Rusty_Blackbird/Rusty_Blackbird_0073_6744.jpg
+565 011.Rusty_Blackbird/Rusty_Blackbird_0003_6749.jpg
+566 011.Rusty_Blackbird/Rusty_Blackbird_0023_6752.jpg
+568 011.Rusty_Blackbird/Rusty_Blackbird_0017_6755.jpg
+569 011.Rusty_Blackbird/Rusty_Blackbird_0060_6756.jpg
+571 011.Rusty_Blackbird/Rusty_Blackbird_0120_6762.jpg
+572 011.Rusty_Blackbird/Rusty_Blackbird_0026_6768.jpg
+573 011.Rusty_Blackbird/Rusty_Blackbird_0005_6771.jpg
+574 011.Rusty_Blackbird/Rusty_Blackbird_0011_7028.jpg
+575 011.Rusty_Blackbird/Rusty_Blackbird_0102_6590.jpg
+577 011.Rusty_Blackbird/Rusty_Blackbird_0001_6548.jpg
+578 011.Rusty_Blackbird/Rusty_Blackbird_0052_7035.jpg
+579 011.Rusty_Blackbird/Rusty_Blackbird_0057_6935.jpg
+580 011.Rusty_Blackbird/Rusty_Blackbird_0111_3220.jpg
+581 011.Rusty_Blackbird/Rusty_Blackbird_0036_6550.jpg
+583 011.Rusty_Blackbird/Rusty_Blackbird_0022_6808.jpg
+584 011.Rusty_Blackbird/Rusty_Blackbird_0100_6597.jpg
+587 011.Rusty_Blackbird/Rusty_Blackbird_0107_6839.jpg
+588 011.Rusty_Blackbird/Rusty_Blackbird_0074_6585.jpg
+589 011.Rusty_Blackbird/Rusty_Blackbird_0096_6846.jpg
+591 011.Rusty_Blackbird/Rusty_Blackbird_0009_6853.jpg
+592 011.Rusty_Blackbird/Rusty_Blackbird_0056_6856.jpg
+593 011.Rusty_Blackbird/Rusty_Blackbird_0108_6867.jpg
+595 011.Rusty_Blackbird/Rusty_Blackbird_0033_6879.jpg
+596 011.Rusty_Blackbird/Rusty_Blackbird_0101_6880.jpg
+597 011.Rusty_Blackbird/Rusty_Blackbird_0015_6885.jpg
+598 011.Rusty_Blackbird/Rusty_Blackbird_0048_6632.jpg
+599 011.Rusty_Blackbird/Rusty_Blackbird_0093_6628.jpg
+600 011.Rusty_Blackbird/Rusty_Blackbird_0121_6637.jpg
+601 011.Rusty_Blackbird/Rusty_Blackbird_0032_6611.jpg
+602 011.Rusty_Blackbird/Rusty_Blackbird_0013_6902.jpg
+603 011.Rusty_Blackbird/Rusty_Blackbird_0082_6906.jpg
+604 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0108_7937.jpg
+605 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0074_8452.jpg
+606 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0031_8456.jpg
+607 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0095_8458.jpg
+608 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0015_8207.jpg
+609 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0061_8208.jpg
+612 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0057_8236.jpg
+614 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0008_8756.jpg
+615 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0009_8248.jpg
+617 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0017_8511.jpg
+618 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0088_8257.jpg
+619 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0025_8262.jpg
+620 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0041_8264.jpg
+621 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0018_8588.jpg
+631 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0062_8310.jpg
+632 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0042_8574.jpg
+634 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0024_8586.jpg
+635 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0077_8332.jpg
+636 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0003_8337.jpg
+638 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0023_7325.jpg
+639 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0058_8350.jpg
+640 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0055_8357.jpg
+641 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0087_8358.jpg
+642 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0038_8689.jpg
+643 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0013_8362.jpg
+644 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0085_8363.jpg
+645 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0007_8366.jpg
+648 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0051_8387.jpg
+649 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0059_8079.jpg
+650 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0100_8407.jpg
+651 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0053_8410.jpg
+652 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0056_8455.jpg
+654 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0102_8441.jpg
+655 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0084_8435.jpg
+657 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0073_8442.jpg
+658 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0012_8443.jpg
+659 012.Yellow_headed_Blackbird/Yellow_Headed_Blackbird_0035_8447.jpg
+660 013.Bobolink/Bobolink_0107_10252.jpg
+661 013.Bobolink/Bobolink_0007_9246.jpg
+662 013.Bobolink/Bobolink_0104_10273.jpg
+663 013.Bobolink/Bobolink_0001_9261.jpg
+664 013.Bobolink/Bobolink_0115_9265.jpg
+665 013.Bobolink/Bobolink_0039_9779.jpg
+667 013.Bobolink/Bobolink_0033_10809.jpg
+669 013.Bobolink/Bobolink_0008_9289.jpg
+670 013.Bobolink/Bobolink_0099_9314.jpg
+671 013.Bobolink/Bobolink_0101_9811.jpg
+674 013.Bobolink/Bobolink_0120_10859.jpg
+676 013.Bobolink/Bobolink_0109_9869.jpg
+677 013.Bobolink/Bobolink_0013_9367.jpg
+679 013.Bobolink/Bobolink_0018_9402.jpg
+680 013.Bobolink/Bobolink_0119_10430.jpg
+681 013.Bobolink/Bobolink_0126_11458.jpg
+682 013.Bobolink/Bobolink_0052_9423.jpg
+683 013.Bobolink/Bobolink_0081_9439.jpg
+684 013.Bobolink/Bobolink_0048_9988.jpg
+686 013.Bobolink/Bobolink_0067_11533.jpg
+687 013.Bobolink/Bobolink_0110_9496.jpg
+688 013.Bobolink/Bobolink_0071_9503.jpg
+689 013.Bobolink/Bobolink_0128_9947.jpg
+690 013.Bobolink/Bobolink_0092_10026.jpg
+691 013.Bobolink/Bobolink_0014_11055.jpg
+693 013.Bobolink/Bobolink_0019_10552.jpg
+694 013.Bobolink/Bobolink_0059_10041.jpg
+695 013.Bobolink/Bobolink_0112_11073.jpg
+696 013.Bobolink/Bobolink_0057_10051.jpg
+697 013.Bobolink/Bobolink_0049_9540.jpg
+698 013.Bobolink/Bobolink_0027_10569.jpg
+699 013.Bobolink/Bobolink_0002_11085.jpg
+700 013.Bobolink/Bobolink_0076_11093.jpg
+701 013.Bobolink/Bobolink_0131_9578.jpg
+702 013.Bobolink/Bobolink_0064_10092.jpg
+703 013.Bobolink/Bobolink_0035_11117.jpg
+704 013.Bobolink/Bobolink_0043_10607.jpg
+705 013.Bobolink/Bobolink_0056_9080.jpg
+706 013.Bobolink/Bobolink_0069_9085.jpg
+707 013.Bobolink/Bobolink_0021_10623.jpg
+711 013.Bobolink/Bobolink_0106_9126.jpg
+712 013.Bobolink/Bobolink_0053_10166.jpg
+713 013.Bobolink/Bobolink_0124_10182.jpg
+714 013.Bobolink/Bobolink_0040_9681.jpg
+715 013.Bobolink/Bobolink_0117_10215.jpg
+717 013.Bobolink/Bobolink_0020_9194.jpg
+718 013.Bobolink/Bobolink_0079_10736.jpg
+719 013.Bobolink/Bobolink_0047_9204.jpg
+721 014.Indigo_Bunting/Indigo_Bunting_0014_14167.jpg
+722 014.Indigo_Bunting/Indigo_Bunting_0002_12163.jpg
+723 014.Indigo_Bunting/Indigo_Bunting_0068_13081.jpg
+724 014.Indigo_Bunting/Indigo_Bunting_0040_11805.jpg
+725 014.Indigo_Bunting/Indigo_Bunting_0075_12835.jpg
+726 014.Indigo_Bunting/Indigo_Bunting_0063_11820.jpg
+727 014.Indigo_Bunting/Indigo_Bunting_0028_12335.jpg
+728 014.Indigo_Bunting/Indigo_Bunting_0037_14128.jpg
+729 014.Indigo_Bunting/Indigo_Bunting_0044_14389.jpg
+731 014.Indigo_Bunting/Indigo_Bunting_0027_11579.jpg
+732 014.Indigo_Bunting/Indigo_Bunting_0001_12469.jpg
+733 014.Indigo_Bunting/Indigo_Bunting_0066_12869.jpg
+734 014.Indigo_Bunting/Indigo_Bunting_0084_11848.jpg
+735 014.Indigo_Bunting/Indigo_Bunting_0049_13641.jpg
+737 014.Indigo_Bunting/Indigo_Bunting_0053_13391.jpg
+738 014.Indigo_Bunting/Indigo_Bunting_0015_12632.jpg
+739 014.Indigo_Bunting/Indigo_Bunting_0016_13661.jpg
+740 014.Indigo_Bunting/Indigo_Bunting_0080_13416.jpg
+741 014.Indigo_Bunting/Indigo_Bunting_0018_11883.jpg
+742 014.Indigo_Bunting/Indigo_Bunting_0073_13933.jpg
+743 014.Indigo_Bunting/Indigo_Bunting_0072_14197.jpg
+745 014.Indigo_Bunting/Indigo_Bunting_0071_11639.jpg
+746 014.Indigo_Bunting/Indigo_Bunting_0082_11907.jpg
+747 014.Indigo_Bunting/Indigo_Bunting_0004_13195.jpg
+749 014.Indigo_Bunting/Indigo_Bunting_0036_13716.jpg
+750 014.Indigo_Bunting/Indigo_Bunting_0013_12949.jpg
+751 014.Indigo_Bunting/Indigo_Bunting_0076_12950.jpg
+752 014.Indigo_Bunting/Indigo_Bunting_0021_13979.jpg
+753 014.Indigo_Bunting/Indigo_Bunting_0060_14495.jpg
+754 014.Indigo_Bunting/Indigo_Bunting_0055_13473.jpg
+757 014.Indigo_Bunting/Indigo_Bunting_0058_12207.jpg
+759 014.Indigo_Bunting/Indigo_Bunting_0054_12213.jpg
+760 014.Indigo_Bunting/Indigo_Bunting_0032_12215.jpg
+761 014.Indigo_Bunting/Indigo_Bunting_0025_12532.jpg
+764 014.Indigo_Bunting/Indigo_Bunting_0029_13761.jpg
+765 014.Indigo_Bunting/Indigo_Bunting_0010_13000.jpg
+766 014.Indigo_Bunting/Indigo_Bunting_0078_11852.jpg
+767 014.Indigo_Bunting/Indigo_Bunting_0061_13259.jpg
+768 014.Indigo_Bunting/Indigo_Bunting_0050_11811.jpg
+769 014.Indigo_Bunting/Indigo_Bunting_0039_12756.jpg
+770 014.Indigo_Bunting/Indigo_Bunting_0085_11991.jpg
+771 014.Indigo_Bunting/Indigo_Bunting_0065_14558.jpg
+772 014.Indigo_Bunting/Indigo_Bunting_0051_12837.jpg
+773 014.Indigo_Bunting/Indigo_Bunting_0033_12777.jpg
+774 014.Indigo_Bunting/Indigo_Bunting_0077_14060.jpg
+775 014.Indigo_Bunting/Indigo_Bunting_0006_14317.jpg
+776 014.Indigo_Bunting/Indigo_Bunting_0024_13523.jpg
+777 014.Indigo_Bunting/Indigo_Bunting_0031_13300.jpg
+778 014.Indigo_Bunting/Indigo_Bunting_0003_13049.jpg
+780 015.Lazuli_Bunting/Lazuli_Bunting_0073_14594.jpg
+781 015.Lazuli_Bunting/Lazuli_Bunting_0074_14854.jpg
+782 015.Lazuli_Bunting/Lazuli_Bunting_0102_14605.jpg
+783 015.Lazuli_Bunting/Lazuli_Bunting_0047_14863.jpg
+784 015.Lazuli_Bunting/Lazuli_Bunting_0034_14864.jpg
+785 015.Lazuli_Bunting/Lazuli_Bunting_0101_14873.jpg
+786 015.Lazuli_Bunting/Lazuli_Bunting_0052_14618.jpg
+787 015.Lazuli_Bunting/Lazuli_Bunting_0085_14627.jpg
+788 015.Lazuli_Bunting/Lazuli_Bunting_0089_14598.jpg
+789 015.Lazuli_Bunting/Lazuli_Bunting_0004_14887.jpg
+790 015.Lazuli_Bunting/Lazuli_Bunting_0080_14893.jpg
+791 015.Lazuli_Bunting/Lazuli_Bunting_0027_14895.jpg
+792 015.Lazuli_Bunting/Lazuli_Bunting_0041_15152.jpg
+793 015.Lazuli_Bunting/Lazuli_Bunting_0061_15155.jpg
+795 015.Lazuli_Bunting/Lazuli_Bunting_0078_15164.jpg
+796 015.Lazuli_Bunting/Lazuli_Bunting_0092_14656.jpg
+797 015.Lazuli_Bunting/Lazuli_Bunting_0066_14914.jpg
+798 015.Lazuli_Bunting/Lazuli_Bunting_0010_14915.jpg
+799 015.Lazuli_Bunting/Lazuli_Bunting_0001_14916.jpg
+800 015.Lazuli_Bunting/Lazuli_Bunting_0076_14662.jpg
+801 015.Lazuli_Bunting/Lazuli_Bunting_0095_14919.jpg
+802 015.Lazuli_Bunting/Lazuli_Bunting_0035_14920.jpg
+803 015.Lazuli_Bunting/Lazuli_Bunting_0070_14665.jpg
+805 015.Lazuli_Bunting/Lazuli_Bunting_0026_14669.jpg
+806 015.Lazuli_Bunting/Lazuli_Bunting_0067_14672.jpg
+807 015.Lazuli_Bunting/Lazuli_Bunting_0008_15195.jpg
+808 015.Lazuli_Bunting/Lazuli_Bunting_0032_14778.jpg
+809 015.Lazuli_Bunting/Lazuli_Bunting_0021_14686.jpg
+810 015.Lazuli_Bunting/Lazuli_Bunting_0015_14690.jpg
+811 015.Lazuli_Bunting/Lazuli_Bunting_0028_14950.jpg
+812 015.Lazuli_Bunting/Lazuli_Bunting_0045_14954.jpg
+813 015.Lazuli_Bunting/Lazuli_Bunting_0107_14705.jpg
+814 015.Lazuli_Bunting/Lazuli_Bunting_0081_14709.jpg
+816 015.Lazuli_Bunting/Lazuli_Bunting_0054_14714.jpg
+817 015.Lazuli_Bunting/Lazuli_Bunting_0030_14986.jpg
+819 015.Lazuli_Bunting/Lazuli_Bunting_0046_14787.jpg
+820 015.Lazuli_Bunting/Lazuli_Bunting_0097_14617.jpg
+821 015.Lazuli_Bunting/Lazuli_Bunting_0059_14749.jpg
+822 015.Lazuli_Bunting/Lazuli_Bunting_0105_15017.jpg
+823 015.Lazuli_Bunting/Lazuli_Bunting_0031_15018.jpg
+824 015.Lazuli_Bunting/Lazuli_Bunting_0037_15021.jpg
+825 015.Lazuli_Bunting/Lazuli_Bunting_0093_15030.jpg
+826 015.Lazuli_Bunting/Lazuli_Bunting_0057_14775.jpg
+829 015.Lazuli_Bunting/Lazuli_Bunting_0082_15047.jpg
+830 015.Lazuli_Bunting/Lazuli_Bunting_0084_14815.jpg
+831 015.Lazuli_Bunting/Lazuli_Bunting_0042_14820.jpg
+832 015.Lazuli_Bunting/Lazuli_Bunting_0025_15079.jpg
+833 015.Lazuli_Bunting/Lazuli_Bunting_0014_14824.jpg
+834 015.Lazuli_Bunting/Lazuli_Bunting_0039_15081.jpg
+835 015.Lazuli_Bunting/Lazuli_Bunting_0020_14837.jpg
+836 015.Lazuli_Bunting/Lazuli_Bunting_0087_15096.jpg
+837 015.Lazuli_Bunting/Lazuli_Bunting_0048_14844.jpg
+838 016.Painted_Bunting/Painted_Bunting_0102_16642.jpg
+839 016.Painted_Bunting/Painted_Bunting_0004_16641.jpg
+840 016.Painted_Bunting/Painted_Bunting_0077_16819.jpg
+841 016.Painted_Bunting/Painted_Bunting_0039_15235.jpg
+842 016.Painted_Bunting/Painted_Bunting_0053_16404.jpg
+844 016.Painted_Bunting/Painted_Bunting_0008_16416.jpg
+845 016.Painted_Bunting/Painted_Bunting_0061_16930.jpg
+846 016.Painted_Bunting/Painted_Bunting_0011_16690.jpg
+847 016.Painted_Bunting/Painted_Bunting_0040_16691.jpg
+848 016.Painted_Bunting/Painted_Bunting_0010_16948.jpg
+850 016.Painted_Bunting/Painted_Bunting_0054_16711.jpg
+852 016.Painted_Bunting/Painted_Bunting_0058_16719.jpg
+853 016.Painted_Bunting/Painted_Bunting_0025_16722.jpg
+854 016.Painted_Bunting/Painted_Bunting_0094_16467.jpg
+857 016.Painted_Bunting/Painted_Bunting_0100_16735.jpg
+858 016.Painted_Bunting/Painted_Bunting_0016_15200.jpg
+859 016.Painted_Bunting/Painted_Bunting_0073_16737.jpg
+860 016.Painted_Bunting/Painted_Bunting_0005_15202.jpg
+861 016.Painted_Bunting/Painted_Bunting_0028_15205.jpg
+862 016.Painted_Bunting/Painted_Bunting_0034_15207.jpg
+863 016.Painted_Bunting/Painted_Bunting_0055_15208.jpg
+864 016.Painted_Bunting/Painted_Bunting_0071_15209.jpg
+865 016.Painted_Bunting/Painted_Bunting_0093_15212.jpg
+866 016.Painted_Bunting/Painted_Bunting_0098_15226.jpg
+868 016.Painted_Bunting/Painted_Bunting_0081_15230.jpg
+869 016.Painted_Bunting/Painted_Bunting_0019_15231.jpg
+870 016.Painted_Bunting/Painted_Bunting_0087_15232.jpg
+871 016.Painted_Bunting/Painted_Bunting_0096_15233.jpg
+872 016.Painted_Bunting/Painted_Bunting_0070_16515.jpg
+873 016.Painted_Bunting/Painted_Bunting_0066_15241.jpg
+874 016.Painted_Bunting/Painted_Bunting_0099_16525.jpg
+876 016.Painted_Bunting/Painted_Bunting_0029_16530.jpg
+877 016.Painted_Bunting/Painted_Bunting_0084_16531.jpg
+879 016.Painted_Bunting/Painted_Bunting_0046_16535.jpg
+880 016.Painted_Bunting/Painted_Bunting_0027_16536.jpg
+881 016.Painted_Bunting/Painted_Bunting_0086_16540.jpg
+882 016.Painted_Bunting/Painted_Bunting_0044_16557.jpg
+883 016.Painted_Bunting/Painted_Bunting_0085_15282.jpg
+884 016.Painted_Bunting/Painted_Bunting_0036_16563.jpg
+885 016.Painted_Bunting/Painted_Bunting_0078_16565.jpg
+886 016.Painted_Bunting/Painted_Bunting_0013_15294.jpg
+887 016.Painted_Bunting/Painted_Bunting_0021_15295.jpg
+889 016.Painted_Bunting/Painted_Bunting_0083_16587.jpg
+890 016.Painted_Bunting/Painted_Bunting_0009_16674.jpg
+891 016.Painted_Bunting/Painted_Bunting_0056_16599.jpg
+893 016.Painted_Bunting/Painted_Bunting_0049_16869.jpg
+894 016.Painted_Bunting/Painted_Bunting_0060_15224.jpg
+897 017.Cardinal/Cardinal_0072_17159.jpg
+899 017.Cardinal/Cardinal_0047_17673.jpg
+900 017.Cardinal/Cardinal_0094_17165.jpg
+901 017.Cardinal/Cardinal_0035_17678.jpg
+902 017.Cardinal/Cardinal_0045_18021.jpg
+905 017.Cardinal/Cardinal_0006_17684.jpg
+906 017.Cardinal/Cardinal_0054_19334.jpg
+907 017.Cardinal/Cardinal_0075_17946.jpg
+908 017.Cardinal/Cardinal_0078_17181.jpg
+909 017.Cardinal/Cardinal_0041_17189.jpg
+911 017.Cardinal/Cardinal_0040_17477.jpg
+912 017.Cardinal/Cardinal_0051_17223.jpg
+914 017.Cardinal/Cardinal_0022_17233.jpg
+915 017.Cardinal/Cardinal_0023_19026.jpg
+917 017.Cardinal/Cardinal_0089_18005.jpg
+918 017.Cardinal/Cardinal_0025_17239.jpg
+919 017.Cardinal/Cardinal_0033_19215.jpg
+920 017.Cardinal/Cardinal_0079_19044.jpg
+921 017.Cardinal/Cardinal_0105_19045.jpg
+922 017.Cardinal/Cardinal_0029_17297.jpg
+923 017.Cardinal/Cardinal_0081_17291.jpg
+924 017.Cardinal/Cardinal_0050_18035.jpg
+926 017.Cardinal/Cardinal_0083_18042.jpg
+931 017.Cardinal/Cardinal_0052_18334.jpg
+932 017.Cardinal/Cardinal_0001_17057.jpg
+934 017.Cardinal/Cardinal_0084_17576.jpg
+935 017.Cardinal/Cardinal_0037_18092.jpg
+939 017.Cardinal/Cardinal_0092_17591.jpg
+940 017.Cardinal/Cardinal_0095_18108.jpg
+943 017.Cardinal/Cardinal_0012_18638.jpg
+944 017.Cardinal/Cardinal_0055_18898.jpg
+945 017.Cardinal/Cardinal_0010_18894.jpg
+946 017.Cardinal/Cardinal_0104_17122.jpg
+947 017.Cardinal/Cardinal_0057_17128.jpg
+948 017.Cardinal/Cardinal_0049_18258.jpg
+950 017.Cardinal/Cardinal_0060_17139.jpg
+951 017.Cardinal/Cardinal_0097_17396.jpg
+953 018.Spotted_Catbird/Spotted_Catbird_0018_796800.jpg
+954 018.Spotted_Catbird/Spotted_Catbird_0030_796801.jpg
+955 018.Spotted_Catbird/Spotted_Catbird_0012_796802.jpg
+957 018.Spotted_Catbird/Spotted_Catbird_0004_796804.jpg
+959 018.Spotted_Catbird/Spotted_Catbird_0031_796806.jpg
+963 018.Spotted_Catbird/Spotted_Catbird_0037_796810.jpg
+965 018.Spotted_Catbird/Spotted_Catbird_0028_796813.jpg
+966 018.Spotted_Catbird/Spotted_Catbird_0045_796814.jpg
+968 018.Spotted_Catbird/Spotted_Catbird_0048_796817.jpg
+971 018.Spotted_Catbird/Spotted_Catbird_0040_796820.jpg
+972 018.Spotted_Catbird/Spotted_Catbird_0022_796821.jpg
+973 018.Spotted_Catbird/Spotted_Catbird_0003_796822.jpg
+974 018.Spotted_Catbird/Spotted_Catbird_0006_796823.jpg
+975 018.Spotted_Catbird/Spotted_Catbird_0029_796825.jpg
+977 018.Spotted_Catbird/Spotted_Catbird_0032_796828.jpg
+978 018.Spotted_Catbird/Spotted_Catbird_0046_19399.jpg
+980 018.Spotted_Catbird/Spotted_Catbird_0036_19406.jpg
+981 018.Spotted_Catbird/Spotted_Catbird_0005_19411.jpg
+983 018.Spotted_Catbird/Spotted_Catbird_0014_19425.jpg
+984 018.Spotted_Catbird/Spotted_Catbird_0013_19428.jpg
+985 018.Spotted_Catbird/Spotted_Catbird_0042_19430.jpg
+986 018.Spotted_Catbird/Spotted_Catbird_0010_19436.jpg
+987 018.Spotted_Catbird/Spotted_Catbird_0034_19437.jpg
+988 018.Spotted_Catbird/Spotted_Catbird_0019_796788.jpg
+989 018.Spotted_Catbird/Spotted_Catbird_0008_796789.jpg
+990 018.Spotted_Catbird/Spotted_Catbird_0024_796791.jpg
+991 018.Spotted_Catbird/Spotted_Catbird_0023_796793.jpg
+992 018.Spotted_Catbird/Spotted_Catbird_0020_796794.jpg
+993 018.Spotted_Catbird/Spotted_Catbird_0009_796795.jpg
+995 018.Spotted_Catbird/Spotted_Catbird_0001_796797.jpg
+996 018.Spotted_Catbird/Spotted_Catbird_0021_796798.jpg
+997 018.Spotted_Catbird/Spotted_Catbird_0035_796799.jpg
+998 019.Gray_Catbird/Gray_Catbird_0043_21008.jpg
+1001 019.Gray_Catbird/Gray_Catbird_0039_21040.jpg
+1002 019.Gray_Catbird/Gray_Catbird_0127_20034.jpg
+1003 019.Gray_Catbird/Gray_Catbird_0069_21065.jpg
+1005 019.Gray_Catbird/Gray_Catbird_0013_20562.jpg
+1006 019.Gray_Catbird/Gray_Catbird_0019_20567.jpg
+1007 019.Gray_Catbird/Gray_Catbird_0111_19550.jpg
+1008 019.Gray_Catbird/Gray_Catbird_0023_20668.jpg
+1009 019.Gray_Catbird/Gray_Catbird_0130_20328.jpg
+1010 019.Gray_Catbird/Gray_Catbird_0134_20596.jpg
+1011 019.Gray_Catbird/Gray_Catbird_0028_20598.jpg
+1012 019.Gray_Catbird/Gray_Catbird_0022_19585.jpg
+1014 019.Gray_Catbird/Gray_Catbird_0075_21125.jpg
+1015 019.Gray_Catbird/Gray_Catbird_0074_19601.jpg
+1017 019.Gray_Catbird/Gray_Catbird_0080_20139.jpg
+1018 019.Gray_Catbird/Gray_Catbird_0060_20656.jpg
+1019 019.Gray_Catbird/Gray_Catbird_0131_19633.jpg
+1020 019.Gray_Catbird/Gray_Catbird_0141_21174.jpg
+1021 019.Gray_Catbird/Gray_Catbird_0101_21178.jpg
+1026 019.Gray_Catbird/Gray_Catbird_0001_20695.jpg
+1027 019.Gray_Catbird/Gray_Catbird_0063_20707.jpg
+1028 019.Gray_Catbird/Gray_Catbird_0104_20716.jpg
+1029 019.Gray_Catbird/Gray_Catbird_0015_21230.jpg
+1030 019.Gray_Catbird/Gray_Catbird_0092_20735.jpg
+1031 019.Gray_Catbird/Gray_Catbird_0024_20739.jpg
+1032 019.Gray_Catbird/Gray_Catbird_0091_20416.jpg
+1033 019.Gray_Catbird/Gray_Catbird_0113_21270.jpg
+1034 019.Gray_Catbird/Gray_Catbird_0050_20763.jpg
+1035 019.Gray_Catbird/Gray_Catbird_0007_20186.jpg
+1037 019.Gray_Catbird/Gray_Catbird_0094_21303.jpg
+1040 019.Gray_Catbird/Gray_Catbird_0125_19833.jpg
+1041 019.Gray_Catbird/Gray_Catbird_0105_20864.jpg
+1048 019.Gray_Catbird/Gray_Catbird_0045_20950.jpg
+1050 019.Gray_Catbird/Gray_Catbird_0044_20955.jpg
+1051 019.Gray_Catbird/Gray_Catbird_0027_20968.jpg
+1052 019.Gray_Catbird/Gray_Catbird_0118_20476.jpg
+1053 019.Gray_Catbird/Gray_Catbird_0006_20867.jpg
+1054 019.Gray_Catbird/Gray_Catbird_0071_20974.jpg
+1055 019.Gray_Catbird/Gray_Catbird_0126_19446.jpg
+1056 019.Gray_Catbird/Gray_Catbird_0129_20987.jpg
+1057 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0029_22017.jpg
+1059 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0073_21932.jpg
+1060 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0106_22032.jpg
+1062 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0063_21783.jpg
+1063 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0109_21796.jpg
+1064 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0048_21797.jpg
+1065 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0089_21804.jpg
+1066 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0011_21820.jpg
+1068 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0084_22082.jpg
+1071 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0095_21832.jpg
+1072 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0066_21839.jpg
+1074 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0044_22106.jpg
+1081 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0035_21870.jpg
+1082 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0110_21871.jpg
+1083 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0071_22129.jpg
+1085 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0065_22137.jpg
+1086 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0085_21899.jpg
+1088 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0100_21913.jpg
+1089 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0081_21829.jpg
+1090 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0023_21664.jpg
+1091 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0103_21670.jpg
+1092 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0001_21928.jpg
+1093 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0062_21673.jpg
+1096 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0088_21686.jpg
+1097 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0022_21944.jpg
+1098 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0094_21693.jpg
+1099 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0087_21695.jpg
+1101 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0107_21698.jpg
+1103 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0012_21961.jpg
+1104 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0030_21964.jpg
+1106 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0105_21714.jpg
+1110 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0077_21986.jpg
+1111 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0098_21987.jpg
+1112 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0014_21970.jpg
+1113 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0033_21873.jpg
+1114 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0097_21748.jpg
+1115 020.Yellow_breasted_Chat/Yellow_Breasted_Chat_0013_22008.jpg
+1116 021.Eastern_Towhee/Eastern_Towhee_0122_22538.jpg
+1117 021.Eastern_Towhee/Eastern_Towhee_0018_22546.jpg
+1118 021.Eastern_Towhee/Eastern_Towhee_0110_22549.jpg
+1119 021.Eastern_Towhee/Eastern_Towhee_0048_22557.jpg
+1120 021.Eastern_Towhee/Eastern_Towhee_0052_22558.jpg
+1121 021.Eastern_Towhee/Eastern_Towhee_0101_22559.jpg
+1122 021.Eastern_Towhee/Eastern_Towhee_0099_22566.jpg
+1123 021.Eastern_Towhee/Eastern_Towhee_0068_22194.jpg
+1124 021.Eastern_Towhee/Eastern_Towhee_0097_22580.jpg
+1125 021.Eastern_Towhee/Eastern_Towhee_0124_22585.jpg
+1126 021.Eastern_Towhee/Eastern_Towhee_0075_22588.jpg
+1127 021.Eastern_Towhee/Eastern_Towhee_0095_22594.jpg
+1129 021.Eastern_Towhee/Eastern_Towhee_0074_22620.jpg
+1130 021.Eastern_Towhee/Eastern_Towhee_0093_22621.jpg
+1132 021.Eastern_Towhee/Eastern_Towhee_0134_22624.jpg
+1133 021.Eastern_Towhee/Eastern_Towhee_0091_22629.jpg
+1134 021.Eastern_Towhee/Eastern_Towhee_0126_22639.jpg
+1135 021.Eastern_Towhee/Eastern_Towhee_0064_22649.jpg
+1136 021.Eastern_Towhee/Eastern_Towhee_0017_22138.jpg
+1137 021.Eastern_Towhee/Eastern_Towhee_0020_22141.jpg
+1138 021.Eastern_Towhee/Eastern_Towhee_0067_22142.jpg
+1139 021.Eastern_Towhee/Eastern_Towhee_0054_22147.jpg
+1140 021.Eastern_Towhee/Eastern_Towhee_0021_22152.jpg
+1141 021.Eastern_Towhee/Eastern_Towhee_0042_22155.jpg
+1142 021.Eastern_Towhee/Eastern_Towhee_0085_22674.jpg
+1143 021.Eastern_Towhee/Eastern_Towhee_0105_22675.jpg
+1144 021.Eastern_Towhee/Eastern_Towhee_0098_22676.jpg
+1145 021.Eastern_Towhee/Eastern_Towhee_0111_22168.jpg
+1146 021.Eastern_Towhee/Eastern_Towhee_0007_22172.jpg
+1147 021.Eastern_Towhee/Eastern_Towhee_0030_22693.jpg
+1148 021.Eastern_Towhee/Eastern_Towhee_0108_22182.jpg
+1149 021.Eastern_Towhee/Eastern_Towhee_0120_22189.jpg
+1150 021.Eastern_Towhee/Eastern_Towhee_0125_22220.jpg
+1151 021.Eastern_Towhee/Eastern_Towhee_0035_22223.jpg
+1152 021.Eastern_Towhee/Eastern_Towhee_0117_22741.jpg
+1153 021.Eastern_Towhee/Eastern_Towhee_0112_22231.jpg
+1154 021.Eastern_Towhee/Eastern_Towhee_0031_22233.jpg
+1155 021.Eastern_Towhee/Eastern_Towhee_0073_22247.jpg
+1157 021.Eastern_Towhee/Eastern_Towhee_0090_22273.jpg
+1158 021.Eastern_Towhee/Eastern_Towhee_0015_22275.jpg
+1160 021.Eastern_Towhee/Eastern_Towhee_0080_22303.jpg
+1161 021.Eastern_Towhee/Eastern_Towhee_0115_22304.jpg
+1162 021.Eastern_Towhee/Eastern_Towhee_0001_22314.jpg
+1163 021.Eastern_Towhee/Eastern_Towhee_0002_22318.jpg
+1164 021.Eastern_Towhee/Eastern_Towhee_0121_22319.jpg
+1165 021.Eastern_Towhee/Eastern_Towhee_0082_22330.jpg
+1166 021.Eastern_Towhee/Eastern_Towhee_0013_22336.jpg
+1168 021.Eastern_Towhee/Eastern_Towhee_0049_22357.jpg
+1169 021.Eastern_Towhee/Eastern_Towhee_0129_22358.jpg
+1170 021.Eastern_Towhee/Eastern_Towhee_0014_22367.jpg
+1171 021.Eastern_Towhee/Eastern_Towhee_0027_22372.jpg
+1172 021.Eastern_Towhee/Eastern_Towhee_0024_22382.jpg
+1173 021.Eastern_Towhee/Eastern_Towhee_0038_22399.jpg
+1174 021.Eastern_Towhee/Eastern_Towhee_0062_22418.jpg
+1175 021.Eastern_Towhee/Eastern_Towhee_0079_22690.jpg
+1178 022.Chuck_will_Widow/Chuck_Will_Widow_0032_22802.jpg
+1179 022.Chuck_will_Widow/Chuck_Will_Widow_0019_22806.jpg
+1180 022.Chuck_will_Widow/Chuck_Will_Widow_0021_796952.jpg
+1182 022.Chuck_will_Widow/Chuck_Will_Widow_0011_796954.jpg
+1184 022.Chuck_will_Widow/Chuck_Will_Widow_0012_796956.jpg
+1186 022.Chuck_will_Widow/Chuck_Will_Widow_0007_796958.jpg
+1189 022.Chuck_will_Widow/Chuck_Will_Widow_0037_796961.jpg
+1190 022.Chuck_will_Widow/Chuck_Will_Widow_0015_796962.jpg
+1192 022.Chuck_will_Widow/Chuck_Will_Widow_0010_796964.jpg
+1194 022.Chuck_will_Widow/Chuck_Will_Widow_0046_796966.jpg
+1196 022.Chuck_will_Widow/Chuck_Will_Widow_0008_796968.jpg
+1197 022.Chuck_will_Widow/Chuck_Will_Widow_0034_796969.jpg
+1200 022.Chuck_will_Widow/Chuck_Will_Widow_0025_796972.jpg
+1204 022.Chuck_will_Widow/Chuck_Will_Widow_0040_796976.jpg
+1207 022.Chuck_will_Widow/Chuck_Will_Widow_0023_796979.jpg
+1208 022.Chuck_will_Widow/Chuck_Will_Widow_0018_796980.jpg
+1209 022.Chuck_will_Widow/Chuck_Will_Widow_0031_796981.jpg
+1211 022.Chuck_will_Widow/Chuck_Will_Widow_0042_796983.jpg
+1214 022.Chuck_will_Widow/Chuck_Will_Widow_0006_796986.jpg
+1215 022.Chuck_will_Widow/Chuck_Will_Widow_0014_796987.jpg
+1218 022.Chuck_will_Widow/Chuck_Will_Widow_0051_796991.jpg
+1222 022.Chuck_will_Widow/Chuck_Will_Widow_0056_796996.jpg
+1225 022.Chuck_will_Widow/Chuck_Will_Widow_0058_796999.jpg
+1227 022.Chuck_will_Widow/Chuck_Will_Widow_0043_797001.jpg
+1229 022.Chuck_will_Widow/Chuck_Will_Widow_0050_22750.jpg
+1230 022.Chuck_will_Widow/Chuck_Will_Widow_0029_22751.jpg
+1231 022.Chuck_will_Widow/Chuck_Will_Widow_0054_22782.jpg
+1232 023.Brandt_Cormorant/Brandt_Cormorant_0029_23043.jpg
+1235 023.Brandt_Cormorant/Brandt_Cormorant_0092_23061.jpg
+1236 023.Brandt_Cormorant/Brandt_Cormorant_0072_23069.jpg
+1237 023.Brandt_Cormorant/Brandt_Cormorant_0002_23072.jpg
+1238 023.Brandt_Cormorant/Brandt_Cormorant_0025_22820.jpg
+1239 023.Brandt_Cormorant/Brandt_Cormorant_0016_23077.jpg
+1240 023.Brandt_Cormorant/Brandt_Cormorant_0018_23090.jpg
+1242 023.Brandt_Cormorant/Brandt_Cormorant_0021_23097.jpg
+1243 023.Brandt_Cormorant/Brandt_Cormorant_0052_23356.jpg
+1244 023.Brandt_Cormorant/Brandt_Cormorant_0064_22849.jpg
+1250 023.Brandt_Cormorant/Brandt_Cormorant_0013_23391.jpg
+1252 023.Brandt_Cormorant/Brandt_Cormorant_0044_22884.jpg
+1254 023.Brandt_Cormorant/Brandt_Cormorant_0001_23398.jpg
+1257 023.Brandt_Cormorant/Brandt_Cormorant_0028_22892.jpg
+1259 023.Brandt_Cormorant/Brandt_Cormorant_0083_23156.jpg
+1260 023.Brandt_Cormorant/Brandt_Cormorant_0022_23157.jpg
+1261 023.Brandt_Cormorant/Brandt_Cormorant_0061_22902.jpg
+1262 023.Brandt_Cormorant/Brandt_Cormorant_0026_22913.jpg
+1263 023.Brandt_Cormorant/Brandt_Cormorant_0045_22916.jpg
+1265 023.Brandt_Cormorant/Brandt_Cormorant_0049_22924.jpg
+1267 023.Brandt_Cormorant/Brandt_Cormorant_0007_22934.jpg
+1268 023.Brandt_Cormorant/Brandt_Cormorant_0036_22937.jpg
+1270 023.Brandt_Cormorant/Brandt_Cormorant_0015_23198.jpg
+1272 023.Brandt_Cormorant/Brandt_Cormorant_0078_23203.jpg
+1274 023.Brandt_Cormorant/Brandt_Cormorant_0075_22970.jpg
+1275 023.Brandt_Cormorant/Brandt_Cormorant_0033_22975.jpg
+1277 023.Brandt_Cormorant/Brandt_Cormorant_0032_22886.jpg
+1278 023.Brandt_Cormorant/Brandt_Cormorant_0006_22925.jpg
+1279 023.Brandt_Cormorant/Brandt_Cormorant_0023_23254.jpg
+1280 023.Brandt_Cormorant/Brandt_Cormorant_0035_23000.jpg
+1282 023.Brandt_Cormorant/Brandt_Cormorant_0080_23002.jpg
+1285 023.Brandt_Cormorant/Brandt_Cormorant_0084_23265.jpg
+1287 023.Brandt_Cormorant/Brandt_Cormorant_0068_23019.jpg
+1289 023.Brandt_Cormorant/Brandt_Cormorant_0047_23337.jpg
+1290 023.Brandt_Cormorant/Brandt_Cormorant_0062_23038.jpg
+1291 024.Red_faced_Cormorant/Red_Faced_Cormorant_0053_796331.jpg
+1292 024.Red_faced_Cormorant/Red_Faced_Cormorant_0026_796289.jpg
+1293 024.Red_faced_Cormorant/Red_Faced_Cormorant_0021_796265.jpg
+1294 024.Red_faced_Cormorant/Red_Faced_Cormorant_0072_796269.jpg
+1295 024.Red_faced_Cormorant/Red_Faced_Cormorant_0003_796270.jpg
+1297 024.Red_faced_Cormorant/Red_Faced_Cormorant_0069_796274.jpg
+1298 024.Red_faced_Cormorant/Red_Faced_Cormorant_0002_796275.jpg
+1300 024.Red_faced_Cormorant/Red_Faced_Cormorant_0042_796277.jpg
+1302 024.Red_faced_Cormorant/Red_Faced_Cormorant_0049_796279.jpg
+1304 024.Red_faced_Cormorant/Red_Faced_Cormorant_0063_796284.jpg
+1305 024.Red_faced_Cormorant/Red_Faced_Cormorant_0024_796285.jpg
+1306 024.Red_faced_Cormorant/Red_Faced_Cormorant_0057_796286.jpg
+1307 024.Red_faced_Cormorant/Red_Faced_Cormorant_0034_23425.jpg
+1308 024.Red_faced_Cormorant/Red_Faced_Cormorant_0065_796293.jpg
+1310 024.Red_faced_Cormorant/Red_Faced_Cormorant_0048_796296.jpg
+1311 024.Red_faced_Cormorant/Red_Faced_Cormorant_0056_796297.jpg
+1312 024.Red_faced_Cormorant/Red_Faced_Cormorant_0061_796300.jpg
+1313 024.Red_faced_Cormorant/Red_Faced_Cormorant_0054_796301.jpg
+1314 024.Red_faced_Cormorant/Red_Faced_Cormorant_0037_796305.jpg
+1316 024.Red_faced_Cormorant/Red_Faced_Cormorant_0015_796307.jpg
+1317 024.Red_faced_Cormorant/Red_Faced_Cormorant_0039_796308.jpg
+1318 024.Red_faced_Cormorant/Red_Faced_Cormorant_0046_23446.jpg
+1320 024.Red_faced_Cormorant/Red_Faced_Cormorant_0009_796314.jpg
+1321 024.Red_faced_Cormorant/Red_Faced_Cormorant_0058_796315.jpg
+1323 024.Red_faced_Cormorant/Red_Faced_Cormorant_0020_796318.jpg
+1324 024.Red_faced_Cormorant/Red_Faced_Cormorant_0070_796319.jpg
+1326 024.Red_faced_Cormorant/Red_Faced_Cormorant_0028_796322.jpg
+1327 024.Red_faced_Cormorant/Red_Faced_Cormorant_0017_796323.jpg
+1328 024.Red_faced_Cormorant/Red_Faced_Cormorant_0045_796324.jpg
+1329 024.Red_faced_Cormorant/Red_Faced_Cormorant_0030_796325.jpg
+1330 024.Red_faced_Cormorant/Red_Faced_Cormorant_0001_796327.jpg
+1334 024.Red_faced_Cormorant/Red_Faced_Cormorant_0073_796332.jpg
+1335 024.Red_faced_Cormorant/Red_Faced_Cormorant_0066_796333.jpg
+1337 024.Red_faced_Cormorant/Red_Faced_Cormorant_0062_796336.jpg
+1338 024.Red_faced_Cormorant/Red_Faced_Cormorant_0033_796337.jpg
+1339 024.Red_faced_Cormorant/Red_Faced_Cormorant_0027_23482.jpg
+1340 024.Red_faced_Cormorant/Red_Faced_Cormorant_0060_23416.jpg
+1341 024.Red_faced_Cormorant/Red_Faced_Cormorant_0010_23421.jpg
+1343 025.Pelagic_Cormorant/Pelagic_Cormorant_0054_23812.jpg
+1344 025.Pelagic_Cormorant/Pelagic_Cormorant_0083_23557.jpg
+1345 025.Pelagic_Cormorant/Pelagic_Cormorant_0009_23561.jpg
+1346 025.Pelagic_Cormorant/Pelagic_Cormorant_0012_23565.jpg
+1347 025.Pelagic_Cormorant/Pelagic_Cormorant_0032_23570.jpg
+1348 025.Pelagic_Cormorant/Pelagic_Cormorant_0070_23513.jpg
+1350 025.Pelagic_Cormorant/Pelagic_Cormorant_0063_23515.jpg
+1351 025.Pelagic_Cormorant/Pelagic_Cormorant_0046_23588.jpg
+1354 025.Pelagic_Cormorant/Pelagic_Cormorant_0088_23855.jpg
+1355 025.Pelagic_Cormorant/Pelagic_Cormorant_0008_23602.jpg
+1356 025.Pelagic_Cormorant/Pelagic_Cormorant_0071_23964.jpg
+1357 025.Pelagic_Cormorant/Pelagic_Cormorant_0017_23875.jpg
+1358 025.Pelagic_Cormorant/Pelagic_Cormorant_0062_23623.jpg
+1359 025.Pelagic_Cormorant/Pelagic_Cormorant_0042_23522.jpg
+1360 025.Pelagic_Cormorant/Pelagic_Cormorant_0085_23821.jpg
+1361 025.Pelagic_Cormorant/Pelagic_Cormorant_0037_23889.jpg
+1362 025.Pelagic_Cormorant/Pelagic_Cormorant_0080_23890.jpg
+1365 025.Pelagic_Cormorant/Pelagic_Cormorant_0064_23641.jpg
+1371 025.Pelagic_Cormorant/Pelagic_Cormorant_0002_23680.jpg
+1372 025.Pelagic_Cormorant/Pelagic_Cormorant_0003_23695.jpg
+1373 025.Pelagic_Cormorant/Pelagic_Cormorant_0010_23711.jpg
+1374 025.Pelagic_Cormorant/Pelagic_Cormorant_0024_23712.jpg
+1375 025.Pelagic_Cormorant/Pelagic_Cormorant_0044_23536.jpg
+1376 025.Pelagic_Cormorant/Pelagic_Cormorant_0049_23714.jpg
+1377 025.Pelagic_Cormorant/Pelagic_Cormorant_0047_23718.jpg
+1378 025.Pelagic_Cormorant/Pelagic_Cormorant_0086_23719.jpg
+1379 025.Pelagic_Cormorant/Pelagic_Cormorant_0005_23720.jpg
+1380 025.Pelagic_Cormorant/Pelagic_Cormorant_0093_23722.jpg
+1381 025.Pelagic_Cormorant/Pelagic_Cormorant_0018_23880.jpg
+1382 025.Pelagic_Cormorant/Pelagic_Cormorant_0030_23732.jpg
+1385 025.Pelagic_Cormorant/Pelagic_Cormorant_0041_23763.jpg
+1386 025.Pelagic_Cormorant/Pelagic_Cormorant_0016_23509.jpg
+1387 025.Pelagic_Cormorant/Pelagic_Cormorant_0074_23511.jpg
+1388 025.Pelagic_Cormorant/Pelagic_Cormorant_0082_23844.jpg
+1389 025.Pelagic_Cormorant/Pelagic_Cormorant_0019_23546.jpg
+1390 025.Pelagic_Cormorant/Pelagic_Cormorant_0096_23775.jpg
+1392 025.Pelagic_Cormorant/Pelagic_Cormorant_0102_23778.jpg
+1393 025.Pelagic_Cormorant/Pelagic_Cormorant_0076_23523.jpg
+1394 025.Pelagic_Cormorant/Pelagic_Cormorant_0098_23783.jpg
+1395 025.Pelagic_Cormorant/Pelagic_Cormorant_0099_23784.jpg
+1396 025.Pelagic_Cormorant/Pelagic_Cormorant_0073_23785.jpg
+1397 025.Pelagic_Cormorant/Pelagic_Cormorant_0033_23530.jpg
+1398 025.Pelagic_Cormorant/Pelagic_Cormorant_0026_23792.jpg
+1399 025.Pelagic_Cormorant/Pelagic_Cormorant_0001_23538.jpg
+1400 025.Pelagic_Cormorant/Pelagic_Cormorant_0014_23801.jpg
+1401 025.Pelagic_Cormorant/Pelagic_Cormorant_0022_23802.jpg
+1402 025.Pelagic_Cormorant/Pelagic_Cormorant_0061_23548.jpg
+1404 026.Bronzed_Cowbird/Bronzed_Cowbird_0057_24074.jpg
+1405 026.Bronzed_Cowbird/Bronzed_Cowbird_0012_796247.jpg
+1407 026.Bronzed_Cowbird/Bronzed_Cowbird_0085_24152.jpg
+1408 026.Bronzed_Cowbird/Bronzed_Cowbird_0060_24082.jpg
+1409 026.Bronzed_Cowbird/Bronzed_Cowbird_0051_24083.jpg
+1410 026.Bronzed_Cowbird/Bronzed_Cowbird_0030_24103.jpg
+1411 026.Bronzed_Cowbird/Bronzed_Cowbird_0034_796209.jpg
+1412 026.Bronzed_Cowbird/Bronzed_Cowbird_0091_796212.jpg
+1414 026.Bronzed_Cowbird/Bronzed_Cowbird_0092_796215.jpg
+1415 026.Bronzed_Cowbird/Bronzed_Cowbird_0052_796216.jpg
+1416 026.Bronzed_Cowbird/Bronzed_Cowbird_0046_796218.jpg
+1419 026.Bronzed_Cowbird/Bronzed_Cowbird_0022_796221.jpg
+1421 026.Bronzed_Cowbird/Bronzed_Cowbird_0087_796223.jpg
+1422 026.Bronzed_Cowbird/Bronzed_Cowbird_0043_796224.jpg
+1423 026.Bronzed_Cowbird/Bronzed_Cowbird_0073_796226.jpg
+1424 026.Bronzed_Cowbird/Bronzed_Cowbird_0013_24131.jpg
+1425 026.Bronzed_Cowbird/Bronzed_Cowbird_0026_796229.jpg
+1427 026.Bronzed_Cowbird/Bronzed_Cowbird_0061_796232.jpg
+1429 026.Bronzed_Cowbird/Bronzed_Cowbird_0011_24138.jpg
+1430 026.Bronzed_Cowbird/Bronzed_Cowbird_0076_796235.jpg
+1431 026.Bronzed_Cowbird/Bronzed_Cowbird_0020_796237.jpg
+1432 026.Bronzed_Cowbird/Bronzed_Cowbird_0062_796238.jpg
+1433 026.Bronzed_Cowbird/Bronzed_Cowbird_0058_796239.jpg
+1435 026.Bronzed_Cowbird/Bronzed_Cowbird_0049_24147.jpg
+1437 026.Bronzed_Cowbird/Bronzed_Cowbird_0003_796246.jpg
+1440 026.Bronzed_Cowbird/Bronzed_Cowbird_0029_796256.jpg
+1441 026.Bronzed_Cowbird/Bronzed_Cowbird_0086_796259.jpg
+1442 026.Bronzed_Cowbird/Bronzed_Cowbird_0078_796262.jpg
+1443 026.Bronzed_Cowbird/Bronzed_Cowbird_0024_24167.jpg
+1444 026.Bronzed_Cowbird/Bronzed_Cowbird_0053_24170.jpg
+1445 026.Bronzed_Cowbird/Bronzed_Cowbird_0005_24173.jpg
+1446 026.Bronzed_Cowbird/Bronzed_Cowbird_0082_24175.jpg
+1447 026.Bronzed_Cowbird/Bronzed_Cowbird_0090_24179.jpg
+1448 026.Bronzed_Cowbird/Bronzed_Cowbird_0021_24189.jpg
+1449 026.Bronzed_Cowbird/Bronzed_Cowbird_0081_24198.jpg
+1450 026.Bronzed_Cowbird/Bronzed_Cowbird_0064_24199.jpg
+1451 026.Bronzed_Cowbird/Bronzed_Cowbird_0031_24139.jpg
+1452 026.Bronzed_Cowbird/Bronzed_Cowbird_0018_24140.jpg
+1453 026.Bronzed_Cowbird/Bronzed_Cowbird_0017_24019.jpg
+1454 026.Bronzed_Cowbird/Bronzed_Cowbird_0019_796242.jpg
+1455 026.Bronzed_Cowbird/Bronzed_Cowbird_0039_24026.jpg
+1456 026.Bronzed_Cowbird/Bronzed_Cowbird_0014_24030.jpg
+1457 026.Bronzed_Cowbird/Bronzed_Cowbird_0037_24032.jpg
+1458 026.Bronzed_Cowbird/Bronzed_Cowbird_0009_24033.jpg
+1459 026.Bronzed_Cowbird/Bronzed_Cowbird_0044_24145.jpg
+1460 026.Bronzed_Cowbird/Bronzed_Cowbird_0074_24045.jpg
+1463 027.Shiny_Cowbird/Shiny_Cowbird_0056_24321.jpg
+1466 027.Shiny_Cowbird/Shiny_Cowbird_0075_24335.jpg
+1467 027.Shiny_Cowbird/Shiny_Cowbird_0057_24345.jpg
+1468 027.Shiny_Cowbird/Shiny_Cowbird_0026_796847.jpg
+1470 027.Shiny_Cowbird/Shiny_Cowbird_0066_24358.jpg
+1471 027.Shiny_Cowbird/Shiny_Cowbird_0039_24359.jpg
+1473 027.Shiny_Cowbird/Shiny_Cowbird_0029_24372.jpg
+1474 027.Shiny_Cowbird/Shiny_Cowbird_0040_24379.jpg
+1475 027.Shiny_Cowbird/Shiny_Cowbird_0002_24380.jpg
+1476 027.Shiny_Cowbird/Shiny_Cowbird_0086_24386.jpg
+1479 027.Shiny_Cowbird/Shiny_Cowbird_0012_24249.jpg
+1481 027.Shiny_Cowbird/Shiny_Cowbird_0059_24421.jpg
+1482 027.Shiny_Cowbird/Shiny_Cowbird_0007_24434.jpg
+1483 027.Shiny_Cowbird/Shiny_Cowbird_0051_24438.jpg
+1485 027.Shiny_Cowbird/Shiny_Cowbird_0037_24440.jpg
+1486 027.Shiny_Cowbird/Shiny_Cowbird_0025_24444.jpg
+1487 027.Shiny_Cowbird/Shiny_Cowbird_0030_24206.jpg
+1488 027.Shiny_Cowbird/Shiny_Cowbird_0047_24210.jpg
+1489 027.Shiny_Cowbird/Shiny_Cowbird_0014_24214.jpg
+1490 027.Shiny_Cowbird/Shiny_Cowbird_0018_796830.jpg
+1491 027.Shiny_Cowbird/Shiny_Cowbird_0070_796832.jpg
+1492 027.Shiny_Cowbird/Shiny_Cowbird_0081_796833.jpg
+1493 027.Shiny_Cowbird/Shiny_Cowbird_0083_796834.jpg
+1494 027.Shiny_Cowbird/Shiny_Cowbird_0009_796835.jpg
+1495 027.Shiny_Cowbird/Shiny_Cowbird_0035_796837.jpg
+1496 027.Shiny_Cowbird/Shiny_Cowbird_0085_796839.jpg
+1497 027.Shiny_Cowbird/Shiny_Cowbird_0004_796841.jpg
+1498 027.Shiny_Cowbird/Shiny_Cowbird_0078_796846.jpg
+1499 027.Shiny_Cowbird/Shiny_Cowbird_0044_24239.jpg
+1500 027.Shiny_Cowbird/Shiny_Cowbird_0064_796848.jpg
+1501 027.Shiny_Cowbird/Shiny_Cowbird_0034_796849.jpg
+1502 027.Shiny_Cowbird/Shiny_Cowbird_0027_796850.jpg
+1503 027.Shiny_Cowbird/Shiny_Cowbird_0031_796851.jpg
+1504 027.Shiny_Cowbird/Shiny_Cowbird_0017_796853.jpg
+1505 027.Shiny_Cowbird/Shiny_Cowbird_0045_796856.jpg
+1506 027.Shiny_Cowbird/Shiny_Cowbird_0043_796857.jpg
+1507 027.Shiny_Cowbird/Shiny_Cowbird_0015_796858.jpg
+1508 027.Shiny_Cowbird/Shiny_Cowbird_0001_796860.jpg
+1509 027.Shiny_Cowbird/Shiny_Cowbird_0006_796864.jpg
+1510 027.Shiny_Cowbird/Shiny_Cowbird_0063_24259.jpg
+1511 027.Shiny_Cowbird/Shiny_Cowbird_0021_796870.jpg
+1512 027.Shiny_Cowbird/Shiny_Cowbird_0061_796874.jpg
+1513 027.Shiny_Cowbird/Shiny_Cowbird_0080_796875.jpg
+1514 027.Shiny_Cowbird/Shiny_Cowbird_0062_24271.jpg
+1515 027.Shiny_Cowbird/Shiny_Cowbird_0077_24273.jpg
+1516 027.Shiny_Cowbird/Shiny_Cowbird_0036_24274.jpg
+1517 027.Shiny_Cowbird/Shiny_Cowbird_0020_24276.jpg
+1518 027.Shiny_Cowbird/Shiny_Cowbird_0082_24279.jpg
+1519 027.Shiny_Cowbird/Shiny_Cowbird_0024_24281.jpg
+1520 027.Shiny_Cowbird/Shiny_Cowbird_0005_796873.jpg
+1521 027.Shiny_Cowbird/Shiny_Cowbird_0032_24284.jpg
+1523 028.Brown_Creeper/Brown_Creeper_0042_24578.jpg
+1524 028.Brown_Creeper/Brown_Creeper_0093_24581.jpg
+1525 028.Brown_Creeper/Brown_Creeper_0123_24589.jpg
+1526 028.Brown_Creeper/Brown_Creeper_0111_24590.jpg
+1527 028.Brown_Creeper/Brown_Creeper_0061_24601.jpg
+1529 028.Brown_Creeper/Brown_Creeper_0069_24618.jpg
+1530 028.Brown_Creeper/Brown_Creeper_0103_24632.jpg
+1531 028.Brown_Creeper/Brown_Creeper_0079_24647.jpg
+1533 028.Brown_Creeper/Brown_Creeper_0127_24656.jpg
+1534 028.Brown_Creeper/Brown_Creeper_0005_24659.jpg
+1535 028.Brown_Creeper/Brown_Creeper_0053_24451.jpg
+1536 028.Brown_Creeper/Brown_Creeper_0104_24698.jpg
+1537 028.Brown_Creeper/Brown_Creeper_0063_24724.jpg
+1538 028.Brown_Creeper/Brown_Creeper_0027_24729.jpg
+1539 028.Brown_Creeper/Brown_Creeper_0088_24731.jpg
+1540 028.Brown_Creeper/Brown_Creeper_0074_24789.jpg
+1541 028.Brown_Creeper/Brown_Creeper_0032_24800.jpg
+1542 028.Brown_Creeper/Brown_Creeper_0107_24827.jpg
+1543 028.Brown_Creeper/Brown_Creeper_0002_24838.jpg
+1544 028.Brown_Creeper/Brown_Creeper_0064_24840.jpg
+1545 028.Brown_Creeper/Brown_Creeper_0089_24841.jpg
+1546 028.Brown_Creeper/Brown_Creeper_0004_24851.jpg
+1547 028.Brown_Creeper/Brown_Creeper_0110_24866.jpg
+1548 028.Brown_Creeper/Brown_Creeper_0007_24902.jpg
+1549 028.Brown_Creeper/Brown_Creeper_0049_24911.jpg
+1550 028.Brown_Creeper/Brown_Creeper_0029_24912.jpg
+1551 028.Brown_Creeper/Brown_Creeper_0065_24464.jpg
+1552 028.Brown_Creeper/Brown_Creeper_0058_24933.jpg
+1553 028.Brown_Creeper/Brown_Creeper_0085_24938.jpg
+1554 028.Brown_Creeper/Brown_Creeper_0023_24940.jpg
+1555 028.Brown_Creeper/Brown_Creeper_0035_24941.jpg
+1556 028.Brown_Creeper/Brown_Creeper_0075_24947.jpg
+1557 028.Brown_Creeper/Brown_Creeper_0120_24955.jpg
+1559 028.Brown_Creeper/Brown_Creeper_0001_24449.jpg
+1560 028.Brown_Creeper/Brown_Creeper_0124_24963.jpg
+1561 028.Brown_Creeper/Brown_Creeper_0056_24452.jpg
+1562 028.Brown_Creeper/Brown_Creeper_0083_24967.jpg
+1563 028.Brown_Creeper/Brown_Creeper_0046_24463.jpg
+1564 028.Brown_Creeper/Brown_Creeper_0048_24976.jpg
+1565 028.Brown_Creeper/Brown_Creeper_0072_24977.jpg
+1566 028.Brown_Creeper/Brown_Creeper_0051_24468.jpg
+1567 028.Brown_Creeper/Brown_Creeper_0047_24984.jpg
+1569 028.Brown_Creeper/Brown_Creeper_0125_24995.jpg
+1570 028.Brown_Creeper/Brown_Creeper_0031_24999.jpg
+1571 028.Brown_Creeper/Brown_Creeper_0115_24488.jpg
+1572 028.Brown_Creeper/Brown_Creeper_0059_25010.jpg
+1573 028.Brown_Creeper/Brown_Creeper_0118_24500.jpg
+1574 028.Brown_Creeper/Brown_Creeper_0100_24502.jpg
+1575 028.Brown_Creeper/Brown_Creeper_0006_25034.jpg
+1581 028.Brown_Creeper/Brown_Creeper_0121_24574.jpg
+1582 029.American_Crow/American_Crow_0117_25090.jpg
+1583 029.American_Crow/American_Crow_0030_25092.jpg
+1584 029.American_Crow/American_Crow_0119_25610.jpg
+1585 029.American_Crow/American_Crow_0020_25618.jpg
+1586 029.American_Crow/American_Crow_0016_25112.jpg
+1588 029.American_Crow/American_Crow_0101_25118.jpg
+1591 029.American_Crow/American_Crow_0111_25127.jpg
+1592 029.American_Crow/American_Crow_0003_25130.jpg
+1594 029.American_Crow/American_Crow_0027_25146.jpg
+1595 029.American_Crow/American_Crow_0113_25149.jpg
+1596 029.American_Crow/American_Crow_0011_25151.jpg
+1597 029.American_Crow/American_Crow_0043_25666.jpg
+1599 029.American_Crow/American_Crow_0093_25694.jpg
+1600 029.American_Crow/American_Crow_0139_25186.jpg
+1601 029.American_Crow/American_Crow_0132_25704.jpg
+1603 029.American_Crow/American_Crow_0068_25198.jpg
+1604 029.American_Crow/American_Crow_0116_25199.jpg
+1605 029.American_Crow/American_Crow_0122_25200.jpg
+1606 029.American_Crow/American_Crow_0053_25203.jpg
+1607 029.American_Crow/American_Crow_0099_25717.jpg
+1608 029.American_Crow/American_Crow_0134_25206.jpg
+1609 029.American_Crow/American_Crow_0121_25720.jpg
+1610 029.American_Crow/American_Crow_0080_25220.jpg
+1611 029.American_Crow/American_Crow_0137_25221.jpg
+1612 029.American_Crow/American_Crow_0050_25255.jpg
+1614 029.American_Crow/American_Crow_0105_25283.jpg
+1615 029.American_Crow/American_Crow_0014_25287.jpg
+1616 029.American_Crow/American_Crow_0088_25303.jpg
+1617 029.American_Crow/American_Crow_0012_25305.jpg
+1618 029.American_Crow/American_Crow_0004_25819.jpg
+1619 029.American_Crow/American_Crow_0036_25313.jpg
+1620 029.American_Crow/American_Crow_0081_25837.jpg
+1621 029.American_Crow/American_Crow_0074_25350.jpg
+1622 029.American_Crow/American_Crow_0107_25353.jpg
+1623 029.American_Crow/American_Crow_0124_25356.jpg
+1624 029.American_Crow/American_Crow_0047_25397.jpg
+1625 029.American_Crow/American_Crow_0127_25412.jpg
+1626 029.American_Crow/American_Crow_0066_25827.jpg
+1628 029.American_Crow/American_Crow_0067_25443.jpg
+1629 029.American_Crow/American_Crow_0079_25463.jpg
+1630 029.American_Crow/American_Crow_0051_25505.jpg
+1631 029.American_Crow/American_Crow_0069_25506.jpg
+1632 029.American_Crow/American_Crow_0025_25522.jpg
+1633 029.American_Crow/American_Crow_0110_25541.jpg
+1634 029.American_Crow/American_Crow_0001_25053.jpg
+1636 029.American_Crow/American_Crow_0048_25062.jpg
+1637 029.American_Crow/American_Crow_0094_25576.jpg
+1638 029.American_Crow/American_Crow_0102_25066.jpg
+1639 029.American_Crow/American_Crow_0062_25587.jpg
+1641 029.American_Crow/American_Crow_0059_25599.jpg
+1642 030.Fish_Crow/Fish_Crow_0068_25859.jpg
+1643 030.Fish_Crow/Fish_Crow_0080_25861.jpg
+1644 030.Fish_Crow/Fish_Crow_0059_25864.jpg
+1645 030.Fish_Crow/Fish_Crow_0011_25866.jpg
+1646 030.Fish_Crow/Fish_Crow_0067_26124.jpg
+1647 030.Fish_Crow/Fish_Crow_0017_26127.jpg
+1648 030.Fish_Crow/Fish_Crow_0018_25879.jpg
+1649 030.Fish_Crow/Fish_Crow_0041_25887.jpg
+1650 030.Fish_Crow/Fish_Crow_0078_26144.jpg
+1651 030.Fish_Crow/Fish_Crow_0034_25891.jpg
+1652 030.Fish_Crow/Fish_Crow_0042_26148.jpg
+1653 030.Fish_Crow/Fish_Crow_0025_25893.jpg
+1654 030.Fish_Crow/Fish_Crow_0081_25908.jpg
+1655 030.Fish_Crow/Fish_Crow_0031_25909.jpg
+1656 030.Fish_Crow/Fish_Crow_0036_25911.jpg
+1657 030.Fish_Crow/Fish_Crow_0005_25912.jpg
+1660 030.Fish_Crow/Fish_Crow_0071_25155.jpg
+1661 030.Fish_Crow/Fish_Crow_0040_25158.jpg
+1662 030.Fish_Crow/Fish_Crow_0051_25934.jpg
+1663 030.Fish_Crow/Fish_Crow_0004_25936.jpg
+1664 030.Fish_Crow/Fish_Crow_0013_25939.jpg
+1665 030.Fish_Crow/Fish_Crow_0065_25942.jpg
+1666 030.Fish_Crow/Fish_Crow_0072_25945.jpg
+1669 030.Fish_Crow/Fish_Crow_0044_25964.jpg
+1670 030.Fish_Crow/Fish_Crow_0028_25968.jpg
+1671 030.Fish_Crow/Fish_Crow_0003_25970.jpg
+1672 030.Fish_Crow/Fish_Crow_0076_25971.jpg
+1673 030.Fish_Crow/Fish_Crow_0073_25977.jpg
+1674 030.Fish_Crow/Fish_Crow_0010_25836.jpg
+1675 030.Fish_Crow/Fish_Crow_0058_25999.jpg
+1677 030.Fish_Crow/Fish_Crow_0069_26008.jpg
+1678 030.Fish_Crow/Fish_Crow_0082_26012.jpg
+1679 030.Fish_Crow/Fish_Crow_0032_26014.jpg
+1680 030.Fish_Crow/Fish_Crow_0070_25504.jpg
+1682 030.Fish_Crow/Fish_Crow_0061_25884.jpg
+1684 030.Fish_Crow/Fish_Crow_0079_26030.jpg
+1685 030.Fish_Crow/Fish_Crow_0001_26031.jpg
+1686 030.Fish_Crow/Fish_Crow_0023_26037.jpg
+1687 030.Fish_Crow/Fish_Crow_0049_26040.jpg
+1688 030.Fish_Crow/Fish_Crow_0014_26041.jpg
+1689 030.Fish_Crow/Fish_Crow_0060_26016.jpg
+1690 030.Fish_Crow/Fish_Crow_0022_26062.jpg
+1691 030.Fish_Crow/Fish_Crow_0024_26064.jpg
+1693 030.Fish_Crow/Fish_Crow_0047_26070.jpg
+1694 030.Fish_Crow/Fish_Crow_0037_26071.jpg
+1696 030.Fish_Crow/Fish_Crow_0055_26077.jpg
+1697 030.Fish_Crow/Fish_Crow_0035_26081.jpg
+1698 030.Fish_Crow/Fish_Crow_0063_26094.jpg
+1700 030.Fish_Crow/Fish_Crow_0056_25851.jpg
+1701 030.Fish_Crow/Fish_Crow_0016_25854.jpg
+1702 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0071_26288.jpg
+1704 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0028_26165.jpg
+1705 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0032_26292.jpg
+1711 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0086_26188.jpg
+1712 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0045_26194.jpg
+1713 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0065_26203.jpg
+1717 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0088_26217.jpg
+1718 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0018_26218.jpg
+1719 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0017_26221.jpg
+1720 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0077_26222.jpg
+1721 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0055_26223.jpg
+1722 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0052_26232.jpg
+1723 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0006_26233.jpg
+1726 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0082_26241.jpg
+1729 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0091_26246.jpg
+1735 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0087_795300.jpg
+1736 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0073_795304.jpg
+1737 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0008_795305.jpg
+1738 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0095_795307.jpg
+1739 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0042_795308.jpg
+1742 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0092_795313.jpg
+1743 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0083_795315.jpg
+1744 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0093_795316.jpg
+1745 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0022_795319.jpg
+1746 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0034_795320.jpg
+1747 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0053_795321.jpg
+1748 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0089_795322.jpg
+1749 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0057_795323.jpg
+1750 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0043_795324.jpg
+1751 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0069_795326.jpg
+1755 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0037_795330.jpg
+1756 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0024_795331.jpg
+1758 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0054_26313.jpg
+1759 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0031_26318.jpg
+1760 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0027_26319.jpg
+1761 031.Black_billed_Cuckoo/Black_Billed_Cuckoo_0007_26320.jpg
+1763 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0022_794625.jpg
+1764 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0041_26370.jpg
+1767 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0020_794629.jpg
+1769 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0025_26375.jpg
+1772 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0015_26380.jpg
+1780 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0010_26399.jpg
+1783 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0023_26409.jpg
+1784 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0002_26410.jpg
+1786 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0009_26354.jpg
+1788 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0030_26350.jpg
+1791 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0018_794593.jpg
+1792 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0050_794594.jpg
+1795 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0038_794600.jpg
+1798 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0032_794603.jpg
+1801 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0036_794606.jpg
+1804 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0026_794609.jpg
+1805 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0007_794610.jpg
+1806 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0045_794612.jpg
+1807 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0008_26357.jpg
+1808 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0004_794614.jpg
+1809 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0033_26359.jpg
+1810 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0046_794616.jpg
+1811 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0003_794619.jpg
+1814 032.Mangrove_Cuckoo/Mangrove_Cuckoo_0017_794623.jpg
+1815 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0048_26632.jpg
+1821 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0009_26656.jpg
+1822 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0078_26888.jpg
+1823 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0022_26423.jpg
+1824 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0050_26424.jpg
+1826 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0005_26684.jpg
+1827 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0045_26685.jpg
+1828 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0060_26686.jpg
+1830 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0093_26432.jpg
+1836 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0012_26712.jpg
+1837 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0097_26713.jpg
+1840 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0074_26466.jpg
+1841 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0091_26428.jpg
+1842 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0081_26429.jpg
+1844 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0073_26744.jpg
+1846 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0043_26492.jpg
+1847 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0014_26754.jpg
+1848 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0098_26501.jpg
+1849 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0084_26761.jpg
+1850 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0049_26766.jpg
+1852 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0004_26790.jpg
+1858 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0019_26803.jpg
+1861 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0088_26812.jpg
+1862 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0104_26814.jpg
+1863 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0038_26912.jpg
+1866 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0006_26578.jpg
+1867 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0107_26838.jpg
+1869 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0066_26600.jpg
+1870 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0092_26859.jpg
+1871 033.Yellow_billed_Cuckoo/Yellow_Billed_Cuckoo_0029_26865.jpg
+1875 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0042_27143.jpg
+1876 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0027_27153.jpg
+1877 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0074_27156.jpg
+1880 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0016_27181.jpg
+1881 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0043_26990.jpg
+1883 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0068_27196.jpg
+1884 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0076_27200.jpg
+1886 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0001_27211.jpg
+1887 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0018_26978.jpg
+1888 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0067_797289.jpg
+1889 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0061_26979.jpg
+1890 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0004_797272.jpg
+1891 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0048_27236.jpg
+1892 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0025_797274.jpg
+1893 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0053_797276.jpg
+1894 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0007_797278.jpg
+1895 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0044_26976.jpg
+1896 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0083_797281.jpg
+1897 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0006_797284.jpg
+1899 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0021_797286.jpg
+1900 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0036_797287.jpg
+1901 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0023_797288.jpg
+1902 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0040_26985.jpg
+1903 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0015_797291.jpg
+1904 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0051_26988.jpg
+1905 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0056_797293.jpg
+1906 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0079_797294.jpg
+1907 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0046_797295.jpg
+1908 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0066_797298.jpg
+1909 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0031_797299.jpg
+1910 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0029_797300.jpg
+1911 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0065_797301.jpg
+1913 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0034_797305.jpg
+1914 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0038_797309.jpg
+1916 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0072_26993.jpg
+1917 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0022_27028.jpg
+1918 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0052_27032.jpg
+1919 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0084_27034.jpg
+1921 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0024_27057.jpg
+1922 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0012_27062.jpg
+1923 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0030_27068.jpg
+1924 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0037_27088.jpg
+1925 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0073_27104.jpg
+1926 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0041_27105.jpg
+1927 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0057_27107.jpg
+1928 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0080_27108.jpg
+1929 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0013_27110.jpg
+1930 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0055_27112.jpg
+1931 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0028_27114.jpg
+1932 034.Gray_crowned_Rosy_Finch/Gray_Crowned_Rosy_Finch_0063_27123.jpg
+1933 035.Purple_Finch/Purple_Finch_0025_28174.jpg
+1934 035.Purple_Finch/Purple_Finch_0048_27670.jpg
+1936 035.Purple_Finch/Purple_Finch_0096_27688.jpg
+1938 035.Purple_Finch/Purple_Finch_0050_27702.jpg
+1939 035.Purple_Finch/Purple_Finch_0021_28235.jpg
+1940 035.Purple_Finch/Purple_Finch_0031_28175.jpg
+1941 035.Purple_Finch/Purple_Finch_0110_27750.jpg
+1942 035.Purple_Finch/Purple_Finch_0030_27255.jpg
+1945 035.Purple_Finch/Purple_Finch_0092_27264.jpg
+1946 035.Purple_Finch/Purple_Finch_0002_27266.jpg
+1947 035.Purple_Finch/Purple_Finch_0098_27280.jpg
+1948 035.Purple_Finch/Purple_Finch_0097_27288.jpg
+1949 035.Purple_Finch/Purple_Finch_0111_27293.jpg
+1950 035.Purple_Finch/Purple_Finch_0046_27295.jpg
+1951 035.Purple_Finch/Purple_Finch_0032_27305.jpg
+1952 035.Purple_Finch/Purple_Finch_0102_27308.jpg
+1953 035.Purple_Finch/Purple_Finch_0014_27322.jpg
+1954 035.Purple_Finch/Purple_Finch_0094_27323.jpg
+1955 035.Purple_Finch/Purple_Finch_0114_27837.jpg
+1956 035.Purple_Finch/Purple_Finch_0117_27427.jpg
+1959 035.Purple_Finch/Purple_Finch_0133_27928.jpg
+1960 035.Purple_Finch/Purple_Finch_0091_27425.jpg
+1961 035.Purple_Finch/Purple_Finch_0006_27950.jpg
+1962 035.Purple_Finch/Purple_Finch_0076_27441.jpg
+1963 035.Purple_Finch/Purple_Finch_0071_27443.jpg
+1964 035.Purple_Finch/Purple_Finch_0020_27961.jpg
+1965 035.Purple_Finch/Purple_Finch_0059_27966.jpg
+1966 035.Purple_Finch/Purple_Finch_0008_27455.jpg
+1967 035.Purple_Finch/Purple_Finch_0035_27972.jpg
+1968 035.Purple_Finch/Purple_Finch_0103_27461.jpg
+1969 035.Purple_Finch/Purple_Finch_0065_27473.jpg
+1971 035.Purple_Finch/Purple_Finch_0049_27507.jpg
+1972 035.Purple_Finch/Purple_Finch_0005_27512.jpg
+1973 035.Purple_Finch/Purple_Finch_0134_27526.jpg
+1974 035.Purple_Finch/Purple_Finch_0053_27543.jpg
+1975 035.Purple_Finch/Purple_Finch_0113_27547.jpg
+1976 035.Purple_Finch/Purple_Finch_0130_27555.jpg
+1977 035.Purple_Finch/Purple_Finch_0011_27633.jpg
+1978 035.Purple_Finch/Purple_Finch_0088_28076.jpg
+1979 035.Purple_Finch/Purple_Finch_0004_27565.jpg
+1980 035.Purple_Finch/Purple_Finch_0124_27567.jpg
+1981 035.Purple_Finch/Purple_Finch_0104_28088.jpg
+1982 035.Purple_Finch/Purple_Finch_0074_28101.jpg
+1983 035.Purple_Finch/Purple_Finch_0120_27597.jpg
+1984 035.Purple_Finch/Purple_Finch_0118_27604.jpg
+1985 035.Purple_Finch/Purple_Finch_0043_28117.jpg
+1986 035.Purple_Finch/Purple_Finch_0106_27607.jpg
+1987 035.Purple_Finch/Purple_Finch_0023_27986.jpg
+1991 035.Purple_Finch/Purple_Finch_0082_27639.jpg
+1992 035.Purple_Finch/Purple_Finch_0036_27641.jpg
+1993 036.Northern_Flicker/Northern_Flicker_0072_28678.jpg
+1994 036.Northern_Flicker/Northern_Flicker_0036_28681.jpg
+1995 036.Northern_Flicker/Northern_Flicker_0041_28697.jpg
+1996 036.Northern_Flicker/Northern_Flicker_0093_28700.jpg
+1997 036.Northern_Flicker/Northern_Flicker_0094_28726.jpg
+1998 036.Northern_Flicker/Northern_Flicker_0075_28729.jpg
+2000 036.Northern_Flicker/Northern_Flicker_0021_28741.jpg
+2001 036.Northern_Flicker/Northern_Flicker_0037_28751.jpg
+2002 036.Northern_Flicker/Northern_Flicker_0050_28284.jpg
+2003 036.Northern_Flicker/Northern_Flicker_0091_28799.jpg
+2005 036.Northern_Flicker/Northern_Flicker_0135_28291.jpg
+2006 036.Northern_Flicker/Northern_Flicker_0099_28312.jpg
+2007 036.Northern_Flicker/Northern_Flicker_0132_28313.jpg
+2008 036.Northern_Flicker/Northern_Flicker_0084_28318.jpg
+2009 036.Northern_Flicker/Northern_Flicker_0105_28836.jpg
+2010 036.Northern_Flicker/Northern_Flicker_0068_28330.jpg
+2011 036.Northern_Flicker/Northern_Flicker_0035_28332.jpg
+2012 036.Northern_Flicker/Northern_Flicker_0078_28338.jpg
+2013 036.Northern_Flicker/Northern_Flicker_0077_28341.jpg
+2014 036.Northern_Flicker/Northern_Flicker_0055_28344.jpg
+2015 036.Northern_Flicker/Northern_Flicker_0086_28360.jpg
+2017 036.Northern_Flicker/Northern_Flicker_0085_28378.jpg
+2019 036.Northern_Flicker/Northern_Flicker_0004_28854.jpg
+2020 036.Northern_Flicker/Northern_Flicker_0100_28898.jpg
+2021 036.Northern_Flicker/Northern_Flicker_0046_28391.jpg
+2023 036.Northern_Flicker/Northern_Flicker_0111_28402.jpg
+2025 036.Northern_Flicker/Northern_Flicker_0139_28419.jpg
+2026 036.Northern_Flicker/Northern_Flicker_0095_28938.jpg
+2027 036.Northern_Flicker/Northern_Flicker_0022_28952.jpg
+2028 036.Northern_Flicker/Northern_Flicker_0106_28441.jpg
+2029 036.Northern_Flicker/Northern_Flicker_0053_28445.jpg
+2030 036.Northern_Flicker/Northern_Flicker_0045_28805.jpg
+2033 036.Northern_Flicker/Northern_Flicker_0011_28466.jpg
+2034 036.Northern_Flicker/Northern_Flicker_0138_28476.jpg
+2035 036.Northern_Flicker/Northern_Flicker_0125_28485.jpg
+2037 036.Northern_Flicker/Northern_Flicker_0090_28491.jpg
+2038 036.Northern_Flicker/Northern_Flicker_0118_28500.jpg
+2039 036.Northern_Flicker/Northern_Flicker_0108_28502.jpg
+2040 036.Northern_Flicker/Northern_Flicker_0129_29022.jpg
+2041 036.Northern_Flicker/Northern_Flicker_0024_29041.jpg
+2042 036.Northern_Flicker/Northern_Flicker_0008_28591.jpg
+2043 036.Northern_Flicker/Northern_Flicker_0044_28592.jpg
+2044 036.Northern_Flicker/Northern_Flicker_0110_28602.jpg
+2045 036.Northern_Flicker/Northern_Flicker_0016_28603.jpg
+2047 036.Northern_Flicker/Northern_Flicker_0096_28623.jpg
+2048 036.Northern_Flicker/Northern_Flicker_0079_28630.jpg
+2049 036.Northern_Flicker/Northern_Flicker_0127_28411.jpg
+2050 036.Northern_Flicker/Northern_Flicker_0069_28924.jpg
+2051 036.Northern_Flicker/Northern_Flicker_0051_28650.jpg
+2052 036.Northern_Flicker/Northern_Flicker_0107_28667.jpg
+2053 037.Acadian_Flycatcher/Acadian_Flycatcher_0066_29190.jpg
+2054 037.Acadian_Flycatcher/Acadian_Flycatcher_0033_29195.jpg
+2055 037.Acadian_Flycatcher/Acadian_Flycatcher_0067_29197.jpg
+2056 037.Acadian_Flycatcher/Acadian_Flycatcher_0010_29199.jpg
+2057 037.Acadian_Flycatcher/Acadian_Flycatcher_0022_29145.jpg
+2058 037.Acadian_Flycatcher/Acadian_Flycatcher_0016_29217.jpg
+2059 037.Acadian_Flycatcher/Acadian_Flycatcher_0013_29232.jpg
+2060 037.Acadian_Flycatcher/Acadian_Flycatcher_0070_29150.jpg
+2061 037.Acadian_Flycatcher/Acadian_Flycatcher_0009_29155.jpg
+2062 037.Acadian_Flycatcher/Acadian_Flycatcher_0036_795577.jpg
+2063 037.Acadian_Flycatcher/Acadian_Flycatcher_0069_795579.jpg
+2064 037.Acadian_Flycatcher/Acadian_Flycatcher_0030_795591.jpg
+2065 037.Acadian_Flycatcher/Acadian_Flycatcher_0020_29069.jpg
+2067 037.Acadian_Flycatcher/Acadian_Flycatcher_0051_29077.jpg
+2068 037.Acadian_Flycatcher/Acadian_Flycatcher_0056_29086.jpg
+2069 037.Acadian_Flycatcher/Acadian_Flycatcher_0003_29094.jpg
+2072 037.Acadian_Flycatcher/Acadian_Flycatcher_0015_795578.jpg
+2073 037.Acadian_Flycatcher/Acadian_Flycatcher_0043_29115.jpg
+2074 037.Acadian_Flycatcher/Acadian_Flycatcher_0049_795580.jpg
+2075 037.Acadian_Flycatcher/Acadian_Flycatcher_0031_795582.jpg
+2076 037.Acadian_Flycatcher/Acadian_Flycatcher_0034_795583.jpg
+2077 037.Acadian_Flycatcher/Acadian_Flycatcher_0064_795584.jpg
+2078 037.Acadian_Flycatcher/Acadian_Flycatcher_0063_795585.jpg
+2079 037.Acadian_Flycatcher/Acadian_Flycatcher_0045_795587.jpg
+2080 037.Acadian_Flycatcher/Acadian_Flycatcher_0068_795590.jpg
+2081 037.Acadian_Flycatcher/Acadian_Flycatcher_0042_29127.jpg
+2082 037.Acadian_Flycatcher/Acadian_Flycatcher_0019_795592.jpg
+2084 037.Acadian_Flycatcher/Acadian_Flycatcher_0021_795594.jpg
+2086 037.Acadian_Flycatcher/Acadian_Flycatcher_0046_795596.jpg
+2087 037.Acadian_Flycatcher/Acadian_Flycatcher_0017_795598.jpg
+2088 037.Acadian_Flycatcher/Acadian_Flycatcher_0008_795599.jpg
+2089 037.Acadian_Flycatcher/Acadian_Flycatcher_0007_795600.jpg
+2090 037.Acadian_Flycatcher/Acadian_Flycatcher_0058_795602.jpg
+2091 037.Acadian_Flycatcher/Acadian_Flycatcher_0072_795603.jpg
+2092 037.Acadian_Flycatcher/Acadian_Flycatcher_0060_795604.jpg
+2093 037.Acadian_Flycatcher/Acadian_Flycatcher_0041_795605.jpg
+2094 037.Acadian_Flycatcher/Acadian_Flycatcher_0039_795606.jpg
+2096 037.Acadian_Flycatcher/Acadian_Flycatcher_0050_795608.jpg
+2097 037.Acadian_Flycatcher/Acadian_Flycatcher_0055_795609.jpg
+2099 037.Acadian_Flycatcher/Acadian_Flycatcher_0028_795611.jpg
+2100 037.Acadian_Flycatcher/Acadian_Flycatcher_0012_795612.jpg
+2101 037.Acadian_Flycatcher/Acadian_Flycatcher_0038_795616.jpg
+2102 037.Acadian_Flycatcher/Acadian_Flycatcher_0035_795618.jpg
+2103 037.Acadian_Flycatcher/Acadian_Flycatcher_0053_795620.jpg
+2104 037.Acadian_Flycatcher/Acadian_Flycatcher_0005_29157.jpg
+2107 037.Acadian_Flycatcher/Acadian_Flycatcher_0044_795624.jpg
+2108 037.Acadian_Flycatcher/Acadian_Flycatcher_0071_795627.jpg
+2109 037.Acadian_Flycatcher/Acadian_Flycatcher_0073_795628.jpg
+2110 037.Acadian_Flycatcher/Acadian_Flycatcher_0040_795629.jpg
+2111 037.Acadian_Flycatcher/Acadian_Flycatcher_0024_29173.jpg
+2112 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0028_29696.jpg
+2114 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0108_29712.jpg
+2115 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0084_29716.jpg
+2116 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0040_29447.jpg
+2117 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0038_29533.jpg
+2118 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0087_29252.jpg
+2119 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0012_29264.jpg
+2120 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0119_29778.jpg
+2122 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0070_29455.jpg
+2123 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0007_29280.jpg
+2124 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0105_29456.jpg
+2125 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0019_29801.jpg
+2126 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0124_29294.jpg
+2127 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0061_29807.jpg
+2128 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0132_29300.jpg
+2129 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0139_29302.jpg
+2130 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0099_29305.jpg
+2131 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0031_29825.jpg
+2132 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0133_29314.jpg
+2133 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0009_29831.jpg
+2134 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0131_29329.jpg
+2135 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0073_29330.jpg
+2136 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0067_29384.jpg
+2138 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0085_29812.jpg
+2139 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0120_29472.jpg
+2140 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0049_29474.jpg
+2141 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0010_29396.jpg
+2142 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0097_29398.jpg
+2143 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0016_29406.jpg
+2144 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0068_29416.jpg
+2145 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0021_29929.jpg
+2146 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0042_29438.jpg
+2147 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0082_29445.jpg
+2148 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0033_29959.jpg
+2149 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0023_29481.jpg
+2150 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0044_29995.jpg
+2153 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0013_29496.jpg
+2154 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0107_29501.jpg
+2155 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0063_29507.jpg
+2156 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0024_29516.jpg
+2157 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0086_29518.jpg
+2158 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0041_29521.jpg
+2159 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0058_29523.jpg
+2160 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0051_29530.jpg
+2161 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0027_29532.jpg
+2163 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0064_29546.jpg
+2166 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0048_29586.jpg
+2167 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0089_29592.jpg
+2168 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0125_29593.jpg
+2169 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0069_29603.jpg
+2170 038.Great_Crested_Flycatcher/Great_Crested_Flycatcher_0030_29645.jpg
+2172 039.Least_Flycatcher/Least_Flycatcher_0036_30213.jpg
+2173 039.Least_Flycatcher/Least_Flycatcher_0060_30214.jpg
+2174 039.Least_Flycatcher/Least_Flycatcher_0001_30221.jpg
+2176 039.Least_Flycatcher/Least_Flycatcher_0024_30230.jpg
+2177 039.Least_Flycatcher/Least_Flycatcher_0096_30233.jpg
+2178 039.Least_Flycatcher/Least_Flycatcher_0013_30240.jpg
+2181 039.Least_Flycatcher/Least_Flycatcher_0034_30151.jpg
+2182 039.Least_Flycatcher/Least_Flycatcher_0095_30277.jpg
+2183 039.Least_Flycatcher/Least_Flycatcher_0015_30280.jpg
+2184 039.Least_Flycatcher/Least_Flycatcher_0057_30282.jpg
+2185 039.Least_Flycatcher/Least_Flycatcher_0077_30296.jpg
+2186 039.Least_Flycatcher/Least_Flycatcher_0009_30303.jpg
+2187 039.Least_Flycatcher/Least_Flycatcher_0092_30154.jpg
+2188 039.Least_Flycatcher/Least_Flycatcher_0046_30316.jpg
+2189 039.Least_Flycatcher/Least_Flycatcher_0085_30318.jpg
+2190 039.Least_Flycatcher/Least_Flycatcher_0052_30321.jpg
+2191 039.Least_Flycatcher/Least_Flycatcher_0064_30328.jpg
+2193 039.Least_Flycatcher/Least_Flycatcher_0007_30339.jpg
+2194 039.Least_Flycatcher/Least_Flycatcher_0044_30349.jpg
+2195 039.Least_Flycatcher/Least_Flycatcher_0023_30352.jpg
+2196 039.Least_Flycatcher/Least_Flycatcher_0021_30355.jpg
+2197 039.Least_Flycatcher/Least_Flycatcher_0065_30357.jpg
+2198 039.Least_Flycatcher/Least_Flycatcher_0019_30358.jpg
+2199 039.Least_Flycatcher/Least_Flycatcher_0049_30361.jpg
+2200 039.Least_Flycatcher/Least_Flycatcher_0029_30362.jpg
+2201 039.Least_Flycatcher/Least_Flycatcher_0040_30366.jpg
+2203 039.Least_Flycatcher/Least_Flycatcher_0097_30122.jpg
+2204 039.Least_Flycatcher/Least_Flycatcher_0087_30123.jpg
+2205 039.Least_Flycatcher/Least_Flycatcher_0081_30380.jpg
+2206 039.Least_Flycatcher/Least_Flycatcher_0038_30127.jpg
+2207 039.Least_Flycatcher/Least_Flycatcher_0062_30131.jpg
+2208 039.Least_Flycatcher/Least_Flycatcher_0047_30393.jpg
+2209 039.Least_Flycatcher/Least_Flycatcher_0004_30140.jpg
+2210 039.Least_Flycatcher/Least_Flycatcher_0067_30397.jpg
+2211 039.Least_Flycatcher/Least_Flycatcher_0005_30142.jpg
+2212 039.Least_Flycatcher/Least_Flycatcher_0058_30143.jpg
+2213 039.Least_Flycatcher/Least_Flycatcher_0032_30146.jpg
+2214 039.Least_Flycatcher/Least_Flycatcher_0070_30147.jpg
+2215 039.Least_Flycatcher/Least_Flycatcher_0010_30149.jpg
+2216 039.Least_Flycatcher/Least_Flycatcher_0059_30152.jpg
+2218 039.Least_Flycatcher/Least_Flycatcher_0061_30429.jpg
+2219 039.Least_Flycatcher/Least_Flycatcher_0045_30174.jpg
+2220 039.Least_Flycatcher/Least_Flycatcher_0026_30434.jpg
+2221 039.Least_Flycatcher/Least_Flycatcher_0093_30435.jpg
+2222 039.Least_Flycatcher/Least_Flycatcher_0075_30441.jpg
+2223 039.Least_Flycatcher/Least_Flycatcher_0050_30189.jpg
+2224 039.Least_Flycatcher/Least_Flycatcher_0063_30190.jpg
+2225 039.Least_Flycatcher/Least_Flycatcher_0033_30449.jpg
+2226 039.Least_Flycatcher/Least_Flycatcher_0054_30450.jpg
+2227 039.Least_Flycatcher/Least_Flycatcher_0099_30200.jpg
+2228 039.Least_Flycatcher/Least_Flycatcher_0080_30457.jpg
+2229 039.Least_Flycatcher/Least_Flycatcher_0017_30460.jpg
+2230 039.Least_Flycatcher/Least_Flycatcher_0018_30462.jpg
+2231 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0041_30470.jpg
+2232 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0054_30732.jpg
+2233 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0064_30485.jpg
+2234 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0025_30486.jpg
+2235 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0070_30490.jpg
+2236 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0077_30492.jpg
+2237 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0067_30749.jpg
+2238 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0078_30752.jpg
+2239 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0031_30502.jpg
+2240 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0080_30515.jpg
+2241 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0002_30776.jpg
+2243 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0037_30784.jpg
+2244 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0046_30529.jpg
+2245 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0033_30532.jpg
+2247 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0061_30540.jpg
+2248 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0035_30799.jpg
+2249 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0069_30544.jpg
+2251 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0005_30734.jpg
+2252 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0013_30550.jpg
+2255 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0076_30555.jpg
+2256 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0074_30816.jpg
+2257 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0006_30824.jpg
+2260 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0043_30632.jpg
+2261 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0052_30639.jpg
+2263 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0014_30651.jpg
+2264 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0048_30656.jpg
+2265 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0079_30662.jpg
+2267 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0001_30669.jpg
+2268 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0050_796878.jpg
+2270 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0034_30672.jpg
+2273 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0058_796883.jpg
+2274 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0038_796884.jpg
+2275 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0009_796885.jpg
+2276 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0042_796886.jpg
+2277 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0023_796887.jpg
+2278 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0045_796888.jpg
+2279 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0049_796889.jpg
+2280 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0082_796893.jpg
+2282 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0081_796895.jpg
+2283 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0030_796896.jpg
+2284 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0021_796880.jpg
+2285 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0057_796898.jpg
+2286 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0017_30704.jpg
+2287 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0075_30712.jpg
+2288 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0032_30713.jpg
+2289 040.Olive_sided_Flycatcher/Olive_Sided_Flycatcher_0016_30717.jpg
+2296 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0028_42010.jpg
+2297 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0108_42013.jpg
+2298 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0094_42018.jpg
+2299 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0038_41649.jpg
+2300 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0013_42024.jpg
+2301 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0035_42025.jpg
+2303 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0125_41906.jpg
+2304 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0026_41774.jpg
+2305 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0025_42032.jpg
+2306 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0033_41782.jpg
+2307 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0055_42051.jpg
+2308 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0100_41796.jpg
+2309 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0089_41810.jpg
+2310 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0118_42067.jpg
+2311 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0069_41827.jpg
+2312 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0072_42085.jpg
+2313 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0085_41830.jpg
+2314 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0068_41835.jpg
+2315 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0031_41836.jpg
+2316 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0121_41843.jpg
+2317 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0003_41849.jpg
+2318 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0082_41852.jpg
+2319 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0076_41597.jpg
+2321 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0006_41601.jpg
+2323 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0111_42118.jpg
+2324 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0119_41879.jpg
+2325 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0110_42136.jpg
+2327 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0123_41638.jpg
+2330 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0060_41655.jpg
+2331 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0007_41917.jpg
+2333 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0021_41931.jpg
+2335 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0002_41762.jpg
+2336 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0122_41679.jpg
+2337 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0020_41680.jpg
+2338 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0103_41938.jpg
+2339 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0106_41684.jpg
+2340 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0077_41688.jpg
+2342 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0062_41952.jpg
+2345 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0097_41701.jpg
+2350 041.Scissor_tailed_Flycatcher/Scissor_Tailed_Flycatcher_0005_41727.jpg
+2351 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0019_42241.jpg
+2352 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0020_42498.jpg
+2353 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0069_42502.jpg
+2354 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0025_42248.jpg
+2355 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0070_42250.jpg
+2357 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0059_42261.jpg
+2358 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0038_42262.jpg
+2359 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0042_42266.jpg
+2360 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0030_42523.jpg
+2366 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0062_42552.jpg
+2367 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0048_42298.jpg
+2368 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0024_42506.jpg
+2369 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0022_42559.jpg
+2370 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0044_42305.jpg
+2371 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0057_42562.jpg
+2372 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0006_42564.jpg
+2374 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0058_42311.jpg
+2382 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0049_42380.jpg
+2383 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0027_42388.jpg
+2384 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0036_42389.jpg
+2385 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0002_42390.jpg
+2386 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0004_42395.jpg
+2388 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0040_42398.jpg
+2389 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0017_42407.jpg
+2390 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0039_42423.jpg
+2391 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0034_42356.jpg
+2392 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0071_42429.jpg
+2393 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0063_42179.jpg
+2394 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0043_42182.jpg
+2395 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0053_42184.jpg
+2396 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0067_42185.jpg
+2397 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0055_42442.jpg
+2398 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0016_42196.jpg
+2399 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0028_42197.jpg
+2400 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0031_42201.jpg
+2401 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0054_42210.jpg
+2402 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0065_42467.jpg
+2403 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0007_42214.jpg
+2404 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0032_42216.jpg
+2406 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0045_42219.jpg
+2408 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0050_42479.jpg
+2409 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0047_42488.jpg
+2410 042.Vermilion_Flycatcher/Vermilion_Flycatcher_0009_42234.jpg
+2411 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0013_42769.jpg
+2413 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0036_42591.jpg
+2415 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0040_795465.jpg
+2416 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0064_795466.jpg
+2417 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0047_795468.jpg
+2419 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0051_795470.jpg
+2421 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0021_795472.jpg
+2423 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0032_42578.jpg
+2425 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0038_795477.jpg
+2426 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0023_795478.jpg
+2429 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0020_795482.jpg
+2430 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0029_795483.jpg
+2431 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0025_795484.jpg
+2435 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0026_795489.jpg
+2436 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0017_795490.jpg
+2440 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0010_795498.jpg
+2441 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0037_795500.jpg
+2444 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0055_795507.jpg
+2445 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0046_795508.jpg
+2449 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0004_795513.jpg
+2451 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0052_42621.jpg
+2452 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0005_42627.jpg
+2453 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0065_42635.jpg
+2454 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0028_42639.jpg
+2455 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0049_42593.jpg
+2456 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0027_42649.jpg
+2462 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0063_42704.jpg
+2463 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0024_42616.jpg
+2464 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0060_42595.jpg
+2465 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0054_42709.jpg
+2466 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0039_795471.jpg
+2468 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0011_42734.jpg
+2469 043.Yellow_bellied_Flycatcher/Yellow_Bellied_Flycatcher_0016_795476.jpg
+2470 044.Frigatebird/Frigatebird_0089_43013.jpg
+2472 044.Frigatebird/Frigatebird_0054_43019.jpg
+2473 044.Frigatebird/Frigatebird_0069_43541.jpg
+2475 044.Frigatebird/Frigatebird_0122_43549.jpg
+2476 044.Frigatebird/Frigatebird_0073_43038.jpg
+2477 044.Frigatebird/Frigatebird_0047_43039.jpg
+2482 044.Frigatebird/Frigatebird_0060_43054.jpg
+2484 044.Frigatebird/Frigatebird_0008_43058.jpg
+2485 044.Frigatebird/Frigatebird_0096_43571.jpg
+2486 044.Frigatebird/Frigatebird_0012_43062.jpg
+2488 044.Frigatebird/Frigatebird_0091_43066.jpg
+2489 044.Frigatebird/Frigatebird_0050_43084.jpg
+2490 044.Frigatebird/Frigatebird_0001_43101.jpg
+2491 044.Frigatebird/Frigatebird_0023_43110.jpg
+2493 044.Frigatebird/Frigatebird_0016_43159.jpg
+2500 044.Frigatebird/Frigatebird_0011_43213.jpg
+2502 044.Frigatebird/Frigatebird_0004_43221.jpg
+2504 044.Frigatebird/Frigatebird_0107_42773.jpg
+2507 044.Frigatebird/Frigatebird_0120_43300.jpg
+2509 044.Frigatebird/Frigatebird_0068_42795.jpg
+2510 044.Frigatebird/Frigatebird_0114_42807.jpg
+2511 044.Frigatebird/Frigatebird_0063_42812.jpg
+2512 044.Frigatebird/Frigatebird_0045_42823.jpg
+2513 044.Frigatebird/Frigatebird_0005_42828.jpg
+2514 044.Frigatebird/Frigatebird_0019_43348.jpg
+2516 044.Frigatebird/Frigatebird_0040_42860.jpg
+2517 044.Frigatebird/Frigatebird_0006_43381.jpg
+2519 044.Frigatebird/Frigatebird_0116_43410.jpg
+2520 044.Frigatebird/Frigatebird_0052_43411.jpg
+2521 044.Frigatebird/Frigatebird_0035_43420.jpg
+2523 044.Frigatebird/Frigatebird_0022_43457.jpg
+2524 044.Frigatebird/Frigatebird_0115_42973.jpg
+2526 044.Frigatebird/Frigatebird_0082_42989.jpg
+2528 044.Frigatebird/Frigatebird_0090_43511.jpg
+2530 045.Northern_Fulmar/Northern_Fulmar_0029_44049.jpg
+2531 045.Northern_Fulmar/Northern_Fulmar_0033_43794.jpg
+2532 045.Northern_Fulmar/Northern_Fulmar_0103_44062.jpg
+2534 045.Northern_Fulmar/Northern_Fulmar_0060_43813.jpg
+2535 045.Northern_Fulmar/Northern_Fulmar_0065_44081.jpg
+2536 045.Northern_Fulmar/Northern_Fulmar_0074_43955.jpg
+2538 045.Northern_Fulmar/Northern_Fulmar_0045_43581.jpg
+2539 045.Northern_Fulmar/Northern_Fulmar_0050_43839.jpg
+2540 045.Northern_Fulmar/Northern_Fulmar_0053_43843.jpg
+2542 045.Northern_Fulmar/Northern_Fulmar_0019_43853.jpg
+2543 045.Northern_Fulmar/Northern_Fulmar_0079_43599.jpg
+2544 045.Northern_Fulmar/Northern_Fulmar_0010_44112.jpg
+2545 045.Northern_Fulmar/Northern_Fulmar_0058_44114.jpg
+2546 045.Northern_Fulmar/Northern_Fulmar_0095_43860.jpg
+2547 045.Northern_Fulmar/Northern_Fulmar_0091_44120.jpg
+2548 045.Northern_Fulmar/Northern_Fulmar_0097_43865.jpg
+2551 045.Northern_Fulmar/Northern_Fulmar_0012_44131.jpg
+2552 045.Northern_Fulmar/Northern_Fulmar_0056_43880.jpg
+2554 045.Northern_Fulmar/Northern_Fulmar_0076_43893.jpg
+2555 045.Northern_Fulmar/Northern_Fulmar_0014_43895.jpg
+2556 045.Northern_Fulmar/Northern_Fulmar_0008_43647.jpg
+2557 045.Northern_Fulmar/Northern_Fulmar_0049_43906.jpg
+2558 045.Northern_Fulmar/Northern_Fulmar_0061_43653.jpg
+2559 045.Northern_Fulmar/Northern_Fulmar_0096_43654.jpg
+2560 045.Northern_Fulmar/Northern_Fulmar_0081_43912.jpg
+2561 045.Northern_Fulmar/Northern_Fulmar_0015_43658.jpg
+2562 045.Northern_Fulmar/Northern_Fulmar_0070_43916.jpg
+2563 045.Northern_Fulmar/Northern_Fulmar_0041_44013.jpg
+2564 045.Northern_Fulmar/Northern_Fulmar_0048_43672.jpg
+2565 045.Northern_Fulmar/Northern_Fulmar_0043_43685.jpg
+2566 045.Northern_Fulmar/Northern_Fulmar_0039_43689.jpg
+2567 045.Northern_Fulmar/Northern_Fulmar_0071_44146.jpg
+2568 045.Northern_Fulmar/Northern_Fulmar_0047_43698.jpg
+2569 045.Northern_Fulmar/Northern_Fulmar_0016_43958.jpg
+2570 045.Northern_Fulmar/Northern_Fulmar_0027_43705.jpg
+2571 045.Northern_Fulmar/Northern_Fulmar_0064_43710.jpg
+2572 045.Northern_Fulmar/Northern_Fulmar_0037_43712.jpg
+2573 045.Northern_Fulmar/Northern_Fulmar_0066_43714.jpg
+2574 045.Northern_Fulmar/Northern_Fulmar_0036_43718.jpg
+2575 045.Northern_Fulmar/Northern_Fulmar_0077_43730.jpg
+2576 045.Northern_Fulmar/Northern_Fulmar_0100_43732.jpg
+2577 045.Northern_Fulmar/Northern_Fulmar_0042_43739.jpg
+2579 045.Northern_Fulmar/Northern_Fulmar_0078_43985.jpg
+2581 045.Northern_Fulmar/Northern_Fulmar_0031_43750.jpg
+2582 045.Northern_Fulmar/Northern_Fulmar_0052_43857.jpg
+2584 045.Northern_Fulmar/Northern_Fulmar_0006_43753.jpg
+2585 045.Northern_Fulmar/Northern_Fulmar_0004_43755.jpg
+2586 045.Northern_Fulmar/Northern_Fulmar_0099_44015.jpg
+2587 045.Northern_Fulmar/Northern_Fulmar_0046_43760.jpg
+2588 045.Northern_Fulmar/Northern_Fulmar_0011_43769.jpg
+2589 045.Northern_Fulmar/Northern_Fulmar_0018_43771.jpg
+2590 046.Gadwall/Gadwall_0022_31616.jpg
+2591 046.Gadwall/Gadwall_0001_31235.jpg
+2593 046.Gadwall/Gadwall_0035_30985.jpg
+2594 046.Gadwall/Gadwall_0058_31660.jpg
+2595 046.Gadwall/Gadwall_0036_31760.jpg
+2599 046.Gadwall/Gadwall_0040_31788.jpg
+2601 046.Gadwall/Gadwall_0042_31411.jpg
+2602 046.Gadwall/Gadwall_0069_31291.jpg
+2603 046.Gadwall/Gadwall_0004_31669.jpg
+2604 046.Gadwall/Gadwall_0082_31301.jpg
+2605 046.Gadwall/Gadwall_0096_31560.jpg
+2606 046.Gadwall/Gadwall_0079_31052.jpg
+2607 046.Gadwall/Gadwall_0087_31821.jpg
+2608 046.Gadwall/Gadwall_0048_31312.jpg
+2609 046.Gadwall/Gadwall_0014_31570.jpg
+2610 046.Gadwall/Gadwall_0041_31064.jpg
+2611 046.Gadwall/Gadwall_0092_31162.jpg
+2612 046.Gadwall/Gadwall_0064_31504.jpg
+2613 046.Gadwall/Gadwall_0009_31847.jpg
+2614 046.Gadwall/Gadwall_0088_31854.jpg
+2615 046.Gadwall/Gadwall_0030_31855.jpg
+2616 046.Gadwall/Gadwall_0086_31346.jpg
+2618 046.Gadwall/Gadwall_0028_31623.jpg
+2619 046.Gadwall/Gadwall_0085_31171.jpg
+2620 046.Gadwall/Gadwall_0029_31637.jpg
+2621 046.Gadwall/Gadwall_0076_31639.jpg
+2622 046.Gadwall/Gadwall_0059_31646.jpg
+2623 046.Gadwall/Gadwall_0066_31557.jpg
+2624 046.Gadwall/Gadwall_0068_30886.jpg
+2625 046.Gadwall/Gadwall_0075_30892.jpg
+2626 046.Gadwall/Gadwall_0097_30893.jpg
+2627 046.Gadwall/Gadwall_0093_30898.jpg
+2628 046.Gadwall/Gadwall_0010_31158.jpg
+2629 046.Gadwall/Gadwall_0084_31135.jpg
+2630 046.Gadwall/Gadwall_0095_30911.jpg
+2631 046.Gadwall/Gadwall_0055_30912.jpg
+2632 046.Gadwall/Gadwall_0065_31659.jpg
+2633 046.Gadwall/Gadwall_0052_30915.jpg
+2634 046.Gadwall/Gadwall_0060_31686.jpg
+2636 046.Gadwall/Gadwall_0050_31223.jpg
+2637 046.Gadwall/Gadwall_0005_30924.jpg
+2638 046.Gadwall/Gadwall_0077_30929.jpg
+2639 046.Gadwall/Gadwall_0070_31187.jpg
+2640 046.Gadwall/Gadwall_0025_30933.jpg
+2641 046.Gadwall/Gadwall_0031_30935.jpg
+2642 046.Gadwall/Gadwall_0049_30936.jpg
+2643 046.Gadwall/Gadwall_0091_30941.jpg
+2644 046.Gadwall/Gadwall_0024_30942.jpg
+2645 046.Gadwall/Gadwall_0071_31655.jpg
+2646 046.Gadwall/Gadwall_0034_31212.jpg
+2647 046.Gadwall/Gadwall_0083_30959.jpg
+2648 046.Gadwall/Gadwall_0027_30966.jpg
+2649 046.Gadwall/Gadwall_0013_31020.jpg
+2650 047.American_Goldfinch/American_Goldfinch_0074_32265.jpg
+2651 047.American_Goldfinch/American_Goldfinch_0017_32272.jpg
+2653 047.American_Goldfinch/American_Goldfinch_0061_32281.jpg
+2654 047.American_Goldfinch/American_Goldfinch_0133_32802.jpg
+2655 047.American_Goldfinch/American_Goldfinch_0084_32295.jpg
+2656 047.American_Goldfinch/American_Goldfinch_0001_32306.jpg
+2657 047.American_Goldfinch/American_Goldfinch_0040_32323.jpg
+2658 047.American_Goldfinch/American_Goldfinch_0018_32324.jpg
+2660 047.American_Goldfinch/American_Goldfinch_0012_32338.jpg
+2661 047.American_Goldfinch/American_Goldfinch_0053_32359.jpg
+2662 047.American_Goldfinch/American_Goldfinch_0115_32362.jpg
+2663 047.American_Goldfinch/American_Goldfinch_0087_32363.jpg
+2664 047.American_Goldfinch/American_Goldfinch_0048_32885.jpg
+2665 047.American_Goldfinch/American_Goldfinch_0135_32107.jpg
+2666 047.American_Goldfinch/American_Goldfinch_0096_31876.jpg
+2667 047.American_Goldfinch/American_Goldfinch_0092_32910.jpg
+2668 047.American_Goldfinch/American_Goldfinch_0086_31887.jpg
+2669 047.American_Goldfinch/American_Goldfinch_0049_31889.jpg
+2670 047.American_Goldfinch/American_Goldfinch_0082_31890.jpg
+2671 047.American_Goldfinch/American_Goldfinch_0090_31893.jpg
+2672 047.American_Goldfinch/American_Goldfinch_0134_32409.jpg
+2673 047.American_Goldfinch/American_Goldfinch_0004_31903.jpg
+2674 047.American_Goldfinch/American_Goldfinch_0036_31910.jpg
+2676 047.American_Goldfinch/American_Goldfinch_0062_31921.jpg
+2677 047.American_Goldfinch/American_Goldfinch_0032_31922.jpg
+2678 047.American_Goldfinch/American_Goldfinch_0034_32371.jpg
+2680 047.American_Goldfinch/American_Goldfinch_0116_31943.jpg
+2681 047.American_Goldfinch/American_Goldfinch_0108_32974.jpg
+2682 047.American_Goldfinch/American_Goldfinch_0126_32480.jpg
+2683 047.American_Goldfinch/American_Goldfinch_0041_31969.jpg
+2685 047.American_Goldfinch/American_Goldfinch_0042_31979.jpg
+2688 047.American_Goldfinch/American_Goldfinch_0104_32540.jpg
+2689 047.American_Goldfinch/American_Goldfinch_0123_32505.jpg
+2692 047.American_Goldfinch/American_Goldfinch_0046_32105.jpg
+2693 047.American_Goldfinch/American_Goldfinch_0107_32618.jpg
+2694 047.American_Goldfinch/American_Goldfinch_0022_32111.jpg
+2696 047.American_Goldfinch/American_Goldfinch_0064_32142.jpg
+2697 047.American_Goldfinch/American_Goldfinch_0089_32152.jpg
+2698 047.American_Goldfinch/American_Goldfinch_0014_32154.jpg
+2700 047.American_Goldfinch/American_Goldfinch_0106_32182.jpg
+2702 047.American_Goldfinch/American_Goldfinch_0122_32186.jpg
+2703 047.American_Goldfinch/American_Goldfinch_0118_32210.jpg
+2704 047.American_Goldfinch/American_Goldfinch_0121_32725.jpg
+2705 047.American_Goldfinch/American_Goldfinch_0029_32218.jpg
+2706 047.American_Goldfinch/American_Goldfinch_0026_32222.jpg
+2707 047.American_Goldfinch/American_Goldfinch_0103_32225.jpg
+2708 047.American_Goldfinch/American_Goldfinch_0003_32236.jpg
+2709 047.American_Goldfinch/American_Goldfinch_0105_32238.jpg
+2710 048.European_Goldfinch/European_Goldfinch_0073_794633.jpg
+2711 048.European_Goldfinch/European_Goldfinch_0104_794634.jpg
+2712 048.European_Goldfinch/European_Goldfinch_0067_794637.jpg
+2715 048.European_Goldfinch/European_Goldfinch_0036_794642.jpg
+2716 048.European_Goldfinch/European_Goldfinch_0040_794643.jpg
+2718 048.European_Goldfinch/European_Goldfinch_0041_794645.jpg
+2719 048.European_Goldfinch/European_Goldfinch_0012_794646.jpg
+2720 048.European_Goldfinch/European_Goldfinch_0025_794647.jpg
+2722 048.European_Goldfinch/European_Goldfinch_0088_794651.jpg
+2723 048.European_Goldfinch/European_Goldfinch_0093_794653.jpg
+2724 048.European_Goldfinch/European_Goldfinch_0107_794655.jpg
+2725 048.European_Goldfinch/European_Goldfinch_0048_794656.jpg
+2726 048.European_Goldfinch/European_Goldfinch_0004_33313.jpg
+2728 048.European_Goldfinch/European_Goldfinch_0006_794661.jpg
+2729 048.European_Goldfinch/European_Goldfinch_0103_794664.jpg
+2730 048.European_Goldfinch/European_Goldfinch_0058_794665.jpg
+2731 048.European_Goldfinch/European_Goldfinch_0080_33322.jpg
+2733 048.European_Goldfinch/European_Goldfinch_0092_794671.jpg
+2735 048.European_Goldfinch/European_Goldfinch_0094_794673.jpg
+2736 048.European_Goldfinch/European_Goldfinch_0022_794674.jpg
+2737 048.European_Goldfinch/European_Goldfinch_0038_794675.jpg
+2738 048.European_Goldfinch/European_Goldfinch_0047_33332.jpg
+2739 048.European_Goldfinch/European_Goldfinch_0032_794679.jpg
+2741 048.European_Goldfinch/European_Goldfinch_0100_794685.jpg
+2743 048.European_Goldfinch/European_Goldfinch_0097_794688.jpg
+2746 048.European_Goldfinch/European_Goldfinch_0087_794693.jpg
+2747 048.European_Goldfinch/European_Goldfinch_0030_33357.jpg
+2751 048.European_Goldfinch/European_Goldfinch_0070_33084.jpg
+2752 048.European_Goldfinch/European_Goldfinch_0106_33298.jpg
+2753 048.European_Goldfinch/European_Goldfinch_0037_33149.jpg
+2754 048.European_Goldfinch/European_Goldfinch_0098_33152.jpg
+2755 048.European_Goldfinch/European_Goldfinch_0008_33153.jpg
+2756 048.European_Goldfinch/European_Goldfinch_0045_794690.jpg
+2757 048.European_Goldfinch/European_Goldfinch_0054_33169.jpg
+2758 048.European_Goldfinch/European_Goldfinch_0078_33170.jpg
+2759 048.European_Goldfinch/European_Goldfinch_0076_33173.jpg
+2760 048.European_Goldfinch/European_Goldfinch_0108_33176.jpg
+2762 048.European_Goldfinch/European_Goldfinch_0046_33307.jpg
+2763 048.European_Goldfinch/European_Goldfinch_0011_794676.jpg
+2764 048.European_Goldfinch/European_Goldfinch_0062_794657.jpg
+2765 048.European_Goldfinch/European_Goldfinch_0084_33147.jpg
+2766 048.European_Goldfinch/European_Goldfinch_0034_33256.jpg
+2767 048.European_Goldfinch/European_Goldfinch_0005_33263.jpg
+2768 048.European_Goldfinch/European_Goldfinch_0003_33066.jpg
+2769 048.European_Goldfinch/European_Goldfinch_0089_33279.jpg
+2771 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0073_33723.jpg
+2772 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0089_33807.jpg
+2773 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0116_33808.jpg
+2776 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0095_33568.jpg
+2777 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0117_33576.jpg
+2778 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0075_33839.jpg
+2779 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0112_33841.jpg
+2780 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0060_33589.jpg
+2781 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0126_33593.jpg
+2782 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0051_33600.jpg
+2783 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0004_33858.jpg
+2784 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0083_33590.jpg
+2785 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0125_33867.jpg
+2786 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0070_33612.jpg
+2788 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0028_33777.jpg
+2789 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0087_33369.jpg
+2791 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0056_33649.jpg
+2792 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0054_33633.jpg
+2794 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0085_33384.jpg
+2795 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0068_33387.jpg
+2798 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0041_33396.jpg
+2801 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0052_33676.jpg
+2802 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0049_33422.jpg
+2803 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0065_33423.jpg
+2805 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0019_33687.jpg
+2806 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0088_33448.jpg
+2807 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0099_33455.jpg
+2808 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0123_33695.jpg
+2809 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0100_33985.jpg
+2816 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0113_33490.jpg
+2817 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0063_33492.jpg
+2819 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0047_33500.jpg
+2820 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0050_33501.jpg
+2821 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0097_33759.jpg
+2822 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0091_33504.jpg
+2823 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0011_34020.jpg
+2824 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0122_34023.jpg
+2826 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0055_33774.jpg
+2827 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0067_34032.jpg
+2828 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0033_33524.jpg
+2829 049.Boat_tailed_Grackle/Boat_Tailed_Grackle_0105_33663.jpg
+2830 050.Eared_Grebe/Eared_Grebe_0036_34048.jpg
+2831 050.Eared_Grebe/Eared_Grebe_0065_34049.jpg
+2832 050.Eared_Grebe/Eared_Grebe_0068_34052.jpg
+2833 050.Eared_Grebe/Eared_Grebe_0023_34309.jpg
+2834 050.Eared_Grebe/Eared_Grebe_0063_34054.jpg
+2835 050.Eared_Grebe/Eared_Grebe_0071_34311.jpg
+2836 050.Eared_Grebe/Eared_Grebe_0085_34063.jpg
+2837 050.Eared_Grebe/Eared_Grebe_0086_34064.jpg
+2838 050.Eared_Grebe/Eared_Grebe_0038_34321.jpg
+2839 050.Eared_Grebe/Eared_Grebe_0032_34078.jpg
+2840 050.Eared_Grebe/Eared_Grebe_0053_34084.jpg
+2841 050.Eared_Grebe/Eared_Grebe_0027_34341.jpg
+2842 050.Eared_Grebe/Eared_Grebe_0079_34342.jpg
+2843 050.Eared_Grebe/Eared_Grebe_0006_34347.jpg
+2844 050.Eared_Grebe/Eared_Grebe_0056_34098.jpg
+2845 050.Eared_Grebe/Eared_Grebe_0049_34100.jpg
+2848 050.Eared_Grebe/Eared_Grebe_0075_34115.jpg
+2849 050.Eared_Grebe/Eared_Grebe_0026_34383.jpg
+2850 050.Eared_Grebe/Eared_Grebe_0020_34131.jpg
+2851 050.Eared_Grebe/Eared_Grebe_0042_34132.jpg
+2852 050.Eared_Grebe/Eared_Grebe_0060_34133.jpg
+2853 050.Eared_Grebe/Eared_Grebe_0035_34137.jpg
+2854 050.Eared_Grebe/Eared_Grebe_0017_34139.jpg
+2855 050.Eared_Grebe/Eared_Grebe_0034_34142.jpg
+2856 050.Eared_Grebe/Eared_Grebe_0013_34150.jpg
+2857 050.Eared_Grebe/Eared_Grebe_0061_34407.jpg
+2858 050.Eared_Grebe/Eared_Grebe_0081_34153.jpg
+2859 050.Eared_Grebe/Eared_Grebe_0010_34151.jpg
+2860 050.Eared_Grebe/Eared_Grebe_0041_34157.jpg
+2861 050.Eared_Grebe/Eared_Grebe_0067_34416.jpg
+2862 050.Eared_Grebe/Eared_Grebe_0037_34169.jpg
+2863 050.Eared_Grebe/Eared_Grebe_0043_34427.jpg
+2864 050.Eared_Grebe/Eared_Grebe_0073_34172.jpg
+2865 050.Eared_Grebe/Eared_Grebe_0058_34174.jpg
+2866 050.Eared_Grebe/Eared_Grebe_0048_34175.jpg
+2867 050.Eared_Grebe/Eared_Grebe_0001_34433.jpg
+2868 050.Eared_Grebe/Eared_Grebe_0069_34199.jpg
+2869 050.Eared_Grebe/Eared_Grebe_0047_34204.jpg
+2870 050.Eared_Grebe/Eared_Grebe_0052_34205.jpg
+2871 050.Eared_Grebe/Eared_Grebe_0051_34209.jpg
+2872 050.Eared_Grebe/Eared_Grebe_0045_34212.jpg
+2873 050.Eared_Grebe/Eared_Grebe_0054_34289.jpg
+2874 050.Eared_Grebe/Eared_Grebe_0080_34223.jpg
+2875 050.Eared_Grebe/Eared_Grebe_0082_34227.jpg
+2876 050.Eared_Grebe/Eared_Grebe_0016_34334.jpg
+2877 050.Eared_Grebe/Eared_Grebe_0015_34231.jpg
+2878 050.Eared_Grebe/Eared_Grebe_0007_34236.jpg
+2879 050.Eared_Grebe/Eared_Grebe_0074_34238.jpg
+2880 050.Eared_Grebe/Eared_Grebe_0009_34244.jpg
+2881 050.Eared_Grebe/Eared_Grebe_0062_34249.jpg
+2882 050.Eared_Grebe/Eared_Grebe_0064_34251.jpg
+2883 050.Eared_Grebe/Eared_Grebe_0039_34257.jpg
+2884 050.Eared_Grebe/Eared_Grebe_0029_34258.jpg
+2885 050.Eared_Grebe/Eared_Grebe_0031_34262.jpg
+2886 050.Eared_Grebe/Eared_Grebe_0040_34340.jpg
+2887 050.Eared_Grebe/Eared_Grebe_0057_34274.jpg
+2888 050.Eared_Grebe/Eared_Grebe_0004_34277.jpg
+2889 050.Eared_Grebe/Eared_Grebe_0025_34344.jpg
+2890 051.Horned_Grebe/Horned_Grebe_0017_35073.jpg
+2891 051.Horned_Grebe/Horned_Grebe_0103_34822.jpg
+2892 051.Horned_Grebe/Horned_Grebe_0050_34561.jpg
+2893 051.Horned_Grebe/Horned_Grebe_0058_34568.jpg
+2894 051.Horned_Grebe/Horned_Grebe_0055_35104.jpg
+2895 051.Horned_Grebe/Horned_Grebe_0002_34577.jpg
+2896 051.Horned_Grebe/Horned_Grebe_0076_34841.jpg
+2897 051.Horned_Grebe/Horned_Grebe_0077_34587.jpg
+2898 051.Horned_Grebe/Horned_Grebe_0057_34590.jpg
+2899 051.Horned_Grebe/Horned_Grebe_0039_34848.jpg
+2900 051.Horned_Grebe/Horned_Grebe_0071_35078.jpg
+2901 051.Horned_Grebe/Horned_Grebe_0106_35112.jpg
+2902 051.Horned_Grebe/Horned_Grebe_0045_34859.jpg
+2903 051.Horned_Grebe/Horned_Grebe_0112_34864.jpg
+2904 051.Horned_Grebe/Horned_Grebe_0061_34613.jpg
+2905 051.Horned_Grebe/Horned_Grebe_0031_34626.jpg
+2906 051.Horned_Grebe/Horned_Grebe_0051_35143.jpg
+2907 051.Horned_Grebe/Horned_Grebe_0090_34640.jpg
+2908 051.Horned_Grebe/Horned_Grebe_0067_34654.jpg
+2909 051.Horned_Grebe/Horned_Grebe_0005_34657.jpg
+2910 051.Horned_Grebe/Horned_Grebe_0098_34662.jpg
+2911 051.Horned_Grebe/Horned_Grebe_0046_34926.jpg
+2912 051.Horned_Grebe/Horned_Grebe_0086_34749.jpg
+2913 051.Horned_Grebe/Horned_Grebe_0084_34936.jpg
+2914 051.Horned_Grebe/Horned_Grebe_0072_34497.jpg
+2915 051.Horned_Grebe/Horned_Grebe_0009_34952.jpg
+2916 051.Horned_Grebe/Horned_Grebe_0102_34448.jpg
+2917 051.Horned_Grebe/Horned_Grebe_0096_34452.jpg
+2918 051.Horned_Grebe/Horned_Grebe_0063_34966.jpg
+2919 051.Horned_Grebe/Horned_Grebe_0014_34968.jpg
+2920 051.Horned_Grebe/Horned_Grebe_0085_34713.jpg
+2921 051.Horned_Grebe/Horned_Grebe_0100_34462.jpg
+2922 051.Horned_Grebe/Horned_Grebe_0093_34720.jpg
+2923 051.Horned_Grebe/Horned_Grebe_0001_34723.jpg
+2924 051.Horned_Grebe/Horned_Grebe_0082_34725.jpg
+2925 051.Horned_Grebe/Horned_Grebe_0003_34983.jpg
+2926 051.Horned_Grebe/Horned_Grebe_0010_34716.jpg
+2927 051.Horned_Grebe/Horned_Grebe_0101_35203.jpg
+2928 051.Horned_Grebe/Horned_Grebe_0099_34989.jpg
+2929 051.Horned_Grebe/Horned_Grebe_0069_34990.jpg
+2930 051.Horned_Grebe/Horned_Grebe_0019_34811.jpg
+2931 051.Horned_Grebe/Horned_Grebe_0033_34736.jpg
+2932 051.Horned_Grebe/Horned_Grebe_0066_34738.jpg
+2933 051.Horned_Grebe/Horned_Grebe_0006_34718.jpg
+2934 051.Horned_Grebe/Horned_Grebe_0095_34491.jpg
+2935 051.Horned_Grebe/Horned_Grebe_0110_35012.jpg
+2936 051.Horned_Grebe/Horned_Grebe_0064_35015.jpg
+2937 051.Horned_Grebe/Horned_Grebe_0088_35023.jpg
+2938 051.Horned_Grebe/Horned_Grebe_0053_34512.jpg
+2939 051.Horned_Grebe/Horned_Grebe_0070_34514.jpg
+2940 051.Horned_Grebe/Horned_Grebe_0008_34515.jpg
+2941 051.Horned_Grebe/Horned_Grebe_0114_34517.jpg
+2942 051.Horned_Grebe/Horned_Grebe_0062_34523.jpg
+2943 051.Horned_Grebe/Horned_Grebe_0041_34535.jpg
+2944 051.Horned_Grebe/Horned_Grebe_0068_35111.jpg
+2945 051.Horned_Grebe/Horned_Grebe_0049_34779.jpg
+2946 051.Horned_Grebe/Horned_Grebe_0078_34799.jpg
+2947 051.Horned_Grebe/Horned_Grebe_0040_34548.jpg
+2948 051.Horned_Grebe/Horned_Grebe_0011_34687.jpg
+2949 051.Horned_Grebe/Horned_Grebe_0029_34557.jpg
+2950 052.Pied_billed_Grebe/Pied_Billed_Grebe_0064_35843.jpg
+2951 052.Pied_billed_Grebe/Pied_Billed_Grebe_0038_35798.jpg
+2952 052.Pied_billed_Grebe/Pied_Billed_Grebe_0037_35598.jpg
+2953 052.Pied_billed_Grebe/Pied_Billed_Grebe_0082_35356.jpg
+2954 052.Pied_billed_Grebe/Pied_Billed_Grebe_0099_35872.jpg
+2955 052.Pied_billed_Grebe/Pied_Billed_Grebe_0115_35362.jpg
+2956 052.Pied_billed_Grebe/Pied_Billed_Grebe_0119_35377.jpg
+2957 052.Pied_billed_Grebe/Pied_Billed_Grebe_0013_35882.jpg
+2958 052.Pied_billed_Grebe/Pied_Billed_Grebe_0033_35379.jpg
+2959 052.Pied_billed_Grebe/Pied_Billed_Grebe_0071_35386.jpg
+2960 052.Pied_billed_Grebe/Pied_Billed_Grebe_0007_35399.jpg
+2961 052.Pied_billed_Grebe/Pied_Billed_Grebe_0040_35981.jpg
+2962 052.Pied_billed_Grebe/Pied_Billed_Grebe_0081_35409.jpg
+2963 052.Pied_billed_Grebe/Pied_Billed_Grebe_0078_35410.jpg
+2964 052.Pied_billed_Grebe/Pied_Billed_Grebe_0048_35670.jpg
+2965 052.Pied_billed_Grebe/Pied_Billed_Grebe_0106_35418.jpg
+2966 052.Pied_billed_Grebe/Pied_Billed_Grebe_0032_35931.jpg
+2967 052.Pied_billed_Grebe/Pied_Billed_Grebe_0004_35808.jpg
+2968 052.Pied_billed_Grebe/Pied_Billed_Grebe_0014_35424.jpg
+2969 052.Pied_billed_Grebe/Pied_Billed_Grebe_0044_35425.jpg
+2970 052.Pied_billed_Grebe/Pied_Billed_Grebe_0072_35939.jpg
+2971 052.Pied_billed_Grebe/Pied_Billed_Grebe_0023_35687.jpg
+2972 052.Pied_billed_Grebe/Pied_Billed_Grebe_0076_35432.jpg
+2973 052.Pied_billed_Grebe/Pied_Billed_Grebe_0005_35437.jpg
+2974 052.Pied_billed_Grebe/Pied_Billed_Grebe_0053_35262.jpg
+2975 052.Pied_billed_Grebe/Pied_Billed_Grebe_0020_35958.jpg
+2976 052.Pied_billed_Grebe/Pied_Billed_Grebe_0113_35703.jpg
+2977 052.Pied_billed_Grebe/Pied_Billed_Grebe_0045_35962.jpg
+2978 052.Pied_billed_Grebe/Pied_Billed_Grebe_0068_35963.jpg
+2979 052.Pied_billed_Grebe/Pied_Billed_Grebe_0065_35713.jpg
+2981 052.Pied_billed_Grebe/Pied_Billed_Grebe_0101_35464.jpg
+2982 052.Pied_billed_Grebe/Pied_Billed_Grebe_0067_35465.jpg
+2983 052.Pied_billed_Grebe/Pied_Billed_Grebe_0084_35863.jpg
+2984 052.Pied_billed_Grebe/Pied_Billed_Grebe_0049_35980.jpg
+2985 052.Pied_billed_Grebe/Pied_Billed_Grebe_0123_35469.jpg
+2986 052.Pied_billed_Grebe/Pied_Billed_Grebe_0024_35949.jpg
+2987 052.Pied_billed_Grebe/Pied_Billed_Grebe_0070_35472.jpg
+2988 052.Pied_billed_Grebe/Pied_Billed_Grebe_0041_35224.jpg
+2989 052.Pied_billed_Grebe/Pied_Billed_Grebe_0086_35483.jpg
+2990 052.Pied_billed_Grebe/Pied_Billed_Grebe_0114_35493.jpg
+2991 052.Pied_billed_Grebe/Pied_Billed_Grebe_0095_35496.jpg
+2992 052.Pied_billed_Grebe/Pied_Billed_Grebe_0030_35498.jpg
+2993 052.Pied_billed_Grebe/Pied_Billed_Grebe_0055_35502.jpg
+2994 052.Pied_billed_Grebe/Pied_Billed_Grebe_0058_35503.jpg
+2995 052.Pied_billed_Grebe/Pied_Billed_Grebe_0059_35507.jpg
+2996 052.Pied_billed_Grebe/Pied_Billed_Grebe_0120_35764.jpg
+2997 052.Pied_billed_Grebe/Pied_Billed_Grebe_0035_35518.jpg
+2998 052.Pied_billed_Grebe/Pied_Billed_Grebe_0052_35937.jpg
+2999 052.Pied_billed_Grebe/Pied_Billed_Grebe_0063_35529.jpg
+3000 052.Pied_billed_Grebe/Pied_Billed_Grebe_0050_35530.jpg
+3001 052.Pied_billed_Grebe/Pied_Billed_Grebe_0091_35276.jpg
+3003 052.Pied_billed_Grebe/Pied_Billed_Grebe_0125_35322.jpg
+3004 052.Pied_billed_Grebe/Pied_Billed_Grebe_0029_35551.jpg
+3005 052.Pied_billed_Grebe/Pied_Billed_Grebe_0073_35553.jpg
+3006 052.Pied_billed_Grebe/Pied_Billed_Grebe_0062_35955.jpg
+3007 052.Pied_billed_Grebe/Pied_Billed_Grebe_0056_35623.jpg
+3008 052.Pied_billed_Grebe/Pied_Billed_Grebe_0100_35310.jpg
+3009 052.Pied_billed_Grebe/Pied_Billed_Grebe_0096_35579.jpg
+3010 053.Western_Grebe/Western_Grebe_0067_36610.jpg
+3011 053.Western_Grebe/Western_Grebe_0077_36355.jpg
+3014 053.Western_Grebe/Western_Grebe_0099_36112.jpg
+3015 053.Western_Grebe/Western_Grebe_0102_36116.jpg
+3016 053.Western_Grebe/Western_Grebe_0046_36118.jpg
+3017 053.Western_Grebe/Western_Grebe_0092_36121.jpg
+3018 053.Western_Grebe/Western_Grebe_0029_36379.jpg
+3019 053.Western_Grebe/Western_Grebe_0013_36383.jpg
+3020 053.Western_Grebe/Western_Grebe_0004_36130.jpg
+3021 053.Western_Grebe/Western_Grebe_0033_36395.jpg
+3022 053.Western_Grebe/Western_Grebe_0048_36399.jpg
+3023 053.Western_Grebe/Western_Grebe_0058_36403.jpg
+3024 053.Western_Grebe/Western_Grebe_0022_36148.jpg
+3026 053.Western_Grebe/Western_Grebe_0057_36157.jpg
+3027 053.Western_Grebe/Western_Grebe_0034_36149.jpg
+3028 053.Western_Grebe/Western_Grebe_0070_36162.jpg
+3029 053.Western_Grebe/Western_Grebe_0104_36164.jpg
+3030 053.Western_Grebe/Western_Grebe_0045_36425.jpg
+3031 053.Western_Grebe/Western_Grebe_0088_36428.jpg
+3032 053.Western_Grebe/Western_Grebe_0081_36578.jpg
+3033 053.Western_Grebe/Western_Grebe_0075_36435.jpg
+3034 053.Western_Grebe/Western_Grebe_0090_36182.jpg
+3035 053.Western_Grebe/Western_Grebe_0032_36439.jpg
+3036 053.Western_Grebe/Western_Grebe_0014_36185.jpg
+3037 053.Western_Grebe/Western_Grebe_0044_36188.jpg
+3038 053.Western_Grebe/Western_Grebe_0093_36193.jpg
+3039 053.Western_Grebe/Western_Grebe_0091_36194.jpg
+3040 053.Western_Grebe/Western_Grebe_0028_36196.jpg
+3041 053.Western_Grebe/Western_Grebe_0047_36203.jpg
+3042 053.Western_Grebe/Western_Grebe_0037_36469.jpg
+3043 053.Western_Grebe/Western_Grebe_0056_36216.jpg
+3044 053.Western_Grebe/Western_Grebe_0017_36218.jpg
+3045 053.Western_Grebe/Western_Grebe_0009_36477.jpg
+3047 053.Western_Grebe/Western_Grebe_0085_36224.jpg
+3049 053.Western_Grebe/Western_Grebe_0069_36486.jpg
+3050 053.Western_Grebe/Western_Grebe_0083_36033.jpg
+3051 053.Western_Grebe/Western_Grebe_0020_36241.jpg
+3053 053.Western_Grebe/Western_Grebe_0051_36249.jpg
+3054 053.Western_Grebe/Western_Grebe_0025_36251.jpg
+3055 053.Western_Grebe/Western_Grebe_0106_36509.jpg
+3056 053.Western_Grebe/Western_Grebe_0043_36183.jpg
+3058 053.Western_Grebe/Western_Grebe_0002_36518.jpg
+3059 053.Western_Grebe/Western_Grebe_0036_36521.jpg
+3060 053.Western_Grebe/Western_Grebe_0011_36522.jpg
+3061 053.Western_Grebe/Western_Grebe_0071_36536.jpg
+3062 053.Western_Grebe/Western_Grebe_0021_36282.jpg
+3063 053.Western_Grebe/Western_Grebe_0105_36542.jpg
+3064 053.Western_Grebe/Western_Grebe_0042_36035.jpg
+3065 053.Western_Grebe/Western_Grebe_0080_36310.jpg
+3066 053.Western_Grebe/Western_Grebe_0087_36570.jpg
+3067 053.Western_Grebe/Western_Grebe_0049_36219.jpg
+3068 053.Western_Grebe/Western_Grebe_0007_36074.jpg
+3069 053.Western_Grebe/Western_Grebe_0061_36181.jpg
+3070 054.Blue_Grosbeak/Blue_Grosbeak_0066_36632.jpg
+3071 054.Blue_Grosbeak/Blue_Grosbeak_0061_36633.jpg
+3072 054.Blue_Grosbeak/Blue_Grosbeak_0078_36655.jpg
+3073 054.Blue_Grosbeak/Blue_Grosbeak_0073_37148.jpg
+3074 054.Blue_Grosbeak/Blue_Grosbeak_0074_37155.jpg
+3076 054.Blue_Grosbeak/Blue_Grosbeak_0025_36646.jpg
+3078 054.Blue_Grosbeak/Blue_Grosbeak_0109_36914.jpg
+3079 054.Blue_Grosbeak/Blue_Grosbeak_0031_37173.jpg
+3080 054.Blue_Grosbeak/Blue_Grosbeak_0041_37174.jpg
+3081 054.Blue_Grosbeak/Blue_Grosbeak_0049_37180.jpg
+3082 054.Blue_Grosbeak/Blue_Grosbeak_0103_36673.jpg
+3084 054.Blue_Grosbeak/Blue_Grosbeak_0024_36680.jpg
+3085 054.Blue_Grosbeak/Blue_Grosbeak_0029_37197.jpg
+3086 054.Blue_Grosbeak/Blue_Grosbeak_0043_37200.jpg
+3087 054.Blue_Grosbeak/Blue_Grosbeak_0071_36948.jpg
+3088 054.Blue_Grosbeak/Blue_Grosbeak_0053_36709.jpg
+3089 054.Blue_Grosbeak/Blue_Grosbeak_0107_36696.jpg
+3091 054.Blue_Grosbeak/Blue_Grosbeak_0014_36708.jpg
+3092 054.Blue_Grosbeak/Blue_Grosbeak_0067_36965.jpg
+3093 054.Blue_Grosbeak/Blue_Grosbeak_0020_36967.jpg
+3094 054.Blue_Grosbeak/Blue_Grosbeak_0092_36711.jpg
+3095 054.Blue_Grosbeak/Blue_Grosbeak_0101_36719.jpg
+3096 054.Blue_Grosbeak/Blue_Grosbeak_0033_36980.jpg
+3097 054.Blue_Grosbeak/Blue_Grosbeak_0104_36984.jpg
+3098 054.Blue_Grosbeak/Blue_Grosbeak_0015_36985.jpg
+3101 054.Blue_Grosbeak/Blue_Grosbeak_0082_36991.jpg
+3102 054.Blue_Grosbeak/Blue_Grosbeak_0009_36992.jpg
+3103 054.Blue_Grosbeak/Blue_Grosbeak_0045_36672.jpg
+3104 054.Blue_Grosbeak/Blue_Grosbeak_0094_36995.jpg
+3105 054.Blue_Grosbeak/Blue_Grosbeak_0019_37205.jpg
+3106 054.Blue_Grosbeak/Blue_Grosbeak_0004_14988.jpg
+3108 054.Blue_Grosbeak/Blue_Grosbeak_0027_36703.jpg
+3109 054.Blue_Grosbeak/Blue_Grosbeak_0072_36774.jpg
+3110 054.Blue_Grosbeak/Blue_Grosbeak_0081_37034.jpg
+3111 054.Blue_Grosbeak/Blue_Grosbeak_0087_36780.jpg
+3113 054.Blue_Grosbeak/Blue_Grosbeak_0036_37048.jpg
+3114 054.Blue_Grosbeak/Blue_Grosbeak_0037_36794.jpg
+3115 054.Blue_Grosbeak/Blue_Grosbeak_0051_37065.jpg
+3116 054.Blue_Grosbeak/Blue_Grosbeak_0097_37067.jpg
+3117 054.Blue_Grosbeak/Blue_Grosbeak_0023_37069.jpg
+3118 054.Blue_Grosbeak/Blue_Grosbeak_0022_37082.jpg
+3119 054.Blue_Grosbeak/Blue_Grosbeak_0099_36828.jpg
+3120 054.Blue_Grosbeak/Blue_Grosbeak_0038_37095.jpg
+3121 054.Blue_Grosbeak/Blue_Grosbeak_0111_36841.jpg
+3122 054.Blue_Grosbeak/Blue_Grosbeak_0086_36818.jpg
+3123 054.Blue_Grosbeak/Blue_Grosbeak_0065_36847.jpg
+3126 054.Blue_Grosbeak/Blue_Grosbeak_0010_37108.jpg
+3127 054.Blue_Grosbeak/Blue_Grosbeak_0057_37116.jpg
+3128 054.Blue_Grosbeak/Blue_Grosbeak_0016_36862.jpg
+3129 054.Blue_Grosbeak/Blue_Grosbeak_0046_37119.jpg
+3130 055.Evening_Grosbeak/Evening_Grosbeak_0120_37378.jpg
+3131 055.Evening_Grosbeak/Evening_Grosbeak_0017_37379.jpg
+3132 055.Evening_Grosbeak/Evening_Grosbeak_0057_37392.jpg
+3133 055.Evening_Grosbeak/Evening_Grosbeak_0141_37398.jpg
+3134 055.Evening_Grosbeak/Evening_Grosbeak_0011_37913.jpg
+3135 055.Evening_Grosbeak/Evening_Grosbeak_0024_37404.jpg
+3136 055.Evening_Grosbeak/Evening_Grosbeak_0063_37409.jpg
+3137 055.Evening_Grosbeak/Evening_Grosbeak_0028_37410.jpg
+3138 055.Evening_Grosbeak/Evening_Grosbeak_0114_37416.jpg
+3139 055.Evening_Grosbeak/Evening_Grosbeak_0044_37938.jpg
+3140 055.Evening_Grosbeak/Evening_Grosbeak_0040_37429.jpg
+3141 055.Evening_Grosbeak/Evening_Grosbeak_0001_37437.jpg
+3142 055.Evening_Grosbeak/Evening_Grosbeak_0072_37301.jpg
+3143 055.Evening_Grosbeak/Evening_Grosbeak_0051_37954.jpg
+3145 055.Evening_Grosbeak/Evening_Grosbeak_0133_37976.jpg
+3147 055.Evening_Grosbeak/Evening_Grosbeak_0079_37979.jpg
+3148 055.Evening_Grosbeak/Evening_Grosbeak_0085_37487.jpg
+3149 055.Evening_Grosbeak/Evening_Grosbeak_0115_37490.jpg
+3150 055.Evening_Grosbeak/Evening_Grosbeak_0053_38005.jpg
+3151 055.Evening_Grosbeak/Evening_Grosbeak_0007_37312.jpg
+3152 055.Evening_Grosbeak/Evening_Grosbeak_0132_38025.jpg
+3153 055.Evening_Grosbeak/Evening_Grosbeak_0061_38026.jpg
+3154 055.Evening_Grosbeak/Evening_Grosbeak_0098_37532.jpg
+3156 055.Evening_Grosbeak/Evening_Grosbeak_0078_38051.jpg
+3157 055.Evening_Grosbeak/Evening_Grosbeak_0112_37922.jpg
+3158 055.Evening_Grosbeak/Evening_Grosbeak_0093_37608.jpg
+3160 055.Evening_Grosbeak/Evening_Grosbeak_0041_37928.jpg
+3161 055.Evening_Grosbeak/Evening_Grosbeak_0107_37933.jpg
+3162 055.Evening_Grosbeak/Evening_Grosbeak_0077_38160.jpg
+3163 055.Evening_Grosbeak/Evening_Grosbeak_0104_37661.jpg
+3164 055.Evening_Grosbeak/Evening_Grosbeak_0069_37684.jpg
+3165 055.Evening_Grosbeak/Evening_Grosbeak_0101_37697.jpg
+3166 055.Evening_Grosbeak/Evening_Grosbeak_0003_37698.jpg
+3167 055.Evening_Grosbeak/Evening_Grosbeak_0033_37707.jpg
+3169 055.Evening_Grosbeak/Evening_Grosbeak_0038_37228.jpg
+3170 055.Evening_Grosbeak/Evening_Grosbeak_0025_37230.jpg
+3171 055.Evening_Grosbeak/Evening_Grosbeak_0015_37238.jpg
+3172 055.Evening_Grosbeak/Evening_Grosbeak_0031_37239.jpg
+3173 055.Evening_Grosbeak/Evening_Grosbeak_0022_37761.jpg
+3174 055.Evening_Grosbeak/Evening_Grosbeak_0070_37767.jpg
+3175 055.Evening_Grosbeak/Evening_Grosbeak_0016_37613.jpg
+3176 055.Evening_Grosbeak/Evening_Grosbeak_0021_37789.jpg
+3178 055.Evening_Grosbeak/Evening_Grosbeak_0065_37296.jpg
+3180 055.Evening_Grosbeak/Evening_Grosbeak_0130_37813.jpg
+3181 055.Evening_Grosbeak/Evening_Grosbeak_0075_37302.jpg
+3183 055.Evening_Grosbeak/Evening_Grosbeak_0027_37824.jpg
+3186 055.Evening_Grosbeak/Evening_Grosbeak_0050_37336.jpg
+3187 055.Evening_Grosbeak/Evening_Grosbeak_0034_37349.jpg
+3188 055.Evening_Grosbeak/Evening_Grosbeak_0100_37863.jpg
+3189 055.Evening_Grosbeak/Evening_Grosbeak_0122_37864.jpg
+3193 056.Pine_Grosbeak/Pine_Grosbeak_0077_38929.jpg
+3194 056.Pine_Grosbeak/Pine_Grosbeak_0006_38421.jpg
+3195 056.Pine_Grosbeak/Pine_Grosbeak_0056_38940.jpg
+3196 056.Pine_Grosbeak/Pine_Grosbeak_0104_38362.jpg
+3197 056.Pine_Grosbeak/Pine_Grosbeak_0058_38431.jpg
+3198 056.Pine_Grosbeak/Pine_Grosbeak_0042_38432.jpg
+3199 056.Pine_Grosbeak/Pine_Grosbeak_0048_38434.jpg
+3200 056.Pine_Grosbeak/Pine_Grosbeak_0003_38437.jpg
+3202 056.Pine_Grosbeak/Pine_Grosbeak_0025_38443.jpg
+3203 056.Pine_Grosbeak/Pine_Grosbeak_0038_38956.jpg
+3204 056.Pine_Grosbeak/Pine_Grosbeak_0109_38451.jpg
+3206 056.Pine_Grosbeak/Pine_Grosbeak_0071_38207.jpg
+3207 056.Pine_Grosbeak/Pine_Grosbeak_0012_38466.jpg
+3208 056.Pine_Grosbeak/Pine_Grosbeak_0068_38981.jpg
+3209 056.Pine_Grosbeak/Pine_Grosbeak_0002_38214.jpg
+3211 056.Pine_Grosbeak/Pine_Grosbeak_0032_38473.jpg
+3212 056.Pine_Grosbeak/Pine_Grosbeak_0050_38475.jpg
+3216 056.Pine_Grosbeak/Pine_Grosbeak_0029_38995.jpg
+3217 056.Pine_Grosbeak/Pine_Grosbeak_0111_38741.jpg
+3218 056.Pine_Grosbeak/Pine_Grosbeak_0008_38486.jpg
+3219 056.Pine_Grosbeak/Pine_Grosbeak_0016_38743.jpg
+3220 056.Pine_Grosbeak/Pine_Grosbeak_0106_38218.jpg
+3221 056.Pine_Grosbeak/Pine_Grosbeak_0078_38242.jpg
+3222 056.Pine_Grosbeak/Pine_Grosbeak_0083_38508.jpg
+3223 056.Pine_Grosbeak/Pine_Grosbeak_0044_38766.jpg
+3225 056.Pine_Grosbeak/Pine_Grosbeak_0067_38524.jpg
+3227 056.Pine_Grosbeak/Pine_Grosbeak_0046_38275.jpg
+3228 056.Pine_Grosbeak/Pine_Grosbeak_0108_38281.jpg
+3230 056.Pine_Grosbeak/Pine_Grosbeak_0052_38804.jpg
+3231 056.Pine_Grosbeak/Pine_Grosbeak_0053_38805.jpg
+3232 056.Pine_Grosbeak/Pine_Grosbeak_0082_38552.jpg
+3234 056.Pine_Grosbeak/Pine_Grosbeak_0088_38830.jpg
+3235 056.Pine_Grosbeak/Pine_Grosbeak_0059_38581.jpg
+3236 056.Pine_Grosbeak/Pine_Grosbeak_0035_38729.jpg
+3237 056.Pine_Grosbeak/Pine_Grosbeak_0115_38330.jpg
+3238 056.Pine_Grosbeak/Pine_Grosbeak_0019_38845.jpg
+3239 056.Pine_Grosbeak/Pine_Grosbeak_0034_38987.jpg
+3240 056.Pine_Grosbeak/Pine_Grosbeak_0033_38945.jpg
+3241 056.Pine_Grosbeak/Pine_Grosbeak_0107_38351.jpg
+3243 056.Pine_Grosbeak/Pine_Grosbeak_0075_38619.jpg
+3244 056.Pine_Grosbeak/Pine_Grosbeak_0018_38374.jpg
+3246 056.Pine_Grosbeak/Pine_Grosbeak_0021_38382.jpg
+3247 056.Pine_Grosbeak/Pine_Grosbeak_0014_38398.jpg
+3248 056.Pine_Grosbeak/Pine_Grosbeak_0054_38953.jpg
+3249 056.Pine_Grosbeak/Pine_Grosbeak_0004_38396.jpg
+3251 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0008_39481.jpg
+3253 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0101_39495.jpg
+3254 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0108_39000.jpg
+3255 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0097_39514.jpg
+3256 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0088_39035.jpg
+3257 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0014_39037.jpg
+3259 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0059_39045.jpg
+3260 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0084_39053.jpg
+3261 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0103_39580.jpg
+3262 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0067_39592.jpg
+3264 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0117_39601.jpg
+3265 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0068_39094.jpg
+3266 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0077_39613.jpg
+3267 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0033_39290.jpg
+3269 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0004_39143.jpg
+3270 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0086_39658.jpg
+3271 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0012_39149.jpg
+3272 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0020_39152.jpg
+3273 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0055_39154.jpg
+3276 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0040_39689.jpg
+3277 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0095_39178.jpg
+3278 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0050_39695.jpg
+3279 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0104_39189.jpg
+3280 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0026_39191.jpg
+3281 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0106_39714.jpg
+3283 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0011_39207.jpg
+3284 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0089_39211.jpg
+3285 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0018_39731.jpg
+3287 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0003_39223.jpg
+3288 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0135_39227.jpg
+3289 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0062_39234.jpg
+3291 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0025_39252.jpg
+3292 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0069_39254.jpg
+3293 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0114_39770.jpg
+3294 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0032_39772.jpg
+3295 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0016_39265.jpg
+3296 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0028_39271.jpg
+3297 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0019_39274.jpg
+3298 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0060_39279.jpg
+3299 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0087_39280.jpg
+3300 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0075_39795.jpg
+3302 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0051_39798.jpg
+3303 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0001_39801.jpg
+3304 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0063_39802.jpg
+3305 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0126_39361.jpg
+3306 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0092_39367.jpg
+3307 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0110_39373.jpg
+3309 057.Rose_breasted_Grosbeak/Rose_Breasted_Grosbeak_0047_39407.jpg
+3310 058.Pigeon_Guillemot/Pigeon_Guillemot_0018_40195.jpg
+3311 058.Pigeon_Guillemot/Pigeon_Guillemot_0069_40278.jpg
+3312 058.Pigeon_Guillemot/Pigeon_Guillemot_0012_40236.jpg
+3313 058.Pigeon_Guillemot/Pigeon_Guillemot_0062_39853.jpg
+3314 058.Pigeon_Guillemot/Pigeon_Guillemot_0073_40209.jpg
+3315 058.Pigeon_Guillemot/Pigeon_Guillemot_0071_40216.jpg
+3316 058.Pigeon_Guillemot/Pigeon_Guillemot_0084_40217.jpg
+3318 058.Pigeon_Guillemot/Pigeon_Guillemot_0015_40232.jpg
+3319 058.Pigeon_Guillemot/Pigeon_Guillemot_0108_40235.jpg
+3320 058.Pigeon_Guillemot/Pigeon_Guillemot_0083_39980.jpg
+3321 058.Pigeon_Guillemot/Pigeon_Guillemot_0003_39986.jpg
+3323 058.Pigeon_Guillemot/Pigeon_Guillemot_0013_40253.jpg
+3324 058.Pigeon_Guillemot/Pigeon_Guillemot_0025_40511.jpg
+3325 058.Pigeon_Guillemot/Pigeon_Guillemot_0019_40515.jpg
+3326 058.Pigeon_Guillemot/Pigeon_Guillemot_0089_40008.jpg
+3327 058.Pigeon_Guillemot/Pigeon_Guillemot_0040_40270.jpg
+3328 058.Pigeon_Guillemot/Pigeon_Guillemot_0023_39829.jpg
+3329 058.Pigeon_Guillemot/Pigeon_Guillemot_0042_40281.jpg
+3330 058.Pigeon_Guillemot/Pigeon_Guillemot_0082_40290.jpg
+3331 058.Pigeon_Guillemot/Pigeon_Guillemot_0038_40035.jpg
+3334 058.Pigeon_Guillemot/Pigeon_Guillemot_0064_40044.jpg
+3335 058.Pigeon_Guillemot/Pigeon_Guillemot_0028_40046.jpg
+3336 058.Pigeon_Guillemot/Pigeon_Guillemot_0041_39807.jpg
+3337 058.Pigeon_Guillemot/Pigeon_Guillemot_0024_39814.jpg
+3338 058.Pigeon_Guillemot/Pigeon_Guillemot_0034_40074.jpg
+3339 058.Pigeon_Guillemot/Pigeon_Guillemot_0105_40078.jpg
+3341 058.Pigeon_Guillemot/Pigeon_Guillemot_0020_40088.jpg
+3342 058.Pigeon_Guillemot/Pigeon_Guillemot_0030_40089.jpg
+3343 058.Pigeon_Guillemot/Pigeon_Guillemot_0090_40090.jpg
+3344 058.Pigeon_Guillemot/Pigeon_Guillemot_0043_39861.jpg
+3345 058.Pigeon_Guillemot/Pigeon_Guillemot_0005_40375.jpg
+3347 058.Pigeon_Guillemot/Pigeon_Guillemot_0095_39867.jpg
+3348 058.Pigeon_Guillemot/Pigeon_Guillemot_0103_39882.jpg
+3349 058.Pigeon_Guillemot/Pigeon_Guillemot_0026_40126.jpg
+3350 058.Pigeon_Guillemot/Pigeon_Guillemot_0109_39872.jpg
+3351 058.Pigeon_Guillemot/Pigeon_Guillemot_0057_40130.jpg
+3353 058.Pigeon_Guillemot/Pigeon_Guillemot_0079_40389.jpg
+3354 058.Pigeon_Guillemot/Pigeon_Guillemot_0052_40137.jpg
+3355 058.Pigeon_Guillemot/Pigeon_Guillemot_0077_39885.jpg
+3356 058.Pigeon_Guillemot/Pigeon_Guillemot_0029_39889.jpg
+3357 058.Pigeon_Guillemot/Pigeon_Guillemot_0037_40149.jpg
+3358 058.Pigeon_Guillemot/Pigeon_Guillemot_0007_40313.jpg
+3359 058.Pigeon_Guillemot/Pigeon_Guillemot_0087_39897.jpg
+3360 058.Pigeon_Guillemot/Pigeon_Guillemot_0098_39902.jpg
+3361 058.Pigeon_Guillemot/Pigeon_Guillemot_0075_40159.jpg
+3362 058.Pigeon_Guillemot/Pigeon_Guillemot_0072_39905.jpg
+3363 058.Pigeon_Guillemot/Pigeon_Guillemot_0055_40171.jpg
+3364 058.Pigeon_Guillemot/Pigeon_Guillemot_0100_40179.jpg
+3365 058.Pigeon_Guillemot/Pigeon_Guillemot_0058_40184.jpg
+3366 058.Pigeon_Guillemot/Pigeon_Guillemot_0059_39929.jpg
+3368 059.California_Gull/California_Gull_0131_40963.jpg
+3369 059.California_Gull/California_Gull_0025_41479.jpg
+3371 059.California_Gull/California_Gull_0096_40978.jpg
+3372 059.California_Gull/California_Gull_0102_40986.jpg
+3373 059.California_Gull/California_Gull_0029_41506.jpg
+3375 059.California_Gull/California_Gull_0111_41033.jpg
+3376 059.California_Gull/California_Gull_0039_41034.jpg
+3377 059.California_Gull/California_Gull_0034_41548.jpg
+3378 059.California_Gull/California_Gull_0078_41550.jpg
+3380 059.California_Gull/California_Gull_0103_41044.jpg
+3381 059.California_Gull/California_Gull_0052_41047.jpg
+3382 059.California_Gull/California_Gull_0064_41562.jpg
+3383 059.California_Gull/California_Gull_0110_41063.jpg
+3386 059.California_Gull/California_Gull_0027_41083.jpg
+3387 059.California_Gull/California_Gull_0100_41088.jpg
+3389 059.California_Gull/California_Gull_0105_41116.jpg
+3390 059.California_Gull/California_Gull_0048_41121.jpg
+3391 059.California_Gull/California_Gull_0101_41140.jpg
+3392 059.California_Gull/California_Gull_0009_40662.jpg
+3393 059.California_Gull/California_Gull_0028_40666.jpg
+3394 059.California_Gull/California_Gull_0066_41188.jpg
+3395 059.California_Gull/California_Gull_0092_41300.jpg
+3396 059.California_Gull/California_Gull_0121_41196.jpg
+3397 059.California_Gull/California_Gull_0046_41209.jpg
+3398 059.California_Gull/California_Gull_0055_41218.jpg
+3399 059.California_Gull/California_Gull_0089_40716.jpg
+3400 059.California_Gull/California_Gull_0010_40735.jpg
+3401 059.California_Gull/California_Gull_0114_41267.jpg
+3402 059.California_Gull/California_Gull_0059_40764.jpg
+3403 059.California_Gull/California_Gull_0117_41292.jpg
+3404 059.California_Gull/California_Gull_0088_41296.jpg
+3405 059.California_Gull/California_Gull_0012_41272.jpg
+3406 059.California_Gull/California_Gull_0001_40786.jpg
+3408 059.California_Gull/California_Gull_0081_41318.jpg
+3409 059.California_Gull/California_Gull_0091_41276.jpg
+3410 059.California_Gull/California_Gull_0043_41326.jpg
+3411 059.California_Gull/California_Gull_0123_41330.jpg
+3413 059.California_Gull/California_Gull_0132_40836.jpg
+3415 059.California_Gull/California_Gull_0074_41358.jpg
+3416 059.California_Gull/California_Gull_0058_40858.jpg
+3418 059.California_Gull/California_Gull_0054_40871.jpg
+3419 059.California_Gull/California_Gull_0026_41386.jpg
+3420 059.California_Gull/California_Gull_0014_40880.jpg
+3421 059.California_Gull/California_Gull_0087_40909.jpg
+3422 059.California_Gull/California_Gull_0135_41383.jpg
+3423 059.California_Gull/California_Gull_0008_40942.jpg
+3424 059.California_Gull/California_Gull_0019_41377.jpg
+3425 059.California_Gull/California_Gull_0109_41465.jpg
+3426 059.California_Gull/California_Gull_0031_41469.jpg
+3427 059.California_Gull/California_Gull_0021_41471.jpg
+3428 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0136_45059.jpg
+3429 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0087_44550.jpg
+3430 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0049_45065.jpg
+3431 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0078_44461.jpg
+3432 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0007_44575.jpg
+3433 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0035_44576.jpg
+3434 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0118_2081.jpg
+3435 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0023_45090.jpg
+3436 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0102_44579.jpg
+3437 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0032_44594.jpg
+3438 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0093_44724.jpg
+3439 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0002_44612.jpg
+3441 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0028_44628.jpg
+3442 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0112_44731.jpg
+3443 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0067_45156.jpg
+3444 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0056_44658.jpg
+3446 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0066_44669.jpg
+3447 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0138_44694.jpg
+3448 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0094_44696.jpg
+3449 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0130_45210.jpg
+3450 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0015_44198.jpg
+3451 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0081_45223.jpg
+3452 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0017_45224.jpg
+3454 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0038_44719.jpg
+3455 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0116_45236.jpg
+3456 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0060_44215.jpg
+3457 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0022_44733.jpg
+3458 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0133_44738.jpg
+3459 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0129_44742.jpg
+3460 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0134_44743.jpg
+3461 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0076_44744.jpg
+3462 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0126_44761.jpg
+3463 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0073_44253.jpg
+3464 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0127_44258.jpg
+3466 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0012_44264.jpg
+3467 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0086_44268.jpg
+3468 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0057_44807.jpg
+3469 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0117_44298.jpg
+3470 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0011_44827.jpg
+3471 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0014_44832.jpg
+3472 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0090_44836.jpg
+3473 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0091_44848.jpg
+3474 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0061_44852.jpg
+3476 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0005_44860.jpg
+3477 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0004_44361.jpg
+3478 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0053_44881.jpg
+3480 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0013_44381.jpg
+3481 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0045_44906.jpg
+3482 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0132_44435.jpg
+3483 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0075_44455.jpg
+3484 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0096_45012.jpg
+3485 060.Glaucous_winged_Gull/Glaucous_Winged_Gull_0082_44528.jpg
+3487 061.Heermann_Gull/Heermann_Gull_0093_45576.jpg
+3488 061.Heermann_Gull/Heermann_Gull_0076_45597.jpg
+3489 061.Heermann_Gull/Heermann_Gull_0018_45608.jpg
+3490 061.Heermann_Gull/Heermann_Gull_0109_45619.jpg
+3492 061.Heermann_Gull/Heermann_Gull_0118_45626.jpg
+3493 061.Heermann_Gull/Heermann_Gull_0122_45627.jpg
+3494 061.Heermann_Gull/Heermann_Gull_0059_45642.jpg
+3495 061.Heermann_Gull/Heermann_Gull_0111_45652.jpg
+3496 061.Heermann_Gull/Heermann_Gull_0087_45658.jpg
+3498 061.Heermann_Gull/Heermann_Gull_0089_45679.jpg
+3499 061.Heermann_Gull/Heermann_Gull_0023_45686.jpg
+3500 061.Heermann_Gull/Heermann_Gull_0034_45693.jpg
+3501 061.Heermann_Gull/Heermann_Gull_0130_45700.jpg
+3502 061.Heermann_Gull/Heermann_Gull_0044_45705.jpg
+3503 061.Heermann_Gull/Heermann_Gull_0077_45711.jpg
+3505 061.Heermann_Gull/Heermann_Gull_0071_45735.jpg
+3507 061.Heermann_Gull/Heermann_Gull_0139_45749.jpg
+3508 061.Heermann_Gull/Heermann_Gull_0056_45751.jpg
+3509 061.Heermann_Gull/Heermann_Gull_0098_45753.jpg
+3510 061.Heermann_Gull/Heermann_Gull_0035_45754.jpg
+3511 061.Heermann_Gull/Heermann_Gull_0013_45771.jpg
+3516 061.Heermann_Gull/Heermann_Gull_0135_45283.jpg
+3517 061.Heermann_Gull/Heermann_Gull_0115_45797.jpg
+3518 061.Heermann_Gull/Heermann_Gull_0142_45798.jpg
+3519 061.Heermann_Gull/Heermann_Gull_0075_45295.jpg
+3520 061.Heermann_Gull/Heermann_Gull_0086_45304.jpg
+3521 061.Heermann_Gull/Heermann_Gull_0031_45822.jpg
+3522 061.Heermann_Gull/Heermann_Gull_0090_45834.jpg
+3523 061.Heermann_Gull/Heermann_Gull_0008_45839.jpg
+3524 061.Heermann_Gull/Heermann_Gull_0053_45854.jpg
+3525 061.Heermann_Gull/Heermann_Gull_0074_45351.jpg
+3526 061.Heermann_Gull/Heermann_Gull_0027_45864.jpg
+3527 061.Heermann_Gull/Heermann_Gull_0091_45363.jpg
+3528 061.Heermann_Gull/Heermann_Gull_0083_45879.jpg
+3529 061.Heermann_Gull/Heermann_Gull_0121_45375.jpg
+3530 061.Heermann_Gull/Heermann_Gull_0046_45888.jpg
+3531 061.Heermann_Gull/Heermann_Gull_0055_45901.jpg
+3532 061.Heermann_Gull/Heermann_Gull_0141_45391.jpg
+3534 061.Heermann_Gull/Heermann_Gull_0009_45905.jpg
+3535 061.Heermann_Gull/Heermann_Gull_0020_45409.jpg
+3536 061.Heermann_Gull/Heermann_Gull_0133_45415.jpg
+3537 061.Heermann_Gull/Heermann_Gull_0136_45416.jpg
+3538 061.Heermann_Gull/Heermann_Gull_0004_45936.jpg
+3539 061.Heermann_Gull/Heermann_Gull_0043_45939.jpg
+3540 061.Heermann_Gull/Heermann_Gull_0100_45440.jpg
+3542 061.Heermann_Gull/Heermann_Gull_0079_45468.jpg
+3543 061.Heermann_Gull/Heermann_Gull_0001_45472.jpg
+3544 061.Heermann_Gull/Heermann_Gull_0024_45486.jpg
+3546 061.Heermann_Gull/Heermann_Gull_0131_45548.jpg
+3547 062.Herring_Gull/Herring_Gull_0049_46508.jpg
+3548 062.Herring_Gull/Herring_Gull_0037_48655.jpg
+3549 062.Herring_Gull/Herring_Gull_0115_47123.jpg
+3550 062.Herring_Gull/Herring_Gull_0070_46615.jpg
+3551 062.Herring_Gull/Herring_Gull_0105_46113.jpg
+3552 062.Herring_Gull/Herring_Gull_0083_48674.jpg
+3554 062.Herring_Gull/Herring_Gull_0012_46654.jpg
+3555 062.Herring_Gull/Herring_Gull_0094_47172.jpg
+3556 062.Herring_Gull/Herring_Gull_0001_48205.jpg
+3557 062.Herring_Gull/Herring_Gull_0078_48718.jpg
+3559 062.Herring_Gull/Herring_Gull_0130_46675.jpg
+3560 062.Herring_Gull/Herring_Gull_0054_46164.jpg
+3561 062.Herring_Gull/Herring_Gull_0100_46677.jpg
+3562 062.Herring_Gull/Herring_Gull_0071_48751.jpg
+3563 062.Herring_Gull/Herring_Gull_0129_46708.jpg
+3564 062.Herring_Gull/Herring_Gull_0116_47222.jpg
+3565 062.Herring_Gull/Herring_Gull_0047_46218.jpg
+3571 062.Herring_Gull/Herring_Gull_0051_46276.jpg
+3572 062.Herring_Gull/Herring_Gull_0014_47814.jpg
+3573 062.Herring_Gull/Herring_Gull_0080_46806.jpg
+3574 062.Herring_Gull/Herring_Gull_0064_47832.jpg
+3575 062.Herring_Gull/Herring_Gull_0052_46810.jpg
+3576 062.Herring_Gull/Herring_Gull_0087_47841.jpg
+3577 062.Herring_Gull/Herring_Gull_0098_46971.jpg
+3578 062.Herring_Gull/Herring_Gull_0143_46461.jpg
+3579 062.Herring_Gull/Herring_Gull_0045_46845.jpg
+3581 062.Herring_Gull/Herring_Gull_0058_47383.jpg
+3582 062.Herring_Gull/Herring_Gull_0132_47395.jpg
+3583 062.Herring_Gull/Herring_Gull_0075_48935.jpg
+3584 062.Herring_Gull/Herring_Gull_0027_46389.jpg
+3585 062.Herring_Gull/Herring_Gull_0068_46392.jpg
+3586 062.Herring_Gull/Herring_Gull_0084_46406.jpg
+3587 062.Herring_Gull/Herring_Gull_0106_46930.jpg
+3588 062.Herring_Gull/Herring_Gull_0039_46420.jpg
+3589 062.Herring_Gull/Herring_Gull_0010_46425.jpg
+3590 062.Herring_Gull/Herring_Gull_0114_46956.jpg
+3591 062.Herring_Gull/Herring_Gull_0140_46455.jpg
+3592 062.Herring_Gull/Herring_Gull_0055_47994.jpg
+3593 062.Herring_Gull/Herring_Gull_0076_47497.jpg
+3594 062.Herring_Gull/Herring_Gull_0138_48023.jpg
+3595 062.Herring_Gull/Herring_Gull_0139_47006.jpg
+3596 062.Herring_Gull/Herring_Gull_0061_46501.jpg
+3597 062.Herring_Gull/Herring_Gull_0026_48041.jpg
+3598 062.Herring_Gull/Herring_Gull_0103_45996.jpg
+3599 062.Herring_Gull/Herring_Gull_0004_48046.jpg
+3600 062.Herring_Gull/Herring_Gull_0082_47540.jpg
+3601 062.Herring_Gull/Herring_Gull_0016_48969.jpg
+3602 062.Herring_Gull/Herring_Gull_0095_48058.jpg
+3603 062.Herring_Gull/Herring_Gull_0093_46029.jpg
+3604 062.Herring_Gull/Herring_Gull_0102_48078.jpg
+3605 062.Herring_Gull/Herring_Gull_0065_48098.jpg
+3606 062.Herring_Gull/Herring_Gull_0048_46061.jpg
+3607 063.Ivory_Gull/Ivory_Gull_0110_49408.jpg
+3608 063.Ivory_Gull/Ivory_Gull_0104_49666.jpg
+3609 063.Ivory_Gull/Ivory_Gull_0039_49412.jpg
+3610 063.Ivory_Gull/Ivory_Gull_0052_50013.jpg
+3611 063.Ivory_Gull/Ivory_Gull_0061_49416.jpg
+3612 063.Ivory_Gull/Ivory_Gull_0037_49068.jpg
+3613 063.Ivory_Gull/Ivory_Gull_0010_49169.jpg
+3614 063.Ivory_Gull/Ivory_Gull_0041_49172.jpg
+3615 063.Ivory_Gull/Ivory_Gull_0088_49177.jpg
+3616 063.Ivory_Gull/Ivory_Gull_0079_49179.jpg
+3617 063.Ivory_Gull/Ivory_Gull_0040_49180.jpg
+3618 063.Ivory_Gull/Ivory_Gull_0045_49696.jpg
+3619 063.Ivory_Gull/Ivory_Gull_0085_49456.jpg
+3620 063.Ivory_Gull/Ivory_Gull_0107_49186.jpg
+3621 063.Ivory_Gull/Ivory_Gull_0089_49699.jpg
+3623 063.Ivory_Gull/Ivory_Gull_0024_49195.jpg
+3624 063.Ivory_Gull/Ivory_Gull_0086_49532.jpg
+3625 063.Ivory_Gull/Ivory_Gull_0015_49199.jpg
+3626 063.Ivory_Gull/Ivory_Gull_0087_49202.jpg
+3627 063.Ivory_Gull/Ivory_Gull_0062_49722.jpg
+3628 063.Ivory_Gull/Ivory_Gull_0098_49810.jpg
+3629 063.Ivory_Gull/Ivory_Gull_0099_49218.jpg
+3630 063.Ivory_Gull/Ivory_Gull_0117_49227.jpg
+3631 063.Ivory_Gull/Ivory_Gull_0092_49996.jpg
+3632 063.Ivory_Gull/Ivory_Gull_0080_49748.jpg
+3633 063.Ivory_Gull/Ivory_Gull_0014_48983.jpg
+3634 063.Ivory_Gull/Ivory_Gull_0036_49754.jpg
+3635 063.Ivory_Gull/Ivory_Gull_0043_49755.jpg
+3636 063.Ivory_Gull/Ivory_Gull_0050_49245.jpg
+3637 063.Ivory_Gull/Ivory_Gull_0035_49523.jpg
+3639 063.Ivory_Gull/Ivory_Gull_0002_49788.jpg
+3640 063.Ivory_Gull/Ivory_Gull_0005_49021.jpg
+3641 063.Ivory_Gull/Ivory_Gull_0101_49790.jpg
+3643 063.Ivory_Gull/Ivory_Gull_0073_49287.jpg
+3644 063.Ivory_Gull/Ivory_Gull_0038_49298.jpg
+3645 063.Ivory_Gull/Ivory_Gull_0105_49559.jpg
+3646 063.Ivory_Gull/Ivory_Gull_0018_49988.jpg
+3647 063.Ivory_Gull/Ivory_Gull_0082_49306.jpg
+3648 063.Ivory_Gull/Ivory_Gull_0077_49051.jpg
+3649 063.Ivory_Gull/Ivory_Gull_0093_49052.jpg
+3650 063.Ivory_Gull/Ivory_Gull_0065_49566.jpg
+3651 063.Ivory_Gull/Ivory_Gull_0032_49322.jpg
+3652 063.Ivory_Gull/Ivory_Gull_0094_49347.jpg
+3656 063.Ivory_Gull/Ivory_Gull_0007_49364.jpg
+3658 063.Ivory_Gull/Ivory_Gull_0059_49662.jpg
+3659 063.Ivory_Gull/Ivory_Gull_0026_49466.jpg
+3660 063.Ivory_Gull/Ivory_Gull_0096_49487.jpg
+3661 063.Ivory_Gull/Ivory_Gull_0109_49382.jpg
+3662 063.Ivory_Gull/Ivory_Gull_0023_49385.jpg
+3663 063.Ivory_Gull/Ivory_Gull_0020_49978.jpg
+3664 063.Ivory_Gull/Ivory_Gull_0071_49402.jpg
+3665 063.Ivory_Gull/Ivory_Gull_0067_49659.jpg
+3667 064.Ring_billed_Gull/Ring_Billed_Gull_0013_50180.jpg
+3668 064.Ring_billed_Gull/Ring_Billed_Gull_0079_51206.jpg
+3669 064.Ring_billed_Gull/Ring_Billed_Gull_0039_50191.jpg
+3671 064.Ring_billed_Gull/Ring_Billed_Gull_0074_52258.jpg
+3672 064.Ring_billed_Gull/Ring_Billed_Gull_0114_50214.jpg
+3673 064.Ring_billed_Gull/Ring_Billed_Gull_0045_50215.jpg
+3674 064.Ring_billed_Gull/Ring_Billed_Gull_0100_52779.jpg
+3675 064.Ring_billed_Gull/Ring_Billed_Gull_0129_51246.jpg
+3681 064.Ring_billed_Gull/Ring_Billed_Gull_0033_51288.jpg
+3683 064.Ring_billed_Gull/Ring_Billed_Gull_0021_51300.jpg
+3684 064.Ring_billed_Gull/Ring_Billed_Gull_0009_51301.jpg
+3685 064.Ring_billed_Gull/Ring_Billed_Gull_0093_51303.jpg
+3687 064.Ring_billed_Gull/Ring_Billed_Gull_0125_51307.jpg
+3688 064.Ring_billed_Gull/Ring_Billed_Gull_0057_51315.jpg
+3689 064.Ring_billed_Gull/Ring_Billed_Gull_0070_51316.jpg
+3690 064.Ring_billed_Gull/Ring_Billed_Gull_0118_51322.jpg
+3691 064.Ring_billed_Gull/Ring_Billed_Gull_0089_51348.jpg
+3692 064.Ring_billed_Gull/Ring_Billed_Gull_0052_51357.jpg
+3693 064.Ring_billed_Gull/Ring_Billed_Gull_0117_51363.jpg
+3694 064.Ring_billed_Gull/Ring_Billed_Gull_0131_51370.jpg
+3695 064.Ring_billed_Gull/Ring_Billed_Gull_0101_51375.jpg
+3696 064.Ring_billed_Gull/Ring_Billed_Gull_0115_51891.jpg
+3697 064.Ring_billed_Gull/Ring_Billed_Gull_0095_50362.jpg
+3699 064.Ring_billed_Gull/Ring_Billed_Gull_0083_51407.jpg
+3700 064.Ring_billed_Gull/Ring_Billed_Gull_0098_51410.jpg
+3701 064.Ring_billed_Gull/Ring_Billed_Gull_0017_51412.jpg
+3702 064.Ring_billed_Gull/Ring_Billed_Gull_0054_51414.jpg
+3703 064.Ring_billed_Gull/Ring_Billed_Gull_0001_51416.jpg
+3704 064.Ring_billed_Gull/Ring_Billed_Gull_0007_51430.jpg
+3705 064.Ring_billed_Gull/Ring_Billed_Gull_0051_51440.jpg
+3706 064.Ring_billed_Gull/Ring_Billed_Gull_0028_51454.jpg
+3707 064.Ring_billed_Gull/Ring_Billed_Gull_0036_51461.jpg
+3708 064.Ring_billed_Gull/Ring_Billed_Gull_0016_50392.jpg
+3709 064.Ring_billed_Gull/Ring_Billed_Gull_0003_51480.jpg
+3711 064.Ring_billed_Gull/Ring_Billed_Gull_0078_51494.jpg
+3712 064.Ring_billed_Gull/Ring_Billed_Gull_0018_51505.jpg
+3713 064.Ring_billed_Gull/Ring_Billed_Gull_0105_51513.jpg
+3714 064.Ring_billed_Gull/Ring_Billed_Gull_0071_52845.jpg
+3715 064.Ring_billed_Gull/Ring_Billed_Gull_0092_51521.jpg
+3716 064.Ring_billed_Gull/Ring_Billed_Gull_0056_51523.jpg
+3717 064.Ring_billed_Gull/Ring_Billed_Gull_0113_51525.jpg
+3718 064.Ring_billed_Gull/Ring_Billed_Gull_0119_51551.jpg
+3719 064.Ring_billed_Gull/Ring_Billed_Gull_0132_51552.jpg
+3720 064.Ring_billed_Gull/Ring_Billed_Gull_0059_51554.jpg
+3721 064.Ring_billed_Gull/Ring_Billed_Gull_0050_51567.jpg
+3722 064.Ring_billed_Gull/Ring_Billed_Gull_0029_52613.jpg
+3723 064.Ring_billed_Gull/Ring_Billed_Gull_0104_52614.jpg
+3724 064.Ring_billed_Gull/Ring_Billed_Gull_0108_51108.jpg
+3725 064.Ring_billed_Gull/Ring_Billed_Gull_0055_51156.jpg
+3726 064.Ring_billed_Gull/Ring_Billed_Gull_0106_52729.jpg
+3728 065.Slaty_backed_Gull/Slaty_Backed_Gull_0081_53264.jpg
+3731 065.Slaty_backed_Gull/Slaty_Backed_Gull_0049_53318.jpg
+3736 065.Slaty_backed_Gull/Slaty_Backed_Gull_0076_796005.jpg
+3743 065.Slaty_backed_Gull/Slaty_Backed_Gull_0077_796017.jpg
+3744 065.Slaty_backed_Gull/Slaty_Backed_Gull_0079_796020.jpg
+3745 065.Slaty_backed_Gull/Slaty_Backed_Gull_0022_796022.jpg
+3746 065.Slaty_backed_Gull/Slaty_Backed_Gull_0033_796023.jpg
+3747 065.Slaty_backed_Gull/Slaty_Backed_Gull_0058_796024.jpg
+3748 065.Slaty_backed_Gull/Slaty_Backed_Gull_0045_796025.jpg
+3749 065.Slaty_backed_Gull/Slaty_Backed_Gull_0035_796026.jpg
+3750 065.Slaty_backed_Gull/Slaty_Backed_Gull_0075_796027.jpg
+3751 065.Slaty_backed_Gull/Slaty_Backed_Gull_0024_796028.jpg
+3752 065.Slaty_backed_Gull/Slaty_Backed_Gull_0031_796029.jpg
+3753 065.Slaty_backed_Gull/Slaty_Backed_Gull_0023_796030.jpg
+3754 065.Slaty_backed_Gull/Slaty_Backed_Gull_0051_796031.jpg
+3755 065.Slaty_backed_Gull/Slaty_Backed_Gull_0003_796032.jpg
+3756 065.Slaty_backed_Gull/Slaty_Backed_Gull_0046_796035.jpg
+3758 065.Slaty_backed_Gull/Slaty_Backed_Gull_0078_796042.jpg
+3759 065.Slaty_backed_Gull/Slaty_Backed_Gull_0038_796044.jpg
+3760 065.Slaty_backed_Gull/Slaty_Backed_Gull_0050_796045.jpg
+3762 065.Slaty_backed_Gull/Slaty_Backed_Gull_0025_796047.jpg
+3763 065.Slaty_backed_Gull/Slaty_Backed_Gull_0063_796050.jpg
+3764 065.Slaty_backed_Gull/Slaty_Backed_Gull_0053_796051.jpg
+3765 065.Slaty_backed_Gull/Slaty_Backed_Gull_0060_796052.jpg
+3766 065.Slaty_backed_Gull/Slaty_Backed_Gull_0036_796053.jpg
+3771 065.Slaty_backed_Gull/Slaty_Backed_Gull_0083_786386.jpg
+3772 065.Slaty_backed_Gull/Slaty_Backed_Gull_0086_786387.jpg
+3774 065.Slaty_backed_Gull/Slaty_Backed_Gull_0002_53238.jpg
+3776 065.Slaty_backed_Gull/Slaty_Backed_Gull_0026_53245.jpg
+3777 066.Western_Gull/Western_Gull_0013_54794.jpg
+3778 066.Western_Gull/Western_Gull_0048_53776.jpg
+3779 066.Western_Gull/Western_Gull_0078_53595.jpg
+3780 066.Western_Gull/Western_Gull_0002_54825.jpg
+3781 066.Western_Gull/Western_Gull_0051_54320.jpg
+3782 066.Western_Gull/Western_Gull_0104_53816.jpg
+3784 066.Western_Gull/Western_Gull_0124_53838.jpg
+3785 066.Western_Gull/Western_Gull_0042_53843.jpg
+3787 066.Western_Gull/Western_Gull_0131_53349.jpg
+3790 066.Western_Gull/Western_Gull_0058_53882.jpg
+3791 066.Western_Gull/Western_Gull_0143_54909.jpg
+3792 066.Western_Gull/Western_Gull_0093_54925.jpg
+3793 066.Western_Gull/Western_Gull_0050_54425.jpg
+3795 066.Western_Gull/Western_Gull_0057_55312.jpg
+3796 066.Western_Gull/Western_Gull_0091_55465.jpg
+3798 066.Western_Gull/Western_Gull_0070_54978.jpg
+3799 066.Western_Gull/Western_Gull_0080_53445.jpg
+3800 066.Western_Gull/Western_Gull_0027_53994.jpg
+3801 066.Western_Gull/Western_Gull_0097_54508.jpg
+3805 066.Western_Gull/Western_Gull_0006_53504.jpg
+3806 066.Western_Gull/Western_Gull_0116_54037.jpg
+3807 066.Western_Gull/Western_Gull_0062_53538.jpg
+3808 066.Western_Gull/Western_Gull_0069_53553.jpg
+3811 066.Western_Gull/Western_Gull_0030_54083.jpg
+3812 066.Western_Gull/Western_Gull_0036_54329.jpg
+3813 066.Western_Gull/Western_Gull_0133_55639.jpg
+3814 066.Western_Gull/Western_Gull_0066_54105.jpg
+3816 066.Western_Gull/Western_Gull_0090_53603.jpg
+3818 066.Western_Gull/Western_Gull_0117_44697.jpg
+3819 066.Western_Gull/Western_Gull_0094_55156.jpg
+3820 066.Western_Gull/Western_Gull_0021_54649.jpg
+3821 066.Western_Gull/Western_Gull_0024_53631.jpg
+3822 066.Western_Gull/Western_Gull_0028_55680.jpg
+3824 066.Western_Gull/Western_Gull_0122_40866.jpg
+3826 066.Western_Gull/Western_Gull_0065_55728.jpg
+3827 066.Western_Gull/Western_Gull_0087_54193.jpg
+3830 066.Western_Gull/Western_Gull_0045_54735.jpg
+3831 066.Western_Gull/Western_Gull_0011_53713.jpg
+3832 066.Western_Gull/Western_Gull_0022_54607.jpg
+3834 066.Western_Gull/Western_Gull_0100_54761.jpg
+3835 066.Western_Gull/Western_Gull_0009_54768.jpg
+3836 066.Western_Gull/Western_Gull_0049_53748.jpg
+3837 067.Anna_Hummingbird/Anna_Hummingbird_0106_56335.jpg
+3839 067.Anna_Hummingbird/Anna_Hummingbird_0052_56344.jpg
+3840 067.Anna_Hummingbird/Anna_Hummingbird_0126_55983.jpg
+3841 067.Anna_Hummingbird/Anna_Hummingbird_0023_55841.jpg
+3842 067.Anna_Hummingbird/Anna_Hummingbird_0080_56366.jpg
+3843 067.Anna_Hummingbird/Anna_Hummingbird_0006_55871.jpg
+3844 067.Anna_Hummingbird/Anna_Hummingbird_0027_55873.jpg
+3845 067.Anna_Hummingbird/Anna_Hummingbird_0098_56388.jpg
+3846 067.Anna_Hummingbird/Anna_Hummingbird_0055_56396.jpg
+3847 067.Anna_Hummingbird/Anna_Hummingbird_0074_56917.jpg
+3848 067.Anna_Hummingbird/Anna_Hummingbird_0029_55823.jpg
+3849 067.Anna_Hummingbird/Anna_Hummingbird_0054_56419.jpg
+3850 067.Anna_Hummingbird/Anna_Hummingbird_0069_56933.jpg
+3852 067.Anna_Hummingbird/Anna_Hummingbird_0087_56435.jpg
+3853 067.Anna_Hummingbird/Anna_Hummingbird_0121_56436.jpg
+3854 067.Anna_Hummingbird/Anna_Hummingbird_0017_56954.jpg
+3855 067.Anna_Hummingbird/Anna_Hummingbird_0001_56960.jpg
+3858 067.Anna_Hummingbird/Anna_Hummingbird_0035_56493.jpg
+3859 067.Anna_Hummingbird/Anna_Hummingbird_0086_56495.jpg
+3860 067.Anna_Hummingbird/Anna_Hummingbird_0042_55990.jpg
+3861 067.Anna_Hummingbird/Anna_Hummingbird_0028_55993.jpg
+3863 067.Anna_Hummingbird/Anna_Hummingbird_0019_57025.jpg
+3864 067.Anna_Hummingbird/Anna_Hummingbird_0091_56004.jpg
+3865 067.Anna_Hummingbird/Anna_Hummingbird_0112_56353.jpg
+3867 067.Anna_Hummingbird/Anna_Hummingbird_0038_57036.jpg
+3868 067.Anna_Hummingbird/Anna_Hummingbird_0047_56049.jpg
+3869 067.Anna_Hummingbird/Anna_Hummingbird_0044_56066.jpg
+3870 067.Anna_Hummingbird/Anna_Hummingbird_0037_56587.jpg
+3871 067.Anna_Hummingbird/Anna_Hummingbird_0070_56085.jpg
+3872 067.Anna_Hummingbird/Anna_Hummingbird_0102_56087.jpg
+3873 067.Anna_Hummingbird/Anna_Hummingbird_0094_56092.jpg
+3874 067.Anna_Hummingbird/Anna_Hummingbird_0128_57047.jpg
+3875 067.Anna_Hummingbird/Anna_Hummingbird_0053_56112.jpg
+3876 067.Anna_Hummingbird/Anna_Hummingbird_0034_56614.jpg
+3877 067.Anna_Hummingbird/Anna_Hummingbird_0122_56622.jpg
+3878 067.Anna_Hummingbird/Anna_Hummingbird_0130_56122.jpg
+3879 067.Anna_Hummingbird/Anna_Hummingbird_0022_55779.jpg
+3880 067.Anna_Hummingbird/Anna_Hummingbird_0065_56154.jpg
+3881 067.Anna_Hummingbird/Anna_Hummingbird_0059_56674.jpg
+3882 067.Anna_Hummingbird/Anna_Hummingbird_0117_55785.jpg
+3883 067.Anna_Hummingbird/Anna_Hummingbird_0031_56709.jpg
+3884 067.Anna_Hummingbird/Anna_Hummingbird_0018_56732.jpg
+3885 067.Anna_Hummingbird/Anna_Hummingbird_0096_56754.jpg
+3886 067.Anna_Hummingbird/Anna_Hummingbird_0085_56756.jpg
+3891 067.Anna_Hummingbird/Anna_Hummingbird_0118_55773.jpg
+3893 067.Anna_Hummingbird/Anna_Hummingbird_0040_56293.jpg
+3894 067.Anna_Hummingbird/Anna_Hummingbird_0113_56296.jpg
+3895 067.Anna_Hummingbird/Anna_Hummingbird_0036_56809.jpg
+3896 067.Anna_Hummingbird/Anna_Hummingbird_0119_56309.jpg
+3897 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0045_57347.jpg
+3898 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0005_57349.jpg
+3899 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0077_57858.jpg
+3900 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0123_57745.jpg
+3902 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0088_57366.jpg
+3903 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0126_57371.jpg
+3904 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0071_57886.jpg
+3906 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0064_57387.jpg
+3907 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0007_57388.jpg
+3908 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0072_57391.jpg
+3909 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0009_57904.jpg
+3910 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0083_57397.jpg
+3911 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0090_57411.jpg
+3912 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0030_57422.jpg
+3913 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0042_57431.jpg
+3914 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0052_57432.jpg
+3916 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0106_57976.jpg
+3917 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0040_57982.jpg
+3918 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0014_57477.jpg
+3919 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0095_57990.jpg
+3920 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0096_57505.jpg
+3921 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0050_57510.jpg
+3922 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0098_57514.jpg
+3923 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0066_57518.jpg
+3924 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0116_58031.jpg
+3925 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0118_57536.jpg
+3926 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0075_57537.jpg
+3928 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0079_58075.jpg
+3929 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0103_57573.jpg
+3930 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0119_57575.jpg
+3931 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0117_58092.jpg
+3932 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0111_58141.jpg
+3933 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0034_58148.jpg
+3934 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0048_57222.jpg
+3935 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0076_57649.jpg
+3936 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0001_58162.jpg
+3937 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0108_57653.jpg
+3938 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0032_58168.jpg
+3939 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0129_57666.jpg
+3940 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0008_58204.jpg
+3941 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0059_58210.jpg
+3942 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0078_57208.jpg
+3943 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0013_57212.jpg
+3944 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0025_57835.jpg
+3945 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0046_57225.jpg
+3946 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0003_58269.jpg
+3947 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0128_58281.jpg
+3948 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0010_58285.jpg
+3952 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0058_57298.jpg
+3953 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0131_57813.jpg
+3954 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0027_58191.jpg
+3955 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0107_57339.jpg
+3956 068.Ruby_throated_Hummingbird/Ruby_Throated_Hummingbird_0110_57851.jpg
+3958 069.Rufous_Hummingbird/Rufous_Hummingbird_0009_59405.jpg
+3959 069.Rufous_Hummingbird/Rufous_Hummingbird_0111_59408.jpg
+3960 069.Rufous_Hummingbird/Rufous_Hummingbird_0002_58387.jpg
+3961 069.Rufous_Hummingbird/Rufous_Hummingbird_0102_59414.jpg
+3962 069.Rufous_Hummingbird/Rufous_Hummingbird_0031_58391.jpg
+3963 069.Rufous_Hummingbird/Rufous_Hummingbird_0101_59420.jpg
+3964 069.Rufous_Hummingbird/Rufous_Hummingbird_0055_59935.jpg
+3965 069.Rufous_Hummingbird/Rufous_Hummingbird_0021_58408.jpg
+3966 069.Rufous_Hummingbird/Rufous_Hummingbird_0035_59434.jpg
+3967 069.Rufous_Hummingbird/Rufous_Hummingbird_0106_60465.jpg
+3968 069.Rufous_Hummingbird/Rufous_Hummingbird_0125_58932.jpg
+3969 069.Rufous_Hummingbird/Rufous_Hummingbird_0018_59447.jpg
+3970 069.Rufous_Hummingbird/Rufous_Hummingbird_0047_59448.jpg
+3971 069.Rufous_Hummingbird/Rufous_Hummingbird_0134_59449.jpg
+3972 069.Rufous_Hummingbird/Rufous_Hummingbird_0077_59452.jpg
+3973 069.Rufous_Hummingbird/Rufous_Hummingbird_0027_59456.jpg
+3974 069.Rufous_Hummingbird/Rufous_Hummingbird_0007_58433.jpg
+3975 069.Rufous_Hummingbird/Rufous_Hummingbird_0025_59461.jpg
+3976 069.Rufous_Hummingbird/Rufous_Hummingbird_0014_59476.jpg
+3977 069.Rufous_Hummingbird/Rufous_Hummingbird_0011_59480.jpg
+3978 069.Rufous_Hummingbird/Rufous_Hummingbird_0057_59489.jpg
+3979 069.Rufous_Hummingbird/Rufous_Hummingbird_0060_58986.jpg
+3980 069.Rufous_Hummingbird/Rufous_Hummingbird_0130_59500.jpg
+3981 069.Rufous_Hummingbird/Rufous_Hummingbird_0048_58478.jpg
+3982 069.Rufous_Hummingbird/Rufous_Hummingbird_0052_59581.jpg
+3983 069.Rufous_Hummingbird/Rufous_Hummingbird_0071_59505.jpg
+3984 069.Rufous_Hummingbird/Rufous_Hummingbird_0109_60021.jpg
+3985 069.Rufous_Hummingbird/Rufous_Hummingbird_0067_59510.jpg
+3986 069.Rufous_Hummingbird/Rufous_Hummingbird_0017_59520.jpg
+3988 069.Rufous_Hummingbird/Rufous_Hummingbird_0089_59524.jpg
+3989 069.Rufous_Hummingbird/Rufous_Hummingbird_0124_58465.jpg
+3990 069.Rufous_Hummingbird/Rufous_Hummingbird_0064_58509.jpg
+3991 069.Rufous_Hummingbird/Rufous_Hummingbird_0100_59541.jpg
+3992 069.Rufous_Hummingbird/Rufous_Hummingbird_0036_59562.jpg
+3993 069.Rufous_Hummingbird/Rufous_Hummingbird_0076_59563.jpg
+3994 069.Rufous_Hummingbird/Rufous_Hummingbird_0081_59592.jpg
+3995 069.Rufous_Hummingbird/Rufous_Hummingbird_0123_58546.jpg
+3997 069.Rufous_Hummingbird/Rufous_Hummingbird_0116_58568.jpg
+3998 069.Rufous_Hummingbird/Rufous_Hummingbird_0006_59621.jpg
+3999 069.Rufous_Hummingbird/Rufous_Hummingbird_0090_58598.jpg
+4000 069.Rufous_Hummingbird/Rufous_Hummingbird_0024_59636.jpg
+4001 069.Rufous_Hummingbird/Rufous_Hummingbird_0046_59647.jpg
+4003 069.Rufous_Hummingbird/Rufous_Hummingbird_0043_58652.jpg
+4004 069.Rufous_Hummingbird/Rufous_Hummingbird_0119_59681.jpg
+4005 069.Rufous_Hummingbird/Rufous_Hummingbird_0091_60551.jpg
+4006 069.Rufous_Hummingbird/Rufous_Hummingbird_0113_59444.jpg
+4008 069.Rufous_Hummingbird/Rufous_Hummingbird_0045_59533.jpg
+4009 069.Rufous_Hummingbird/Rufous_Hummingbird_0075_59619.jpg
+4011 069.Rufous_Hummingbird/Rufous_Hummingbird_0022_58725.jpg
+4017 070.Green_Violetear/Green_Violetear_0041_795648.jpg
+4019 070.Green_Violetear/Green_Violetear_0060_795657.jpg
+4020 070.Green_Violetear/Green_Violetear_0064_795661.jpg
+4021 070.Green_Violetear/Green_Violetear_0003_795662.jpg
+4022 070.Green_Violetear/Green_Violetear_0005_795666.jpg
+4023 070.Green_Violetear/Green_Violetear_0067_795674.jpg
+4024 070.Green_Violetear/Green_Violetear_0047_795677.jpg
+4025 070.Green_Violetear/Green_Violetear_0073_795680.jpg
+4026 070.Green_Violetear/Green_Violetear_0066_795682.jpg
+4027 070.Green_Violetear/Green_Violetear_0013_795684.jpg
+4028 070.Green_Violetear/Green_Violetear_0079_795685.jpg
+4030 070.Green_Violetear/Green_Violetear_0105_795694.jpg
+4031 070.Green_Violetear/Green_Violetear_0077_795696.jpg
+4032 070.Green_Violetear/Green_Violetear_0089_795698.jpg
+4033 070.Green_Violetear/Green_Violetear_0002_795699.jpg
+4034 070.Green_Violetear/Green_Violetear_0057_795701.jpg
+4035 070.Green_Violetear/Green_Violetear_0102_795702.jpg
+4038 070.Green_Violetear/Green_Violetear_0024_795705.jpg
+4039 070.Green_Violetear/Green_Violetear_0082_795706.jpg
+4042 070.Green_Violetear/Green_Violetear_0055_795712.jpg
+4044 070.Green_Violetear/Green_Violetear_0080_795716.jpg
+4045 070.Green_Violetear/Green_Violetear_0044_795717.jpg
+4048 070.Green_Violetear/Green_Violetear_0119_795724.jpg
+4050 070.Green_Violetear/Green_Violetear_0045_60765.jpg
+4052 070.Green_Violetear/Green_Violetear_0107_60781.jpg
+4056 070.Green_Violetear/Green_Violetear_0022_60799.jpg
+4058 070.Green_Violetear/Green_Violetear_0029_60808.jpg
+4059 070.Green_Violetear/Green_Violetear_0114_60809.jpg
+4060 070.Green_Violetear/Green_Violetear_0043_60813.jpg
+4061 070.Green_Violetear/Green_Violetear_0027_60841.jpg
+4063 070.Green_Violetear/Green_Violetear_0072_60858.jpg
+4064 070.Green_Violetear/Green_Violetear_0110_60866.jpg
+4065 070.Green_Violetear/Green_Violetear_0059_60873.jpg
+4066 070.Green_Violetear/Green_Violetear_0021_795632.jpg
+4067 070.Green_Violetear/Green_Violetear_0050_795633.jpg
+4068 070.Green_Violetear/Green_Violetear_0094_795634.jpg
+4069 070.Green_Violetear/Green_Violetear_0036_795635.jpg
+4070 070.Green_Violetear/Green_Violetear_0081_795638.jpg
+4071 070.Green_Violetear/Green_Violetear_0086_795639.jpg
+4074 070.Green_Violetear/Green_Violetear_0103_795644.jpg
+4077 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0025_60937.jpg
+4078 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0012_797101.jpg
+4079 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0027_60950.jpg
+4080 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0033_60955.jpg
+4081 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0030_60961.jpg
+4083 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0044_60968.jpg
+4084 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0019_60970.jpg
+4085 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0017_797081.jpg
+4086 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0064_60999.jpg
+4087 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0045_61007.jpg
+4088 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0065_61042.jpg
+4089 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0055_61046.jpg
+4090 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0061_61049.jpg
+4096 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0008_797066.jpg
+4097 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0009_797070.jpg
+4099 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0063_797073.jpg
+4100 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0022_797074.jpg
+4101 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0047_797075.jpg
+4103 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0038_797077.jpg
+4104 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0059_797079.jpg
+4105 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0018_61081.jpg
+4107 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0021_797083.jpg
+4108 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0020_61084.jpg
+4109 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0028_797082.jpg
+4110 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0014_797086.jpg
+4111 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0048_797087.jpg
+4112 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0054_797088.jpg
+4114 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0070_797090.jpg
+4115 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0066_60921.jpg
+4116 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0056_797092.jpg
+4117 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0068_797093.jpg
+4119 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0051_797095.jpg
+4120 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0016_797084.jpg
+4121 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0026_797098.jpg
+4122 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0037_797099.jpg
+4123 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0035_797100.jpg
+4124 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0029_61101.jpg
+4125 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0034_797102.jpg
+4126 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0050_797085.jpg
+4127 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0062_797104.jpg
+4128 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0046_797103.jpg
+4129 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0060_60886.jpg
+4130 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0013_60887.jpg
+4131 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0041_60891.jpg
+4132 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0010_60895.jpg
+4133 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0058_60900.jpg
+4134 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0053_60906.jpg
+4135 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0024_60915.jpg
+4136 071.Long_tailed_Jaeger/Long_Tailed_Jaeger_0032_61177.jpg
+4137 072.Pomarine_Jaeger/Pomarine_Jaeger_0038_61446.jpg
+4138 072.Pomarine_Jaeger/Pomarine_Jaeger_0030_61447.jpg
+4139 072.Pomarine_Jaeger/Pomarine_Jaeger_0010_61457.jpg
+4140 072.Pomarine_Jaeger/Pomarine_Jaeger_0008_61231.jpg
+4141 072.Pomarine_Jaeger/Pomarine_Jaeger_0034_61247.jpg
+4142 072.Pomarine_Jaeger/Pomarine_Jaeger_0024_61281.jpg
+4143 072.Pomarine_Jaeger/Pomarine_Jaeger_0026_61273.jpg
+4144 072.Pomarine_Jaeger/Pomarine_Jaeger_0051_795738.jpg
+4145 072.Pomarine_Jaeger/Pomarine_Jaeger_0077_795739.jpg
+4146 072.Pomarine_Jaeger/Pomarine_Jaeger_0009_795740.jpg
+4148 072.Pomarine_Jaeger/Pomarine_Jaeger_0058_795746.jpg
+4149 072.Pomarine_Jaeger/Pomarine_Jaeger_0022_795747.jpg
+4150 072.Pomarine_Jaeger/Pomarine_Jaeger_0033_795749.jpg
+4151 072.Pomarine_Jaeger/Pomarine_Jaeger_0045_795750.jpg
+4152 072.Pomarine_Jaeger/Pomarine_Jaeger_0080_795751.jpg
+4153 072.Pomarine_Jaeger/Pomarine_Jaeger_0042_795755.jpg
+4154 072.Pomarine_Jaeger/Pomarine_Jaeger_0060_795756.jpg
+4155 072.Pomarine_Jaeger/Pomarine_Jaeger_0078_795758.jpg
+4156 072.Pomarine_Jaeger/Pomarine_Jaeger_0013_795759.jpg
+4157 072.Pomarine_Jaeger/Pomarine_Jaeger_0020_795761.jpg
+4158 072.Pomarine_Jaeger/Pomarine_Jaeger_0055_795762.jpg
+4160 072.Pomarine_Jaeger/Pomarine_Jaeger_0046_61301.jpg
+4162 072.Pomarine_Jaeger/Pomarine_Jaeger_0071_795769.jpg
+4164 072.Pomarine_Jaeger/Pomarine_Jaeger_0048_795771.jpg
+4165 072.Pomarine_Jaeger/Pomarine_Jaeger_0001_795772.jpg
+4166 072.Pomarine_Jaeger/Pomarine_Jaeger_0012_795773.jpg
+4167 072.Pomarine_Jaeger/Pomarine_Jaeger_0006_795775.jpg
+4168 072.Pomarine_Jaeger/Pomarine_Jaeger_0021_795776.jpg
+4169 072.Pomarine_Jaeger/Pomarine_Jaeger_0011_795777.jpg
+4170 072.Pomarine_Jaeger/Pomarine_Jaeger_0003_795778.jpg
+4171 072.Pomarine_Jaeger/Pomarine_Jaeger_0066_795780.jpg
+4172 072.Pomarine_Jaeger/Pomarine_Jaeger_0017_795782.jpg
+4173 072.Pomarine_Jaeger/Pomarine_Jaeger_0061_795788.jpg
+4174 072.Pomarine_Jaeger/Pomarine_Jaeger_0032_795789.jpg
+4175 072.Pomarine_Jaeger/Pomarine_Jaeger_0054_795791.jpg
+4176 072.Pomarine_Jaeger/Pomarine_Jaeger_0053_795792.jpg
+4177 072.Pomarine_Jaeger/Pomarine_Jaeger_0049_795795.jpg
+4178 072.Pomarine_Jaeger/Pomarine_Jaeger_0004_795796.jpg
+4179 072.Pomarine_Jaeger/Pomarine_Jaeger_0028_795797.jpg
+4180 072.Pomarine_Jaeger/Pomarine_Jaeger_0014_61335.jpg
+4181 072.Pomarine_Jaeger/Pomarine_Jaeger_0073_795800.jpg
+4182 072.Pomarine_Jaeger/Pomarine_Jaeger_0059_61347.jpg
+4183 072.Pomarine_Jaeger/Pomarine_Jaeger_0039_61348.jpg
+4184 072.Pomarine_Jaeger/Pomarine_Jaeger_0075_61349.jpg
+4185 072.Pomarine_Jaeger/Pomarine_Jaeger_0062_61351.jpg
+4186 072.Pomarine_Jaeger/Pomarine_Jaeger_0002_61361.jpg
+4187 072.Pomarine_Jaeger/Pomarine_Jaeger_0029_61365.jpg
+4188 072.Pomarine_Jaeger/Pomarine_Jaeger_0079_61370.jpg
+4189 072.Pomarine_Jaeger/Pomarine_Jaeger_0069_61381.jpg
+4191 072.Pomarine_Jaeger/Pomarine_Jaeger_0041_61305.jpg
+4192 072.Pomarine_Jaeger/Pomarine_Jaeger_0063_61406.jpg
+4193 072.Pomarine_Jaeger/Pomarine_Jaeger_0036_61410.jpg
+4194 072.Pomarine_Jaeger/Pomarine_Jaeger_0031_61420.jpg
+4195 072.Pomarine_Jaeger/Pomarine_Jaeger_0015_61429.jpg
+4196 072.Pomarine_Jaeger/Pomarine_Jaeger_0023_61431.jpg
+4197 073.Blue_Jay/Blue_Jay_0015_62916.jpg
+4198 073.Blue_Jay/Blue_Jay_0033_62024.jpg
+4199 073.Blue_Jay/Blue_Jay_0052_63148.jpg
+4200 073.Blue_Jay/Blue_Jay_0006_63504.jpg
+4201 073.Blue_Jay/Blue_Jay_0095_63505.jpg
+4202 073.Blue_Jay/Blue_Jay_0081_61714.jpg
+4204 073.Blue_Jay/Blue_Jay_0053_62744.jpg
+4206 073.Blue_Jay/Blue_Jay_0088_63264.jpg
+4207 073.Blue_Jay/Blue_Jay_0044_62759.jpg
+4208 073.Blue_Jay/Blue_Jay_0075_63021.jpg
+4210 073.Blue_Jay/Blue_Jay_0083_61492.jpg
+4211 073.Blue_Jay/Blue_Jay_0102_61494.jpg
+4214 073.Blue_Jay/Blue_Jay_0038_62784.jpg
+4215 073.Blue_Jay/Blue_Jay_0055_61507.jpg
+4216 073.Blue_Jay/Blue_Jay_0035_63560.jpg
+4217 073.Blue_Jay/Blue_Jay_0096_63330.jpg
+4218 073.Blue_Jay/Blue_Jay_0089_61521.jpg
+4219 073.Blue_Jay/Blue_Jay_0022_63074.jpg
+4220 073.Blue_Jay/Blue_Jay_0068_61543.jpg
+4221 073.Blue_Jay/Blue_Jay_0042_61545.jpg
+4222 073.Blue_Jay/Blue_Jay_0060_62570.jpg
+4223 073.Blue_Jay/Blue_Jay_0051_63339.jpg
+4224 073.Blue_Jay/Blue_Jay_0028_63599.jpg
+4225 073.Blue_Jay/Blue_Jay_0020_63604.jpg
+4226 073.Blue_Jay/Blue_Jay_0036_61560.jpg
+4227 073.Blue_Jay/Blue_Jay_0062_62585.jpg
+4228 073.Blue_Jay/Blue_Jay_0049_63082.jpg
+4229 073.Blue_Jay/Blue_Jay_0085_62831.jpg
+4230 073.Blue_Jay/Blue_Jay_0017_62854.jpg
+4231 073.Blue_Jay/Blue_Jay_0031_62913.jpg
+4232 073.Blue_Jay/Blue_Jay_0078_62351.jpg
+4233 073.Blue_Jay/Blue_Jay_0009_62873.jpg
+4234 073.Blue_Jay/Blue_Jay_0027_63133.jpg
+4235 073.Blue_Jay/Blue_Jay_0079_62626.jpg
+4237 073.Blue_Jay/Blue_Jay_0011_63660.jpg
+4240 073.Blue_Jay/Blue_Jay_0080_61617.jpg
+4241 073.Blue_Jay/Blue_Jay_0099_64435.jpg
+4242 073.Blue_Jay/Blue_Jay_0024_63167.jpg
+4243 073.Blue_Jay/Blue_Jay_0002_62657.jpg
+4244 073.Blue_Jay/Blue_Jay_0070_63684.jpg
+4245 073.Blue_Jay/Blue_Jay_0101_62882.jpg
+4246 073.Blue_Jay/Blue_Jay_0092_61654.jpg
+4247 073.Blue_Jay/Blue_Jay_0076_61817.jpg
+4248 073.Blue_Jay/Blue_Jay_0054_61656.jpg
+4249 073.Blue_Jay/Blue_Jay_0018_63455.jpg
+4250 073.Blue_Jay/Blue_Jay_0072_62944.jpg
+4251 073.Blue_Jay/Blue_Jay_0048_62433.jpg
+4252 073.Blue_Jay/Blue_Jay_0094_62698.jpg
+4254 073.Blue_Jay/Blue_Jay_0086_63394.jpg
+4255 073.Blue_Jay/Blue_Jay_0050_62974.jpg
+4256 073.Blue_Jay/Blue_Jay_0074_63487.jpg
+4257 074.Florida_Jay/Florida_Jay_0037_64515.jpg
+4259 074.Florida_Jay/Florida_Jay_0003_65036.jpg
+4261 074.Florida_Jay/Florida_Jay_0004_65042.jpg
+4262 074.Florida_Jay/Florida_Jay_0086_65025.jpg
+4263 074.Florida_Jay/Florida_Jay_0054_65046.jpg
+4264 074.Florida_Jay/Florida_Jay_0103_64537.jpg
+4266 074.Florida_Jay/Florida_Jay_0109_64558.jpg
+4268 074.Florida_Jay/Florida_Jay_0075_65093.jpg
+4270 074.Florida_Jay/Florida_Jay_0061_65097.jpg
+4272 074.Florida_Jay/Florida_Jay_0018_64994.jpg
+4274 074.Florida_Jay/Florida_Jay_0083_64599.jpg
+4275 074.Florida_Jay/Florida_Jay_0029_65114.jpg
+4276 074.Florida_Jay/Florida_Jay_0081_64859.jpg
+4277 074.Florida_Jay/Florida_Jay_0110_64605.jpg
+4279 074.Florida_Jay/Florida_Jay_0104_64885.jpg
+4281 074.Florida_Jay/Florida_Jay_0052_64633.jpg
+4284 074.Florida_Jay/Florida_Jay_0100_64645.jpg
+4285 074.Florida_Jay/Florida_Jay_0097_64906.jpg
+4286 074.Florida_Jay/Florida_Jay_0111_64651.jpg
+4288 074.Florida_Jay/Florida_Jay_0044_64664.jpg
+4289 074.Florida_Jay/Florida_Jay_0092_64924.jpg
+4290 074.Florida_Jay/Florida_Jay_0025_64673.jpg
+4291 074.Florida_Jay/Florida_Jay_0093_64675.jpg
+4292 074.Florida_Jay/Florida_Jay_0026_64938.jpg
+4294 074.Florida_Jay/Florida_Jay_0027_64689.jpg
+4295 074.Florida_Jay/Florida_Jay_0078_64692.jpg
+4296 074.Florida_Jay/Florida_Jay_0108_64694.jpg
+4298 074.Florida_Jay/Florida_Jay_0013_64706.jpg
+4300 074.Florida_Jay/Florida_Jay_0007_64708.jpg
+4302 074.Florida_Jay/Florida_Jay_0079_64713.jpg
+4304 074.Florida_Jay/Florida_Jay_0009_64723.jpg
+4305 074.Florida_Jay/Florida_Jay_0080_64505.jpg
+4306 074.Florida_Jay/Florida_Jay_0002_64476.jpg
+4307 074.Florida_Jay/Florida_Jay_0041_64734.jpg
+4308 074.Florida_Jay/Florida_Jay_0099_64735.jpg
+4309 074.Florida_Jay/Florida_Jay_0008_64482.jpg
+4312 074.Florida_Jay/Florida_Jay_0058_64997.jpg
+4314 074.Florida_Jay/Florida_Jay_0073_64896.jpg
+4317 075.Green_Jay/Green_Jay_0041_65548.jpg
+4319 075.Green_Jay/Green_Jay_0089_66075.jpg
+4320 075.Green_Jay/Green_Jay_0121_65564.jpg
+4321 075.Green_Jay/Green_Jay_0085_66077.jpg
+4322 075.Green_Jay/Green_Jay_0059_65586.jpg
+4323 075.Green_Jay/Green_Jay_0126_65716.jpg
+4324 075.Green_Jay/Green_Jay_0049_65600.jpg
+4325 075.Green_Jay/Green_Jay_0039_66118.jpg
+4326 075.Green_Jay/Green_Jay_0128_65629.jpg
+4330 075.Green_Jay/Green_Jay_0052_66174.jpg
+4332 075.Green_Jay/Green_Jay_0075_65701.jpg
+4333 075.Green_Jay/Green_Jay_0038_65702.jpg
+4334 075.Green_Jay/Green_Jay_0044_66228.jpg
+4335 075.Green_Jay/Green_Jay_0028_65719.jpg
+4339 075.Green_Jay/Green_Jay_0115_65745.jpg
+4340 075.Green_Jay/Green_Jay_0047_65757.jpg
+4341 075.Green_Jay/Green_Jay_0003_65767.jpg
+4342 075.Green_Jay/Green_Jay_0094_65775.jpg
+4343 075.Green_Jay/Green_Jay_0051_65662.jpg
+4344 075.Green_Jay/Green_Jay_0027_65783.jpg
+4346 075.Green_Jay/Green_Jay_0006_65788.jpg
+4347 075.Green_Jay/Green_Jay_0015_65796.jpg
+4348 075.Green_Jay/Green_Jay_0071_65799.jpg
+4349 075.Green_Jay/Green_Jay_0043_65805.jpg
+4350 075.Green_Jay/Green_Jay_0055_65807.jpg
+4351 075.Green_Jay/Green_Jay_0106_65811.jpg
+4352 075.Green_Jay/Green_Jay_0102_65813.jpg
+4354 075.Green_Jay/Green_Jay_0014_65825.jpg
+4355 075.Green_Jay/Green_Jay_0114_65841.jpg
+4357 075.Green_Jay/Green_Jay_0124_65848.jpg
+4358 075.Green_Jay/Green_Jay_0032_65851.jpg
+4359 075.Green_Jay/Green_Jay_0098_65857.jpg
+4360 075.Green_Jay/Green_Jay_0040_65863.jpg
+4361 075.Green_Jay/Green_Jay_0016_65864.jpg
+4365 075.Green_Jay/Green_Jay_0130_65885.jpg
+4366 075.Green_Jay/Green_Jay_0132_65886.jpg
+4367 075.Green_Jay/Green_Jay_0074_65889.jpg
+4368 075.Green_Jay/Green_Jay_0090_65895.jpg
+4369 075.Green_Jay/Green_Jay_0023_65898.jpg
+4370 075.Green_Jay/Green_Jay_0066_65902.jpg
+4371 075.Green_Jay/Green_Jay_0104_65908.jpg
+4374 076.Dark_eyed_Junco/Dark_Eyed_Junco_0087_68102.jpg
+4375 076.Dark_eyed_Junco/Dark_Eyed_Junco_0015_66576.jpg
+4376 076.Dark_eyed_Junco/Dark_Eyed_Junco_0057_68650.jpg
+4377 076.Dark_eyed_Junco/Dark_Eyed_Junco_0106_68139.jpg
+4378 076.Dark_eyed_Junco/Dark_Eyed_Junco_0023_68661.jpg
+4379 076.Dark_eyed_Junco/Dark_Eyed_Junco_0124_67664.jpg
+4380 076.Dark_eyed_Junco/Dark_Eyed_Junco_0043_68689.jpg
+4381 076.Dark_eyed_Junco/Dark_Eyed_Junco_0010_66649.jpg
+4383 076.Dark_eyed_Junco/Dark_Eyed_Junco_0062_68198.jpg
+4384 076.Dark_eyed_Junco/Dark_Eyed_Junco_0063_67688.jpg
+4385 076.Dark_eyed_Junco/Dark_Eyed_Junco_0103_67700.jpg
+4386 076.Dark_eyed_Junco/Dark_Eyed_Junco_0044_68213.jpg
+4387 076.Dark_eyed_Junco/Dark_Eyed_Junco_0094_68735.jpg
+4389 076.Dark_eyed_Junco/Dark_Eyed_Junco_0016_68738.jpg
+4390 076.Dark_eyed_Junco/Dark_Eyed_Junco_0081_67223.jpg
+4392 076.Dark_eyed_Junco/Dark_Eyed_Junco_0013_66332.jpg
+4393 076.Dark_eyed_Junco/Dark_Eyed_Junco_0058_68784.jpg
+4396 076.Dark_eyed_Junco/Dark_Eyed_Junco_0021_66261.jpg
+4397 076.Dark_eyed_Junco/Dark_Eyed_Junco_0031_66785.jpg
+4398 076.Dark_eyed_Junco/Dark_Eyed_Junco_0072_67810.jpg
+4399 076.Dark_eyed_Junco/Dark_Eyed_Junco_0011_66280.jpg
+4401 076.Dark_eyed_Junco/Dark_Eyed_Junco_0061_66858.jpg
+4402 076.Dark_eyed_Junco/Dark_Eyed_Junco_0059_66305.jpg
+4403 076.Dark_eyed_Junco/Dark_Eyed_Junco_0093_67335.jpg
+4405 076.Dark_eyed_Junco/Dark_Eyed_Junco_0109_66326.jpg
+4406 076.Dark_eyed_Junco/Dark_Eyed_Junco_0130_67867.jpg
+4407 076.Dark_eyed_Junco/Dark_Eyed_Junco_0099_67868.jpg
+4408 076.Dark_eyed_Junco/Dark_Eyed_Junco_0078_66866.jpg
+4409 076.Dark_eyed_Junco/Dark_Eyed_Junco_0069_68416.jpg
+4410 076.Dark_eyed_Junco/Dark_Eyed_Junco_0008_68321.jpg
+4411 076.Dark_eyed_Junco/Dark_Eyed_Junco_0102_67402.jpg
+4412 076.Dark_eyed_Junco/Dark_Eyed_Junco_0030_68439.jpg
+4413 076.Dark_eyed_Junco/Dark_Eyed_Junco_0024_68961.jpg
+4414 076.Dark_eyed_Junco/Dark_Eyed_Junco_0071_67426.jpg
+4415 076.Dark_eyed_Junco/Dark_Eyed_Junco_0091_67304.jpg
+4416 076.Dark_eyed_Junco/Dark_Eyed_Junco_0012_66932.jpg
+4418 076.Dark_eyed_Junco/Dark_Eyed_Junco_0131_66423.jpg
+4419 076.Dark_eyed_Junco/Dark_Eyed_Junco_0114_67964.jpg
+4421 076.Dark_eyed_Junco/Dark_Eyed_Junco_0083_66449.jpg
+4423 076.Dark_eyed_Junco/Dark_Eyed_Junco_0084_66455.jpg
+4424 076.Dark_eyed_Junco/Dark_Eyed_Junco_0115_68840.jpg
+4425 076.Dark_eyed_Junco/Dark_Eyed_Junco_0041_66464.jpg
+4427 076.Dark_eyed_Junco/Dark_Eyed_Junco_0048_66981.jpg
+4428 076.Dark_eyed_Junco/Dark_Eyed_Junco_0056_67498.jpg
+4432 076.Dark_eyed_Junco/Dark_Eyed_Junco_0090_69051.jpg
+4434 077.Tropical_Kingbird/Tropical_Kingbird_0064_69889.jpg
+4435 077.Tropical_Kingbird/Tropical_Kingbird_0098_69642.jpg
+4436 077.Tropical_Kingbird/Tropical_Kingbird_0019_69643.jpg
+4441 077.Tropical_Kingbird/Tropical_Kingbird_0073_69401.jpg
+4442 077.Tropical_Kingbird/Tropical_Kingbird_0006_69521.jpg
+4443 077.Tropical_Kingbird/Tropical_Kingbird_0004_69659.jpg
+4444 077.Tropical_Kingbird/Tropical_Kingbird_0005_69662.jpg
+4445 077.Tropical_Kingbird/Tropical_Kingbird_0049_69933.jpg
+4446 077.Tropical_Kingbird/Tropical_Kingbird_0002_69595.jpg
+4449 077.Tropical_Kingbird/Tropical_Kingbird_0060_69942.jpg
+4450 077.Tropical_Kingbird/Tropical_Kingbird_0122_69687.jpg
+4451 077.Tropical_Kingbird/Tropical_Kingbird_0045_69605.jpg
+4452 077.Tropical_Kingbird/Tropical_Kingbird_0097_69436.jpg
+4453 077.Tropical_Kingbird/Tropical_Kingbird_0074_69949.jpg
+4454 077.Tropical_Kingbird/Tropical_Kingbird_0041_69954.jpg
+4455 077.Tropical_Kingbird/Tropical_Kingbird_0114_69700.jpg
+4456 077.Tropical_Kingbird/Tropical_Kingbird_0001_69958.jpg
+4459 077.Tropical_Kingbird/Tropical_Kingbird_0017_69715.jpg
+4461 077.Tropical_Kingbird/Tropical_Kingbird_0075_69978.jpg
+4462 077.Tropical_Kingbird/Tropical_Kingbird_0040_69728.jpg
+4463 077.Tropical_Kingbird/Tropical_Kingbird_0110_69731.jpg
+4464 077.Tropical_Kingbird/Tropical_Kingbird_0027_69735.jpg
+4465 077.Tropical_Kingbird/Tropical_Kingbird_0085_69737.jpg
+4466 077.Tropical_Kingbird/Tropical_Kingbird_0095_69482.jpg
+4468 077.Tropical_Kingbird/Tropical_Kingbird_0115_69485.jpg
+4470 077.Tropical_Kingbird/Tropical_Kingbird_0034_69242.jpg
+4471 077.Tropical_Kingbird/Tropical_Kingbird_0086_69759.jpg
+4473 077.Tropical_Kingbird/Tropical_Kingbird_0023_69998.jpg
+4474 077.Tropical_Kingbird/Tropical_Kingbird_0067_69792.jpg
+4475 077.Tropical_Kingbird/Tropical_Kingbird_0057_69283.jpg
+4476 077.Tropical_Kingbird/Tropical_Kingbird_0044_69815.jpg
+4477 077.Tropical_Kingbird/Tropical_Kingbird_0056_69509.jpg
+4478 077.Tropical_Kingbird/Tropical_Kingbird_0103_69311.jpg
+4481 077.Tropical_Kingbird/Tropical_Kingbird_0024_69582.jpg
+4482 077.Tropical_Kingbird/Tropical_Kingbird_0010_69583.jpg
+4483 077.Tropical_Kingbird/Tropical_Kingbird_0031_69333.jpg
+4484 077.Tropical_Kingbird/Tropical_Kingbird_0087_69592.jpg
+4485 077.Tropical_Kingbird/Tropical_Kingbird_0003_69852.jpg
+4486 077.Tropical_Kingbird/Tropical_Kingbird_0088_69856.jpg
+4487 077.Tropical_Kingbird/Tropical_Kingbird_0051_69609.jpg
+4488 077.Tropical_Kingbird/Tropical_Kingbird_0043_69613.jpg
+4489 077.Tropical_Kingbird/Tropical_Kingbird_0007_69361.jpg
+4490 077.Tropical_Kingbird/Tropical_Kingbird_0018_69619.jpg
+4491 077.Tropical_Kingbird/Tropical_Kingbird_0011_69877.jpg
+4492 077.Tropical_Kingbird/Tropical_Kingbird_0079_69371.jpg
+4493 077.Tropical_Kingbird/Tropical_Kingbird_0063_69589.jpg
+4494 078.Gray_Kingbird/Gray_Kingbird_0025_70152.jpg
+4495 078.Gray_Kingbird/Gray_Kingbird_0022_70155.jpg
+4497 078.Gray_Kingbird/Gray_Kingbird_0017_70161.jpg
+4498 078.Gray_Kingbird/Gray_Kingbird_0083_70162.jpg
+4499 078.Gray_Kingbird/Gray_Kingbird_0053_70166.jpg
+4500 078.Gray_Kingbird/Gray_Kingbird_0084_70171.jpg
+4504 078.Gray_Kingbird/Gray_Kingbird_0001_70224.jpg
+4505 078.Gray_Kingbird/Gray_Kingbird_0014_70227.jpg
+4506 078.Gray_Kingbird/Gray_Kingbird_0021_70228.jpg
+4507 078.Gray_Kingbird/Gray_Kingbird_0049_795022.jpg
+4508 078.Gray_Kingbird/Gray_Kingbird_0009_795023.jpg
+4509 078.Gray_Kingbird/Gray_Kingbird_0018_70241.jpg
+4510 078.Gray_Kingbird/Gray_Kingbird_0062_795026.jpg
+4511 078.Gray_Kingbird/Gray_Kingbird_0045_70256.jpg
+4512 078.Gray_Kingbird/Gray_Kingbird_0054_70264.jpg
+4513 078.Gray_Kingbird/Gray_Kingbird_0006_70268.jpg
+4514 078.Gray_Kingbird/Gray_Kingbird_0081_70276.jpg
+4516 078.Gray_Kingbird/Gray_Kingbird_0082_795014.jpg
+4517 078.Gray_Kingbird/Gray_Kingbird_0029_795015.jpg
+4518 078.Gray_Kingbird/Gray_Kingbird_0008_70282.jpg
+4519 078.Gray_Kingbird/Gray_Kingbird_0060_795021.jpg
+4520 078.Gray_Kingbird/Gray_Kingbird_0063_70287.jpg
+4521 078.Gray_Kingbird/Gray_Kingbird_0016_70288.jpg
+4522 078.Gray_Kingbird/Gray_Kingbird_0055_70290.jpg
+4526 078.Gray_Kingbird/Gray_Kingbird_0059_795030.jpg
+4527 078.Gray_Kingbird/Gray_Kingbird_0043_795032.jpg
+4529 078.Gray_Kingbird/Gray_Kingbird_0028_70303.jpg
+4530 078.Gray_Kingbird/Gray_Kingbird_0003_70305.jpg
+4531 078.Gray_Kingbird/Gray_Kingbird_0037_70050.jpg
+4532 078.Gray_Kingbird/Gray_Kingbird_0070_70051.jpg
+4533 078.Gray_Kingbird/Gray_Kingbird_0031_70308.jpg
+4534 078.Gray_Kingbird/Gray_Kingbird_0050_70056.jpg
+4535 078.Gray_Kingbird/Gray_Kingbird_0010_70057.jpg
+4537 078.Gray_Kingbird/Gray_Kingbird_0034_70069.jpg
+4538 078.Gray_Kingbird/Gray_Kingbird_0076_70070.jpg
+4539 078.Gray_Kingbird/Gray_Kingbird_0080_70077.jpg
+4540 078.Gray_Kingbird/Gray_Kingbird_0069_70082.jpg
+4541 078.Gray_Kingbird/Gray_Kingbird_0042_70083.jpg
+4542 078.Gray_Kingbird/Gray_Kingbird_0026_70089.jpg
+4545 078.Gray_Kingbird/Gray_Kingbird_0005_70103.jpg
+4546 078.Gray_Kingbird/Gray_Kingbird_0030_70110.jpg
+4547 078.Gray_Kingbird/Gray_Kingbird_0032_70111.jpg
+4548 078.Gray_Kingbird/Gray_Kingbird_0038_70118.jpg
+4549 078.Gray_Kingbird/Gray_Kingbird_0041_70119.jpg
+4550 078.Gray_Kingbird/Gray_Kingbird_0052_795024.jpg
+4553 079.Belted_Kingfisher/Belted_Kingfisher_0020_70922.jpg
+4554 079.Belted_Kingfisher/Belted_Kingfisher_0011_70923.jpg
+4555 079.Belted_Kingfisher/Belted_Kingfisher_0008_70668.jpg
+4556 079.Belted_Kingfisher/Belted_Kingfisher_0075_70873.jpg
+4557 079.Belted_Kingfisher/Belted_Kingfisher_0054_70424.jpg
+4558 079.Belted_Kingfisher/Belted_Kingfisher_0040_70432.jpg
+4559 079.Belted_Kingfisher/Belted_Kingfisher_0099_70449.jpg
+4560 079.Belted_Kingfisher/Belted_Kingfisher_0094_70698.jpg
+4561 079.Belted_Kingfisher/Belted_Kingfisher_0047_70705.jpg
+4563 079.Belted_Kingfisher/Belted_Kingfisher_0087_70724.jpg
+4564 079.Belted_Kingfisher/Belted_Kingfisher_0080_70725.jpg
+4565 079.Belted_Kingfisher/Belted_Kingfisher_0072_70924.jpg
+4566 079.Belted_Kingfisher/Belted_Kingfisher_0019_70744.jpg
+4567 079.Belted_Kingfisher/Belted_Kingfisher_0043_70492.jpg
+4568 079.Belted_Kingfisher/Belted_Kingfisher_0044_70494.jpg
+4571 079.Belted_Kingfisher/Belted_Kingfisher_0025_70501.jpg
+4572 079.Belted_Kingfisher/Belted_Kingfisher_0085_70503.jpg
+4574 079.Belted_Kingfisher/Belted_Kingfisher_0056_70516.jpg
+4575 079.Belted_Kingfisher/Belted_Kingfisher_0055_70517.jpg
+4578 079.Belted_Kingfisher/Belted_Kingfisher_0048_70532.jpg
+4579 079.Belted_Kingfisher/Belted_Kingfisher_0009_70536.jpg
+4580 079.Belted_Kingfisher/Belted_Kingfisher_0024_70538.jpg
+4581 079.Belted_Kingfisher/Belted_Kingfisher_0041_70595.jpg
+4582 079.Belted_Kingfisher/Belted_Kingfisher_0105_70550.jpg
+4583 079.Belted_Kingfisher/Belted_Kingfisher_0104_70596.jpg
+4584 079.Belted_Kingfisher/Belted_Kingfisher_0108_70554.jpg
+4585 079.Belted_Kingfisher/Belted_Kingfisher_0065_70560.jpg
+4586 079.Belted_Kingfisher/Belted_Kingfisher_0086_70569.jpg
+4587 079.Belted_Kingfisher/Belted_Kingfisher_0032_70573.jpg
+4588 079.Belted_Kingfisher/Belted_Kingfisher_0063_70835.jpg
+4589 079.Belted_Kingfisher/Belted_Kingfisher_0012_70325.jpg
+4590 079.Belted_Kingfisher/Belted_Kingfisher_0073_70326.jpg
+4592 079.Belted_Kingfisher/Belted_Kingfisher_0034_70329.jpg
+4593 079.Belted_Kingfisher/Belted_Kingfisher_0058_70848.jpg
+4594 079.Belted_Kingfisher/Belted_Kingfisher_0017_70342.jpg
+4595 079.Belted_Kingfisher/Belted_Kingfisher_0096_70347.jpg
+4596 079.Belted_Kingfisher/Belted_Kingfisher_0066_70356.jpg
+4597 079.Belted_Kingfisher/Belted_Kingfisher_0028_70358.jpg
+4598 079.Belted_Kingfisher/Belted_Kingfisher_0093_70360.jpg
+4599 079.Belted_Kingfisher/Belted_Kingfisher_0061_70363.jpg
+4600 079.Belted_Kingfisher/Belted_Kingfisher_0077_70620.jpg
+4601 079.Belted_Kingfisher/Belted_Kingfisher_0078_70366.jpg
+4602 079.Belted_Kingfisher/Belted_Kingfisher_0006_70625.jpg
+4604 079.Belted_Kingfisher/Belted_Kingfisher_0111_70375.jpg
+4605 079.Belted_Kingfisher/Belted_Kingfisher_0112_70634.jpg
+4606 079.Belted_Kingfisher/Belted_Kingfisher_0015_70638.jpg
+4607 079.Belted_Kingfisher/Belted_Kingfisher_0053_70899.jpg
+4609 079.Belted_Kingfisher/Belted_Kingfisher_0005_70389.jpg
+4610 079.Belted_Kingfisher/Belted_Kingfisher_0027_70397.jpg
+4611 079.Belted_Kingfisher/Belted_Kingfisher_0014_70910.jpg
+4612 079.Belted_Kingfisher/Belted_Kingfisher_0084_70399.jpg
+4613 080.Green_Kingfisher/Green_Kingfisher_0046_71178.jpg
+4614 080.Green_Kingfisher/Green_Kingfisher_0011_71183.jpg
+4615 080.Green_Kingfisher/Green_Kingfisher_0093_71185.jpg
+4616 080.Green_Kingfisher/Green_Kingfisher_0018_71189.jpg
+4617 080.Green_Kingfisher/Green_Kingfisher_0010_71191.jpg
+4618 080.Green_Kingfisher/Green_Kingfisher_0060_66074.jpg
+4619 080.Green_Kingfisher/Green_Kingfisher_0016_71198.jpg
+4620 080.Green_Kingfisher/Green_Kingfisher_0066_71200.jpg
+4621 080.Green_Kingfisher/Green_Kingfisher_0081_70953.jpg
+4622 080.Green_Kingfisher/Green_Kingfisher_0043_71212.jpg
+4624 080.Green_Kingfisher/Green_Kingfisher_0074_71214.jpg
+4625 080.Green_Kingfisher/Green_Kingfisher_0022_71223.jpg
+4626 080.Green_Kingfisher/Green_Kingfisher_0003_70970.jpg
+4627 080.Green_Kingfisher/Green_Kingfisher_0056_70972.jpg
+4628 080.Green_Kingfisher/Green_Kingfisher_0031_71229.jpg
+4630 080.Green_Kingfisher/Green_Kingfisher_0028_70981.jpg
+4636 080.Green_Kingfisher/Green_Kingfisher_0021_71009.jpg
+4638 080.Green_Kingfisher/Green_Kingfisher_0026_71059.jpg
+4642 080.Green_Kingfisher/Green_Kingfisher_0009_70933.jpg
+4643 080.Green_Kingfisher/Green_Kingfisher_0006_71297.jpg
+4644 080.Green_Kingfisher/Green_Kingfisher_0015_71042.jpg
+4645 080.Green_Kingfisher/Green_Kingfisher_0027_71048.jpg
+4648 080.Green_Kingfisher/Green_Kingfisher_0002_71055.jpg
+4649 080.Green_Kingfisher/Green_Kingfisher_0053_71319.jpg
+4650 080.Green_Kingfisher/Green_Kingfisher_0045_71064.jpg
+4651 080.Green_Kingfisher/Green_Kingfisher_0089_71325.jpg
+4652 080.Green_Kingfisher/Green_Kingfisher_0034_71075.jpg
+4653 080.Green_Kingfisher/Green_Kingfisher_0004_71076.jpg
+4655 080.Green_Kingfisher/Green_Kingfisher_0063_71345.jpg
+4661 080.Green_Kingfisher/Green_Kingfisher_0059_71119.jpg
+4663 080.Green_Kingfisher/Green_Kingfisher_0077_71129.jpg
+4664 080.Green_Kingfisher/Green_Kingfisher_0070_71387.jpg
+4665 080.Green_Kingfisher/Green_Kingfisher_0065_71132.jpg
+4666 080.Green_Kingfisher/Green_Kingfisher_0035_71133.jpg
+4667 080.Green_Kingfisher/Green_Kingfisher_0001_71138.jpg
+4668 080.Green_Kingfisher/Green_Kingfisher_0039_71037.jpg
+4669 080.Green_Kingfisher/Green_Kingfisher_0020_71155.jpg
+4670 080.Green_Kingfisher/Green_Kingfisher_0036_71156.jpg
+4672 080.Green_Kingfisher/Green_Kingfisher_0048_71164.jpg
+4673 081.Pied_Kingfisher/Pied_Kingfisher_0132_72706.jpg
+4674 081.Pied_Kingfisher/Pied_Kingfisher_0080_72199.jpg
+4675 081.Pied_Kingfisher/Pied_Kingfisher_0002_71698.jpg
+4676 081.Pied_Kingfisher/Pied_Kingfisher_0028_72221.jpg
+4677 081.Pied_Kingfisher/Pied_Kingfisher_0040_72739.jpg
+4678 081.Pied_Kingfisher/Pied_Kingfisher_0022_72247.jpg
+4681 081.Pied_Kingfisher/Pied_Kingfisher_0036_72275.jpg
+4682 081.Pied_Kingfisher/Pied_Kingfisher_0068_72278.jpg
+4683 081.Pied_Kingfisher/Pied_Kingfisher_0016_72280.jpg
+4684 081.Pied_Kingfisher/Pied_Kingfisher_0054_72296.jpg
+4685 081.Pied_Kingfisher/Pied_Kingfisher_0015_72299.jpg
+4686 081.Pied_Kingfisher/Pied_Kingfisher_0122_71789.jpg
+4687 081.Pied_Kingfisher/Pied_Kingfisher_0032_71792.jpg
+4689 081.Pied_Kingfisher/Pied_Kingfisher_0031_71829.jpg
+4690 081.Pied_Kingfisher/Pied_Kingfisher_0102_72349.jpg
+4691 081.Pied_Kingfisher/Pied_Kingfisher_0121_72378.jpg
+4693 081.Pied_Kingfisher/Pied_Kingfisher_0065_71871.jpg
+4694 081.Pied_Kingfisher/Pied_Kingfisher_0026_71875.jpg
+4695 081.Pied_Kingfisher/Pied_Kingfisher_0033_71883.jpg
+4697 081.Pied_Kingfisher/Pied_Kingfisher_0097_71895.jpg
+4698 081.Pied_Kingfisher/Pied_Kingfisher_0116_71900.jpg
+4699 081.Pied_Kingfisher/Pied_Kingfisher_0106_71404.jpg
+4700 081.Pied_Kingfisher/Pied_Kingfisher_0083_72430.jpg
+4701 081.Pied_Kingfisher/Pied_Kingfisher_0061_72193.jpg
+4702 081.Pied_Kingfisher/Pied_Kingfisher_0029_72440.jpg
+4703 081.Pied_Kingfisher/Pied_Kingfisher_0051_71429.jpg
+4704 081.Pied_Kingfisher/Pied_Kingfisher_0027_71434.jpg
+4705 081.Pied_Kingfisher/Pied_Kingfisher_0117_71947.jpg
+4706 081.Pied_Kingfisher/Pied_Kingfisher_0093_72465.jpg
+4707 081.Pied_Kingfisher/Pied_Kingfisher_0025_72469.jpg
+4708 081.Pied_Kingfisher/Pied_Kingfisher_0075_72581.jpg
+4709 081.Pied_Kingfisher/Pied_Kingfisher_0059_72492.jpg
+4710 081.Pied_Kingfisher/Pied_Kingfisher_0078_71985.jpg
+4711 081.Pied_Kingfisher/Pied_Kingfisher_0021_72498.jpg
+4712 081.Pied_Kingfisher/Pied_Kingfisher_0107_71987.jpg
+4713 081.Pied_Kingfisher/Pied_Kingfisher_0073_72508.jpg
+4714 081.Pied_Kingfisher/Pied_Kingfisher_0063_71999.jpg
+4715 081.Pied_Kingfisher/Pied_Kingfisher_0095_72008.jpg
+4716 081.Pied_Kingfisher/Pied_Kingfisher_0071_72576.jpg
+4717 081.Pied_Kingfisher/Pied_Kingfisher_0074_71830.jpg
+4718 081.Pied_Kingfisher/Pied_Kingfisher_0024_71560.jpg
+4719 081.Pied_Kingfisher/Pied_Kingfisher_0109_72082.jpg
+4720 081.Pied_Kingfisher/Pied_Kingfisher_0030_72603.jpg
+4721 081.Pied_Kingfisher/Pied_Kingfisher_0013_72114.jpg
+4722 081.Pied_Kingfisher/Pied_Kingfisher_0118_72115.jpg
+4723 081.Pied_Kingfisher/Pied_Kingfisher_0014_72119.jpg
+4724 081.Pied_Kingfisher/Pied_Kingfisher_0007_72438.jpg
+4725 081.Pied_Kingfisher/Pied_Kingfisher_0004_72135.jpg
+4726 081.Pied_Kingfisher/Pied_Kingfisher_0011_72143.jpg
+4728 081.Pied_Kingfisher/Pied_Kingfisher_0067_71641.jpg
+4729 081.Pied_Kingfisher/Pied_Kingfisher_0046_72156.jpg
+4730 081.Pied_Kingfisher/Pied_Kingfisher_0045_71143.jpg
+4731 081.Pied_Kingfisher/Pied_Kingfisher_0018_71657.jpg
+4732 081.Pied_Kingfisher/Pied_Kingfisher_0085_71557.jpg
+4733 082.Ringed_Kingfisher/Ringed_Kingfisher_0079_72961.jpg
+4734 082.Ringed_Kingfisher/Ringed_Kingfisher_0004_72966.jpg
+4736 082.Ringed_Kingfisher/Ringed_Kingfisher_0033_73133.jpg
+4738 082.Ringed_Kingfisher/Ringed_Kingfisher_0011_72982.jpg
+4739 082.Ringed_Kingfisher/Ringed_Kingfisher_0107_72983.jpg
+4740 082.Ringed_Kingfisher/Ringed_Kingfisher_0075_73135.jpg
+4743 082.Ringed_Kingfisher/Ringed_Kingfisher_0094_72998.jpg
+4745 082.Ringed_Kingfisher/Ringed_Kingfisher_0076_73095.jpg
+4746 082.Ringed_Kingfisher/Ringed_Kingfisher_0035_73012.jpg
+4747 082.Ringed_Kingfisher/Ringed_Kingfisher_0028_73018.jpg
+4749 082.Ringed_Kingfisher/Ringed_Kingfisher_0039_71052.jpg
+4750 082.Ringed_Kingfisher/Ringed_Kingfisher_0038_73041.jpg
+4751 082.Ringed_Kingfisher/Ringed_Kingfisher_0009_72786.jpg
+4752 082.Ringed_Kingfisher/Ringed_Kingfisher_0001_73048.jpg
+4753 082.Ringed_Kingfisher/Ringed_Kingfisher_0087_72794.jpg
+4754 082.Ringed_Kingfisher/Ringed_Kingfisher_0025_72795.jpg
+4756 082.Ringed_Kingfisher/Ringed_Kingfisher_0014_72798.jpg
+4757 082.Ringed_Kingfisher/Ringed_Kingfisher_0057_72812.jpg
+4758 082.Ringed_Kingfisher/Ringed_Kingfisher_0078_72826.jpg
+4759 082.Ringed_Kingfisher/Ringed_Kingfisher_0005_73086.jpg
+4760 082.Ringed_Kingfisher/Ringed_Kingfisher_0015_72835.jpg
+4764 082.Ringed_Kingfisher/Ringed_Kingfisher_0041_72853.jpg
+4766 082.Ringed_Kingfisher/Ringed_Kingfisher_0073_73118.jpg
+4767 082.Ringed_Kingfisher/Ringed_Kingfisher_0056_72863.jpg
+4768 082.Ringed_Kingfisher/Ringed_Kingfisher_0026_72867.jpg
+4769 082.Ringed_Kingfisher/Ringed_Kingfisher_0052_72871.jpg
+4770 082.Ringed_Kingfisher/Ringed_Kingfisher_0077_72872.jpg
+4771 082.Ringed_Kingfisher/Ringed_Kingfisher_0074_73130.jpg
+4772 082.Ringed_Kingfisher/Ringed_Kingfisher_0053_72875.jpg
+4775 082.Ringed_Kingfisher/Ringed_Kingfisher_0020_72888.jpg
+4776 082.Ringed_Kingfisher/Ringed_Kingfisher_0017_73145.jpg
+4777 082.Ringed_Kingfisher/Ringed_Kingfisher_0103_72894.jpg
+4780 082.Ringed_Kingfisher/Ringed_Kingfisher_0042_72913.jpg
+4783 082.Ringed_Kingfisher/Ringed_Kingfisher_0080_72923.jpg
+4784 082.Ringed_Kingfisher/Ringed_Kingfisher_0108_73169.jpg
+4786 082.Ringed_Kingfisher/Ringed_Kingfisher_0008_72943.jpg
+4787 082.Ringed_Kingfisher/Ringed_Kingfisher_0089_72947.jpg
+4788 082.Ringed_Kingfisher/Ringed_Kingfisher_0027_72948.jpg
+4789 082.Ringed_Kingfisher/Ringed_Kingfisher_0072_72954.jpg
+4790 082.Ringed_Kingfisher/Ringed_Kingfisher_0082_72955.jpg
+4791 082.Ringed_Kingfisher/Ringed_Kingfisher_0018_72957.jpg
+4793 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0037_73220.jpg
+4794 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0024_73736.jpg
+4795 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0098_73227.jpg
+4796 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0004_73741.jpg
+4798 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0029_73233.jpg
+4800 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0071_73236.jpg
+4801 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0053_73476.jpg
+4802 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0073_73498.jpg
+4803 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0084_73247.jpg
+4804 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0032_73248.jpg
+4805 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0047_73251.jpg
+4806 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0115_73252.jpg
+4807 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0121_73258.jpg
+4808 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0101_73261.jpg
+4809 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0087_73264.jpg
+4810 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0107_73265.jpg
+4811 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0040_73266.jpg
+4812 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0011_73267.jpg
+4813 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0117_73283.jpg
+4814 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0035_73290.jpg
+4815 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0048_73292.jpg
+4816 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0116_73295.jpg
+4817 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0096_73552.jpg
+4818 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0067_73300.jpg
+4819 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0019_73306.jpg
+4820 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0093_73311.jpg
+4821 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0103_73316.jpg
+4822 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0054_73587.jpg
+4823 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0030_73335.jpg
+4824 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0003_73195.jpg
+4825 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0045_73600.jpg
+4826 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0056_73353.jpg
+4827 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0017_73355.jpg
+4828 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0085_73363.jpg
+4830 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0012_73367.jpg
+4831 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0111_73369.jpg
+4832 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0089_73371.jpg
+4833 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0065_73372.jpg
+4834 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0078_73373.jpg
+4835 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0088_73386.jpg
+4836 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0104_73398.jpg
+4839 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0109_73683.jpg
+4840 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0074_73408.jpg
+4841 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0049_73420.jpg
+4842 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0062_73425.jpg
+4844 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0120_73439.jpg
+4846 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0052_73446.jpg
+4847 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0015_73192.jpg
+4848 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0118_73511.jpg
+4849 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0122_73199.jpg
+4850 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0026_73201.jpg
+4851 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0022_73459.jpg
+4852 083.White_breasted_Kingfisher/White_Breasted_Kingfisher_0123_73211.jpg
+4853 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0001_795394.jpg
+4854 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0033_795395.jpg
+4855 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0054_795396.jpg
+4856 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0050_795397.jpg
+4857 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0019_795398.jpg
+4858 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0032_795399.jpg
+4859 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0067_795401.jpg
+4860 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0007_795402.jpg
+4861 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0029_795403.jpg
+4862 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0051_795404.jpg
+4863 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0013_795413.jpg
+4864 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0060_795414.jpg
+4865 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0043_795416.jpg
+4871 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0045_795426.jpg
+4872 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0039_795429.jpg
+4873 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0068_795430.jpg
+4874 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0014_795432.jpg
+4875 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0048_73770.jpg
+4876 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0069_795435.jpg
+4877 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0006_795436.jpg
+4878 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0072_795438.jpg
+4880 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0049_795440.jpg
+4881 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0024_795441.jpg
+4882 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0031_795442.jpg
+4883 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0047_795445.jpg
+4884 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0028_795450.jpg
+4885 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0017_795451.jpg
+4886 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0002_73788.jpg
+4888 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0040_795455.jpg
+4889 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0015_73792.jpg
+4892 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0016_795460.jpg
+4893 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0071_73800.jpg
+4894 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0021_73808.jpg
+4897 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0030_73818.jpg
+4899 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0027_795454.jpg
+4900 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0065_795456.jpg
+4901 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0037_73794.jpg
+4902 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0061_795420.jpg
+4904 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0044_795388.jpg
+4905 084.Red_legged_Kittiwake/Red_Legged_Kittiwake_0062_795434.jpg
+4906 085.Horned_Lark/Horned_Lark_0067_75266.jpg
+4907 085.Horned_Lark/Horned_Lark_0010_75291.jpg
+4908 085.Horned_Lark/Horned_Lark_0115_74271.jpg
+4909 085.Horned_Lark/Horned_Lark_0065_74279.jpg
+4910 085.Horned_Lark/Horned_Lark_0066_74796.jpg
+4911 085.Horned_Lark/Horned_Lark_0110_73826.jpg
+4912 085.Horned_Lark/Horned_Lark_0015_74855.jpg
+4913 085.Horned_Lark/Horned_Lark_0033_74344.jpg
+4914 085.Horned_Lark/Horned_Lark_0082_73833.jpg
+4915 085.Horned_Lark/Horned_Lark_0006_73836.jpg
+4916 085.Horned_Lark/Horned_Lark_0116_73840.jpg
+4917 085.Horned_Lark/Horned_Lark_0126_74354.jpg
+4918 085.Horned_Lark/Horned_Lark_0001_73835.jpg
+4919 085.Horned_Lark/Horned_Lark_0004_73861.jpg
+4920 085.Horned_Lark/Horned_Lark_0013_74374.jpg
+4921 085.Horned_Lark/Horned_Lark_0056_74896.jpg
+4922 085.Horned_Lark/Horned_Lark_0089_74386.jpg
+4923 085.Horned_Lark/Horned_Lark_0133_73882.jpg
+4924 085.Horned_Lark/Horned_Lark_0141_74396.jpg
+4925 085.Horned_Lark/Horned_Lark_0026_74910.jpg
+4926 085.Horned_Lark/Horned_Lark_0064_74864.jpg
+4927 085.Horned_Lark/Horned_Lark_0048_73894.jpg
+4928 085.Horned_Lark/Horned_Lark_0094_74407.jpg
+4929 085.Horned_Lark/Horned_Lark_0028_74408.jpg
+4930 085.Horned_Lark/Horned_Lark_0127_74414.jpg
+4932 085.Horned_Lark/Horned_Lark_0020_73914.jpg
+4933 085.Horned_Lark/Horned_Lark_0076_73931.jpg
+4934 085.Horned_Lark/Horned_Lark_0083_74444.jpg
+4935 085.Horned_Lark/Horned_Lark_0043_74450.jpg
+4936 085.Horned_Lark/Horned_Lark_0034_73940.jpg
+4937 085.Horned_Lark/Horned_Lark_0046_73950.jpg
+4938 085.Horned_Lark/Horned_Lark_0079_73958.jpg
+4939 085.Horned_Lark/Horned_Lark_0014_74963.jpg
+4940 085.Horned_Lark/Horned_Lark_0139_74492.jpg
+4941 085.Horned_Lark/Horned_Lark_0097_74496.jpg
+4942 085.Horned_Lark/Horned_Lark_0087_73989.jpg
+4944 085.Horned_Lark/Horned_Lark_0012_74511.jpg
+4946 085.Horned_Lark/Horned_Lark_0035_74555.jpg
+4947 085.Horned_Lark/Horned_Lark_0049_74574.jpg
+4948 085.Horned_Lark/Horned_Lark_0072_74067.jpg
+4949 085.Horned_Lark/Horned_Lark_0075_74126.jpg
+4950 085.Horned_Lark/Horned_Lark_0096_74075.jpg
+4951 085.Horned_Lark/Horned_Lark_0088_74590.jpg
+4952 085.Horned_Lark/Horned_Lark_0138_74083.jpg
+4953 085.Horned_Lark/Horned_Lark_0091_74087.jpg
+4954 085.Horned_Lark/Horned_Lark_0069_74093.jpg
+4955 085.Horned_Lark/Horned_Lark_0113_74613.jpg
+4956 085.Horned_Lark/Horned_Lark_0095_74640.jpg
+4958 085.Horned_Lark/Horned_Lark_0104_74142.jpg
+4959 085.Horned_Lark/Horned_Lark_0059_74144.jpg
+4960 085.Horned_Lark/Horned_Lark_0112_73971.jpg
+4961 085.Horned_Lark/Horned_Lark_0134_74689.jpg
+4962 085.Horned_Lark/Horned_Lark_0037_74696.jpg
+4963 085.Horned_Lark/Horned_Lark_0108_74193.jpg
+4964 085.Horned_Lark/Horned_Lark_0025_75003.jpg
+4965 085.Horned_Lark/Horned_Lark_0040_74214.jpg
+4966 086.Pacific_Loon/Pacific_Loon_0001_75521.jpg
+4967 086.Pacific_Loon/Pacific_Loon_0048_75524.jpg
+4968 086.Pacific_Loon/Pacific_Loon_0038_75526.jpg
+4969 086.Pacific_Loon/Pacific_Loon_0013_75530.jpg
+4970 086.Pacific_Loon/Pacific_Loon_0031_75531.jpg
+4971 086.Pacific_Loon/Pacific_Loon_0064_75532.jpg
+4972 086.Pacific_Loon/Pacific_Loon_0036_75539.jpg
+4973 086.Pacific_Loon/Pacific_Loon_0027_75542.jpg
+4974 086.Pacific_Loon/Pacific_Loon_0054_75543.jpg
+4975 086.Pacific_Loon/Pacific_Loon_0037_75800.jpg
+4976 086.Pacific_Loon/Pacific_Loon_0049_75780.jpg
+4977 086.Pacific_Loon/Pacific_Loon_0066_75547.jpg
+4978 086.Pacific_Loon/Pacific_Loon_0024_75555.jpg
+4979 086.Pacific_Loon/Pacific_Loon_0041_75782.jpg
+4980 086.Pacific_Loon/Pacific_Loon_0004_75815.jpg
+4981 086.Pacific_Loon/Pacific_Loon_0010_75818.jpg
+4982 086.Pacific_Loon/Pacific_Loon_0018_75564.jpg
+4983 086.Pacific_Loon/Pacific_Loon_0033_75571.jpg
+4984 086.Pacific_Loon/Pacific_Loon_0005_75829.jpg
+4985 086.Pacific_Loon/Pacific_Loon_0017_75835.jpg
+4986 086.Pacific_Loon/Pacific_Loon_0068_75836.jpg
+4987 086.Pacific_Loon/Pacific_Loon_0062_75587.jpg
+4988 086.Pacific_Loon/Pacific_Loon_0065_75588.jpg
+4989 086.Pacific_Loon/Pacific_Loon_0045_75589.jpg
+4990 086.Pacific_Loon/Pacific_Loon_0026_75593.jpg
+4991 086.Pacific_Loon/Pacific_Loon_0020_75596.jpg
+4992 086.Pacific_Loon/Pacific_Loon_0057_75854.jpg
+4993 086.Pacific_Loon/Pacific_Loon_0021_75859.jpg
+4994 086.Pacific_Loon/Pacific_Loon_0063_75865.jpg
+4995 086.Pacific_Loon/Pacific_Loon_0053_77673.jpg
+4996 086.Pacific_Loon/Pacific_Loon_0042_75385.jpg
+4997 086.Pacific_Loon/Pacific_Loon_0009_75642.jpg
+4998 086.Pacific_Loon/Pacific_Loon_0050_75388.jpg
+4999 086.Pacific_Loon/Pacific_Loon_0047_75393.jpg
+5000 086.Pacific_Loon/Pacific_Loon_0035_75395.jpg
+5001 086.Pacific_Loon/Pacific_Loon_0022_75405.jpg
+5002 086.Pacific_Loon/Pacific_Loon_0040_75414.jpg
+5004 086.Pacific_Loon/Pacific_Loon_0067_75423.jpg
+5005 086.Pacific_Loon/Pacific_Loon_0008_75428.jpg
+5006 086.Pacific_Loon/Pacific_Loon_0025_75436.jpg
+5008 086.Pacific_Loon/Pacific_Loon_0046_75439.jpg
+5009 086.Pacific_Loon/Pacific_Loon_0032_75441.jpg
+5011 086.Pacific_Loon/Pacific_Loon_0015_75443.jpg
+5012 086.Pacific_Loon/Pacific_Loon_0069_75446.jpg
+5013 086.Pacific_Loon/Pacific_Loon_0059_75706.jpg
+5014 086.Pacific_Loon/Pacific_Loon_0052_75451.jpg
+5015 086.Pacific_Loon/Pacific_Loon_0044_75467.jpg
+5016 086.Pacific_Loon/Pacific_Loon_0014_75468.jpg
+5017 086.Pacific_Loon/Pacific_Loon_0011_75726.jpg
+5018 086.Pacific_Loon/Pacific_Loon_0023_75476.jpg
+5019 086.Pacific_Loon/Pacific_Loon_0012_75736.jpg
+5020 086.Pacific_Loon/Pacific_Loon_0006_75386.jpg
+5021 086.Pacific_Loon/Pacific_Loon_0043_75747.jpg
+5022 086.Pacific_Loon/Pacific_Loon_0029_75495.jpg
+5023 086.Pacific_Loon/Pacific_Loon_0051_75514.jpg
+5024 086.Pacific_Loon/Pacific_Loon_0039_75517.jpg
+5026 087.Mallard/Mallard_0131_76296.jpg
+5027 087.Mallard/Mallard_0016_76315.jpg
+5028 087.Mallard/Mallard_0044_76317.jpg
+5029 087.Mallard/Mallard_0130_76836.jpg
+5030 087.Mallard/Mallard_0025_76465.jpg
+5032 087.Mallard/Mallard_0082_75954.jpg
+5033 087.Mallard/Mallard_0026_76725.jpg
+5034 087.Mallard/Mallard_0128_77396.jpg
+5035 087.Mallard/Mallard_0061_76378.jpg
+5036 087.Mallard/Mallard_0038_76902.jpg
+5037 087.Mallard/Mallard_0093_77419.jpg
+5038 087.Mallard/Mallard_0114_76924.jpg
+5041 087.Mallard/Mallard_0033_76565.jpg
+5043 087.Mallard/Mallard_0071_76940.jpg
+5044 087.Mallard/Mallard_0052_76946.jpg
+5046 087.Mallard/Mallard_0024_75932.jpg
+5047 087.Mallard/Mallard_0141_76977.jpg
+5048 087.Mallard/Mallard_0098_77490.jpg
+5049 087.Mallard/Mallard_0048_76995.jpg
+5050 087.Mallard/Mallard_0053_75985.jpg
+5051 087.Mallard/Mallard_0107_76498.jpg
+5052 087.Mallard/Mallard_0121_77434.jpg
+5053 087.Mallard/Mallard_0018_76511.jpg
+5054 087.Mallard/Mallard_0050_76519.jpg
+5055 087.Mallard/Mallard_0028_76010.jpg
+5056 087.Mallard/Mallard_0043_77038.jpg
+5057 087.Mallard/Mallard_0112_77046.jpg
+5058 087.Mallard/Mallard_0005_76026.jpg
+5059 087.Mallard/Mallard_0083_77052.jpg
+5060 087.Mallard/Mallard_0106_77568.jpg
+5061 087.Mallard/Mallard_0089_77068.jpg
+5062 087.Mallard/Mallard_0070_77588.jpg
+5063 087.Mallard/Mallard_0086_76567.jpg
+5064 087.Mallard/Mallard_0136_76593.jpg
+5065 087.Mallard/Mallard_0095_76080.jpg
+5066 087.Mallard/Mallard_0035_77095.jpg
+5067 087.Mallard/Mallard_0055_77102.jpg
+5068 087.Mallard/Mallard_0103_77105.jpg
+5069 087.Mallard/Mallard_0013_77619.jpg
+5070 087.Mallard/Mallard_0109_76616.jpg
+5071 087.Mallard/Mallard_0045_77129.jpg
+5072 087.Mallard/Mallard_0067_77623.jpg
+5073 087.Mallard/Mallard_0030_77143.jpg
+5075 087.Mallard/Mallard_0123_76653.jpg
+5076 087.Mallard/Mallard_0022_77166.jpg
+5077 087.Mallard/Mallard_0006_77171.jpg
+5078 087.Mallard/Mallard_0046_76165.jpg
+5079 087.Mallard/Mallard_0014_76166.jpg
+5080 087.Mallard/Mallard_0111_76722.jpg
+5081 087.Mallard/Mallard_0138_76735.jpg
+5082 087.Mallard/Mallard_0078_76238.jpg
+5083 087.Mallard/Mallard_0020_76239.jpg
+5085 087.Mallard/Mallard_0004_76958.jpg
+5086 088.Western_Meadowlark/Western_Meadowlark_0079_78856.jpg
+5087 088.Western_Meadowlark/Western_Meadowlark_0120_77834.jpg
+5088 088.Western_Meadowlark/Western_Meadowlark_0003_78864.jpg
+5089 088.Western_Meadowlark/Western_Meadowlark_0048_78354.jpg
+5090 088.Western_Meadowlark/Western_Meadowlark_0034_78869.jpg
+5091 088.Western_Meadowlark/Western_Meadowlark_0038_77785.jpg
+5092 088.Western_Meadowlark/Western_Meadowlark_0104_78105.jpg
+5093 088.Western_Meadowlark/Western_Meadowlark_0125_77850.jpg
+5094 088.Western_Meadowlark/Western_Meadowlark_0060_78368.jpg
+5095 088.Western_Meadowlark/Western_Meadowlark_0116_77862.jpg
+5096 088.Western_Meadowlark/Western_Meadowlark_0050_77864.jpg
+5097 088.Western_Meadowlark/Western_Meadowlark_0032_78633.jpg
+5098 088.Western_Meadowlark/Western_Meadowlark_0086_78636.jpg
+5100 088.Western_Meadowlark/Western_Meadowlark_0019_77876.jpg
+5101 088.Western_Meadowlark/Western_Meadowlark_0018_77880.jpg
+5102 088.Western_Meadowlark/Western_Meadowlark_0115_77882.jpg
+5103 088.Western_Meadowlark/Western_Meadowlark_0099_78176.jpg
+5104 088.Western_Meadowlark/Western_Meadowlark_0121_78402.jpg
+5105 088.Western_Meadowlark/Western_Meadowlark_0022_78410.jpg
+5106 088.Western_Meadowlark/Western_Meadowlark_0108_78155.jpg
+5107 088.Western_Meadowlark/Western_Meadowlark_0096_77901.jpg
+5108 088.Western_Meadowlark/Western_Meadowlark_0111_78674.jpg
+5109 088.Western_Meadowlark/Western_Meadowlark_0001_78676.jpg
+5110 088.Western_Meadowlark/Western_Meadowlark_0014_78421.jpg
+5111 088.Western_Meadowlark/Western_Meadowlark_0017_78940.jpg
+5112 088.Western_Meadowlark/Western_Meadowlark_0024_78432.jpg
+5113 088.Western_Meadowlark/Western_Meadowlark_0107_78608.jpg
+5114 088.Western_Meadowlark/Western_Meadowlark_0042_78180.jpg
+5115 088.Western_Meadowlark/Western_Meadowlark_0026_78438.jpg
+5116 088.Western_Meadowlark/Western_Meadowlark_0040_77823.jpg
+5118 088.Western_Meadowlark/Western_Meadowlark_0033_78312.jpg
+5121 088.Western_Meadowlark/Western_Meadowlark_0013_77712.jpg
+5123 088.Western_Meadowlark/Western_Meadowlark_0097_78239.jpg
+5124 088.Western_Meadowlark/Western_Meadowlark_0101_78899.jpg
+5125 088.Western_Meadowlark/Western_Meadowlark_0103_78500.jpg
+5126 088.Western_Meadowlark/Western_Meadowlark_0109_77990.jpg
+5127 088.Western_Meadowlark/Western_Meadowlark_0058_78247.jpg
+5129 088.Western_Meadowlark/Western_Meadowlark_0081_77798.jpg
+5130 088.Western_Meadowlark/Western_Meadowlark_0085_77745.jpg
+5131 088.Western_Meadowlark/Western_Meadowlark_0044_77758.jpg
+5133 088.Western_Meadowlark/Western_Meadowlark_0067_78529.jpg
+5134 088.Western_Meadowlark/Western_Meadowlark_0064_78027.jpg
+5135 088.Western_Meadowlark/Western_Meadowlark_0053_77774.jpg
+5136 088.Western_Meadowlark/Western_Meadowlark_0100_78037.jpg
+5137 088.Western_Meadowlark/Western_Meadowlark_0029_78832.jpg
+5138 088.Western_Meadowlark/Western_Meadowlark_0118_78820.jpg
+5139 088.Western_Meadowlark/Western_Meadowlark_0095_78568.jpg
+5140 088.Western_Meadowlark/Western_Meadowlark_0091_78576.jpg
+5141 088.Western_Meadowlark/Western_Meadowlark_0076_77811.jpg
+5142 088.Western_Meadowlark/Western_Meadowlark_0077_77814.jpg
+5143 088.Western_Meadowlark/Western_Meadowlark_0021_78841.jpg
+5145 088.Western_Meadowlark/Western_Meadowlark_0052_77781.jpg
+5146 089.Hooded_Merganser/Hooded_Merganser_0056_79112.jpg
+5148 089.Hooded_Merganser/Hooded_Merganser_0049_79136.jpg
+5149 089.Hooded_Merganser/Hooded_Merganser_0085_79146.jpg
+5150 089.Hooded_Merganser/Hooded_Merganser_0022_79153.jpg
+5151 089.Hooded_Merganser/Hooded_Merganser_0061_796723.jpg
+5152 089.Hooded_Merganser/Hooded_Merganser_0073_796726.jpg
+5153 089.Hooded_Merganser/Hooded_Merganser_0053_796728.jpg
+5154 089.Hooded_Merganser/Hooded_Merganser_0037_796731.jpg
+5155 089.Hooded_Merganser/Hooded_Merganser_0021_796732.jpg
+5161 089.Hooded_Merganser/Hooded_Merganser_0048_796749.jpg
+5162 089.Hooded_Merganser/Hooded_Merganser_0011_796750.jpg
+5163 089.Hooded_Merganser/Hooded_Merganser_0013_796754.jpg
+5164 089.Hooded_Merganser/Hooded_Merganser_0066_796755.jpg
+5165 089.Hooded_Merganser/Hooded_Merganser_0076_796756.jpg
+5166 089.Hooded_Merganser/Hooded_Merganser_0074_796757.jpg
+5167 089.Hooded_Merganser/Hooded_Merganser_0071_796760.jpg
+5169 089.Hooded_Merganser/Hooded_Merganser_0046_796764.jpg
+5170 089.Hooded_Merganser/Hooded_Merganser_0079_796768.jpg
+5176 089.Hooded_Merganser/Hooded_Merganser_0024_796779.jpg
+5177 089.Hooded_Merganser/Hooded_Merganser_0086_796780.jpg
+5178 089.Hooded_Merganser/Hooded_Merganser_0002_796781.jpg
+5180 089.Hooded_Merganser/Hooded_Merganser_0078_78959.jpg
+5181 089.Hooded_Merganser/Hooded_Merganser_0023_796784.jpg
+5183 089.Hooded_Merganser/Hooded_Merganser_0087_78972.jpg
+5184 089.Hooded_Merganser/Hooded_Merganser_0084_78954.jpg
+5186 089.Hooded_Merganser/Hooded_Merganser_0018_78979.jpg
+5187 089.Hooded_Merganser/Hooded_Merganser_0040_78984.jpg
+5188 089.Hooded_Merganser/Hooded_Merganser_0092_78989.jpg
+5189 089.Hooded_Merganser/Hooded_Merganser_0025_78996.jpg
+5190 089.Hooded_Merganser/Hooded_Merganser_0062_78998.jpg
+5191 089.Hooded_Merganser/Hooded_Merganser_0043_796783.jpg
+5192 089.Hooded_Merganser/Hooded_Merganser_0009_79012.jpg
+5193 089.Hooded_Merganser/Hooded_Merganser_0010_796785.jpg
+5194 089.Hooded_Merganser/Hooded_Merganser_0059_79016.jpg
+5196 089.Hooded_Merganser/Hooded_Merganser_0032_79032.jpg
+5197 089.Hooded_Merganser/Hooded_Merganser_0016_79079.jpg
+5198 089.Hooded_Merganser/Hooded_Merganser_0064_79040.jpg
+5199 089.Hooded_Merganser/Hooded_Merganser_0020_79046.jpg
+5200 089.Hooded_Merganser/Hooded_Merganser_0070_79054.jpg
+5201 089.Hooded_Merganser/Hooded_Merganser_0068_79057.jpg
+5202 089.Hooded_Merganser/Hooded_Merganser_0028_79061.jpg
+5203 089.Hooded_Merganser/Hooded_Merganser_0063_79064.jpg
+5204 089.Hooded_Merganser/Hooded_Merganser_0093_79075.jpg
+5205 089.Hooded_Merganser/Hooded_Merganser_0072_78973.jpg
+5206 090.Red_breasted_Merganser/Red_Breasted_Merganser_0080_79488.jpg
+5207 090.Red_breasted_Merganser/Red_Breasted_Merganser_0031_79372.jpg
+5208 090.Red_breasted_Merganser/Red_Breasted_Merganser_0071_79379.jpg
+5209 090.Red_breasted_Merganser/Red_Breasted_Merganser_0043_79295.jpg
+5211 090.Red_breasted_Merganser/Red_Breasted_Merganser_0081_79396.jpg
+5213 090.Red_breasted_Merganser/Red_Breasted_Merganser_0030_79411.jpg
+5214 090.Red_breasted_Merganser/Red_Breasted_Merganser_0067_79167.jpg
+5215 090.Red_breasted_Merganser/Red_Breasted_Merganser_0021_79168.jpg
+5216 090.Red_breasted_Merganser/Red_Breasted_Merganser_0012_79425.jpg
+5217 090.Red_breasted_Merganser/Red_Breasted_Merganser_0049_79432.jpg
+5218 090.Red_breasted_Merganser/Red_Breasted_Merganser_0052_79178.jpg
+5219 090.Red_breasted_Merganser/Red_Breasted_Merganser_0077_79180.jpg
+5220 090.Red_breasted_Merganser/Red_Breasted_Merganser_0042_79202.jpg
+5221 090.Red_breasted_Merganser/Red_Breasted_Merganser_0075_79169.jpg
+5222 090.Red_breasted_Merganser/Red_Breasted_Merganser_0002_79447.jpg
+5223 090.Red_breasted_Merganser/Red_Breasted_Merganser_0061_79453.jpg
+5224 090.Red_breasted_Merganser/Red_Breasted_Merganser_0001_79199.jpg
+5225 090.Red_breasted_Merganser/Red_Breasted_Merganser_0035_79200.jpg
+5226 090.Red_breasted_Merganser/Red_Breasted_Merganser_0008_79458.jpg
+5227 090.Red_breasted_Merganser/Red_Breasted_Merganser_0068_79203.jpg
+5228 090.Red_breasted_Merganser/Red_Breasted_Merganser_0069_79204.jpg
+5229 090.Red_breasted_Merganser/Red_Breasted_Merganser_0014_79205.jpg
+5230 090.Red_breasted_Merganser/Red_Breasted_Merganser_0040_79207.jpg
+5232 090.Red_breasted_Merganser/Red_Breasted_Merganser_0082_79214.jpg
+5234 090.Red_breasted_Merganser/Red_Breasted_Merganser_0051_79474.jpg
+5235 090.Red_breasted_Merganser/Red_Breasted_Merganser_0016_79476.jpg
+5236 090.Red_breasted_Merganser/Red_Breasted_Merganser_0023_79477.jpg
+5237 090.Red_breasted_Merganser/Red_Breasted_Merganser_0017_79224.jpg
+5238 090.Red_breasted_Merganser/Red_Breasted_Merganser_0024_79483.jpg
+5239 090.Red_breasted_Merganser/Red_Breasted_Merganser_0047_79486.jpg
+5240 090.Red_breasted_Merganser/Red_Breasted_Merganser_0004_79232.jpg
+5241 090.Red_breasted_Merganser/Red_Breasted_Merganser_0063_79238.jpg
+5242 090.Red_breasted_Merganser/Red_Breasted_Merganser_0074_79497.jpg
+5243 090.Red_breasted_Merganser/Red_Breasted_Merganser_0079_79519.jpg
+5245 090.Red_breasted_Merganser/Red_Breasted_Merganser_0066_79275.jpg
+5247 090.Red_breasted_Merganser/Red_Breasted_Merganser_0027_79284.jpg
+5248 090.Red_breasted_Merganser/Red_Breasted_Merganser_0085_79285.jpg
+5249 090.Red_breasted_Merganser/Red_Breasted_Merganser_0054_79542.jpg
+5250 090.Red_breasted_Merganser/Red_Breasted_Merganser_0034_79292.jpg
+5251 090.Red_breasted_Merganser/Red_Breasted_Merganser_0013_79301.jpg
+5252 090.Red_breasted_Merganser/Red_Breasted_Merganser_0003_79303.jpg
+5253 090.Red_breasted_Merganser/Red_Breasted_Merganser_0083_79562.jpg
+5254 090.Red_breasted_Merganser/Red_Breasted_Merganser_0064_79563.jpg
+5255 090.Red_breasted_Merganser/Red_Breasted_Merganser_0010_79567.jpg
+5256 090.Red_breasted_Merganser/Red_Breasted_Merganser_0076_79312.jpg
+5257 090.Red_breasted_Merganser/Red_Breasted_Merganser_0070_79570.jpg
+5258 090.Red_breasted_Merganser/Red_Breasted_Merganser_0041_79574.jpg
+5259 090.Red_breasted_Merganser/Red_Breasted_Merganser_0009_79576.jpg
+5260 090.Red_breasted_Merganser/Red_Breasted_Merganser_0044_79321.jpg
+5261 090.Red_breasted_Merganser/Red_Breasted_Merganser_0048_79323.jpg
+5262 090.Red_breasted_Merganser/Red_Breasted_Merganser_0046_79330.jpg
+5263 090.Red_breasted_Merganser/Red_Breasted_Merganser_0056_79348.jpg
+5264 090.Red_breasted_Merganser/Red_Breasted_Merganser_0033_79353.jpg
+5265 090.Red_breasted_Merganser/Red_Breasted_Merganser_0045_79358.jpg
+5266 091.Mockingbird/Mockingbird_0030_79876.jpg
+5267 091.Mockingbird/Mockingbird_0096_79878.jpg
+5268 091.Mockingbird/Mockingbird_0024_79623.jpg
+5269 091.Mockingbird/Mockingbird_0085_81417.jpg
+5270 091.Mockingbird/Mockingbird_0015_80652.jpg
+5271 091.Mockingbird/Mockingbird_0035_79635.jpg
+5272 091.Mockingbird/Mockingbird_0006_79819.jpg
+5274 091.Mockingbird/Mockingbird_0084_80670.jpg
+5276 091.Mockingbird/Mockingbird_0054_81703.jpg
+5278 091.Mockingbird/Mockingbird_0103_79659.jpg
+5280 091.Mockingbird/Mockingbird_0048_80441.jpg
+5281 091.Mockingbird/Mockingbird_0077_81470.jpg
+5283 091.Mockingbird/Mockingbird_0025_79935.jpg
+5284 091.Mockingbird/Mockingbird_0012_81216.jpg
+5286 091.Mockingbird/Mockingbird_0004_81991.jpg
+5287 091.Mockingbird/Mockingbird_0008_81226.jpg
+5288 091.Mockingbird/Mockingbird_0097_79951.jpg
+5290 091.Mockingbird/Mockingbird_0027_80980.jpg
+5291 091.Mockingbird/Mockingbird_0013_82010.jpg
+5292 091.Mockingbird/Mockingbird_0069_79760.jpg
+5293 091.Mockingbird/Mockingbird_0060_79972.jpg
+5294 091.Mockingbird/Mockingbird_0106_81381.jpg
+5295 091.Mockingbird/Mockingbird_0094_80232.jpg
+5296 091.Mockingbird/Mockingbird_0026_81214.jpg
+5297 091.Mockingbird/Mockingbird_0072_80789.jpg
+5299 091.Mockingbird/Mockingbird_0067_79723.jpg
+5300 091.Mockingbird/Mockingbird_0109_79682.jpg
+5301 091.Mockingbird/Mockingbird_0040_79680.jpg
+5302 091.Mockingbird/Mockingbird_0019_81296.jpg
+5305 091.Mockingbird/Mockingbird_0057_79643.jpg
+5306 091.Mockingbird/Mockingbird_0022_80552.jpg
+5308 091.Mockingbird/Mockingbird_0047_80819.jpg
+5309 091.Mockingbird/Mockingbird_0082_80570.jpg
+5310 091.Mockingbird/Mockingbird_0046_81086.jpg
+5311 091.Mockingbird/Mockingbird_0003_80833.jpg
+5312 091.Mockingbird/Mockingbird_0001_79812.jpg
+5315 091.Mockingbird/Mockingbird_0049_80336.jpg
+5318 091.Mockingbird/Mockingbird_0098_81117.jpg
+5319 091.Mockingbird/Mockingbird_0071_80357.jpg
+5320 091.Mockingbird/Mockingbird_0009_81130.jpg
+5323 091.Mockingbird/Mockingbird_0108_81908.jpg
+5324 091.Mockingbird/Mockingbird_0016_79605.jpg
+5325 091.Mockingbird/Mockingbird_0023_80121.jpg
+5326 092.Nighthawk/Nighthawk_0078_795340.jpg
+5327 092.Nighthawk/Nighthawk_0041_82183.jpg
+5328 092.Nighthawk/Nighthawk_0016_84490.jpg
+5330 092.Nighthawk/Nighthawk_0064_82196.jpg
+5336 092.Nighthawk/Nighthawk_0066_82238.jpg
+5337 092.Nighthawk/Nighthawk_0024_83519.jpg
+5338 092.Nighthawk/Nighthawk_0082_82242.jpg
+5339 092.Nighthawk/Nighthawk_0046_82246.jpg
+5340 092.Nighthawk/Nighthawk_0043_84039.jpg
+5342 092.Nighthawk/Nighthawk_0073_83540.jpg
+5343 092.Nighthawk/Nighthawk_0062_84573.jpg
+5344 092.Nighthawk/Nighthawk_0087_82280.jpg
+5346 092.Nighthawk/Nighthawk_0005_84594.jpg
+5347 092.Nighthawk/Nighthawk_0042_83603.jpg
+5348 092.Nighthawk/Nighthawk_0045_82807.jpg
+5349 092.Nighthawk/Nighthawk_0025_82808.jpg
+5350 092.Nighthawk/Nighthawk_0050_84094.jpg
+5351 092.Nighthawk/Nighthawk_0014_82624.jpg
+5352 092.Nighthawk/Nighthawk_0021_82562.jpg
+5353 092.Nighthawk/Nighthawk_0047_82820.jpg
+5354 092.Nighthawk/Nighthawk_0019_83850.jpg
+5355 092.Nighthawk/Nighthawk_0003_82827.jpg
+5356 092.Nighthawk/Nighthawk_0012_84333.jpg
+5358 092.Nighthawk/Nighthawk_0090_82579.jpg
+5359 092.Nighthawk/Nighthawk_0068_82368.jpg
+5360 092.Nighthawk/Nighthawk_0055_83352.jpg
+5361 092.Nighthawk/Nighthawk_0020_83869.jpg
+5362 092.Nighthawk/Nighthawk_0058_83270.jpg
+5363 092.Nighthawk/Nighthawk_0026_83911.jpg
+5365 092.Nighthawk/Nighthawk_0069_82613.jpg
+5366 092.Nighthawk/Nighthawk_0018_83639.jpg
+5367 092.Nighthawk/Nighthawk_0051_82619.jpg
+5368 092.Nighthawk/Nighthawk_0083_83647.jpg
+5369 092.Nighthawk/Nighthawk_0048_83648.jpg
+5370 092.Nighthawk/Nighthawk_0032_795333.jpg
+5371 092.Nighthawk/Nighthawk_0067_795335.jpg
+5372 092.Nighthawk/Nighthawk_0072_795336.jpg
+5373 092.Nighthawk/Nighthawk_0054_795337.jpg
+5374 092.Nighthawk/Nighthawk_0030_795338.jpg
+5375 092.Nighthawk/Nighthawk_0063_795339.jpg
+5376 092.Nighthawk/Nighthawk_0028_82636.jpg
+5377 092.Nighthawk/Nighthawk_0065_82895.jpg
+5378 092.Nighthawk/Nighthawk_0057_82640.jpg
+5379 092.Nighthawk/Nighthawk_0053_84436.jpg
+5380 092.Nighthawk/Nighthawk_0013_83670.jpg
+5381 092.Nighthawk/Nighthawk_0022_84183.jpg
+5382 092.Nighthawk/Nighthawk_0027_84697.jpg
+5383 092.Nighthawk/Nighthawk_0007_83419.jpg
+5384 092.Nighthawk/Nighthawk_0070_82676.jpg
+5385 092.Nighthawk/Nighthawk_0076_82686.jpg
+5386 093.Clark_Nutcracker/Clark_Nutcracker_0096_84996.jpg
+5387 093.Clark_Nutcracker/Clark_Nutcracker_0089_85004.jpg
+5388 093.Clark_Nutcracker/Clark_Nutcracker_0104_85531.jpg
+5389 093.Clark_Nutcracker/Clark_Nutcracker_0134_85534.jpg
+5390 093.Clark_Nutcracker/Clark_Nutcracker_0076_85083.jpg
+5392 093.Clark_Nutcracker/Clark_Nutcracker_0105_85097.jpg
+5393 093.Clark_Nutcracker/Clark_Nutcracker_0020_85099.jpg
+5394 093.Clark_Nutcracker/Clark_Nutcracker_0098_85105.jpg
+5395 093.Clark_Nutcracker/Clark_Nutcracker_0090_85116.jpg
+5396 093.Clark_Nutcracker/Clark_Nutcracker_0138_85633.jpg
+5397 093.Clark_Nutcracker/Clark_Nutcracker_0071_85125.jpg
+5398 093.Clark_Nutcracker/Clark_Nutcracker_0124_85128.jpg
+5399 093.Clark_Nutcracker/Clark_Nutcracker_0126_85134.jpg
+5400 093.Clark_Nutcracker/Clark_Nutcracker_0101_85656.jpg
+5402 093.Clark_Nutcracker/Clark_Nutcracker_0107_85662.jpg
+5404 093.Clark_Nutcracker/Clark_Nutcracker_0137_85172.jpg
+5405 093.Clark_Nutcracker/Clark_Nutcracker_0011_85698.jpg
+5406 093.Clark_Nutcracker/Clark_Nutcracker_0131_85701.jpg
+5407 093.Clark_Nutcracker/Clark_Nutcracker_0005_85190.jpg
+5408 093.Clark_Nutcracker/Clark_Nutcracker_0075_85715.jpg
+5409 093.Clark_Nutcracker/Clark_Nutcracker_0099_85717.jpg
+5410 093.Clark_Nutcracker/Clark_Nutcracker_0024_85718.jpg
+5411 093.Clark_Nutcracker/Clark_Nutcracker_0072_85742.jpg
+5412 093.Clark_Nutcracker/Clark_Nutcracker_0047_85630.jpg
+5414 093.Clark_Nutcracker/Clark_Nutcracker_0069_84767.jpg
+5415 093.Clark_Nutcracker/Clark_Nutcracker_0060_84862.jpg
+5416 093.Clark_Nutcracker/Clark_Nutcracker_0017_84777.jpg
+5417 093.Clark_Nutcracker/Clark_Nutcracker_0003_85296.jpg
+5418 093.Clark_Nutcracker/Clark_Nutcracker_0067_85302.jpg
+5419 093.Clark_Nutcracker/Clark_Nutcracker_0013_84791.jpg
+5421 093.Clark_Nutcracker/Clark_Nutcracker_0110_85217.jpg
+5422 093.Clark_Nutcracker/Clark_Nutcracker_0093_84809.jpg
+5423 093.Clark_Nutcracker/Clark_Nutcracker_0142_85322.jpg
+5424 093.Clark_Nutcracker/Clark_Nutcracker_0073_85343.jpg
+5432 093.Clark_Nutcracker/Clark_Nutcracker_0066_85390.jpg
+5433 093.Clark_Nutcracker/Clark_Nutcracker_0087_84898.jpg
+5434 093.Clark_Nutcracker/Clark_Nutcracker_0078_85416.jpg
+5435 093.Clark_Nutcracker/Clark_Nutcracker_0116_84807.jpg
+5436 093.Clark_Nutcracker/Clark_Nutcracker_0117_84912.jpg
+5437 093.Clark_Nutcracker/Clark_Nutcracker_0121_85435.jpg
+5439 093.Clark_Nutcracker/Clark_Nutcracker_0026_84945.jpg
+5440 093.Clark_Nutcracker/Clark_Nutcracker_0051_84950.jpg
+5441 093.Clark_Nutcracker/Clark_Nutcracker_0062_85464.jpg
+5442 093.Clark_Nutcracker/Clark_Nutcracker_0082_85477.jpg
+5443 093.Clark_Nutcracker/Clark_Nutcracker_0083_85480.jpg
+5444 093.Clark_Nutcracker/Clark_Nutcracker_0136_85490.jpg
+5445 093.Clark_Nutcracker/Clark_Nutcracker_0113_85587.jpg
+5446 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0092_86016.jpg
+5447 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0014_86023.jpg
+5448 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0003_86029.jpg
+5449 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0060_86031.jpg
+5450 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0068_86033.jpg
+5452 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0054_86551.jpg
+5454 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0114_86554.jpg
+5455 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0018_85937.jpg
+5461 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0111_86621.jpg
+5462 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0040_86127.jpg
+5464 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0020_86143.jpg
+5466 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0066_86159.jpg
+5467 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0039_86166.jpg
+5469 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0049_86557.jpg
+5470 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0101_86708.jpg
+5474 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0129_86761.jpg
+5476 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0075_86289.jpg
+5477 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0142_86805.jpg
+5478 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0010_85783.jpg
+5479 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0108_86308.jpg
+5480 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0076_85801.jpg
+5481 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0025_85803.jpg
+5482 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0064_86324.jpg
+5484 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0047_85819.jpg
+5485 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0030_85823.jpg
+5486 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0065_85829.jpg
+5487 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0090_86856.jpg
+5489 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0132_86876.jpg
+5490 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0137_86910.jpg
+5491 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0120_85890.jpg
+5492 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0131_86416.jpg
+5493 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0027_85905.jpg
+5494 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0070_85983.jpg
+5495 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0095_86425.jpg
+5496 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0078_85828.jpg
+5497 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0082_86435.jpg
+5498 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0097_85940.jpg
+5499 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0004_86969.jpg
+5500 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0077_86462.jpg
+5501 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0106_85955.jpg
+5502 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0103_86470.jpg
+5505 094.White_breasted_Nuthatch/White_Breasted_Nuthatch_0042_86488.jpg
+5506 095.Baltimore_Oriole/Baltimore_Oriole_0127_87560.jpg
+5507 095.Baltimore_Oriole/Baltimore_Oriole_0027_87561.jpg
+5508 095.Baltimore_Oriole/Baltimore_Oriole_0090_87054.jpg
+5509 095.Baltimore_Oriole/Baltimore_Oriole_0060_89616.jpg
+5510 095.Baltimore_Oriole/Baltimore_Oriole_0108_87576.jpg
+5513 095.Baltimore_Oriole/Baltimore_Oriole_0021_87089.jpg
+5514 095.Baltimore_Oriole/Baltimore_Oriole_0133_87602.jpg
+5517 095.Baltimore_Oriole/Baltimore_Oriole_0106_89680.jpg
+5519 095.Baltimore_Oriole/Baltimore_Oriole_0047_89686.jpg
+5521 095.Baltimore_Oriole/Baltimore_Oriole_0083_89712.jpg
+5523 095.Baltimore_Oriole/Baltimore_Oriole_0024_89720.jpg
+5524 095.Baltimore_Oriole/Baltimore_Oriole_0019_88186.jpg
+5526 095.Baltimore_Oriole/Baltimore_Oriole_0014_87690.jpg
+5527 095.Baltimore_Oriole/Baltimore_Oriole_0073_87187.jpg
+5528 095.Baltimore_Oriole/Baltimore_Oriole_0101_87207.jpg
+5529 095.Baltimore_Oriole/Baltimore_Oriole_0074_87214.jpg
+5530 095.Baltimore_Oriole/Baltimore_Oriole_0042_87216.jpg
+5531 095.Baltimore_Oriole/Baltimore_Oriole_0051_89722.jpg
+5532 095.Baltimore_Oriole/Baltimore_Oriole_0054_89825.jpg
+5535 095.Baltimore_Oriole/Baltimore_Oriole_0128_87796.jpg
+5537 095.Baltimore_Oriole/Baltimore_Oriole_0058_87296.jpg
+5538 095.Baltimore_Oriole/Baltimore_Oriole_0065_87303.jpg
+5541 095.Baltimore_Oriole/Baltimore_Oriole_0016_89885.jpg
+5542 095.Baltimore_Oriole/Baltimore_Oriole_0082_87838.jpg
+5543 095.Baltimore_Oriole/Baltimore_Oriole_0069_87839.jpg
+5544 095.Baltimore_Oriole/Baltimore_Oriole_0056_88355.jpg
+5545 095.Baltimore_Oriole/Baltimore_Oriole_0100_89908.jpg
+5547 095.Baltimore_Oriole/Baltimore_Oriole_0041_87367.jpg
+5548 095.Baltimore_Oriole/Baltimore_Oriole_0006_89935.jpg
+5549 095.Baltimore_Oriole/Baltimore_Oriole_0120_88403.jpg
+5550 095.Baltimore_Oriole/Baltimore_Oriole_0066_87380.jpg
+5551 095.Baltimore_Oriole/Baltimore_Oriole_0109_87398.jpg
+5553 095.Baltimore_Oriole/Baltimore_Oriole_0050_89750.jpg
+5554 095.Baltimore_Oriole/Baltimore_Oriole_0092_87435.jpg
+5555 095.Baltimore_Oriole/Baltimore_Oriole_0112_87447.jpg
+5556 095.Baltimore_Oriole/Baltimore_Oriole_0111_87449.jpg
+5557 095.Baltimore_Oriole/Baltimore_Oriole_0091_88487.jpg
+5558 095.Baltimore_Oriole/Baltimore_Oriole_0104_86979.jpg
+5559 095.Baltimore_Oriole/Baltimore_Oriole_0052_89553.jpg
+5560 095.Baltimore_Oriole/Baltimore_Oriole_0064_89554.jpg
+5561 095.Baltimore_Oriole/Baltimore_Oriole_0119_88022.jpg
+5562 095.Baltimore_Oriole/Baltimore_Oriole_0039_88027.jpg
+5563 095.Baltimore_Oriole/Baltimore_Oriole_0007_88038.jpg
+5565 095.Baltimore_Oriole/Baltimore_Oriole_0130_89596.jpg
+5567 096.Hooded_Oriole/Hooded_Oriole_0008_90118.jpg
+5568 096.Hooded_Oriole/Hooded_Oriole_0047_90637.jpg
+5569 096.Hooded_Oriole/Hooded_Oriole_0037_91156.jpg
+5570 096.Hooded_Oriole/Hooded_Oriole_0024_90157.jpg
+5571 096.Hooded_Oriole/Hooded_Oriole_0006_90685.jpg
+5572 096.Hooded_Oriole/Hooded_Oriole_0034_90686.jpg
+5573 096.Hooded_Oriole/Hooded_Oriole_0117_90464.jpg
+5574 096.Hooded_Oriole/Hooded_Oriole_0127_90200.jpg
+5575 096.Hooded_Oriole/Hooded_Oriole_0048_89957.jpg
+5577 096.Hooded_Oriole/Hooded_Oriole_0070_90221.jpg
+5578 096.Hooded_Oriole/Hooded_Oriole_0056_89966.jpg
+5579 096.Hooded_Oriole/Hooded_Oriole_0104_90264.jpg
+5580 096.Hooded_Oriole/Hooded_Oriole_0072_90298.jpg
+5582 096.Hooded_Oriole/Hooded_Oriole_0096_90311.jpg
+5583 096.Hooded_Oriole/Hooded_Oriole_0126_90319.jpg
+5584 096.Hooded_Oriole/Hooded_Oriole_0035_90331.jpg
+5585 096.Hooded_Oriole/Hooded_Oriole_0095_90337.jpg
+5589 096.Hooded_Oriole/Hooded_Oriole_0105_90875.jpg
+5592 096.Hooded_Oriole/Hooded_Oriole_0125_90382.jpg
+5595 096.Hooded_Oriole/Hooded_Oriole_0106_90899.jpg
+5596 096.Hooded_Oriole/Hooded_Oriole_0068_90397.jpg
+5597 096.Hooded_Oriole/Hooded_Oriole_0010_90413.jpg
+5598 096.Hooded_Oriole/Hooded_Oriole_0045_90415.jpg
+5600 096.Hooded_Oriole/Hooded_Oriole_0130_90422.jpg
+5602 096.Hooded_Oriole/Hooded_Oriole_0129_90441.jpg
+5603 096.Hooded_Oriole/Hooded_Oriole_0115_90442.jpg
+5604 096.Hooded_Oriole/Hooded_Oriole_0013_90445.jpg
+5605 096.Hooded_Oriole/Hooded_Oriole_0063_90976.jpg
+5606 096.Hooded_Oriole/Hooded_Oriole_0049_89955.jpg
+5607 096.Hooded_Oriole/Hooded_Oriole_0069_90981.jpg
+5608 096.Hooded_Oriole/Hooded_Oriole_0029_90485.jpg
+5609 096.Hooded_Oriole/Hooded_Oriole_0079_89978.jpg
+5611 096.Hooded_Oriole/Hooded_Oriole_0043_90499.jpg
+5612 096.Hooded_Oriole/Hooded_Oriole_0111_89988.jpg
+5613 096.Hooded_Oriole/Hooded_Oriole_0014_90594.jpg
+5614 096.Hooded_Oriole/Hooded_Oriole_0002_91034.jpg
+5615 096.Hooded_Oriole/Hooded_Oriole_0004_91057.jpg
+5616 096.Hooded_Oriole/Hooded_Oriole_0087_90037.jpg
+5618 096.Hooded_Oriole/Hooded_Oriole_0118_90049.jpg
+5620 096.Hooded_Oriole/Hooded_Oriole_0038_90575.jpg
+5622 096.Hooded_Oriole/Hooded_Oriole_0044_90082.jpg
+5625 096.Hooded_Oriole/Hooded_Oriole_0007_91133.jpg
+5626 097.Orchard_Oriole/Orchard_Oriole_0077_91651.jpg
+5627 097.Orchard_Oriole/Orchard_Oriole_0065_91397.jpg
+5628 097.Orchard_Oriole/Orchard_Oriole_0082_91654.jpg
+5629 097.Orchard_Oriole/Orchard_Oriole_0048_91393.jpg
+5630 097.Orchard_Oriole/Orchard_Oriole_0098_91401.jpg
+5631 097.Orchard_Oriole/Orchard_Oriole_0084_91658.jpg
+5632 097.Orchard_Oriole/Orchard_Oriole_0085_91411.jpg
+5633 097.Orchard_Oriole/Orchard_Oriole_0114_91412.jpg
+5634 097.Orchard_Oriole/Orchard_Oriole_0054_91414.jpg
+5635 097.Orchard_Oriole/Orchard_Oriole_0080_91417.jpg
+5636 097.Orchard_Oriole/Orchard_Oriole_0042_91678.jpg
+5637 097.Orchard_Oriole/Orchard_Oriole_0005_91682.jpg
+5639 097.Orchard_Oriole/Orchard_Oriole_0105_91186.jpg
+5640 097.Orchard_Oriole/Orchard_Oriole_0026_91444.jpg
+5641 097.Orchard_Oriole/Orchard_Oriole_0023_91705.jpg
+5642 097.Orchard_Oriole/Orchard_Oriole_0032_91201.jpg
+5643 097.Orchard_Oriole/Orchard_Oriole_0051_91787.jpg
+5644 097.Orchard_Oriole/Orchard_Oriole_0045_91205.jpg
+5645 097.Orchard_Oriole/Orchard_Oriole_0074_91979.jpg
+5646 097.Orchard_Oriole/Orchard_Oriole_0006_91724.jpg
+5647 097.Orchard_Oriole/Orchard_Oriole_0107_91472.jpg
+5648 097.Orchard_Oriole/Orchard_Oriole_0035_92003.jpg
+5650 097.Orchard_Oriole/Orchard_Oriole_0101_91233.jpg
+5653 097.Orchard_Oriole/Orchard_Oriole_0041_91258.jpg
+5654 097.Orchard_Oriole/Orchard_Oriole_0055_91515.jpg
+5655 097.Orchard_Oriole/Orchard_Oriole_0091_91774.jpg
+5656 097.Orchard_Oriole/Orchard_Oriole_0027_91265.jpg
+5657 097.Orchard_Oriole/Orchard_Oriole_0039_91267.jpg
+5658 097.Orchard_Oriole/Orchard_Oriole_0092_92128.jpg
+5659 097.Orchard_Oriole/Orchard_Oriole_0076_91527.jpg
+5660 097.Orchard_Oriole/Orchard_Oriole_0108_91530.jpg
+5661 097.Orchard_Oriole/Orchard_Oriole_0004_91275.jpg
+5662 097.Orchard_Oriole/Orchard_Oriole_0033_91532.jpg
+5664 097.Orchard_Oriole/Orchard_Oriole_0106_91830.jpg
+5665 097.Orchard_Oriole/Orchard_Oriole_0060_91536.jpg
+5666 097.Orchard_Oriole/Orchard_Oriole_0061_91941.jpg
+5668 097.Orchard_Oriole/Orchard_Oriole_0036_91818.jpg
+5670 097.Orchard_Oriole/Orchard_Oriole_0015_91565.jpg
+5671 097.Orchard_Oriole/Orchard_Oriole_0034_91825.jpg
+5672 097.Orchard_Oriole/Orchard_Oriole_0088_92086.jpg
+5673 097.Orchard_Oriole/Orchard_Oriole_0075_91847.jpg
+5675 097.Orchard_Oriole/Orchard_Oriole_0019_91338.jpg
+5676 097.Orchard_Oriole/Orchard_Oriole_0095_91345.jpg
+5678 097.Orchard_Oriole/Orchard_Oriole_0044_91360.jpg
+5679 097.Orchard_Oriole/Orchard_Oriole_0018_91601.jpg
+5680 097.Orchard_Oriole/Orchard_Oriole_0116_91645.jpg
+5681 097.Orchard_Oriole/Orchard_Oriole_0046_91646.jpg
+5684 097.Orchard_Oriole/Orchard_Oriole_0009_91902.jpg
+5685 098.Scott_Oriole/Scott_Oriole_0015_795862.jpg
+5686 098.Scott_Oriole/Scott_Oriole_0007_92439.jpg
+5687 098.Scott_Oriole/Scott_Oriole_0052_92440.jpg
+5688 098.Scott_Oriole/Scott_Oriole_0085_92206.jpg
+5689 098.Scott_Oriole/Scott_Oriole_0025_92207.jpg
+5690 098.Scott_Oriole/Scott_Oriole_0045_92237.jpg
+5691 098.Scott_Oriole/Scott_Oriole_0003_92247.jpg
+5692 098.Scott_Oriole/Scott_Oriole_0079_92248.jpg
+5693 098.Scott_Oriole/Scott_Oriole_0044_92262.jpg
+5694 098.Scott_Oriole/Scott_Oriole_0028_92270.jpg
+5695 098.Scott_Oriole/Scott_Oriole_0069_92271.jpg
+5697 098.Scott_Oriole/Scott_Oriole_0054_92310.jpg
+5699 098.Scott_Oriole/Scott_Oriole_0068_795804.jpg
+5700 098.Scott_Oriole/Scott_Oriole_0053_795805.jpg
+5701 098.Scott_Oriole/Scott_Oriole_0031_90270.jpg
+5702 098.Scott_Oriole/Scott_Oriole_0051_795807.jpg
+5703 098.Scott_Oriole/Scott_Oriole_0070_795808.jpg
+5709 098.Scott_Oriole/Scott_Oriole_0019_795815.jpg
+5712 098.Scott_Oriole/Scott_Oriole_0065_795819.jpg
+5713 098.Scott_Oriole/Scott_Oriole_0083_795821.jpg
+5716 098.Scott_Oriole/Scott_Oriole_0001_795826.jpg
+5717 098.Scott_Oriole/Scott_Oriole_0014_795827.jpg
+5718 098.Scott_Oriole/Scott_Oriole_0043_795828.jpg
+5719 098.Scott_Oriole/Scott_Oriole_0002_795829.jpg
+5720 098.Scott_Oriole/Scott_Oriole_0030_795830.jpg
+5726 098.Scott_Oriole/Scott_Oriole_0012_795837.jpg
+5727 098.Scott_Oriole/Scott_Oriole_0040_795839.jpg
+5730 098.Scott_Oriole/Scott_Oriole_0029_795846.jpg
+5731 098.Scott_Oriole/Scott_Oriole_0071_795848.jpg
+5732 098.Scott_Oriole/Scott_Oriole_0058_795849.jpg
+5733 098.Scott_Oriole/Scott_Oriole_0005_92362.jpg
+5735 098.Scott_Oriole/Scott_Oriole_0010_795852.jpg
+5736 098.Scott_Oriole/Scott_Oriole_0073_92369.jpg
+5737 098.Scott_Oriole/Scott_Oriole_0067_795858.jpg
+5738 098.Scott_Oriole/Scott_Oriole_0046_92371.jpg
+5739 098.Scott_Oriole/Scott_Oriole_0084_795860.jpg
+5740 098.Scott_Oriole/Scott_Oriole_0081_92374.jpg
+5741 098.Scott_Oriole/Scott_Oriole_0036_795850.jpg
+5742 098.Scott_Oriole/Scott_Oriole_0057_795856.jpg
+5743 098.Scott_Oriole/Scott_Oriole_0016_92398.jpg
+5745 099.Ovenbird/Ovenbird_0050_92672.jpg
+5747 099.Ovenbird/Ovenbird_0032_93199.jpg
+5748 099.Ovenbird/Ovenbird_0047_93203.jpg
+5749 099.Ovenbird/Ovenbird_0019_92699.jpg
+5750 099.Ovenbird/Ovenbird_0022_92702.jpg
+5751 099.Ovenbird/Ovenbird_0093_92705.jpg
+5754 099.Ovenbird/Ovenbird_0104_92763.jpg
+5755 099.Ovenbird/Ovenbird_0012_92778.jpg
+5762 099.Ovenbird/Ovenbird_0136_92859.jpg
+5763 099.Ovenbird/Ovenbird_0043_93374.jpg
+5764 099.Ovenbird/Ovenbird_0090_93375.jpg
+5765 099.Ovenbird/Ovenbird_0004_92868.jpg
+5766 099.Ovenbird/Ovenbird_0048_92876.jpg
+5767 099.Ovenbird/Ovenbird_0009_93395.jpg
+5769 099.Ovenbird/Ovenbird_0092_93416.jpg
+5772 099.Ovenbird/Ovenbird_0010_92957.jpg
+5774 099.Ovenbird/Ovenbird_0099_93148.jpg
+5775 099.Ovenbird/Ovenbird_0053_92462.jpg
+5776 099.Ovenbird/Ovenbird_0059_92470.jpg
+5777 099.Ovenbird/Ovenbird_0122_92993.jpg
+5778 099.Ovenbird/Ovenbird_0118_93002.jpg
+5780 099.Ovenbird/Ovenbird_0112_93018.jpg
+5786 099.Ovenbird/Ovenbird_0020_93049.jpg
+5787 099.Ovenbird/Ovenbird_0131_92559.jpg
+5788 099.Ovenbird/Ovenbird_0083_92561.jpg
+5789 099.Ovenbird/Ovenbird_0058_93078.jpg
+5790 099.Ovenbird/Ovenbird_0027_93086.jpg
+5793 099.Ovenbird/Ovenbird_0077_92590.jpg
+5794 099.Ovenbird/Ovenbird_0124_93103.jpg
+5795 099.Ovenbird/Ovenbird_0101_93104.jpg
+5796 099.Ovenbird/Ovenbird_0054_92594.jpg
+5797 099.Ovenbird/Ovenbird_0126_92602.jpg
+5798 099.Ovenbird/Ovenbird_0081_93115.jpg
+5799 099.Ovenbird/Ovenbird_0079_92610.jpg
+5800 099.Ovenbird/Ovenbird_0096_93131.jpg
+5801 099.Ovenbird/Ovenbird_0070_93140.jpg
+5803 099.Ovenbird/Ovenbird_0135_93168.jpg
+5804 099.Ovenbird/Ovenbird_0102_93172.jpg
+5805 100.Brown_Pelican/Brown_Pelican_0127_93700.jpg
+5806 100.Brown_Pelican/Brown_Pelican_0041_93720.jpg
+5807 100.Brown_Pelican/Brown_Pelican_0102_93727.jpg
+5808 100.Brown_Pelican/Brown_Pelican_0115_93731.jpg
+5809 100.Brown_Pelican/Brown_Pelican_0009_94256.jpg
+5810 100.Brown_Pelican/Brown_Pelican_0002_94773.jpg
+5816 100.Brown_Pelican/Brown_Pelican_0073_94823.jpg
+5817 100.Brown_Pelican/Brown_Pelican_0066_94840.jpg
+5818 100.Brown_Pelican/Brown_Pelican_0075_95357.jpg
+5819 100.Brown_Pelican/Brown_Pelican_0036_93843.jpg
+5820 100.Brown_Pelican/Brown_Pelican_0087_94358.jpg
+5821 100.Brown_Pelican/Brown_Pelican_0123_94368.jpg
+5822 100.Brown_Pelican/Brown_Pelican_0010_94370.jpg
+5824 100.Brown_Pelican/Brown_Pelican_0111_93872.jpg
+5825 100.Brown_Pelican/Brown_Pelican_0031_93874.jpg
+5826 100.Brown_Pelican/Brown_Pelican_0020_95422.jpg
+5827 100.Brown_Pelican/Brown_Pelican_0118_93475.jpg
+5828 100.Brown_Pelican/Brown_Pelican_0068_94430.jpg
+5829 100.Brown_Pelican/Brown_Pelican_0018_94432.jpg
+5830 100.Brown_Pelican/Brown_Pelican_0100_94434.jpg
+5832 100.Brown_Pelican/Brown_Pelican_0140_93438.jpg
+5833 100.Brown_Pelican/Brown_Pelican_0080_93439.jpg
+5834 100.Brown_Pelican/Brown_Pelican_0131_94464.jpg
+5835 100.Brown_Pelican/Brown_Pelican_0125_93461.jpg
+5836 100.Brown_Pelican/Brown_Pelican_0077_93464.jpg
+5837 100.Brown_Pelican/Brown_Pelican_0003_94427.jpg
+5838 100.Brown_Pelican/Brown_Pelican_0059_94504.jpg
+5839 100.Brown_Pelican/Brown_Pelican_0043_94506.jpg
+5840 100.Brown_Pelican/Brown_Pelican_0139_93995.jpg
+5841 100.Brown_Pelican/Brown_Pelican_0067_94529.jpg
+5842 100.Brown_Pelican/Brown_Pelican_0141_94533.jpg
+5843 100.Brown_Pelican/Brown_Pelican_0122_94022.jpg
+5845 100.Brown_Pelican/Brown_Pelican_0071_94549.jpg
+5846 100.Brown_Pelican/Brown_Pelican_0040_94051.jpg
+5847 100.Brown_Pelican/Brown_Pelican_0128_94059.jpg
+5848 100.Brown_Pelican/Brown_Pelican_0051_94578.jpg
+5850 100.Brown_Pelican/Brown_Pelican_0129_94074.jpg
+5852 100.Brown_Pelican/Brown_Pelican_0007_94078.jpg
+5853 100.Brown_Pelican/Brown_Pelican_0012_94079.jpg
+5854 100.Brown_Pelican/Brown_Pelican_0081_94085.jpg
+5855 100.Brown_Pelican/Brown_Pelican_0049_94598.jpg
+5856 100.Brown_Pelican/Brown_Pelican_0019_95158.jpg
+5857 100.Brown_Pelican/Brown_Pelican_0011_94683.jpg
+5858 100.Brown_Pelican/Brown_Pelican_0070_93678.jpg
+5859 100.Brown_Pelican/Brown_Pelican_0039_95216.jpg
+5860 100.Brown_Pelican/Brown_Pelican_0025_95218.jpg
+5862 100.Brown_Pelican/Brown_Pelican_0072_94974.jpg
+5863 100.Brown_Pelican/Brown_Pelican_0074_93692.jpg
+5864 100.Brown_Pelican/Brown_Pelican_0056_95229.jpg
+5865 101.White_Pelican/White_Pelican_0077_97025.jpg
+5866 101.White_Pelican/White_Pelican_0073_96260.jpg
+5867 101.White_Pelican/White_Pelican_0066_95495.jpg
+5868 101.White_Pelican/White_Pelican_0048_95764.jpg
+5870 101.White_Pelican/White_Pelican_0031_97064.jpg
+5871 101.White_Pelican/White_Pelican_0051_97833.jpg
+5873 101.White_Pelican/White_Pelican_0086_95538.jpg
+5874 101.White_Pelican/White_Pelican_0035_96312.jpg
+5875 101.White_Pelican/White_Pelican_0009_97340.jpg
+5876 101.White_Pelican/White_Pelican_0071_96061.jpg
+5877 101.White_Pelican/White_Pelican_0025_97604.jpg
+5878 101.White_Pelican/White_Pelican_0042_97250.jpg
+5879 101.White_Pelican/White_Pelican_0037_95570.jpg
+5880 101.White_Pelican/White_Pelican_0039_97363.jpg
+5881 101.White_Pelican/White_Pelican_0067_95573.jpg
+5882 101.White_Pelican/White_Pelican_0026_95832.jpg
+5883 101.White_Pelican/White_Pelican_0079_97380.jpg
+5884 101.White_Pelican/White_Pelican_0036_96863.jpg
+5885 101.White_Pelican/White_Pelican_0083_95840.jpg
+5896 101.White_Pelican/White_Pelican_0022_95897.jpg
+5897 101.White_Pelican/White_Pelican_0040_96026.jpg
+5898 101.White_Pelican/White_Pelican_0014_96417.jpg
+5899 101.White_Pelican/White_Pelican_0059_96675.jpg
+5900 101.White_Pelican/White_Pelican_0075_96422.jpg
+5901 101.White_Pelican/White_Pelican_0076_96427.jpg
+5902 101.White_Pelican/White_Pelican_0005_95916.jpg
+5903 101.White_Pelican/White_Pelican_0003_96691.jpg
+5904 101.White_Pelican/White_Pelican_0015_96952.jpg
+5905 101.White_Pelican/White_Pelican_0034_97466.jpg
+5910 101.White_Pelican/White_Pelican_0047_97190.jpg
+5911 101.White_Pelican/White_Pelican_0080_95721.jpg
+5913 101.White_Pelican/White_Pelican_0054_97528.jpg
+5914 101.White_Pelican/White_Pelican_0024_96554.jpg
+5916 102.Western_Wood_Pewee/Western_Wood_Pewee_0016_98082.jpg
+5917 102.Western_Wood_Pewee/Western_Wood_Pewee_0070_98225.jpg
+5918 102.Western_Wood_Pewee/Western_Wood_Pewee_0014_98094.jpg
+5919 102.Western_Wood_Pewee/Western_Wood_Pewee_0021_98101.jpg
+5920 102.Western_Wood_Pewee/Western_Wood_Pewee_0061_795060.jpg
+5921 102.Western_Wood_Pewee/Western_Wood_Pewee_0024_98229.jpg
+5924 102.Western_Wood_Pewee/Western_Wood_Pewee_0032_98121.jpg
+5925 102.Western_Wood_Pewee/Western_Wood_Pewee_0062_98123.jpg
+5926 102.Western_Wood_Pewee/Western_Wood_Pewee_0042_98126.jpg
+5927 102.Western_Wood_Pewee/Western_Wood_Pewee_0037_98127.jpg
+5928 102.Western_Wood_Pewee/Western_Wood_Pewee_0077_98133.jpg
+5930 102.Western_Wood_Pewee/Western_Wood_Pewee_0074_98282.jpg
+5931 102.Western_Wood_Pewee/Western_Wood_Pewee_0007_97985.jpg
+5932 102.Western_Wood_Pewee/Western_Wood_Pewee_0015_98184.jpg
+5934 102.Western_Wood_Pewee/Western_Wood_Pewee_0026_98191.jpg
+5935 102.Western_Wood_Pewee/Western_Wood_Pewee_0012_98031.jpg
+5938 102.Western_Wood_Pewee/Western_Wood_Pewee_0031_795038.jpg
+5939 102.Western_Wood_Pewee/Western_Wood_Pewee_0057_795040.jpg
+5940 102.Western_Wood_Pewee/Western_Wood_Pewee_0017_795041.jpg
+5942 102.Western_Wood_Pewee/Western_Wood_Pewee_0073_795044.jpg
+5945 102.Western_Wood_Pewee/Western_Wood_Pewee_0079_795047.jpg
+5947 102.Western_Wood_Pewee/Western_Wood_Pewee_0003_795050.jpg
+5948 102.Western_Wood_Pewee/Western_Wood_Pewee_0040_795051.jpg
+5949 102.Western_Wood_Pewee/Western_Wood_Pewee_0043_795053.jpg
+5950 102.Western_Wood_Pewee/Western_Wood_Pewee_0020_795054.jpg
+5951 102.Western_Wood_Pewee/Western_Wood_Pewee_0028_795057.jpg
+5952 102.Western_Wood_Pewee/Western_Wood_Pewee_0022_795058.jpg
+5953 102.Western_Wood_Pewee/Western_Wood_Pewee_0072_98035.jpg
+5954 102.Western_Wood_Pewee/Western_Wood_Pewee_0045_97972.jpg
+5955 102.Western_Wood_Pewee/Western_Wood_Pewee_0051_98206.jpg
+5956 102.Western_Wood_Pewee/Western_Wood_Pewee_0035_795062.jpg
+5957 102.Western_Wood_Pewee/Western_Wood_Pewee_0039_795063.jpg
+5958 102.Western_Wood_Pewee/Western_Wood_Pewee_0054_97982.jpg
+5960 102.Western_Wood_Pewee/Western_Wood_Pewee_0004_98257.jpg
+5961 102.Western_Wood_Pewee/Western_Wood_Pewee_0076_98002.jpg
+5962 102.Western_Wood_Pewee/Western_Wood_Pewee_0008_795043.jpg
+5963 102.Western_Wood_Pewee/Western_Wood_Pewee_0059_98262.jpg
+5964 102.Western_Wood_Pewee/Western_Wood_Pewee_0049_98263.jpg
+5965 102.Western_Wood_Pewee/Western_Wood_Pewee_0013_98268.jpg
+5966 102.Western_Wood_Pewee/Western_Wood_Pewee_0081_98270.jpg
+5967 102.Western_Wood_Pewee/Western_Wood_Pewee_0030_98272.jpg
+5969 102.Western_Wood_Pewee/Western_Wood_Pewee_0065_98001.jpg
+5970 102.Western_Wood_Pewee/Western_Wood_Pewee_0068_98024.jpg
+5971 102.Western_Wood_Pewee/Western_Wood_Pewee_0056_98026.jpg
+5972 102.Western_Wood_Pewee/Western_Wood_Pewee_0063_98295.jpg
+5973 102.Western_Wood_Pewee/Western_Wood_Pewee_0069_98299.jpg
+5974 102.Western_Wood_Pewee/Western_Wood_Pewee_0001_98045.jpg
+5975 103.Sayornis/Sayornis_0137_98305.jpg
+5976 103.Sayornis/Sayornis_0022_98308.jpg
+5977 103.Sayornis/Sayornis_0066_98309.jpg
+5978 103.Sayornis/Sayornis_0115_99335.jpg
+5979 103.Sayornis/Sayornis_0086_98829.jpg
+5980 103.Sayornis/Sayornis_0036_98323.jpg
+5986 103.Sayornis/Sayornis_0075_98350.jpg
+5987 103.Sayornis/Sayornis_0119_98864.jpg
+5988 103.Sayornis/Sayornis_0127_98865.jpg
+5989 103.Sayornis/Sayornis_0042_98874.jpg
+5990 103.Sayornis/Sayornis_0012_98881.jpg
+5991 103.Sayornis/Sayornis_0061_98375.jpg
+5992 103.Sayornis/Sayornis_0109_98906.jpg
+5993 103.Sayornis/Sayornis_0069_98914.jpg
+5994 103.Sayornis/Sayornis_0111_98406.jpg
+5995 103.Sayornis/Sayornis_0129_98924.jpg
+5996 103.Sayornis/Sayornis_0067_98930.jpg
+5997 103.Sayornis/Sayornis_0098_98419.jpg
+5998 103.Sayornis/Sayornis_0039_98420.jpg
+5999 103.Sayornis/Sayornis_0116_98939.jpg
+6000 103.Sayornis/Sayornis_0076_98941.jpg
+6001 103.Sayornis/Sayornis_0079_98434.jpg
+6003 103.Sayornis/Sayornis_0038_98441.jpg
+6004 103.Sayornis/Sayornis_0005_98958.jpg
+6005 103.Sayornis/Sayornis_0032_98962.jpg
+6006 103.Sayornis/Sayornis_0114_98976.jpg
+6007 103.Sayornis/Sayornis_0085_99503.jpg
+6009 103.Sayornis/Sayornis_0029_99535.jpg
+6010 103.Sayornis/Sayornis_0094_98512.jpg
+6011 103.Sayornis/Sayornis_0080_98518.jpg
+6012 103.Sayornis/Sayornis_0047_98524.jpg
+6013 103.Sayornis/Sayornis_0125_98528.jpg
+6015 103.Sayornis/Sayornis_0108_98553.jpg
+6016 103.Sayornis/Sayornis_0136_99099.jpg
+6017 103.Sayornis/Sayornis_0099_98593.jpg
+6018 103.Sayornis/Sayornis_0002_98596.jpg
+6019 103.Sayornis/Sayornis_0007_99117.jpg
+6021 103.Sayornis/Sayornis_0010_98611.jpg
+6022 103.Sayornis/Sayornis_0133_99129.jpg
+6023 103.Sayornis/Sayornis_0003_98618.jpg
+6024 103.Sayornis/Sayornis_0025_98620.jpg
+6025 103.Sayornis/Sayornis_0113_98630.jpg
+6026 103.Sayornis/Sayornis_0056_99553.jpg
+6027 103.Sayornis/Sayornis_0019_98636.jpg
+6028 103.Sayornis/Sayornis_0130_98678.jpg
+6029 103.Sayornis/Sayornis_0021_98710.jpg
+6030 103.Sayornis/Sayornis_0077_98724.jpg
+6031 103.Sayornis/Sayornis_0020_98727.jpg
+6032 103.Sayornis/Sayornis_0014_98889.jpg
+6033 103.Sayornis/Sayornis_0100_98782.jpg
+6035 104.American_Pipit/American_Pipit_0039_99841.jpg
+6036 104.American_Pipit/American_Pipit_0010_99843.jpg
+6037 104.American_Pipit/American_Pipit_0074_100154.jpg
+6038 104.American_Pipit/American_Pipit_0124_99848.jpg
+6039 104.American_Pipit/American_Pipit_0006_99857.jpg
+6040 104.American_Pipit/American_Pipit_0031_99607.jpg
+6041 104.American_Pipit/American_Pipit_0021_100378.jpg
+6042 104.American_Pipit/American_Pipit_0082_99867.jpg
+6043 104.American_Pipit/American_Pipit_0114_100380.jpg
+6044 104.American_Pipit/American_Pipit_0008_100390.jpg
+6045 104.American_Pipit/American_Pipit_0048_100140.jpg
+6046 104.American_Pipit/American_Pipit_0011_99630.jpg
+6047 104.American_Pipit/American_Pipit_0072_99631.jpg
+6048 104.American_Pipit/American_Pipit_0104_100147.jpg
+6049 104.American_Pipit/American_Pipit_0078_99898.jpg
+6051 104.American_Pipit/American_Pipit_0007_99808.jpg
+6052 104.American_Pipit/American_Pipit_0036_99658.jpg
+6053 104.American_Pipit/American_Pipit_0019_99810.jpg
+6054 104.American_Pipit/American_Pipit_0029_99667.jpg
+6055 104.American_Pipit/American_Pipit_0035_100181.jpg
+6057 104.American_Pipit/American_Pipit_0123_99929.jpg
+6058 104.American_Pipit/American_Pipit_0015_99932.jpg
+6059 104.American_Pipit/American_Pipit_0027_100189.jpg
+6060 104.American_Pipit/American_Pipit_0024_99813.jpg
+6062 104.American_Pipit/American_Pipit_0111_99940.jpg
+6064 104.American_Pipit/American_Pipit_0034_99946.jpg
+6065 104.American_Pipit/American_Pipit_0022_100227.jpg
+6066 104.American_Pipit/American_Pipit_0037_99954.jpg
+6067 104.American_Pipit/American_Pipit_0088_100213.jpg
+6068 104.American_Pipit/American_Pipit_0095_99959.jpg
+6069 104.American_Pipit/American_Pipit_0066_99961.jpg
+6070 104.American_Pipit/American_Pipit_0058_100218.jpg
+6072 104.American_Pipit/American_Pipit_0001_100225.jpg
+6074 104.American_Pipit/American_Pipit_0102_99979.jpg
+6075 104.American_Pipit/American_Pipit_0067_100237.jpg
+6078 104.American_Pipit/American_Pipit_0090_99651.jpg
+6079 104.American_Pipit/American_Pipit_0085_100246.jpg
+6080 104.American_Pipit/American_Pipit_0087_99996.jpg
+6081 104.American_Pipit/American_Pipit_0062_100000.jpg
+6082 104.American_Pipit/American_Pipit_0089_100260.jpg
+6083 104.American_Pipit/American_Pipit_0116_100015.jpg
+6084 104.American_Pipit/American_Pipit_0091_100276.jpg
+6085 104.American_Pipit/American_Pipit_0002_100023.jpg
+6086 104.American_Pipit/American_Pipit_0043_100027.jpg
+6087 104.American_Pipit/American_Pipit_0121_100040.jpg
+6088 104.American_Pipit/American_Pipit_0081_99785.jpg
+6089 104.American_Pipit/American_Pipit_0101_100053.jpg
+6090 104.American_Pipit/American_Pipit_0080_100055.jpg
+6091 104.American_Pipit/American_Pipit_0041_100060.jpg
+6092 104.American_Pipit/American_Pipit_0070_100061.jpg
+6093 104.American_Pipit/American_Pipit_0119_99622.jpg
+6094 104.American_Pipit/American_Pipit_0073_99642.jpg
+6095 105.Whip_poor_Will/Whip_Poor_Will_0011_796416.jpg
+6098 105.Whip_poor_Will/Whip_Poor_Will_0042_796419.jpg
+6099 105.Whip_poor_Will/Whip_Poor_Will_0008_796420.jpg
+6100 105.Whip_poor_Will/Whip_Poor_Will_0028_796421.jpg
+6101 105.Whip_poor_Will/Whip_Poor_Will_0045_796422.jpg
+6102 105.Whip_poor_Will/Whip_Poor_Will_0009_796423.jpg
+6103 105.Whip_poor_Will/Whip_Poor_Will_0016_796424.jpg
+6104 105.Whip_poor_Will/Whip_Poor_Will_0005_796425.jpg
+6106 105.Whip_poor_Will/Whip_Poor_Will_0002_796427.jpg
+6107 105.Whip_poor_Will/Whip_Poor_Will_0041_796428.jpg
+6111 105.Whip_poor_Will/Whip_Poor_Will_0006_22800.jpg
+6112 105.Whip_poor_Will/Whip_Poor_Will_0019_796433.jpg
+6113 105.Whip_poor_Will/Whip_Poor_Will_0025_796434.jpg
+6114 105.Whip_poor_Will/Whip_Poor_Will_0015_796435.jpg
+6115 105.Whip_poor_Will/Whip_Poor_Will_0032_796437.jpg
+6116 105.Whip_poor_Will/Whip_Poor_Will_0022_796438.jpg
+6117 105.Whip_poor_Will/Whip_Poor_Will_0013_796439.jpg
+6118 105.Whip_poor_Will/Whip_Poor_Will_0046_796440.jpg
+6119 105.Whip_poor_Will/Whip_Poor_Will_0027_796441.jpg
+6121 105.Whip_poor_Will/Whip_Poor_Will_0049_83621.jpg
+6123 105.Whip_poor_Will/Whip_Poor_Will_0020_100396.jpg
+6124 105.Whip_poor_Will/Whip_Poor_Will_0031_100397.jpg
+6127 105.Whip_poor_Will/Whip_Poor_Will_0038_100443.jpg
+6128 105.Whip_poor_Will/Whip_Poor_Will_0024_100444.jpg
+6129 105.Whip_poor_Will/Whip_Poor_Will_0029_796432.jpg
+6133 105.Whip_poor_Will/Whip_Poor_Will_0037_796405.jpg
+6134 105.Whip_poor_Will/Whip_Poor_Will_0033_82166.jpg
+6142 105.Whip_poor_Will/Whip_Poor_Will_0012_796414.jpg
+6145 106.Horned_Puffin/Horned_Puffin_0068_100872.jpg
+6146 106.Horned_Puffin/Horned_Puffin_0024_100620.jpg
+6147 106.Horned_Puffin/Horned_Puffin_0011_100621.jpg
+6148 106.Horned_Puffin/Horned_Puffin_0065_100625.jpg
+6149 106.Horned_Puffin/Horned_Puffin_0055_100882.jpg
+6150 106.Horned_Puffin/Horned_Puffin_0074_100886.jpg
+6159 106.Horned_Puffin/Horned_Puffin_0027_100906.jpg
+6161 106.Horned_Puffin/Horned_Puffin_0054_100915.jpg
+6162 106.Horned_Puffin/Horned_Puffin_0048_100916.jpg
+6163 106.Horned_Puffin/Horned_Puffin_0075_100664.jpg
+6164 106.Horned_Puffin/Horned_Puffin_0059_100925.jpg
+6165 106.Horned_Puffin/Horned_Puffin_0077_100671.jpg
+6166 106.Horned_Puffin/Horned_Puffin_0082_100876.jpg
+6167 106.Horned_Puffin/Horned_Puffin_0072_100938.jpg
+6168 106.Horned_Puffin/Horned_Puffin_0025_100942.jpg
+6169 106.Horned_Puffin/Horned_Puffin_0066_100877.jpg
+6172 106.Horned_Puffin/Horned_Puffin_0007_100699.jpg
+6174 106.Horned_Puffin/Horned_Puffin_0047_100967.jpg
+6175 106.Horned_Puffin/Horned_Puffin_0001_100973.jpg
+6178 106.Horned_Puffin/Horned_Puffin_0030_100725.jpg
+6179 106.Horned_Puffin/Horned_Puffin_0060_100726.jpg
+6182 106.Horned_Puffin/Horned_Puffin_0067_100737.jpg
+6184 106.Horned_Puffin/Horned_Puffin_0012_100763.jpg
+6185 106.Horned_Puffin/Horned_Puffin_0028_100765.jpg
+6186 106.Horned_Puffin/Horned_Puffin_0022_100766.jpg
+6187 106.Horned_Puffin/Horned_Puffin_0038_100635.jpg
+6188 106.Horned_Puffin/Horned_Puffin_0056_101030.jpg
+6190 106.Horned_Puffin/Horned_Puffin_0021_100780.jpg
+6196 106.Horned_Puffin/Horned_Puffin_0031_100804.jpg
+6197 106.Horned_Puffin/Horned_Puffin_0019_101063.jpg
+6198 106.Horned_Puffin/Horned_Puffin_0010_100771.jpg
+6199 106.Horned_Puffin/Horned_Puffin_0073_100830.jpg
+6201 106.Horned_Puffin/Horned_Puffin_0061_100845.jpg
+6202 106.Horned_Puffin/Horned_Puffin_0079_100847.jpg
+6203 106.Horned_Puffin/Horned_Puffin_0006_100989.jpg
+6204 107.Common_Raven/Common_Raven_0089_101891.jpg
+6205 107.Common_Raven/Common_Raven_0059_101893.jpg
+6206 107.Common_Raven/Common_Raven_0070_101896.jpg
+6207 107.Common_Raven/Common_Raven_0043_101901.jpg
+6208 107.Common_Raven/Common_Raven_0010_101390.jpg
+6209 107.Common_Raven/Common_Raven_0024_101394.jpg
+6211 107.Common_Raven/Common_Raven_0107_101412.jpg
+6214 107.Common_Raven/Common_Raven_0028_102452.jpg
+6215 107.Common_Raven/Common_Raven_0065_102465.jpg
+6221 107.Common_Raven/Common_Raven_0060_102013.jpg
+6222 107.Common_Raven/Common_Raven_0075_102530.jpg
+6223 107.Common_Raven/Common_Raven_0007_102020.jpg
+6224 107.Common_Raven/Common_Raven_0069_101825.jpg
+6231 107.Common_Raven/Common_Raven_0132_101543.jpg
+6232 107.Common_Raven/Common_Raven_0093_102058.jpg
+6233 107.Common_Raven/Common_Raven_0002_102582.jpg
+6234 107.Common_Raven/Common_Raven_0025_102584.jpg
+6235 107.Common_Raven/Common_Raven_0074_101576.jpg
+6236 107.Common_Raven/Common_Raven_0129_102094.jpg
+6237 107.Common_Raven/Common_Raven_0119_101595.jpg
+6238 107.Common_Raven/Common_Raven_0009_102112.jpg
+6239 107.Common_Raven/Common_Raven_0037_101096.jpg
+6240 107.Common_Raven/Common_Raven_0079_101100.jpg
+6247 107.Common_Raven/Common_Raven_0001_101213.jpg
+6248 107.Common_Raven/Common_Raven_0068_101216.jpg
+6250 107.Common_Raven/Common_Raven_0121_101744.jpg
+6251 107.Common_Raven/Common_Raven_0054_101750.jpg
+6252 107.Common_Raven/Common_Raven_0033_101759.jpg
+6253 107.Common_Raven/Common_Raven_0021_101767.jpg
+6255 107.Common_Raven/Common_Raven_0053_101291.jpg
+6256 107.Common_Raven/Common_Raven_0095_101831.jpg
+6260 107.Common_Raven/Common_Raven_0077_101349.jpg
+6262 107.Common_Raven/Common_Raven_0015_101364.jpg
+6263 108.White_necked_Raven/White_Necked_Raven_0047_102660.jpg
+6264 108.White_necked_Raven/White_Necked_Raven_0059_102668.jpg
+6268 108.White_necked_Raven/White_Necked_Raven_0034_102598.jpg
+6271 108.White_necked_Raven/White_Necked_Raven_0030_102701.jpg
+6272 108.White_necked_Raven/White_Necked_Raven_0049_102713.jpg
+6274 108.White_necked_Raven/White_Necked_Raven_0058_102729.jpg
+6284 108.White_necked_Raven/White_Necked_Raven_0006_797347.jpg
+6285 108.White_necked_Raven/White_Necked_Raven_0044_797348.jpg
+6286 108.White_necked_Raven/White_Necked_Raven_0029_797349.jpg
+6287 108.White_necked_Raven/White_Necked_Raven_0010_797350.jpg
+6288 108.White_necked_Raven/White_Necked_Raven_0055_797352.jpg
+6289 108.White_necked_Raven/White_Necked_Raven_0065_797354.jpg
+6290 108.White_necked_Raven/White_Necked_Raven_0027_797355.jpg
+6291 108.White_necked_Raven/White_Necked_Raven_0042_797356.jpg
+6292 108.White_necked_Raven/White_Necked_Raven_0026_797357.jpg
+6293 108.White_necked_Raven/White_Necked_Raven_0057_797358.jpg
+6294 108.White_necked_Raven/White_Necked_Raven_0036_797359.jpg
+6295 108.White_necked_Raven/White_Necked_Raven_0053_797360.jpg
+6300 108.White_necked_Raven/White_Necked_Raven_0011_797367.jpg
+6306 108.White_necked_Raven/White_Necked_Raven_0003_797376.jpg
+6307 108.White_necked_Raven/White_Necked_Raven_0019_797377.jpg
+6308 108.White_necked_Raven/White_Necked_Raven_0064_797378.jpg
+6309 108.White_necked_Raven/White_Necked_Raven_0045_797381.jpg
+6310 108.White_necked_Raven/White_Necked_Raven_0062_797382.jpg
+6313 108.White_necked_Raven/White_Necked_Raven_0016_797385.jpg
+6314 108.White_necked_Raven/White_Necked_Raven_0040_797386.jpg
+6315 108.White_necked_Raven/White_Necked_Raven_0008_797389.jpg
+6317 108.White_necked_Raven/White_Necked_Raven_0028_797392.jpg
+6319 108.White_necked_Raven/White_Necked_Raven_0067_102630.jpg
+6322 108.White_necked_Raven/White_Necked_Raven_0005_102653.jpg
+6325 109.American_Redstart/American_Redstart_0090_102940.jpg
+6328 109.American_Redstart/American_Redstart_0009_103974.jpg
+6330 109.American_Redstart/American_Redstart_0128_102983.jpg
+6331 109.American_Redstart/American_Redstart_0048_104021.jpg
+6332 109.American_Redstart/American_Redstart_0078_103268.jpg
+6333 109.American_Redstart/American_Redstart_0020_104027.jpg
+6334 109.American_Redstart/American_Redstart_0035_103017.jpg
+6335 109.American_Redstart/American_Redstart_0077_104042.jpg
+6336 109.American_Redstart/American_Redstart_0054_103543.jpg
+6337 109.American_Redstart/American_Redstart_0118_103033.jpg
+6338 109.American_Redstart/American_Redstart_0024_103042.jpg
+6339 109.American_Redstart/American_Redstart_0093_103071.jpg
+6341 109.American_Redstart/American_Redstart_0058_103082.jpg
+6342 109.American_Redstart/American_Redstart_0120_103089.jpg
+6343 109.American_Redstart/American_Redstart_0126_103091.jpg
+6344 109.American_Redstart/American_Redstart_0122_103102.jpg
+6345 109.American_Redstart/American_Redstart_0116_103631.jpg
+6346 109.American_Redstart/American_Redstart_0119_104057.jpg
+6348 109.American_Redstart/American_Redstart_0013_103677.jpg
+6350 109.American_Redstart/American_Redstart_0108_103686.jpg
+6352 109.American_Redstart/American_Redstart_0089_103187.jpg
+6353 109.American_Redstart/American_Redstart_0022_103701.jpg
+6354 109.American_Redstart/American_Redstart_0041_103717.jpg
+6355 109.American_Redstart/American_Redstart_0002_103723.jpg
+6361 109.American_Redstart/American_Redstart_0067_103259.jpg
+6362 109.American_Redstart/American_Redstart_0071_103266.jpg
+6363 109.American_Redstart/American_Redstart_0033_103783.jpg
+6365 109.American_Redstart/American_Redstart_0109_103795.jpg
+6367 109.American_Redstart/American_Redstart_0059_103402.jpg
+6368 109.American_Redstart/American_Redstart_0037_102818.jpg
+6369 109.American_Redstart/American_Redstart_0055_103750.jpg
+6370 109.American_Redstart/American_Redstart_0045_102823.jpg
+6371 109.American_Redstart/American_Redstart_0137_102848.jpg
+6372 109.American_Redstart/American_Redstart_0096_102853.jpg
+6373 109.American_Redstart/American_Redstart_0087_103371.jpg
+6374 109.American_Redstart/American_Redstart_0047_102860.jpg
+6375 109.American_Redstart/American_Redstart_0034_102866.jpg
+6376 109.American_Redstart/American_Redstart_0088_103892.jpg
+6377 109.American_Redstart/American_Redstart_0138_102869.jpg
+6378 109.American_Redstart/American_Redstart_0012_103385.jpg
+6379 109.American_Redstart/American_Redstart_0086_102876.jpg
+6380 109.American_Redstart/American_Redstart_0107_102888.jpg
+6381 109.American_Redstart/American_Redstart_0031_102890.jpg
+6382 109.American_Redstart/American_Redstart_0110_103924.jpg
+6383 110.Geococcyx/Geococcyx_0078_104468.jpg
+6384 110.Geococcyx/Geococcyx_0050_104506.jpg
+6385 110.Geococcyx/Geococcyx_0040_104507.jpg
+6387 110.Geococcyx/Geococcyx_0030_104525.jpg
+6388 110.Geococcyx/Geococcyx_0107_104534.jpg
+6389 110.Geococcyx/Geococcyx_0067_104537.jpg
+6390 110.Geococcyx/Geococcyx_0112_104548.jpg
+6392 110.Geococcyx/Geococcyx_0084_104574.jpg
+6396 110.Geococcyx/Geococcyx_0024_104243.jpg
+6397 110.Geococcyx/Geococcyx_0118_104131.jpg
+6400 110.Geococcyx/Geococcyx_0056_104142.jpg
+6402 110.Geococcyx/Geococcyx_0068_104149.jpg
+6403 110.Geococcyx/Geococcyx_0022_104157.jpg
+6404 110.Geococcyx/Geococcyx_0110_104163.jpg
+6407 110.Geococcyx/Geococcyx_0036_104173.jpg
+6410 110.Geococcyx/Geococcyx_0077_104185.jpg
+6411 110.Geococcyx/Geococcyx_0005_104187.jpg
+6412 110.Geococcyx/Geococcyx_0033_104195.jpg
+6413 110.Geococcyx/Geococcyx_0134_104196.jpg
+6415 110.Geococcyx/Geococcyx_0135_104716.jpg
+6418 110.Geococcyx/Geococcyx_0117_104227.jpg
+6420 110.Geococcyx/Geococcyx_0062_104743.jpg
+6427 110.Geococcyx/Geococcyx_0038_104266.jpg
+6431 110.Geococcyx/Geococcyx_0015_104792.jpg
+6432 110.Geococcyx/Geococcyx_0027_104291.jpg
+6434 110.Geococcyx/Geococcyx_0048_104817.jpg
+6435 110.Geococcyx/Geococcyx_0075_104334.jpg
+6437 110.Geococcyx/Geococcyx_0108_104350.jpg
+6438 110.Geococcyx/Geococcyx_0012_104352.jpg
+6441 110.Geococcyx/Geococcyx_0009_104372.jpg
+6446 111.Loggerhead_Shrike/Loggerhead_Shrike_0036_105904.jpg
+6447 111.Loggerhead_Shrike/Loggerhead_Shrike_0046_104998.jpg
+6448 111.Loggerhead_Shrike/Loggerhead_Shrike_0041_105002.jpg
+6449 111.Loggerhead_Shrike/Loggerhead_Shrike_0086_105005.jpg
+6450 111.Loggerhead_Shrike/Loggerhead_Shrike_0108_105023.jpg
+6451 111.Loggerhead_Shrike/Loggerhead_Shrike_0089_106055.jpg
+6453 111.Loggerhead_Shrike/Loggerhead_Shrike_0059_106086.jpg
+6454 111.Loggerhead_Shrike/Loggerhead_Shrike_0115_105575.jpg
+6455 111.Loggerhead_Shrike/Loggerhead_Shrike_0073_106097.jpg
+6462 111.Loggerhead_Shrike/Loggerhead_Shrike_0052_105120.jpg
+6463 111.Loggerhead_Shrike/Loggerhead_Shrike_0075_106153.jpg
+6464 111.Loggerhead_Shrike/Loggerhead_Shrike_0103_105137.jpg
+6465 111.Loggerhead_Shrike/Loggerhead_Shrike_0119_105138.jpg
+6466 111.Loggerhead_Shrike/Loggerhead_Shrike_0069_73908.jpg
+6467 111.Loggerhead_Shrike/Loggerhead_Shrike_0088_105663.jpg
+6468 111.Loggerhead_Shrike/Loggerhead_Shrike_0118_105157.jpg
+6469 111.Loggerhead_Shrike/Loggerhead_Shrike_0106_105437.jpg
+6470 111.Loggerhead_Shrike/Loggerhead_Shrike_0033_105686.jpg
+6471 111.Loggerhead_Shrike/Loggerhead_Shrike_0048_106215.jpg
+6472 111.Loggerhead_Shrike/Loggerhead_Shrike_0025_104828.jpg
+6474 111.Loggerhead_Shrike/Loggerhead_Shrike_0028_106221.jpg
+6475 111.Loggerhead_Shrike/Loggerhead_Shrike_0109_105710.jpg
+6476 111.Loggerhead_Shrike/Loggerhead_Shrike_0064_106225.jpg
+6478 111.Loggerhead_Shrike/Loggerhead_Shrike_0128_105238.jpg
+6480 111.Loggerhead_Shrike/Loggerhead_Shrike_0055_105246.jpg
+6481 111.Loggerhead_Shrike/Loggerhead_Shrike_0018_26407.jpg
+6482 111.Loggerhead_Shrike/Loggerhead_Shrike_0120_105777.jpg
+6483 111.Loggerhead_Shrike/Loggerhead_Shrike_0116_105286.jpg
+6484 111.Loggerhead_Shrike/Loggerhead_Shrike_0126_106316.jpg
+6485 111.Loggerhead_Shrike/Loggerhead_Shrike_0123_105849.jpg
+6486 111.Loggerhead_Shrike/Loggerhead_Shrike_0039_106367.jpg
+6488 111.Loggerhead_Shrike/Loggerhead_Shrike_0117_104838.jpg
+6490 111.Loggerhead_Shrike/Loggerhead_Shrike_0129_106389.jpg
+6491 111.Loggerhead_Shrike/Loggerhead_Shrike_0065_104856.jpg
+6493 111.Loggerhead_Shrike/Loggerhead_Shrike_0023_105892.jpg
+6494 111.Loggerhead_Shrike/Loggerhead_Shrike_0021_104885.jpg
+6495 111.Loggerhead_Shrike/Loggerhead_Shrike_0068_105400.jpg
+6496 111.Loggerhead_Shrike/Loggerhead_Shrike_0084_105919.jpg
+6497 111.Loggerhead_Shrike/Loggerhead_Shrike_0017_104864.jpg
+6499 111.Loggerhead_Shrike/Loggerhead_Shrike_0110_105947.jpg
+6500 111.Loggerhead_Shrike/Loggerhead_Shrike_0090_106461.jpg
+6501 111.Loggerhead_Shrike/Loggerhead_Shrike_0030_104930.jpg
+6502 111.Loggerhead_Shrike/Loggerhead_Shrike_0051_105447.jpg
+6503 112.Great_Grey_Shrike/Great_Grey_Shrike_0056_106752.jpg
+6504 112.Great_Grey_Shrike/Great_Grey_Shrike_0048_106754.jpg
+6505 112.Great_Grey_Shrike/Great_Grey_Shrike_0066_106759.jpg
+6507 112.Great_Grey_Shrike/Great_Grey_Shrike_0054_106768.jpg
+6508 112.Great_Grey_Shrike/Great_Grey_Shrike_0018_106776.jpg
+6509 112.Great_Grey_Shrike/Great_Grey_Shrike_0068_797060.jpg
+6510 112.Great_Grey_Shrike/Great_Grey_Shrike_0064_106778.jpg
+6511 112.Great_Grey_Shrike/Great_Grey_Shrike_0086_106533.jpg
+6512 112.Great_Grey_Shrike/Great_Grey_Shrike_0053_106792.jpg
+6513 112.Great_Grey_Shrike/Great_Grey_Shrike_0032_797021.jpg
+6514 112.Great_Grey_Shrike/Great_Grey_Shrike_0070_106547.jpg
+6515 112.Great_Grey_Shrike/Great_Grey_Shrike_0003_106552.jpg
+6516 112.Great_Grey_Shrike/Great_Grey_Shrike_0094_106576.jpg
+6517 112.Great_Grey_Shrike/Great_Grey_Shrike_0027_797009.jpg
+6518 112.Great_Grey_Shrike/Great_Grey_Shrike_0061_106580.jpg
+6519 112.Great_Grey_Shrike/Great_Grey_Shrike_0039_797015.jpg
+6520 112.Great_Grey_Shrike/Great_Grey_Shrike_0079_797018.jpg
+6521 112.Great_Grey_Shrike/Great_Grey_Shrike_0075_797022.jpg
+6522 112.Great_Grey_Shrike/Great_Grey_Shrike_0010_797023.jpg
+6524 112.Great_Grey_Shrike/Great_Grey_Shrike_0080_106850.jpg
+6527 112.Great_Grey_Shrike/Great_Grey_Shrike_0015_797031.jpg
+6528 112.Great_Grey_Shrike/Great_Grey_Shrike_0055_106858.jpg
+6530 112.Great_Grey_Shrike/Great_Grey_Shrike_0085_797037.jpg
+6531 112.Great_Grey_Shrike/Great_Grey_Shrike_0009_797038.jpg
+6532 112.Great_Grey_Shrike/Great_Grey_Shrike_0004_797041.jpg
+6533 112.Great_Grey_Shrike/Great_Grey_Shrike_0063_797042.jpg
+6534 112.Great_Grey_Shrike/Great_Grey_Shrike_0014_797044.jpg
+6535 112.Great_Grey_Shrike/Great_Grey_Shrike_0045_797047.jpg
+6536 112.Great_Grey_Shrike/Great_Grey_Shrike_0092_797048.jpg
+6538 112.Great_Grey_Shrike/Great_Grey_Shrike_0076_797050.jpg
+6540 112.Great_Grey_Shrike/Great_Grey_Shrike_0020_797052.jpg
+6542 112.Great_Grey_Shrike/Great_Grey_Shrike_0005_797055.jpg
+6544 112.Great_Grey_Shrike/Great_Grey_Shrike_0022_797057.jpg
+6545 112.Great_Grey_Shrike/Great_Grey_Shrike_0062_106628.jpg
+6549 112.Great_Grey_Shrike/Great_Grey_Shrike_0082_106650.jpg
+6550 112.Great_Grey_Shrike/Great_Grey_Shrike_0012_106661.jpg
+6551 112.Great_Grey_Shrike/Great_Grey_Shrike_0044_106851.jpg
+6552 112.Great_Grey_Shrike/Great_Grey_Shrike_0029_106668.jpg
+6554 112.Great_Grey_Shrike/Great_Grey_Shrike_0028_106678.jpg
+6555 112.Great_Grey_Shrike/Great_Grey_Shrike_0057_106681.jpg
+6561 112.Great_Grey_Shrike/Great_Grey_Shrike_0091_797054.jpg
+6562 112.Great_Grey_Shrike/Great_Grey_Shrike_0050_797012.jpg
+6563 113.Baird_Sparrow/Baird_Sparrow_0009_106882.jpg
+6564 113.Baird_Sparrow/Baird_Sparrow_0051_787319.jpg
+6565 113.Baird_Sparrow/Baird_Sparrow_0035_106904.jpg
+6566 113.Baird_Sparrow/Baird_Sparrow_0008_106929.jpg
+6567 113.Baird_Sparrow/Baird_Sparrow_0014_794549.jpg
+6569 113.Baird_Sparrow/Baird_Sparrow_0012_794552.jpg
+6570 113.Baird_Sparrow/Baird_Sparrow_0032_794553.jpg
+6572 113.Baird_Sparrow/Baird_Sparrow_0043_794555.jpg
+6575 113.Baird_Sparrow/Baird_Sparrow_0003_794558.jpg
+6576 113.Baird_Sparrow/Baird_Sparrow_0023_794559.jpg
+6578 113.Baird_Sparrow/Baird_Sparrow_0037_794562.jpg
+6580 113.Baird_Sparrow/Baird_Sparrow_0025_794564.jpg
+6581 113.Baird_Sparrow/Baird_Sparrow_0005_794565.jpg
+6582 113.Baird_Sparrow/Baird_Sparrow_0033_794566.jpg
+6585 113.Baird_Sparrow/Baird_Sparrow_0030_794569.jpg
+6586 113.Baird_Sparrow/Baird_Sparrow_0022_794570.jpg
+6589 113.Baird_Sparrow/Baird_Sparrow_0015_794573.jpg
+6596 113.Baird_Sparrow/Baird_Sparrow_0031_794580.jpg
+6598 113.Baird_Sparrow/Baird_Sparrow_0041_794582.jpg
+6600 113.Baird_Sparrow/Baird_Sparrow_0018_794584.jpg
+6601 113.Baird_Sparrow/Baird_Sparrow_0017_794586.jpg
+6602 113.Baird_Sparrow/Baird_Sparrow_0013_794587.jpg
+6603 113.Baird_Sparrow/Baird_Sparrow_0046_794588.jpg
+6605 113.Baird_Sparrow/Baird_Sparrow_0027_794590.jpg
+6607 113.Baird_Sparrow/Baird_Sparrow_0038_794592.jpg
+6608 113.Baird_Sparrow/Baird_Sparrow_0020_106863.jpg
+6609 113.Baird_Sparrow/Baird_Sparrow_0050_787316.jpg
+6610 113.Baird_Sparrow/Baird_Sparrow_0047_787318.jpg
+6616 114.Black_throated_Sparrow/Black_Throated_Sparrow_0021_107021.jpg
+6617 114.Black_throated_Sparrow/Black_Throated_Sparrow_0027_107278.jpg
+6618 114.Black_throated_Sparrow/Black_Throated_Sparrow_0054_107026.jpg
+6619 114.Black_throated_Sparrow/Black_Throated_Sparrow_0050_107033.jpg
+6620 114.Black_throated_Sparrow/Black_Throated_Sparrow_0003_107035.jpg
+6626 114.Black_throated_Sparrow/Black_Throated_Sparrow_0084_107066.jpg
+6627 114.Black_throated_Sparrow/Black_Throated_Sparrow_0034_107327.jpg
+6628 114.Black_throated_Sparrow/Black_Throated_Sparrow_0015_107079.jpg
+6629 114.Black_throated_Sparrow/Black_Throated_Sparrow_0046_107339.jpg
+6630 114.Black_throated_Sparrow/Black_Throated_Sparrow_0094_107085.jpg
+6631 114.Black_throated_Sparrow/Black_Throated_Sparrow_0065_107087.jpg
+6632 114.Black_throated_Sparrow/Black_Throated_Sparrow_0091_107346.jpg
+6633 114.Black_throated_Sparrow/Black_Throated_Sparrow_0017_107355.jpg
+6634 114.Black_throated_Sparrow/Black_Throated_Sparrow_0023_107104.jpg
+6635 114.Black_throated_Sparrow/Black_Throated_Sparrow_0097_106935.jpg
+6636 114.Black_throated_Sparrow/Black_Throated_Sparrow_0081_107111.jpg
+6637 114.Black_throated_Sparrow/Black_Throated_Sparrow_0074_107113.jpg
+6638 114.Black_throated_Sparrow/Black_Throated_Sparrow_0011_107115.jpg
+6641 114.Black_throated_Sparrow/Black_Throated_Sparrow_0010_107375.jpg
+6642 114.Black_throated_Sparrow/Black_Throated_Sparrow_0098_107138.jpg
+6643 114.Black_throated_Sparrow/Black_Throated_Sparrow_0005_107150.jpg
+6644 114.Black_throated_Sparrow/Black_Throated_Sparrow_0009_107333.jpg
+6645 114.Black_throated_Sparrow/Black_Throated_Sparrow_0040_107172.jpg
+6646 114.Black_throated_Sparrow/Black_Throated_Sparrow_0060_107177.jpg
+6647 114.Black_throated_Sparrow/Black_Throated_Sparrow_0035_107185.jpg
+6648 114.Black_throated_Sparrow/Black_Throated_Sparrow_0076_106995.jpg
+6649 114.Black_throated_Sparrow/Black_Throated_Sparrow_0019_107192.jpg
+6650 114.Black_throated_Sparrow/Black_Throated_Sparrow_0070_107196.jpg
+6652 114.Black_throated_Sparrow/Black_Throated_Sparrow_0099_106944.jpg
+6653 114.Black_throated_Sparrow/Black_Throated_Sparrow_0007_106999.jpg
+6654 114.Black_throated_Sparrow/Black_Throated_Sparrow_0055_107213.jpg
+6655 114.Black_throated_Sparrow/Black_Throated_Sparrow_0049_106958.jpg
+6658 114.Black_throated_Sparrow/Black_Throated_Sparrow_0002_106962.jpg
+6659 114.Black_throated_Sparrow/Black_Throated_Sparrow_0088_107220.jpg
+6660 114.Black_throated_Sparrow/Black_Throated_Sparrow_0061_106967.jpg
+6662 114.Black_throated_Sparrow/Black_Throated_Sparrow_0020_106971.jpg
+6663 114.Black_throated_Sparrow/Black_Throated_Sparrow_0066_106974.jpg
+6664 114.Black_throated_Sparrow/Black_Throated_Sparrow_0001_107233.jpg
+6667 114.Black_throated_Sparrow/Black_Throated_Sparrow_0102_107243.jpg
+6669 114.Black_throated_Sparrow/Black_Throated_Sparrow_0072_107255.jpg
+6670 114.Black_throated_Sparrow/Black_Throated_Sparrow_0008_107000.jpg
+6671 114.Black_throated_Sparrow/Black_Throated_Sparrow_0039_107259.jpg
+6673 115.Brewer_Sparrow/Brewer_Sparrow_0034_796693.jpg
+6674 115.Brewer_Sparrow/Brewer_Sparrow_0053_796694.jpg
+6676 115.Brewer_Sparrow/Brewer_Sparrow_0020_796697.jpg
+6677 115.Brewer_Sparrow/Brewer_Sparrow_0044_796698.jpg
+6678 115.Brewer_Sparrow/Brewer_Sparrow_0029_796699.jpg
+6681 115.Brewer_Sparrow/Brewer_Sparrow_0032_796702.jpg
+6682 115.Brewer_Sparrow/Brewer_Sparrow_0008_796703.jpg
+6683 115.Brewer_Sparrow/Brewer_Sparrow_0049_796705.jpg
+6684 115.Brewer_Sparrow/Brewer_Sparrow_0011_796708.jpg
+6685 115.Brewer_Sparrow/Brewer_Sparrow_0069_796709.jpg
+6691 115.Brewer_Sparrow/Brewer_Sparrow_0072_796715.jpg
+6693 115.Brewer_Sparrow/Brewer_Sparrow_0070_796717.jpg
+6694 115.Brewer_Sparrow/Brewer_Sparrow_0001_796718.jpg
+6695 115.Brewer_Sparrow/Brewer_Sparrow_0055_796720.jpg
+6697 115.Brewer_Sparrow/Brewer_Sparrow_0060_107391.jpg
+6698 115.Brewer_Sparrow/Brewer_Sparrow_0076_107393.jpg
+6703 115.Brewer_Sparrow/Brewer_Sparrow_0047_107428.jpg
+6704 115.Brewer_Sparrow/Brewer_Sparrow_0039_107431.jpg
+6705 115.Brewer_Sparrow/Brewer_Sparrow_0026_107432.jpg
+6706 115.Brewer_Sparrow/Brewer_Sparrow_0014_107435.jpg
+6707 115.Brewer_Sparrow/Brewer_Sparrow_0018_107437.jpg
+6708 115.Brewer_Sparrow/Brewer_Sparrow_0061_107438.jpg
+6710 115.Brewer_Sparrow/Brewer_Sparrow_0022_107440.jpg
+6711 115.Brewer_Sparrow/Brewer_Sparrow_0037_107442.jpg
+6712 115.Brewer_Sparrow/Brewer_Sparrow_0005_107443.jpg
+6713 115.Brewer_Sparrow/Brewer_Sparrow_0071_107446.jpg
+6714 115.Brewer_Sparrow/Brewer_Sparrow_0036_107451.jpg
+6715 115.Brewer_Sparrow/Brewer_Sparrow_0019_107452.jpg
+6716 115.Brewer_Sparrow/Brewer_Sparrow_0062_107456.jpg
+6717 115.Brewer_Sparrow/Brewer_Sparrow_0056_107458.jpg
+6718 115.Brewer_Sparrow/Brewer_Sparrow_0003_107459.jpg
+6719 115.Brewer_Sparrow/Brewer_Sparrow_0050_107460.jpg
+6720 115.Brewer_Sparrow/Brewer_Sparrow_0006_107463.jpg
+6726 115.Brewer_Sparrow/Brewer_Sparrow_0023_107489.jpg
+6727 115.Brewer_Sparrow/Brewer_Sparrow_0004_107496.jpg
+6729 115.Brewer_Sparrow/Brewer_Sparrow_0035_107509.jpg
+6737 116.Chipping_Sparrow/Chipping_Sparrow_0096_109853.jpg
+6738 116.Chipping_Sparrow/Chipping_Sparrow_0017_107552.jpg
+6740 116.Chipping_Sparrow/Chipping_Sparrow_0022_107825.jpg
+6742 116.Chipping_Sparrow/Chipping_Sparrow_0018_108295.jpg
+6743 116.Chipping_Sparrow/Chipping_Sparrow_0011_108081.jpg
+6746 116.Chipping_Sparrow/Chipping_Sparrow_0035_110138.jpg
+6748 116.Chipping_Sparrow/Chipping_Sparrow_0006_107849.jpg
+6750 116.Chipping_Sparrow/Chipping_Sparrow_0041_108370.jpg
+6751 116.Chipping_Sparrow/Chipping_Sparrow_0039_107864.jpg
+6752 116.Chipping_Sparrow/Chipping_Sparrow_0042_107791.jpg
+6753 116.Chipping_Sparrow/Chipping_Sparrow_0001_108638.jpg
+6754 116.Chipping_Sparrow/Chipping_Sparrow_0098_108644.jpg
+6755 116.Chipping_Sparrow/Chipping_Sparrow_0062_110187.jpg
+6756 116.Chipping_Sparrow/Chipping_Sparrow_0025_108653.jpg
+6757 116.Chipping_Sparrow/Chipping_Sparrow_0079_110449.jpg
+6758 116.Chipping_Sparrow/Chipping_Sparrow_0076_108919.jpg
+6759 116.Chipping_Sparrow/Chipping_Sparrow_0091_108308.jpg
+6760 116.Chipping_Sparrow/Chipping_Sparrow_0090_14718.jpg
+6761 116.Chipping_Sparrow/Chipping_Sparrow_0109_108162.jpg
+6762 116.Chipping_Sparrow/Chipping_Sparrow_0024_109445.jpg
+6763 116.Chipping_Sparrow/Chipping_Sparrow_0023_108684.jpg
+6764 116.Chipping_Sparrow/Chipping_Sparrow_0080_108685.jpg
+6765 116.Chipping_Sparrow/Chipping_Sparrow_0004_108430.jpg
+6766 116.Chipping_Sparrow/Chipping_Sparrow_0050_108441.jpg
+6767 116.Chipping_Sparrow/Chipping_Sparrow_0097_107678.jpg
+6768 116.Chipping_Sparrow/Chipping_Sparrow_0037_109851.jpg
+6769 116.Chipping_Sparrow/Chipping_Sparrow_0074_108401.jpg
+6770 116.Chipping_Sparrow/Chipping_Sparrow_0064_108204.jpg
+6771 116.Chipping_Sparrow/Chipping_Sparrow_0030_109741.jpg
+6772 116.Chipping_Sparrow/Chipping_Sparrow_0110_108974.jpg
+6774 116.Chipping_Sparrow/Chipping_Sparrow_0038_109234.jpg
+6775 116.Chipping_Sparrow/Chipping_Sparrow_0071_108735.jpg
+6781 116.Chipping_Sparrow/Chipping_Sparrow_0045_109985.jpg
+6783 116.Chipping_Sparrow/Chipping_Sparrow_0103_109529.jpg
+6784 116.Chipping_Sparrow/Chipping_Sparrow_0086_109022.jpg
+6785 116.Chipping_Sparrow/Chipping_Sparrow_0111_108515.jpg
+6786 116.Chipping_Sparrow/Chipping_Sparrow_0005_108931.jpg
+6788 116.Chipping_Sparrow/Chipping_Sparrow_0026_109010.jpg
+6789 116.Chipping_Sparrow/Chipping_Sparrow_0067_107508.jpg
+6790 116.Chipping_Sparrow/Chipping_Sparrow_0070_108281.jpg
+6791 116.Chipping_Sparrow/Chipping_Sparrow_0016_109051.jpg
+6793 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0072_110851.jpg
+6794 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0002_110606.jpg
+6795 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0078_110912.jpg
+6803 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0018_797246.jpg
+6807 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0075_797251.jpg
+6808 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0034_797252.jpg
+6809 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0080_797253.jpg
+6810 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0064_110664.jpg
+6811 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0023_797258.jpg
+6812 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0085_797260.jpg
+6813 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0090_110669.jpg
+6814 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0010_797262.jpg
+6815 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0003_110672.jpg
+6816 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0093_110677.jpg
+6817 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0081_110682.jpg
+6818 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0043_110685.jpg
+6819 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0044_110942.jpg
+6820 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0087_110946.jpg
+6822 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0062_110908.jpg
+6823 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0104_110699.jpg
+6824 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0068_110706.jpg
+6825 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0099_110561.jpg
+6826 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0040_110717.jpg
+6827 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0073_110718.jpg
+6828 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0029_110720.jpg
+6829 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0041_110726.jpg
+6830 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0046_110728.jpg
+6833 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0049_110736.jpg
+6834 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0033_797255.jpg
+6835 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0091_110768.jpg
+6836 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0031_110769.jpg
+6838 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0026_110774.jpg
+6841 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0038_110799.jpg
+6842 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0100_110545.jpg
+6844 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0014_797248.jpg
+6847 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0061_110830.jpg
+6848 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0005_110911.jpg
+6849 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0105_110547.jpg
+6850 117.Clay_colored_Sparrow/Clay_Colored_Sparrow_0008_110536.jpg
+6851 118.House_Sparrow/House_Sparrow_0134_112644.jpg
+6852 118.House_Sparrow/House_Sparrow_0019_112645.jpg
+6853 118.House_Sparrow/House_Sparrow_0125_111130.jpg
+6854 118.House_Sparrow/House_Sparrow_0121_113182.jpg
+6855 118.House_Sparrow/House_Sparrow_0010_112678.jpg
+6856 118.House_Sparrow/House_Sparrow_0025_111669.jpg
+6858 118.House_Sparrow/House_Sparrow_0144_113216.jpg
+6860 118.House_Sparrow/House_Sparrow_0041_112706.jpg
+6861 118.House_Sparrow/House_Sparrow_0006_111034.jpg
+6862 118.House_Sparrow/House_Sparrow_0068_113247.jpg
+6866 118.House_Sparrow/House_Sparrow_0052_112252.jpg
+6867 118.House_Sparrow/House_Sparrow_0094_112773.jpg
+6868 118.House_Sparrow/House_Sparrow_0079_113288.jpg
+6869 118.House_Sparrow/House_Sparrow_0119_111471.jpg
+6870 118.House_Sparrow/House_Sparrow_0084_111300.jpg
+6876 118.House_Sparrow/House_Sparrow_0067_112913.jpg
+6877 118.House_Sparrow/House_Sparrow_0086_111385.jpg
+6878 118.House_Sparrow/House_Sparrow_0030_111387.jpg
+6880 118.House_Sparrow/House_Sparrow_0055_111393.jpg
+6881 118.House_Sparrow/House_Sparrow_0143_111400.jpg
+6882 118.House_Sparrow/House_Sparrow_0145_112703.jpg
+6883 118.House_Sparrow/House_Sparrow_0014_112947.jpg
+6886 118.House_Sparrow/House_Sparrow_0139_112438.jpg
+6887 118.House_Sparrow/House_Sparrow_0130_110985.jpg
+6888 118.House_Sparrow/House_Sparrow_0127_111935.jpg
+6889 118.House_Sparrow/House_Sparrow_0108_112963.jpg
+6890 118.House_Sparrow/House_Sparrow_0111_112968.jpg
+6892 118.House_Sparrow/House_Sparrow_0082_112478.jpg
+6893 118.House_Sparrow/House_Sparrow_0005_111967.jpg
+6895 118.House_Sparrow/House_Sparrow_0120_113001.jpg
+6897 118.House_Sparrow/House_Sparrow_0126_110959.jpg
+6898 118.House_Sparrow/House_Sparrow_0004_111989.jpg
+6899 118.House_Sparrow/House_Sparrow_0128_110971.jpg
+6900 118.House_Sparrow/House_Sparrow_0074_111997.jpg
+6903 118.House_Sparrow/House_Sparrow_0061_112795.jpg
+6904 118.House_Sparrow/House_Sparrow_0007_111029.jpg
+6905 118.House_Sparrow/House_Sparrow_0106_111564.jpg
+6906 118.House_Sparrow/House_Sparrow_0033_112590.jpg
+6908 118.House_Sparrow/House_Sparrow_0098_111073.jpg
+6909 118.House_Sparrow/House_Sparrow_0011_112099.jpg
+6910 118.House_Sparrow/House_Sparrow_0050_111087.jpg
+6911 119.Field_Sparrow/Field_Sparrow_0063_113667.jpg
+6912 119.Field_Sparrow/Field_Sparrow_0060_114177.jpg
+6913 119.Field_Sparrow/Field_Sparrow_0118_113416.jpg
+6914 119.Field_Sparrow/Field_Sparrow_0011_113420.jpg
+6915 119.Field_Sparrow/Field_Sparrow_0126_113426.jpg
+6916 119.Field_Sparrow/Field_Sparrow_0025_113683.jpg
+6917 119.Field_Sparrow/Field_Sparrow_0131_113582.jpg
+6918 119.Field_Sparrow/Field_Sparrow_0029_113434.jpg
+6921 119.Field_Sparrow/Field_Sparrow_0067_113448.jpg
+6922 119.Field_Sparrow/Field_Sparrow_0127_114087.jpg
+6923 119.Field_Sparrow/Field_Sparrow_0008_113459.jpg
+6924 119.Field_Sparrow/Field_Sparrow_0021_113461.jpg
+6925 119.Field_Sparrow/Field_Sparrow_0055_113929.jpg
+6926 119.Field_Sparrow/Field_Sparrow_0100_113503.jpg
+6927 119.Field_Sparrow/Field_Sparrow_0074_113504.jpg
+6928 119.Field_Sparrow/Field_Sparrow_0035_113479.jpg
+6929 119.Field_Sparrow/Field_Sparrow_0110_113995.jpg
+6930 119.Field_Sparrow/Field_Sparrow_0091_113486.jpg
+6931 119.Field_Sparrow/Field_Sparrow_0071_113747.jpg
+6932 119.Field_Sparrow/Field_Sparrow_0129_113748.jpg
+6933 119.Field_Sparrow/Field_Sparrow_0059_113759.jpg
+6934 119.Field_Sparrow/Field_Sparrow_0101_113762.jpg
+6941 119.Field_Sparrow/Field_Sparrow_0124_113868.jpg
+6942 119.Field_Sparrow/Field_Sparrow_0042_113815.jpg
+6943 119.Field_Sparrow/Field_Sparrow_0105_113822.jpg
+6945 119.Field_Sparrow/Field_Sparrow_0078_113575.jpg
+6947 119.Field_Sparrow/Field_Sparrow_0092_113580.jpg
+6949 119.Field_Sparrow/Field_Sparrow_0006_113839.jpg
+6953 119.Field_Sparrow/Field_Sparrow_0123_113847.jpg
+6955 119.Field_Sparrow/Field_Sparrow_0066_114109.jpg
+6956 119.Field_Sparrow/Field_Sparrow_0013_113599.jpg
+6957 119.Field_Sparrow/Field_Sparrow_0009_113860.jpg
+6958 119.Field_Sparrow/Field_Sparrow_0106_113350.jpg
+6960 119.Field_Sparrow/Field_Sparrow_0038_113356.jpg
+6963 119.Field_Sparrow/Field_Sparrow_0016_110297.jpg
+6965 119.Field_Sparrow/Field_Sparrow_0090_113613.jpg
+6966 119.Field_Sparrow/Field_Sparrow_0048_113387.jpg
+6968 119.Field_Sparrow/Field_Sparrow_0125_113869.jpg
+6969 119.Field_Sparrow/Field_Sparrow_0107_113659.jpg
+6970 120.Fox_Sparrow/Fox_Sparrow_0065_114945.jpg
+6971 120.Fox_Sparrow/Fox_Sparrow_0041_115218.jpg
+6972 120.Fox_Sparrow/Fox_Sparrow_0106_114720.jpg
+6973 120.Fox_Sparrow/Fox_Sparrow_0016_114213.jpg
+6977 120.Fox_Sparrow/Fox_Sparrow_0103_115038.jpg
+6980 120.Fox_Sparrow/Fox_Sparrow_0093_114757.jpg
+6981 120.Fox_Sparrow/Fox_Sparrow_0136_115278.jpg
+6982 120.Fox_Sparrow/Fox_Sparrow_0026_115281.jpg
+6983 120.Fox_Sparrow/Fox_Sparrow_0092_114774.jpg
+6984 120.Fox_Sparrow/Fox_Sparrow_0122_114776.jpg
+6985 120.Fox_Sparrow/Fox_Sparrow_0053_114780.jpg
+6986 120.Fox_Sparrow/Fox_Sparrow_0058_114789.jpg
+6987 120.Fox_Sparrow/Fox_Sparrow_0009_114796.jpg
+6988 120.Fox_Sparrow/Fox_Sparrow_0116_115311.jpg
+6989 120.Fox_Sparrow/Fox_Sparrow_0055_114809.jpg
+6990 120.Fox_Sparrow/Fox_Sparrow_0039_114816.jpg
+6996 120.Fox_Sparrow/Fox_Sparrow_0057_114355.jpg
+6997 120.Fox_Sparrow/Fox_Sparrow_0052_114878.jpg
+6998 120.Fox_Sparrow/Fox_Sparrow_0118_114884.jpg
+7001 120.Fox_Sparrow/Fox_Sparrow_0113_114389.jpg
+7002 120.Fox_Sparrow/Fox_Sparrow_0104_114908.jpg
+7003 120.Fox_Sparrow/Fox_Sparrow_0075_114920.jpg
+7004 120.Fox_Sparrow/Fox_Sparrow_0012_115324.jpg
+7011 120.Fox_Sparrow/Fox_Sparrow_0123_114488.jpg
+7012 120.Fox_Sparrow/Fox_Sparrow_0083_114496.jpg
+7013 120.Fox_Sparrow/Fox_Sparrow_0047_115022.jpg
+7014 120.Fox_Sparrow/Fox_Sparrow_0119_115512.jpg
+7015 120.Fox_Sparrow/Fox_Sparrow_0040_115034.jpg
+7016 120.Fox_Sparrow/Fox_Sparrow_0091_115550.jpg
+7017 120.Fox_Sparrow/Fox_Sparrow_0111_114527.jpg
+7018 120.Fox_Sparrow/Fox_Sparrow_0067_114528.jpg
+7019 120.Fox_Sparrow/Fox_Sparrow_0054_114541.jpg
+7020 120.Fox_Sparrow/Fox_Sparrow_0062_115056.jpg
+7021 120.Fox_Sparrow/Fox_Sparrow_0025_114555.jpg
+7022 120.Fox_Sparrow/Fox_Sparrow_0036_115581.jpg
+7023 120.Fox_Sparrow/Fox_Sparrow_0078_114582.jpg
+7024 120.Fox_Sparrow/Fox_Sparrow_0138_114586.jpg
+7025 120.Fox_Sparrow/Fox_Sparrow_0081_115630.jpg
+7026 120.Fox_Sparrow/Fox_Sparrow_0094_114634.jpg
+7027 120.Fox_Sparrow/Fox_Sparrow_0015_114650.jpg
+7028 120.Fox_Sparrow/Fox_Sparrow_0110_115172.jpg
+7030 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0067_115979.jpg
+7032 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0117_115983.jpg
+7033 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0009_115984.jpg
+7034 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0053_115991.jpg
+7035 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0073_115996.jpg
+7036 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0075_116260.jpg
+7037 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0109_115750.jpg
+7038 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0029_115761.jpg
+7039 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0040_115696.jpg
+7040 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0120_116021.jpg
+7041 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0060_15159.jpg
+7042 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0126_116029.jpg
+7043 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0107_116286.jpg
+7044 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0125_116031.jpg
+7046 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0020_116289.jpg
+7047 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0044_115681.jpg
+7048 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0082_116300.jpg
+7049 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0050_116301.jpg
+7050 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0035_116049.jpg
+7056 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0099_116069.jpg
+7057 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0081_116326.jpg
+7058 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0069_116332.jpg
+7059 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0042_115638.jpg
+7060 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0015_116352.jpg
+7061 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0106_116028.jpg
+7062 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0012_115849.jpg
+7063 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0064_116106.jpg
+7064 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0021_116107.jpg
+7065 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0121_116110.jpg
+7066 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0058_115862.jpg
+7067 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0006_115864.jpg
+7068 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0016_115695.jpg
+7069 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0077_116127.jpg
+7071 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0119_116081.jpg
+7072 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0043_115880.jpg
+7074 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0110_115644.jpg
+7075 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0070_115645.jpg
+7077 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0017_115908.jpg
+7079 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0115_115914.jpg
+7080 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0026_115915.jpg
+7081 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0049_115918.jpg
+7082 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0072_115663.jpg
+7083 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0051_115923.jpg
+7084 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0003_115676.jpg
+7085 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0011_115937.jpg
+7087 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0101_116094.jpg
+7088 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0019_115958.jpg
+7089 121.Grasshopper_Sparrow/Grasshopper_Sparrow_0038_115704.jpg
+7091 122.Harris_Sparrow/Harris_Sparrow_0007_116484.jpg
+7092 122.Harris_Sparrow/Harris_Sparrow_0087_116490.jpg
+7093 122.Harris_Sparrow/Harris_Sparrow_0038_116610.jpg
+7094 122.Harris_Sparrow/Harris_Sparrow_0014_116494.jpg
+7095 122.Harris_Sparrow/Harris_Sparrow_0042_116499.jpg
+7097 122.Harris_Sparrow/Harris_Sparrow_0055_116512.jpg
+7098 122.Harris_Sparrow/Harris_Sparrow_0028_116656.jpg
+7100 122.Harris_Sparrow/Harris_Sparrow_0084_116519.jpg
+7102 122.Harris_Sparrow/Harris_Sparrow_0089_116531.jpg
+7103 122.Harris_Sparrow/Harris_Sparrow_0056_116532.jpg
+7104 122.Harris_Sparrow/Harris_Sparrow_0085_116534.jpg
+7105 122.Harris_Sparrow/Harris_Sparrow_0082_116660.jpg
+7107 122.Harris_Sparrow/Harris_Sparrow_0016_116661.jpg
+7108 122.Harris_Sparrow/Harris_Sparrow_0052_116544.jpg
+7109 122.Harris_Sparrow/Harris_Sparrow_0026_116620.jpg
+7110 122.Harris_Sparrow/Harris_Sparrow_0090_116664.jpg
+7111 122.Harris_Sparrow/Harris_Sparrow_0081_116574.jpg
+7113 122.Harris_Sparrow/Harris_Sparrow_0073_116577.jpg
+7114 122.Harris_Sparrow/Harris_Sparrow_0004_116581.jpg
+7115 122.Harris_Sparrow/Harris_Sparrow_0083_116588.jpg
+7116 122.Harris_Sparrow/Harris_Sparrow_0053_116595.jpg
+7117 122.Harris_Sparrow/Harris_Sparrow_0011_116597.jpg
+7118 122.Harris_Sparrow/Harris_Sparrow_0045_116603.jpg
+7119 122.Harris_Sparrow/Harris_Sparrow_0059_116608.jpg
+7120 122.Harris_Sparrow/Harris_Sparrow_0041_116611.jpg
+7121 122.Harris_Sparrow/Harris_Sparrow_0002_116356.jpg
+7122 122.Harris_Sparrow/Harris_Sparrow_0066_116362.jpg
+7123 122.Harris_Sparrow/Harris_Sparrow_0023_116363.jpg
+7124 122.Harris_Sparrow/Harris_Sparrow_0006_116364.jpg
+7125 122.Harris_Sparrow/Harris_Sparrow_0050_116369.jpg
+7126 122.Harris_Sparrow/Harris_Sparrow_0086_116373.jpg
+7128 122.Harris_Sparrow/Harris_Sparrow_0010_116376.jpg
+7129 122.Harris_Sparrow/Harris_Sparrow_0020_116379.jpg
+7132 122.Harris_Sparrow/Harris_Sparrow_0025_116648.jpg
+7133 122.Harris_Sparrow/Harris_Sparrow_0001_116398.jpg
+7134 122.Harris_Sparrow/Harris_Sparrow_0021_116399.jpg
+7135 122.Harris_Sparrow/Harris_Sparrow_0070_116400.jpg
+7142 122.Harris_Sparrow/Harris_Sparrow_0046_116425.jpg
+7143 122.Harris_Sparrow/Harris_Sparrow_0027_116687.jpg
+7144 122.Harris_Sparrow/Harris_Sparrow_0065_116435.jpg
+7145 122.Harris_Sparrow/Harris_Sparrow_0005_116694.jpg
+7146 122.Harris_Sparrow/Harris_Sparrow_0034_116439.jpg
+7149 122.Harris_Sparrow/Harris_Sparrow_0071_116476.jpg
+7150 123.Henslow_Sparrow/Henslow_Sparrow_0046_116740.jpg
+7151 123.Henslow_Sparrow/Henslow_Sparrow_0061_116751.jpg
+7154 123.Henslow_Sparrow/Henslow_Sparrow_0096_116758.jpg
+7155 123.Henslow_Sparrow/Henslow_Sparrow_0017_796591.jpg
+7156 123.Henslow_Sparrow/Henslow_Sparrow_0009_796611.jpg
+7157 123.Henslow_Sparrow/Henslow_Sparrow_0042_796595.jpg
+7158 123.Henslow_Sparrow/Henslow_Sparrow_0113_116801.jpg
+7159 123.Henslow_Sparrow/Henslow_Sparrow_0073_116803.jpg
+7160 123.Henslow_Sparrow/Henslow_Sparrow_0075_116805.jpg
+7161 123.Henslow_Sparrow/Henslow_Sparrow_0076_116810.jpg
+7164 123.Henslow_Sparrow/Henslow_Sparrow_0018_116834.jpg
+7165 123.Henslow_Sparrow/Henslow_Sparrow_0022_116835.jpg
+7166 123.Henslow_Sparrow/Henslow_Sparrow_0083_116844.jpg
+7167 123.Henslow_Sparrow/Henslow_Sparrow_0112_116845.jpg
+7168 123.Henslow_Sparrow/Henslow_Sparrow_0054_116850.jpg
+7169 123.Henslow_Sparrow/Henslow_Sparrow_0104_796541.jpg
+7170 123.Henslow_Sparrow/Henslow_Sparrow_0026_796542.jpg
+7171 123.Henslow_Sparrow/Henslow_Sparrow_0027_796543.jpg
+7172 123.Henslow_Sparrow/Henslow_Sparrow_0086_796545.jpg
+7173 123.Henslow_Sparrow/Henslow_Sparrow_0055_796557.jpg
+7174 123.Henslow_Sparrow/Henslow_Sparrow_0040_116882.jpg
+7175 123.Henslow_Sparrow/Henslow_Sparrow_0100_796565.jpg
+7177 123.Henslow_Sparrow/Henslow_Sparrow_0011_796568.jpg
+7178 123.Henslow_Sparrow/Henslow_Sparrow_0059_796569.jpg
+7179 123.Henslow_Sparrow/Henslow_Sparrow_0030_116890.jpg
+7180 123.Henslow_Sparrow/Henslow_Sparrow_0070_796571.jpg
+7186 123.Henslow_Sparrow/Henslow_Sparrow_0106_796580.jpg
+7187 123.Henslow_Sparrow/Henslow_Sparrow_0023_796582.jpg
+7188 123.Henslow_Sparrow/Henslow_Sparrow_0074_116905.jpg
+7189 123.Henslow_Sparrow/Henslow_Sparrow_0084_796587.jpg
+7190 123.Henslow_Sparrow/Henslow_Sparrow_0039_796589.jpg
+7191 123.Henslow_Sparrow/Henslow_Sparrow_0064_796573.jpg
+7192 123.Henslow_Sparrow/Henslow_Sparrow_0108_796592.jpg
+7193 123.Henslow_Sparrow/Henslow_Sparrow_0015_796593.jpg
+7194 123.Henslow_Sparrow/Henslow_Sparrow_0031_796594.jpg
+7195 123.Henslow_Sparrow/Henslow_Sparrow_0052_796599.jpg
+7196 123.Henslow_Sparrow/Henslow_Sparrow_0010_796600.jpg
+7198 123.Henslow_Sparrow/Henslow_Sparrow_0034_796602.jpg
+7201 123.Henslow_Sparrow/Henslow_Sparrow_0002_116930.jpg
+7202 123.Henslow_Sparrow/Henslow_Sparrow_0021_116931.jpg
+7203 123.Henslow_Sparrow/Henslow_Sparrow_0107_796614.jpg
+7204 123.Henslow_Sparrow/Henslow_Sparrow_0068_796615.jpg
+7205 123.Henslow_Sparrow/Henslow_Sparrow_0058_796616.jpg
+7207 123.Henslow_Sparrow/Henslow_Sparrow_0087_116942.jpg
+7208 123.Henslow_Sparrow/Henslow_Sparrow_0085_116971.jpg
+7210 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0005_795137.jpg
+7211 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0020_117035.jpg
+7212 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0050_795143.jpg
+7213 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0006_795146.jpg
+7214 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0007_795148.jpg
+7215 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0063_795149.jpg
+7216 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0034_795150.jpg
+7217 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0015_795152.jpg
+7218 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0089_795154.jpg
+7219 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0023_795156.jpg
+7220 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0060_795160.jpg
+7221 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0045_795162.jpg
+7222 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0083_795163.jpg
+7223 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0010_795166.jpg
+7224 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0085_795167.jpg
+7226 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0086_795170.jpg
+7227 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0003_795175.jpg
+7228 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0013_795176.jpg
+7231 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0058_795181.jpg
+7234 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0071_795185.jpg
+7235 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0032_795186.jpg
+7236 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0053_795187.jpg
+7237 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0025_795188.jpg
+7238 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0084_795189.jpg
+7240 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0047_795192.jpg
+7242 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0102_795195.jpg
+7243 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0078_117052.jpg
+7244 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0087_795198.jpg
+7245 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0040_117088.jpg
+7246 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0066_795206.jpg
+7247 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0012_795211.jpg
+7248 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0043_795213.jpg
+7250 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0081_795215.jpg
+7251 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0041_795218.jpg
+7253 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0092_795221.jpg
+7254 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0016_795223.jpg
+7255 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0046_795227.jpg
+7256 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0072_795230.jpg
+7257 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0098_795231.jpg
+7258 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0075_795234.jpg
+7260 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0021_117105.jpg
+7261 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0039_117054.jpg
+7262 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0055_117036.jpg
+7263 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0044_117116.jpg
+7264 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0073_117127.jpg
+7265 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0067_117146.jpg
+7266 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0011_117038.jpg
+7267 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0022_117039.jpg
+7268 124.Le_Conte_Sparrow/Le_Conte_Sparrow_0070_795135.jpg
+7269 125.Lincoln_Sparrow/Lincoln_Sparrow_0094_117762.jpg
+7270 125.Lincoln_Sparrow/Lincoln_Sparrow_0108_117773.jpg
+7271 125.Lincoln_Sparrow/Lincoln_Sparrow_0010_117263.jpg
+7272 125.Lincoln_Sparrow/Lincoln_Sparrow_0110_117264.jpg
+7273 125.Lincoln_Sparrow/Lincoln_Sparrow_0049_117265.jpg
+7274 125.Lincoln_Sparrow/Lincoln_Sparrow_0119_117270.jpg
+7277 125.Lincoln_Sparrow/Lincoln_Sparrow_0131_117277.jpg
+7278 125.Lincoln_Sparrow/Lincoln_Sparrow_0036_117280.jpg
+7279 125.Lincoln_Sparrow/Lincoln_Sparrow_0092_117294.jpg
+7280 125.Lincoln_Sparrow/Lincoln_Sparrow_0069_117812.jpg
+7281 125.Lincoln_Sparrow/Lincoln_Sparrow_0033_117303.jpg
+7282 125.Lincoln_Sparrow/Lincoln_Sparrow_0100_117835.jpg
+7284 125.Lincoln_Sparrow/Lincoln_Sparrow_0113_117603.jpg
+7285 125.Lincoln_Sparrow/Lincoln_Sparrow_0057_117334.jpg
+7286 125.Lincoln_Sparrow/Lincoln_Sparrow_0128_117851.jpg
+7287 125.Lincoln_Sparrow/Lincoln_Sparrow_0070_117342.jpg
+7288 125.Lincoln_Sparrow/Lincoln_Sparrow_0090_117857.jpg
+7289 125.Lincoln_Sparrow/Lincoln_Sparrow_0066_117875.jpg
+7290 125.Lincoln_Sparrow/Lincoln_Sparrow_0014_117883.jpg
+7291 125.Lincoln_Sparrow/Lincoln_Sparrow_0116_117372.jpg
+7294 125.Lincoln_Sparrow/Lincoln_Sparrow_0046_117405.jpg
+7295 125.Lincoln_Sparrow/Lincoln_Sparrow_0079_117919.jpg
+7297 125.Lincoln_Sparrow/Lincoln_Sparrow_0017_117432.jpg
+7302 125.Lincoln_Sparrow/Lincoln_Sparrow_0099_117482.jpg
+7303 125.Lincoln_Sparrow/Lincoln_Sparrow_0078_117483.jpg
+7304 125.Lincoln_Sparrow/Lincoln_Sparrow_0084_117492.jpg
+7305 125.Lincoln_Sparrow/Lincoln_Sparrow_0058_117503.jpg
+7306 125.Lincoln_Sparrow/Lincoln_Sparrow_0055_117506.jpg
+7309 125.Lincoln_Sparrow/Lincoln_Sparrow_0052_117521.jpg
+7311 125.Lincoln_Sparrow/Lincoln_Sparrow_0061_117529.jpg
+7312 125.Lincoln_Sparrow/Lincoln_Sparrow_0009_117535.jpg
+7313 125.Lincoln_Sparrow/Lincoln_Sparrow_0020_117542.jpg
+7314 125.Lincoln_Sparrow/Lincoln_Sparrow_0045_117547.jpg
+7315 125.Lincoln_Sparrow/Lincoln_Sparrow_0074_117584.jpg
+7316 125.Lincoln_Sparrow/Lincoln_Sparrow_0064_117602.jpg
+7317 125.Lincoln_Sparrow/Lincoln_Sparrow_0112_117631.jpg
+7318 125.Lincoln_Sparrow/Lincoln_Sparrow_0088_117634.jpg
+7319 125.Lincoln_Sparrow/Lincoln_Sparrow_0041_117636.jpg
+7321 125.Lincoln_Sparrow/Lincoln_Sparrow_0013_117202.jpg
+7322 125.Lincoln_Sparrow/Lincoln_Sparrow_0040_117721.jpg
+7323 125.Lincoln_Sparrow/Lincoln_Sparrow_0115_117216.jpg
+7324 125.Lincoln_Sparrow/Lincoln_Sparrow_0050_117744.jpg
+7325 125.Lincoln_Sparrow/Lincoln_Sparrow_0032_117747.jpg
+7326 125.Lincoln_Sparrow/Lincoln_Sparrow_0026_117754.jpg
+7327 125.Lincoln_Sparrow/Lincoln_Sparrow_0022_117759.jpg
+7329 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0001_796931.jpg
+7331 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0065_796933.jpg
+7332 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0079_796934.jpg
+7333 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0058_118023.jpg
+7334 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0033_118024.jpg
+7335 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0027_118028.jpg
+7336 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0004_796941.jpg
+7337 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0013_796942.jpg
+7342 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0034_796950.jpg
+7343 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0030_118064.jpg
+7344 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0054_796936.jpg
+7353 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0066_118088.jpg
+7354 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0009_796940.jpg
+7355 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0024_118010.jpg
+7356 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0008_796944.jpg
+7357 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0025_796945.jpg
+7360 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0045_118004.jpg
+7365 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0037_117986.jpg
+7368 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0051_796902.jpg
+7369 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0047_117991.jpg
+7370 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0022_796905.jpg
+7376 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0042_796911.jpg
+7377 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0067_796912.jpg
+7378 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0077_796913.jpg
+7380 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0062_796919.jpg
+7381 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0038_796920.jpg
+7383 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0029_796923.jpg
+7384 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0035_796924.jpg
+7385 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0070_796925.jpg
+7386 126.Nelson_Sharp_tailed_Sparrow/Nelson_Sharp_Tailed_Sparrow_0041_796926.jpg
+7387 127.Savannah_Sparrow/Savannah_Sparrow_0048_120321.jpg
+7388 127.Savannah_Sparrow/Savannah_Sparrow_0023_120326.jpg
+7389 127.Savannah_Sparrow/Savannah_Sparrow_0059_119810.jpg
+7390 127.Savannah_Sparrow/Savannah_Sparrow_0064_119316.jpg
+7391 127.Savannah_Sparrow/Savannah_Sparrow_0106_118294.jpg
+7392 127.Savannah_Sparrow/Savannah_Sparrow_0079_118817.jpg
+7393 127.Savannah_Sparrow/Savannah_Sparrow_0124_118820.jpg
+7395 127.Savannah_Sparrow/Savannah_Sparrow_0096_120376.jpg
+7396 127.Savannah_Sparrow/Savannah_Sparrow_0043_119362.jpg
+7398 127.Savannah_Sparrow/Savannah_Sparrow_0075_116305.jpg
+7400 127.Savannah_Sparrow/Savannah_Sparrow_0115_118882.jpg
+7401 127.Savannah_Sparrow/Savannah_Sparrow_0045_119398.jpg
+7402 127.Savannah_Sparrow/Savannah_Sparrow_0021_118886.jpg
+7404 127.Savannah_Sparrow/Savannah_Sparrow_0015_118910.jpg
+7405 127.Savannah_Sparrow/Savannah_Sparrow_0131_119946.jpg
+7406 127.Savannah_Sparrow/Savannah_Sparrow_0066_119949.jpg
+7408 127.Savannah_Sparrow/Savannah_Sparrow_0139_119444.jpg
+7409 127.Savannah_Sparrow/Savannah_Sparrow_0132_119962.jpg
+7410 127.Savannah_Sparrow/Savannah_Sparrow_0011_119459.jpg
+7411 127.Savannah_Sparrow/Savannah_Sparrow_0068_119972.jpg
+7412 127.Savannah_Sparrow/Savannah_Sparrow_0001_118956.jpg
+7413 127.Savannah_Sparrow/Savannah_Sparrow_0028_119982.jpg
+7414 127.Savannah_Sparrow/Savannah_Sparrow_0022_118989.jpg
+7415 127.Savannah_Sparrow/Savannah_Sparrow_0057_120016.jpg
+7416 127.Savannah_Sparrow/Savannah_Sparrow_0067_118491.jpg
+7417 127.Savannah_Sparrow/Savannah_Sparrow_0054_120057.jpg
+7418 127.Savannah_Sparrow/Savannah_Sparrow_0084_120063.jpg
+7419 127.Savannah_Sparrow/Savannah_Sparrow_0094_119040.jpg
+7420 127.Savannah_Sparrow/Savannah_Sparrow_0014_120072.jpg
+7422 127.Savannah_Sparrow/Savannah_Sparrow_0035_120099.jpg
+7423 127.Savannah_Sparrow/Savannah_Sparrow_0049_119596.jpg
+7424 127.Savannah_Sparrow/Savannah_Sparrow_0032_120109.jpg
+7425 127.Savannah_Sparrow/Savannah_Sparrow_0051_118574.jpg
+7426 127.Savannah_Sparrow/Savannah_Sparrow_0091_120630.jpg
+7427 127.Savannah_Sparrow/Savannah_Sparrow_0052_118583.jpg
+7428 127.Savannah_Sparrow/Savannah_Sparrow_0135_119620.jpg
+7429 127.Savannah_Sparrow/Savannah_Sparrow_0029_119621.jpg
+7430 127.Savannah_Sparrow/Savannah_Sparrow_0118_118603.jpg
+7431 127.Savannah_Sparrow/Savannah_Sparrow_0025_119124.jpg
+7432 127.Savannah_Sparrow/Savannah_Sparrow_0116_118108.jpg
+7433 127.Savannah_Sparrow/Savannah_Sparrow_0080_118120.jpg
+7434 127.Savannah_Sparrow/Savannah_Sparrow_0095_119670.jpg
+7435 127.Savannah_Sparrow/Savannah_Sparrow_0107_119671.jpg
+7436 127.Savannah_Sparrow/Savannah_Sparrow_0062_120185.jpg
+7437 127.Savannah_Sparrow/Savannah_Sparrow_0109_119674.jpg
+7438 127.Savannah_Sparrow/Savannah_Sparrow_0017_119171.jpg
+7439 127.Savannah_Sparrow/Savannah_Sparrow_0009_120205.jpg
+7440 127.Savannah_Sparrow/Savannah_Sparrow_0005_119735.jpg
+7441 127.Savannah_Sparrow/Savannah_Sparrow_0019_118200.jpg
+7442 127.Savannah_Sparrow/Savannah_Sparrow_0114_119750.jpg
+7443 127.Savannah_Sparrow/Savannah_Sparrow_0076_120267.jpg
+7445 127.Savannah_Sparrow/Savannah_Sparrow_0061_119783.jpg
+7446 127.Savannah_Sparrow/Savannah_Sparrow_0093_118267.jpg
+7447 128.Seaside_Sparrow/Seaside_Sparrow_0052_796498.jpg
+7449 128.Seaside_Sparrow/Seaside_Sparrow_0062_796503.jpg
+7450 128.Seaside_Sparrow/Seaside_Sparrow_0065_796504.jpg
+7456 128.Seaside_Sparrow/Seaside_Sparrow_0017_796513.jpg
+7457 128.Seaside_Sparrow/Seaside_Sparrow_0004_796514.jpg
+7458 128.Seaside_Sparrow/Seaside_Sparrow_0068_796515.jpg
+7459 128.Seaside_Sparrow/Seaside_Sparrow_0005_796516.jpg
+7460 128.Seaside_Sparrow/Seaside_Sparrow_0025_796518.jpg
+7461 128.Seaside_Sparrow/Seaside_Sparrow_0071_796519.jpg
+7463 128.Seaside_Sparrow/Seaside_Sparrow_0034_796521.jpg
+7464 128.Seaside_Sparrow/Seaside_Sparrow_0051_796522.jpg
+7465 128.Seaside_Sparrow/Seaside_Sparrow_0023_796525.jpg
+7466 128.Seaside_Sparrow/Seaside_Sparrow_0031_796526.jpg
+7467 128.Seaside_Sparrow/Seaside_Sparrow_0042_796528.jpg
+7468 128.Seaside_Sparrow/Seaside_Sparrow_0041_796529.jpg
+7469 128.Seaside_Sparrow/Seaside_Sparrow_0039_796530.jpg
+7470 128.Seaside_Sparrow/Seaside_Sparrow_0037_796531.jpg
+7476 128.Seaside_Sparrow/Seaside_Sparrow_0003_796539.jpg
+7477 128.Seaside_Sparrow/Seaside_Sparrow_0070_796540.jpg
+7478 128.Seaside_Sparrow/Seaside_Sparrow_0063_120707.jpg
+7479 128.Seaside_Sparrow/Seaside_Sparrow_0056_120710.jpg
+7480 128.Seaside_Sparrow/Seaside_Sparrow_0045_120696.jpg
+7481 128.Seaside_Sparrow/Seaside_Sparrow_0018_120716.jpg
+7483 128.Seaside_Sparrow/Seaside_Sparrow_0022_120721.jpg
+7484 128.Seaside_Sparrow/Seaside_Sparrow_0012_120732.jpg
+7485 128.Seaside_Sparrow/Seaside_Sparrow_0049_120735.jpg
+7486 128.Seaside_Sparrow/Seaside_Sparrow_0020_120743.jpg
+7487 128.Seaside_Sparrow/Seaside_Sparrow_0058_120744.jpg
+7488 128.Seaside_Sparrow/Seaside_Sparrow_0007_120690.jpg
+7490 128.Seaside_Sparrow/Seaside_Sparrow_0048_120758.jpg
+7492 128.Seaside_Sparrow/Seaside_Sparrow_0032_120767.jpg
+7494 128.Seaside_Sparrow/Seaside_Sparrow_0030_120780.jpg
+7496 128.Seaside_Sparrow/Seaside_Sparrow_0066_120791.jpg
+7497 128.Seaside_Sparrow/Seaside_Sparrow_0059_120794.jpg
+7498 128.Seaside_Sparrow/Seaside_Sparrow_0026_120798.jpg
+7499 128.Seaside_Sparrow/Seaside_Sparrow_0021_120699.jpg
+7501 128.Seaside_Sparrow/Seaside_Sparrow_0064_120813.jpg
+7502 128.Seaside_Sparrow/Seaside_Sparrow_0038_120819.jpg
+7504 128.Seaside_Sparrow/Seaside_Sparrow_0044_119287.jpg
+7507 129.Song_Sparrow/Song_Sparrow_0060_122371.jpg
+7509 129.Song_Sparrow/Song_Sparrow_0118_121905.jpg
+7510 129.Song_Sparrow/Song_Sparrow_0059_120885.jpg
+7511 129.Song_Sparrow/Song_Sparrow_0067_122424.jpg
+7512 129.Song_Sparrow/Song_Sparrow_0003_122425.jpg
+7515 129.Song_Sparrow/Song_Sparrow_0125_122435.jpg
+7516 129.Song_Sparrow/Song_Sparrow_0126_120901.jpg
+7517 129.Song_Sparrow/Song_Sparrow_0044_121931.jpg
+7518 129.Song_Sparrow/Song_Sparrow_0071_122446.jpg
+7519 129.Song_Sparrow/Song_Sparrow_0101_120920.jpg
+7520 129.Song_Sparrow/Song_Sparrow_0097_121438.jpg
+7521 129.Song_Sparrow/Song_Sparrow_0045_121951.jpg
+7522 129.Song_Sparrow/Song_Sparrow_0092_121969.jpg
+7523 129.Song_Sparrow/Song_Sparrow_0009_121025.jpg
+7524 129.Song_Sparrow/Song_Sparrow_0086_121999.jpg
+7525 129.Song_Sparrow/Song_Sparrow_0020_121490.jpg
+7526 129.Song_Sparrow/Song_Sparrow_0035_120986.jpg
+7528 129.Song_Sparrow/Song_Sparrow_0107_120990.jpg
+7529 129.Song_Sparrow/Song_Sparrow_0050_121514.jpg
+7530 129.Song_Sparrow/Song_Sparrow_0112_121027.jpg
+7532 129.Song_Sparrow/Song_Sparrow_0069_122065.jpg
+7533 129.Song_Sparrow/Song_Sparrow_0053_121554.jpg
+7534 129.Song_Sparrow/Song_Sparrow_0013_121056.jpg
+7535 129.Song_Sparrow/Song_Sparrow_0090_121057.jpg
+7541 129.Song_Sparrow/Song_Sparrow_0088_121615.jpg
+7542 129.Song_Sparrow/Song_Sparrow_0040_121617.jpg
+7543 129.Song_Sparrow/Song_Sparrow_0046_121903.jpg
+7544 129.Song_Sparrow/Song_Sparrow_0007_121133.jpg
+7545 129.Song_Sparrow/Song_Sparrow_0091_121651.jpg
+7546 129.Song_Sparrow/Song_Sparrow_0001_122169.jpg
+7547 129.Song_Sparrow/Song_Sparrow_0132_121153.jpg
+7548 129.Song_Sparrow/Song_Sparrow_0038_121666.jpg
+7550 129.Song_Sparrow/Song_Sparrow_0015_122081.jpg
+7556 129.Song_Sparrow/Song_Sparrow_0116_121211.jpg
+7557 129.Song_Sparrow/Song_Sparrow_0106_121154.jpg
+7559 129.Song_Sparrow/Song_Sparrow_0123_121249.jpg
+7560 129.Song_Sparrow/Song_Sparrow_0034_121255.jpg
+7561 129.Song_Sparrow/Song_Sparrow_0135_121261.jpg
+7562 129.Song_Sparrow/Song_Sparrow_0096_121313.jpg
+7563 129.Song_Sparrow/Song_Sparrow_0042_121314.jpg
+7564 129.Song_Sparrow/Song_Sparrow_0058_121832.jpg
+7566 129.Song_Sparrow/Song_Sparrow_0010_121331.jpg
+7567 130.Tree_Sparrow/Tree_Sparrow_0130_124932.jpg
+7568 130.Tree_Sparrow/Tree_Sparrow_0122_123927.jpg
+7569 130.Tree_Sparrow/Tree_Sparrow_0077_123417.jpg
+7570 130.Tree_Sparrow/Tree_Sparrow_0023_124956.jpg
+7571 130.Tree_Sparrow/Tree_Sparrow_0007_122911.jpg
+7572 130.Tree_Sparrow/Tree_Sparrow_0129_124960.jpg
+7573 130.Tree_Sparrow/Tree_Sparrow_0066_123569.jpg
+7574 130.Tree_Sparrow/Tree_Sparrow_0053_122933.jpg
+7575 130.Tree_Sparrow/Tree_Sparrow_0100_122945.jpg
+7576 130.Tree_Sparrow/Tree_Sparrow_0044_122946.jpg
+7578 130.Tree_Sparrow/Tree_Sparrow_0097_123462.jpg
+7579 130.Tree_Sparrow/Tree_Sparrow_0032_123489.jpg
+7580 130.Tree_Sparrow/Tree_Sparrow_0011_122964.jpg
+7586 130.Tree_Sparrow/Tree_Sparrow_0062_123000.jpg
+7587 130.Tree_Sparrow/Tree_Sparrow_0076_123669.jpg
+7589 130.Tree_Sparrow/Tree_Sparrow_0015_125105.jpg
+7590 130.Tree_Sparrow/Tree_Sparrow_0018_123574.jpg
+7591 130.Tree_Sparrow/Tree_Sparrow_0095_124090.jpg
+7592 130.Tree_Sparrow/Tree_Sparrow_0125_123078.jpg
+7593 130.Tree_Sparrow/Tree_Sparrow_0058_123591.jpg
+7596 130.Tree_Sparrow/Tree_Sparrow_0080_124120.jpg
+7597 130.Tree_Sparrow/Tree_Sparrow_0113_123613.jpg
+7598 130.Tree_Sparrow/Tree_Sparrow_0039_124140.jpg
+7599 130.Tree_Sparrow/Tree_Sparrow_0057_123665.jpg
+7600 130.Tree_Sparrow/Tree_Sparrow_0094_124974.jpg
+7601 130.Tree_Sparrow/Tree_Sparrow_0068_125230.jpg
+7602 130.Tree_Sparrow/Tree_Sparrow_0025_124233.jpg
+7603 130.Tree_Sparrow/Tree_Sparrow_0105_123227.jpg
+7604 130.Tree_Sparrow/Tree_Sparrow_0060_123743.jpg
+7605 130.Tree_Sparrow/Tree_Sparrow_0086_123751.jpg
+7606 130.Tree_Sparrow/Tree_Sparrow_0088_125305.jpg
+7607 130.Tree_Sparrow/Tree_Sparrow_0090_110145.jpg
+7608 130.Tree_Sparrow/Tree_Sparrow_0121_124296.jpg
+7609 130.Tree_Sparrow/Tree_Sparrow_0127_125322.jpg
+7610 130.Tree_Sparrow/Tree_Sparrow_0123_125324.jpg
+7611 130.Tree_Sparrow/Tree_Sparrow_0036_122772.jpg
+7612 130.Tree_Sparrow/Tree_Sparrow_0034_123799.jpg
+7613 130.Tree_Sparrow/Tree_Sparrow_0109_123802.jpg
+7614 130.Tree_Sparrow/Tree_Sparrow_0024_123805.jpg
+7615 130.Tree_Sparrow/Tree_Sparrow_0009_123294.jpg
+7616 130.Tree_Sparrow/Tree_Sparrow_0046_125344.jpg
+7617 130.Tree_Sparrow/Tree_Sparrow_0107_123822.jpg
+7618 130.Tree_Sparrow/Tree_Sparrow_0081_124348.jpg
+7619 130.Tree_Sparrow/Tree_Sparrow_0035_123211.jpg
+7620 130.Tree_Sparrow/Tree_Sparrow_0028_122829.jpg
+7622 130.Tree_Sparrow/Tree_Sparrow_0073_123871.jpg
+7623 130.Tree_Sparrow/Tree_Sparrow_0030_122850.jpg
+7624 130.Tree_Sparrow/Tree_Sparrow_0108_124754.jpg
+7625 130.Tree_Sparrow/Tree_Sparrow_0128_123979.jpg
+7626 130.Tree_Sparrow/Tree_Sparrow_0074_124408.jpg
+7627 131.Vesper_Sparrow/Vesper_Sparrow_0005_125440.jpg
+7628 131.Vesper_Sparrow/Vesper_Sparrow_0040_125441.jpg
+7629 131.Vesper_Sparrow/Vesper_Sparrow_0052_125444.jpg
+7630 131.Vesper_Sparrow/Vesper_Sparrow_0065_125446.jpg
+7631 131.Vesper_Sparrow/Vesper_Sparrow_0043_125703.jpg
+7632 131.Vesper_Sparrow/Vesper_Sparrow_0002_125454.jpg
+7633 131.Vesper_Sparrow/Vesper_Sparrow_0087_125712.jpg
+7634 131.Vesper_Sparrow/Vesper_Sparrow_0009_125713.jpg
+7636 131.Vesper_Sparrow/Vesper_Sparrow_0095_125459.jpg
+7637 131.Vesper_Sparrow/Vesper_Sparrow_0083_125718.jpg
+7638 131.Vesper_Sparrow/Vesper_Sparrow_0023_125465.jpg
+7639 131.Vesper_Sparrow/Vesper_Sparrow_0044_125470.jpg
+7640 131.Vesper_Sparrow/Vesper_Sparrow_0047_125788.jpg
+7642 131.Vesper_Sparrow/Vesper_Sparrow_0089_125705.jpg
+7643 131.Vesper_Sparrow/Vesper_Sparrow_0029_125498.jpg
+7644 131.Vesper_Sparrow/Vesper_Sparrow_0082_125503.jpg
+7645 131.Vesper_Sparrow/Vesper_Sparrow_0020_125794.jpg
+7646 131.Vesper_Sparrow/Vesper_Sparrow_0086_125776.jpg
+7647 131.Vesper_Sparrow/Vesper_Sparrow_0004_125787.jpg
+7648 131.Vesper_Sparrow/Vesper_Sparrow_0084_125532.jpg
+7649 131.Vesper_Sparrow/Vesper_Sparrow_0017_125534.jpg
+7650 131.Vesper_Sparrow/Vesper_Sparrow_0081_125541.jpg
+7652 131.Vesper_Sparrow/Vesper_Sparrow_0013_109937.jpg
+7653 131.Vesper_Sparrow/Vesper_Sparrow_0070_125555.jpg
+7654 131.Vesper_Sparrow/Vesper_Sparrow_0019_125558.jpg
+7655 131.Vesper_Sparrow/Vesper_Sparrow_0032_125564.jpg
+7656 131.Vesper_Sparrow/Vesper_Sparrow_0033_125568.jpg
+7657 131.Vesper_Sparrow/Vesper_Sparrow_0046_125575.jpg
+7658 131.Vesper_Sparrow/Vesper_Sparrow_0079_125579.jpg
+7659 131.Vesper_Sparrow/Vesper_Sparrow_0051_125587.jpg
+7660 131.Vesper_Sparrow/Vesper_Sparrow_0077_125597.jpg
+7661 131.Vesper_Sparrow/Vesper_Sparrow_0091_125598.jpg
+7662 131.Vesper_Sparrow/Vesper_Sparrow_0007_125630.jpg
+7663 131.Vesper_Sparrow/Vesper_Sparrow_0068_125601.jpg
+7664 131.Vesper_Sparrow/Vesper_Sparrow_0094_125602.jpg
+7665 131.Vesper_Sparrow/Vesper_Sparrow_0073_125605.jpg
+7666 131.Vesper_Sparrow/Vesper_Sparrow_0080_125606.jpg
+7667 131.Vesper_Sparrow/Vesper_Sparrow_0011_125608.jpg
+7668 131.Vesper_Sparrow/Vesper_Sparrow_0055_125611.jpg
+7669 131.Vesper_Sparrow/Vesper_Sparrow_0016_125615.jpg
+7670 131.Vesper_Sparrow/Vesper_Sparrow_0066_125619.jpg
+7674 131.Vesper_Sparrow/Vesper_Sparrow_0045_125643.jpg
+7675 131.Vesper_Sparrow/Vesper_Sparrow_0037_125648.jpg
+7676 131.Vesper_Sparrow/Vesper_Sparrow_0057_125649.jpg
+7677 131.Vesper_Sparrow/Vesper_Sparrow_0018_125651.jpg
+7678 131.Vesper_Sparrow/Vesper_Sparrow_0015_125653.jpg
+7679 131.Vesper_Sparrow/Vesper_Sparrow_0056_125657.jpg
+7680 131.Vesper_Sparrow/Vesper_Sparrow_0058_125661.jpg
+7686 131.Vesper_Sparrow/Vesper_Sparrow_0022_125719.jpg
+7688 132.White_crowned_Sparrow/White_Crowned_Sparrow_0087_128008.jpg
+7689 132.White_crowned_Sparrow/White_Crowned_Sparrow_0047_127575.jpg
+7690 132.White_crowned_Sparrow/White_Crowned_Sparrow_0140_125967.jpg
+7692 132.White_crowned_Sparrow/White_Crowned_Sparrow_0116_127512.jpg
+7693 132.White_crowned_Sparrow/White_Crowned_Sparrow_0098_127019.jpg
+7694 132.White_crowned_Sparrow/White_Crowned_Sparrow_0101_127058.jpg
+7695 132.White_crowned_Sparrow/White_Crowned_Sparrow_0114_127027.jpg
+7698 132.White_crowned_Sparrow/White_Crowned_Sparrow_0115_126027.jpg
+7699 132.White_crowned_Sparrow/White_Crowned_Sparrow_0029_127503.jpg
+7700 132.White_crowned_Sparrow/White_Crowned_Sparrow_0113_128095.jpg
+7701 132.White_crowned_Sparrow/White_Crowned_Sparrow_0109_128529.jpg
+7702 132.White_crowned_Sparrow/White_Crowned_Sparrow_0072_127080.jpg
+7704 132.White_crowned_Sparrow/White_Crowned_Sparrow_0021_127092.jpg
+7706 132.White_crowned_Sparrow/White_Crowned_Sparrow_0001_127115.jpg
+7707 132.White_crowned_Sparrow/White_Crowned_Sparrow_0095_127118.jpg
+7708 132.White_crowned_Sparrow/White_Crowned_Sparrow_0010_127651.jpg
+7710 132.White_crowned_Sparrow/White_Crowned_Sparrow_0009_127658.jpg
+7711 132.White_crowned_Sparrow/White_Crowned_Sparrow_0094_128627.jpg
+7712 132.White_crowned_Sparrow/White_Crowned_Sparrow_0076_127604.jpg
+7713 132.White_crowned_Sparrow/White_Crowned_Sparrow_0068_126156.jpg
+7714 132.White_crowned_Sparrow/White_Crowned_Sparrow_0085_127194.jpg
+7715 132.White_crowned_Sparrow/White_Crowned_Sparrow_0102_127708.jpg
+7716 132.White_crowned_Sparrow/White_Crowned_Sparrow_0099_127213.jpg
+7718 132.White_crowned_Sparrow/White_Crowned_Sparrow_0034_126199.jpg
+7719 132.White_crowned_Sparrow/White_Crowned_Sparrow_0054_126068.jpg
+7720 132.White_crowned_Sparrow/White_Crowned_Sparrow_0083_128777.jpg
+7721 132.White_crowned_Sparrow/White_Crowned_Sparrow_0141_127766.jpg
+7722 132.White_crowned_Sparrow/White_Crowned_Sparrow_0002_127774.jpg
+7723 132.White_crowned_Sparrow/White_Crowned_Sparrow_0017_125829.jpg
+7725 132.White_crowned_Sparrow/White_Crowned_Sparrow_0049_128311.jpg
+7726 132.White_crowned_Sparrow/White_Crowned_Sparrow_0100_126267.jpg
+7729 132.White_crowned_Sparrow/White_Crowned_Sparrow_0061_126315.jpg
+7731 132.White_crowned_Sparrow/White_Crowned_Sparrow_0129_127860.jpg
+7733 132.White_crowned_Sparrow/White_Crowned_Sparrow_0042_128395.jpg
+7734 132.White_crowned_Sparrow/White_Crowned_Sparrow_0142_128237.jpg
+7735 132.White_crowned_Sparrow/White_Crowned_Sparrow_0044_127386.jpg
+7736 132.White_crowned_Sparrow/White_Crowned_Sparrow_0090_125864.jpg
+7737 132.White_crowned_Sparrow/White_Crowned_Sparrow_0111_127404.jpg
+7738 132.White_crowned_Sparrow/White_Crowned_Sparrow_0118_127919.jpg
+7739 132.White_crowned_Sparrow/White_Crowned_Sparrow_0071_127922.jpg
+7740 132.White_crowned_Sparrow/White_Crowned_Sparrow_0057_127927.jpg
+7741 132.White_crowned_Sparrow/White_Crowned_Sparrow_0127_126923.jpg
+7742 132.White_crowned_Sparrow/White_Crowned_Sparrow_0119_126932.jpg
+7743 132.White_crowned_Sparrow/White_Crowned_Sparrow_0037_126969.jpg
+7744 132.White_crowned_Sparrow/White_Crowned_Sparrow_0124_128082.jpg
+7745 132.White_crowned_Sparrow/White_Crowned_Sparrow_0092_125934.jpg
+7746 132.White_crowned_Sparrow/White_Crowned_Sparrow_0031_126457.jpg
+7747 133.White_throated_Sparrow/White_Throated_Sparrow_0078_129041.jpg
+7749 133.White_throated_Sparrow/White_Throated_Sparrow_0082_129048.jpg
+7750 133.White_throated_Sparrow/White_Throated_Sparrow_0050_129051.jpg
+7753 133.White_throated_Sparrow/White_Throated_Sparrow_0109_129066.jpg
+7755 133.White_throated_Sparrow/White_Throated_Sparrow_0118_129084.jpg
+7757 133.White_throated_Sparrow/White_Throated_Sparrow_0098_129089.jpg
+7758 133.White_throated_Sparrow/White_Throated_Sparrow_0112_129101.jpg
+7759 133.White_throated_Sparrow/White_Throated_Sparrow_0073_129110.jpg
+7760 133.White_throated_Sparrow/White_Throated_Sparrow_0028_129118.jpg
+7766 133.White_throated_Sparrow/White_Throated_Sparrow_0108_129184.jpg
+7767 133.White_throated_Sparrow/White_Throated_Sparrow_0134_129190.jpg
+7768 133.White_throated_Sparrow/White_Throated_Sparrow_0121_129201.jpg
+7769 133.White_throated_Sparrow/White_Throated_Sparrow_0072_129203.jpg
+7770 133.White_throated_Sparrow/White_Throated_Sparrow_0124_128801.jpg
+7771 133.White_throated_Sparrow/White_Throated_Sparrow_0060_128802.jpg
+7772 133.White_throated_Sparrow/White_Throated_Sparrow_0063_128803.jpg
+7773 133.White_throated_Sparrow/White_Throated_Sparrow_0021_128804.jpg
+7775 133.White_throated_Sparrow/White_Throated_Sparrow_0105_128814.jpg
+7777 133.White_throated_Sparrow/White_Throated_Sparrow_0043_128818.jpg
+7778 133.White_throated_Sparrow/White_Throated_Sparrow_0135_128819.jpg
+7779 133.White_throated_Sparrow/White_Throated_Sparrow_0119_128827.jpg
+7780 133.White_throated_Sparrow/White_Throated_Sparrow_0125_128832.jpg
+7781 133.White_throated_Sparrow/White_Throated_Sparrow_0132_128833.jpg
+7782 133.White_throated_Sparrow/White_Throated_Sparrow_0110_128838.jpg
+7783 133.White_throated_Sparrow/White_Throated_Sparrow_0026_128843.jpg
+7784 133.White_throated_Sparrow/White_Throated_Sparrow_0027_128847.jpg
+7785 133.White_throated_Sparrow/White_Throated_Sparrow_0038_128853.jpg
+7786 133.White_throated_Sparrow/White_Throated_Sparrow_0039_128859.jpg
+7787 133.White_throated_Sparrow/White_Throated_Sparrow_0032_128866.jpg
+7788 133.White_throated_Sparrow/White_Throated_Sparrow_0042_128899.jpg
+7789 133.White_throated_Sparrow/White_Throated_Sparrow_0061_128902.jpg
+7790 133.White_throated_Sparrow/White_Throated_Sparrow_0056_128906.jpg
+7791 133.White_throated_Sparrow/White_Throated_Sparrow_0102_128911.jpg
+7793 133.White_throated_Sparrow/White_Throated_Sparrow_0007_128918.jpg
+7794 133.White_throated_Sparrow/White_Throated_Sparrow_0052_128923.jpg
+7795 133.White_throated_Sparrow/White_Throated_Sparrow_0113_128936.jpg
+7796 133.White_throated_Sparrow/White_Throated_Sparrow_0004_128944.jpg
+7797 133.White_throated_Sparrow/White_Throated_Sparrow_0069_128951.jpg
+7798 133.White_throated_Sparrow/White_Throated_Sparrow_0128_128956.jpg
+7799 133.White_throated_Sparrow/White_Throated_Sparrow_0059_128964.jpg
+7800 133.White_throated_Sparrow/White_Throated_Sparrow_0097_128967.jpg
+7801 133.White_throated_Sparrow/White_Throated_Sparrow_0017_128982.jpg
+7802 133.White_throated_Sparrow/White_Throated_Sparrow_0075_128990.jpg
+7803 133.White_throated_Sparrow/White_Throated_Sparrow_0020_129007.jpg
+7804 133.White_throated_Sparrow/White_Throated_Sparrow_0123_129009.jpg
+7805 133.White_throated_Sparrow/White_Throated_Sparrow_0047_129014.jpg
+7806 133.White_throated_Sparrow/White_Throated_Sparrow_0033_129016.jpg
+7807 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0027_129282.jpg
+7808 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0026_129288.jpg
+7809 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0074_129294.jpg
+7810 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0006_129295.jpg
+7812 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0038_129301.jpg
+7813 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0097_129303.jpg
+7814 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0028_129309.jpg
+7816 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0070_129322.jpg
+7817 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0020_129328.jpg
+7818 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0017_129337.jpg
+7821 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0084_129346.jpg
+7822 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0047_129348.jpg
+7823 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0092_129349.jpg
+7825 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0018_129356.jpg
+7826 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0059_129357.jpg
+7827 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0043_129358.jpg
+7830 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0094_129368.jpg
+7833 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0067_129380.jpg
+7834 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0024_129384.jpg
+7836 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0072_129386.jpg
+7837 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0096_129388.jpg
+7839 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0079_129399.jpg
+7840 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0019_129407.jpg
+7841 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0099_129412.jpg
+7842 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0022_129414.jpg
+7843 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0075_129431.jpg
+7844 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0046_129434.jpg
+7846 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0088_129437.jpg
+7847 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0054_129440.jpg
+7849 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0068_129446.jpg
+7850 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0034_129455.jpg
+7851 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0087_129481.jpg
+7854 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0039_129469.jpg
+7855 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0091_129470.jpg
+7856 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0082_129216.jpg
+7857 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0069_129218.jpg
+7861 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0012_129225.jpg
+7862 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0013_129244.jpg
+7863 134.Cape_Glossy_Starling/Cape_Glossy_Starling_0062_129254.jpg
+7876 135.Bank_Swallow/Bank_Swallow_0057_129499.jpg
+7877 135.Bank_Swallow/Bank_Swallow_0038_129830.jpg
+7879 135.Bank_Swallow/Bank_Swallow_0008_129590.jpg
+7886 135.Bank_Swallow/Bank_Swallow_0003_129623.jpg
+7887 135.Bank_Swallow/Bank_Swallow_0041_129625.jpg
+7888 135.Bank_Swallow/Bank_Swallow_0018_129891.jpg
+7890 135.Bank_Swallow/Bank_Swallow_0037_129903.jpg
+7892 135.Bank_Swallow/Bank_Swallow_0002_129654.jpg
+7893 135.Bank_Swallow/Bank_Swallow_0022_129923.jpg
+7894 135.Bank_Swallow/Bank_Swallow_0014_129668.jpg
+7897 135.Bank_Swallow/Bank_Swallow_0043_129685.jpg
+7898 135.Bank_Swallow/Bank_Swallow_0020_129747.jpg
+7902 135.Bank_Swallow/Bank_Swallow_0045_129483.jpg
+7903 135.Bank_Swallow/Bank_Swallow_0061_129484.jpg
+7905 135.Bank_Swallow/Bank_Swallow_0054_129743.jpg
+7906 135.Bank_Swallow/Bank_Swallow_0032_129491.jpg
+7907 135.Bank_Swallow/Bank_Swallow_0029_129751.jpg
+7909 135.Bank_Swallow/Bank_Swallow_0028_129754.jpg
+7910 135.Bank_Swallow/Bank_Swallow_0017_129755.jpg
+7911 135.Bank_Swallow/Bank_Swallow_0058_129756.jpg
+7912 135.Bank_Swallow/Bank_Swallow_0053_129501.jpg
+7913 135.Bank_Swallow/Bank_Swallow_0027_129503.jpg
+7914 135.Bank_Swallow/Bank_Swallow_0031_129507.jpg
+7915 135.Bank_Swallow/Bank_Swallow_0033_129509.jpg
+7916 135.Bank_Swallow/Bank_Swallow_0007_129514.jpg
+7919 135.Bank_Swallow/Bank_Swallow_0047_129520.jpg
+7922 135.Bank_Swallow/Bank_Swallow_0050_129780.jpg
+7924 135.Bank_Swallow/Bank_Swallow_0019_129788.jpg
+7925 135.Bank_Swallow/Bank_Swallow_0016_129791.jpg
+7928 136.Barn_Swallow/Barn_Swallow_0053_130585.jpg
+7929 136.Barn_Swallow/Barn_Swallow_0005_130591.jpg
+7930 136.Barn_Swallow/Barn_Swallow_0026_132386.jpg
+7931 136.Barn_Swallow/Barn_Swallow_0003_130086.jpg
+7932 136.Barn_Swallow/Barn_Swallow_0050_130095.jpg
+7933 136.Barn_Swallow/Barn_Swallow_0034_130099.jpg
+7934 136.Barn_Swallow/Barn_Swallow_0075_130014.jpg
+7941 136.Barn_Swallow/Barn_Swallow_0047_130016.jpg
+7942 136.Barn_Swallow/Barn_Swallow_0022_130631.jpg
+7943 136.Barn_Swallow/Barn_Swallow_0054_131146.jpg
+7945 136.Barn_Swallow/Barn_Swallow_0070_130127.jpg
+7946 136.Barn_Swallow/Barn_Swallow_0078_130385.jpg
+7947 136.Barn_Swallow/Barn_Swallow_0083_132949.jpg
+7948 136.Barn_Swallow/Barn_Swallow_0017_132951.jpg
+7949 136.Barn_Swallow/Barn_Swallow_0055_131933.jpg
+7950 136.Barn_Swallow/Barn_Swallow_0089_131934.jpg
+7951 136.Barn_Swallow/Barn_Swallow_0014_130403.jpg
+7952 136.Barn_Swallow/Barn_Swallow_0062_132755.jpg
+7953 136.Barn_Swallow/Barn_Swallow_0044_132542.jpg
+7954 136.Barn_Swallow/Barn_Swallow_0016_130678.jpg
+7955 136.Barn_Swallow/Barn_Swallow_0086_132477.jpg
+7956 136.Barn_Swallow/Barn_Swallow_0023_130325.jpg
+7957 136.Barn_Swallow/Barn_Swallow_0049_130181.jpg
+7958 136.Barn_Swallow/Barn_Swallow_0030_130191.jpg
+7959 136.Barn_Swallow/Barn_Swallow_0077_130707.jpg
+7960 136.Barn_Swallow/Barn_Swallow_0018_130709.jpg
+7961 136.Barn_Swallow/Barn_Swallow_0045_130244.jpg
+7962 136.Barn_Swallow/Barn_Swallow_0066_130214.jpg
+7963 136.Barn_Swallow/Barn_Swallow_0072_130474.jpg
+7964 136.Barn_Swallow/Barn_Swallow_0015_132757.jpg
+7965 136.Barn_Swallow/Barn_Swallow_0093_130121.jpg
+7966 136.Barn_Swallow/Barn_Swallow_0048_132793.jpg
+7968 136.Barn_Swallow/Barn_Swallow_0076_130757.jpg
+7969 136.Barn_Swallow/Barn_Swallow_0042_132043.jpg
+7970 136.Barn_Swallow/Barn_Swallow_0052_131539.jpg
+7971 136.Barn_Swallow/Barn_Swallow_0007_131030.jpg
+7972 136.Barn_Swallow/Barn_Swallow_0043_130779.jpg
+7973 136.Barn_Swallow/Barn_Swallow_0063_132572.jpg
+7974 136.Barn_Swallow/Barn_Swallow_0020_132317.jpg
+7975 136.Barn_Swallow/Barn_Swallow_0029_132832.jpg
+7976 136.Barn_Swallow/Barn_Swallow_0064_132688.jpg
+7977 136.Barn_Swallow/Barn_Swallow_0065_131555.jpg
+7979 136.Barn_Swallow/Barn_Swallow_0084_130800.jpg
+7980 136.Barn_Swallow/Barn_Swallow_0006_131315.jpg
+7982 136.Barn_Swallow/Barn_Swallow_0002_130551.jpg
+7983 136.Barn_Swallow/Barn_Swallow_0035_131832.jpg
+7984 136.Barn_Swallow/Barn_Swallow_0019_130555.jpg
+7987 137.Cliff_Swallow/Cliff_Swallow_0084_133974.jpg
+7990 137.Cliff_Swallow/Cliff_Swallow_0039_133645.jpg
+7991 137.Cliff_Swallow/Cliff_Swallow_0042_133646.jpg
+7993 137.Cliff_Swallow/Cliff_Swallow_0090_133144.jpg
+7994 137.Cliff_Swallow/Cliff_Swallow_0100_133665.jpg
+7996 137.Cliff_Swallow/Cliff_Swallow_0031_133164.jpg
+7998 137.Cliff_Swallow/Cliff_Swallow_0036_133168.jpg
+7999 137.Cliff_Swallow/Cliff_Swallow_0013_133169.jpg
+8000 137.Cliff_Swallow/Cliff_Swallow_0015_133176.jpg
+8001 137.Cliff_Swallow/Cliff_Swallow_0005_133696.jpg
+8003 137.Cliff_Swallow/Cliff_Swallow_0038_133701.jpg
+8004 137.Cliff_Swallow/Cliff_Swallow_0028_132365.jpg
+8005 137.Cliff_Swallow/Cliff_Swallow_0027_133203.jpg
+8006 137.Cliff_Swallow/Cliff_Swallow_0108_133902.jpg
+8007 137.Cliff_Swallow/Cliff_Swallow_0066_133206.jpg
+8008 137.Cliff_Swallow/Cliff_Swallow_0094_133114.jpg
+8009 137.Cliff_Swallow/Cliff_Swallow_0068_134236.jpg
+8010 137.Cliff_Swallow/Cliff_Swallow_0049_132965.jpg
+8012 137.Cliff_Swallow/Cliff_Swallow_0071_133742.jpg
+8013 137.Cliff_Swallow/Cliff_Swallow_0006_133489.jpg
+8014 137.Cliff_Swallow/Cliff_Swallow_0075_134516.jpg
+8016 137.Cliff_Swallow/Cliff_Swallow_0092_132971.jpg
+8017 137.Cliff_Swallow/Cliff_Swallow_0061_133259.jpg
+8018 137.Cliff_Swallow/Cliff_Swallow_0069_133521.jpg
+8019 137.Cliff_Swallow/Cliff_Swallow_0018_132974.jpg
+8021 137.Cliff_Swallow/Cliff_Swallow_0060_133280.jpg
+8022 137.Cliff_Swallow/Cliff_Swallow_0083_133771.jpg
+8023 137.Cliff_Swallow/Cliff_Swallow_0050_134054.jpg
+8025 137.Cliff_Swallow/Cliff_Swallow_0089_133545.jpg
+8026 137.Cliff_Swallow/Cliff_Swallow_0023_134314.jpg
+8028 137.Cliff_Swallow/Cliff_Swallow_0093_133052.jpg
+8029 137.Cliff_Swallow/Cliff_Swallow_0052_133055.jpg
+8032 137.Cliff_Swallow/Cliff_Swallow_0056_133921.jpg
+8033 137.Cliff_Swallow/Cliff_Swallow_0033_133836.jpg
+8034 137.Cliff_Swallow/Cliff_Swallow_0101_133069.jpg
+8035 137.Cliff_Swallow/Cliff_Swallow_0045_133591.jpg
+8036 137.Cliff_Swallow/Cliff_Swallow_0063_133852.jpg
+8038 137.Cliff_Swallow/Cliff_Swallow_0065_133858.jpg
+8039 137.Cliff_Swallow/Cliff_Swallow_0081_134119.jpg
+8040 137.Cliff_Swallow/Cliff_Swallow_0035_133097.jpg
+8041 137.Cliff_Swallow/Cliff_Swallow_0062_134383.jpg
+8051 138.Tree_Swallow/Tree_Swallow_0098_134916.jpg
+8052 138.Tree_Swallow/Tree_Swallow_0046_135770.jpg
+8053 138.Tree_Swallow/Tree_Swallow_0030_134942.jpg
+8054 138.Tree_Swallow/Tree_Swallow_0107_136223.jpg
+8055 138.Tree_Swallow/Tree_Swallow_0060_134961.jpg
+8056 138.Tree_Swallow/Tree_Swallow_0092_136236.jpg
+8057 138.Tree_Swallow/Tree_Swallow_0071_136749.jpg
+8058 138.Tree_Swallow/Tree_Swallow_0044_135984.jpg
+8059 138.Tree_Swallow/Tree_Swallow_0074_135219.jpg
+8060 138.Tree_Swallow/Tree_Swallow_0067_136244.jpg
+8062 138.Tree_Swallow/Tree_Swallow_0114_136265.jpg
+8063 138.Tree_Swallow/Tree_Swallow_0008_135352.jpg
+8065 138.Tree_Swallow/Tree_Swallow_0111_135253.jpg
+8066 138.Tree_Swallow/Tree_Swallow_0103_137272.jpg
+8067 138.Tree_Swallow/Tree_Swallow_0002_136792.jpg
+8068 138.Tree_Swallow/Tree_Swallow_0082_135006.jpg
+8069 138.Tree_Swallow/Tree_Swallow_0083_136800.jpg
+8070 138.Tree_Swallow/Tree_Swallow_0109_135272.jpg
+8071 138.Tree_Swallow/Tree_Swallow_0066_135788.jpg
+8072 138.Tree_Swallow/Tree_Swallow_0016_135549.jpg
+8073 138.Tree_Swallow/Tree_Swallow_0039_135038.jpg
+8074 138.Tree_Swallow/Tree_Swallow_0064_136322.jpg
+8075 138.Tree_Swallow/Tree_Swallow_0105_134648.jpg
+8076 138.Tree_Swallow/Tree_Swallow_0015_134790.jpg
+8077 138.Tree_Swallow/Tree_Swallow_0037_134647.jpg
+8078 138.Tree_Swallow/Tree_Swallow_0087_137354.jpg
+8079 138.Tree_Swallow/Tree_Swallow_0020_136587.jpg
+8081 138.Tree_Swallow/Tree_Swallow_0113_136849.jpg
+8082 138.Tree_Swallow/Tree_Swallow_0095_135829.jpg
+8084 138.Tree_Swallow/Tree_Swallow_0115_135832.jpg
+8085 138.Tree_Swallow/Tree_Swallow_0108_135068.jpg
+8086 138.Tree_Swallow/Tree_Swallow_0090_135325.jpg
+8087 138.Tree_Swallow/Tree_Swallow_0075_136081.jpg
+8088 138.Tree_Swallow/Tree_Swallow_0091_136870.jpg
+8089 138.Tree_Swallow/Tree_Swallow_0019_137073.jpg
+8090 138.Tree_Swallow/Tree_Swallow_0043_136878.jpg
+8091 138.Tree_Swallow/Tree_Swallow_0023_135345.jpg
+8092 138.Tree_Swallow/Tree_Swallow_0004_135411.jpg
+8093 138.Tree_Swallow/Tree_Swallow_0050_135104.jpg
+8095 138.Tree_Swallow/Tree_Swallow_0042_136401.jpg
+8096 138.Tree_Swallow/Tree_Swallow_0062_137426.jpg
+8097 138.Tree_Swallow/Tree_Swallow_0110_136921.jpg
+8099 138.Tree_Swallow/Tree_Swallow_0127_135912.jpg
+8100 138.Tree_Swallow/Tree_Swallow_0056_135079.jpg
+8103 138.Tree_Swallow/Tree_Swallow_0041_136439.jpg
+8104 138.Tree_Swallow/Tree_Swallow_0102_135061.jpg
+8105 138.Tree_Swallow/Tree_Swallow_0073_134997.jpg
+8106 139.Scarlet_Tanager/Scarlet_Tanager_0116_138242.jpg
+8111 139.Scarlet_Tanager/Scarlet_Tanager_0068_137758.jpg
+8112 139.Scarlet_Tanager/Scarlet_Tanager_0086_138272.jpg
+8113 139.Scarlet_Tanager/Scarlet_Tanager_0110_138274.jpg
+8114 139.Scarlet_Tanager/Scarlet_Tanager_0089_138281.jpg
+8116 139.Scarlet_Tanager/Scarlet_Tanager_0119_138291.jpg
+8117 139.Scarlet_Tanager/Scarlet_Tanager_0018_138294.jpg
+8118 139.Scarlet_Tanager/Scarlet_Tanager_0099_137783.jpg
+8119 139.Scarlet_Tanager/Scarlet_Tanager_0014_138298.jpg
+8120 139.Scarlet_Tanager/Scarlet_Tanager_0120_138344.jpg
+8126 139.Scarlet_Tanager/Scarlet_Tanager_0087_137937.jpg
+8127 139.Scarlet_Tanager/Scarlet_Tanager_0017_138484.jpg
+8128 139.Scarlet_Tanager/Scarlet_Tanager_0082_137978.jpg
+8129 139.Scarlet_Tanager/Scarlet_Tanager_0083_138500.jpg
+8130 139.Scarlet_Tanager/Scarlet_Tanager_0021_138199.jpg
+8132 139.Scarlet_Tanager/Scarlet_Tanager_0100_138006.jpg
+8133 139.Scarlet_Tanager/Scarlet_Tanager_0016_138008.jpg
+8134 139.Scarlet_Tanager/Scarlet_Tanager_0039_138010.jpg
+8135 139.Scarlet_Tanager/Scarlet_Tanager_0096_138022.jpg
+8136 139.Scarlet_Tanager/Scarlet_Tanager_0022_138049.jpg
+8137 139.Scarlet_Tanager/Scarlet_Tanager_0054_138210.jpg
+8138 139.Scarlet_Tanager/Scarlet_Tanager_0107_138577.jpg
+8139 139.Scarlet_Tanager/Scarlet_Tanager_0009_138076.jpg
+8140 139.Scarlet_Tanager/Scarlet_Tanager_0073_138108.jpg
+8141 139.Scarlet_Tanager/Scarlet_Tanager_0075_137602.jpg
+8142 139.Scarlet_Tanager/Scarlet_Tanager_0033_137603.jpg
+8143 139.Scarlet_Tanager/Scarlet_Tanager_0008_137607.jpg
+8144 139.Scarlet_Tanager/Scarlet_Tanager_0095_137618.jpg
+8146 139.Scarlet_Tanager/Scarlet_Tanager_0130_138661.jpg
+8147 139.Scarlet_Tanager/Scarlet_Tanager_0079_138669.jpg
+8148 139.Scarlet_Tanager/Scarlet_Tanager_0065_138683.jpg
+8149 139.Scarlet_Tanager/Scarlet_Tanager_0092_138688.jpg
+8150 139.Scarlet_Tanager/Scarlet_Tanager_0112_138695.jpg
+8151 139.Scarlet_Tanager/Scarlet_Tanager_0055_138186.jpg
+8152 139.Scarlet_Tanager/Scarlet_Tanager_0038_138198.jpg
+8153 139.Scarlet_Tanager/Scarlet_Tanager_0128_138711.jpg
+8154 139.Scarlet_Tanager/Scarlet_Tanager_0025_138712.jpg
+8155 139.Scarlet_Tanager/Scarlet_Tanager_0109_137698.jpg
+8156 139.Scarlet_Tanager/Scarlet_Tanager_0135_137699.jpg
+8157 139.Scarlet_Tanager/Scarlet_Tanager_0076_137702.jpg
+8158 139.Scarlet_Tanager/Scarlet_Tanager_0090_137703.jpg
+8159 139.Scarlet_Tanager/Scarlet_Tanager_0043_138236.jpg
+8161 139.Scarlet_Tanager/Scarlet_Tanager_0024_137712.jpg
+8163 139.Scarlet_Tanager/Scarlet_Tanager_0131_138740.jpg
+8164 139.Scarlet_Tanager/Scarlet_Tanager_0097_137717.jpg
+8165 139.Scarlet_Tanager/Scarlet_Tanager_0003_137724.jpg
+8167 140.Summer_Tanager/Summer_Tanager_0034_139781.jpg
+8168 140.Summer_Tanager/Summer_Tanager_0071_140289.jpg
+8169 140.Summer_Tanager/Summer_Tanager_0097_140042.jpg
+8170 140.Summer_Tanager/Summer_Tanager_0109_139522.jpg
+8172 140.Summer_Tanager/Summer_Tanager_0018_139290.jpg
+8173 140.Summer_Tanager/Summer_Tanager_0052_139804.jpg
+8174 140.Summer_Tanager/Summer_Tanager_0127_139297.jpg
+8175 140.Summer_Tanager/Summer_Tanager_0059_140582.jpg
+8176 140.Summer_Tanager/Summer_Tanager_0101_139441.jpg
+8177 140.Summer_Tanager/Summer_Tanager_0035_139561.jpg
+8178 140.Summer_Tanager/Summer_Tanager_0037_140330.jpg
+8179 140.Summer_Tanager/Summer_Tanager_0099_139310.jpg
+8180 140.Summer_Tanager/Summer_Tanager_0025_139320.jpg
+8186 140.Summer_Tanager/Summer_Tanager_0023_139859.jpg
+8187 140.Summer_Tanager/Summer_Tanager_0111_139605.jpg
+8188 140.Summer_Tanager/Summer_Tanager_0094_139351.jpg
+8189 140.Summer_Tanager/Summer_Tanager_0062_140633.jpg
+8191 140.Summer_Tanager/Summer_Tanager_0068_139875.jpg
+8193 140.Summer_Tanager/Summer_Tanager_0006_140137.jpg
+8195 140.Summer_Tanager/Summer_Tanager_0038_139371.jpg
+8196 140.Summer_Tanager/Summer_Tanager_0043_139884.jpg
+8197 140.Summer_Tanager/Summer_Tanager_0073_139379.jpg
+8201 140.Summer_Tanager/Summer_Tanager_0125_139399.jpg
+8202 140.Summer_Tanager/Summer_Tanager_0032_140425.jpg
+8203 140.Summer_Tanager/Summer_Tanager_0004_139916.jpg
+8204 140.Summer_Tanager/Summer_Tanager_0017_140173.jpg
+8205 140.Summer_Tanager/Summer_Tanager_0116_139923.jpg
+8206 140.Summer_Tanager/Summer_Tanager_0001_139289.jpg
+8208 140.Summer_Tanager/Summer_Tanager_0046_139802.jpg
+8209 140.Summer_Tanager/Summer_Tanager_0058_139427.jpg
+8210 140.Summer_Tanager/Summer_Tanager_0069_139941.jpg
+8217 140.Summer_Tanager/Summer_Tanager_0030_139210.jpg
+8219 140.Summer_Tanager/Summer_Tanager_0088_139473.jpg
+8224 140.Summer_Tanager/Summer_Tanager_0115_139253.jpg
+8226 141.Artic_Tern/Artic_Tern_0032_141313.jpg
+8228 141.Artic_Tern/Artic_Tern_0035_143366.jpg
+8229 141.Artic_Tern/Artic_Tern_0085_142083.jpg
+8231 141.Artic_Tern/Artic_Tern_0056_141858.jpg
+8232 141.Artic_Tern/Artic_Tern_0048_142372.jpg
+8234 141.Artic_Tern/Artic_Tern_0059_141876.jpg
+8235 141.Artic_Tern/Artic_Tern_0093_141880.jpg
+8237 141.Artic_Tern/Artic_Tern_0039_141390.jpg
+8241 141.Artic_Tern/Artic_Tern_0026_141839.jpg
+8242 141.Artic_Tern/Artic_Tern_0019_141922.jpg
+8243 141.Artic_Tern/Artic_Tern_0127_142440.jpg
+8245 141.Artic_Tern/Artic_Tern_0021_143477.jpg
+8246 141.Artic_Tern/Artic_Tern_0102_141453.jpg
+8247 141.Artic_Tern/Artic_Tern_0065_141472.jpg
+8248 141.Artic_Tern/Artic_Tern_0060_141955.jpg
+8249 141.Artic_Tern/Artic_Tern_0023_140898.jpg
+8250 141.Artic_Tern/Artic_Tern_0046_140986.jpg
+8251 141.Artic_Tern/Artic_Tern_0047_143549.jpg
+8254 141.Artic_Tern/Artic_Tern_0117_143394.jpg
+8255 141.Artic_Tern/Artic_Tern_0055_141524.jpg
+8258 141.Artic_Tern/Artic_Tern_0073_143486.jpg
+8259 141.Artic_Tern/Artic_Tern_0105_141098.jpg
+8260 141.Artic_Tern/Artic_Tern_0142_142078.jpg
+8262 141.Artic_Tern/Artic_Tern_0083_141579.jpg
+8263 141.Artic_Tern/Artic_Tern_0133_141069.jpg
+8264 141.Artic_Tern/Artic_Tern_0101_141075.jpg
+8265 141.Artic_Tern/Artic_Tern_0111_143101.jpg
+8269 141.Artic_Tern/Artic_Tern_0122_142448.jpg
+8270 141.Artic_Tern/Artic_Tern_0044_142151.jpg
+8271 141.Artic_Tern/Artic_Tern_0089_141652.jpg
+8272 141.Artic_Tern/Artic_Tern_0037_141141.jpg
+8274 141.Artic_Tern/Artic_Tern_0099_141170.jpg
+8275 141.Artic_Tern/Artic_Tern_0014_141716.jpg
+8276 141.Artic_Tern/Artic_Tern_0107_141181.jpg
+8277 141.Artic_Tern/Artic_Tern_0029_142220.jpg
+8278 141.Artic_Tern/Artic_Tern_0024_143268.jpg
+8279 141.Artic_Tern/Artic_Tern_0063_142495.jpg
+8296 142.Black_Tern/Black_Tern_0096_143917.jpg
+8298 142.Black_Tern/Black_Tern_0014_143939.jpg
+8299 142.Black_Tern/Black_Tern_0029_144140.jpg
+8300 142.Black_Tern/Black_Tern_0094_144466.jpg
+8301 142.Black_Tern/Black_Tern_0103_143956.jpg
+8302 142.Black_Tern/Black_Tern_0061_143959.jpg
+8303 142.Black_Tern/Black_Tern_0063_144731.jpg
+8304 142.Black_Tern/Black_Tern_0008_143965.jpg
+8305 142.Black_Tern/Black_Tern_0046_144229.jpg
+8306 142.Black_Tern/Black_Tern_0015_143979.jpg
+8307 142.Black_Tern/Black_Tern_0058_143981.jpg
+8308 142.Black_Tern/Black_Tern_0023_143985.jpg
+8309 142.Black_Tern/Black_Tern_0099_144242.jpg
+8310 142.Black_Tern/Black_Tern_0064_143990.jpg
+8316 142.Black_Tern/Black_Tern_0044_144021.jpg
+8317 142.Black_Tern/Black_Tern_0032_144029.jpg
+8318 142.Black_Tern/Black_Tern_0070_144292.jpg
+8319 142.Black_Tern/Black_Tern_0104_144038.jpg
+8320 142.Black_Tern/Black_Tern_0024_144039.jpg
+8321 142.Black_Tern/Black_Tern_0009_144046.jpg
+8322 142.Black_Tern/Black_Tern_0066_144541.jpg
+8326 142.Black_Tern/Black_Tern_0033_144328.jpg
+8328 142.Black_Tern/Black_Tern_0101_144331.jpg
+8329 142.Black_Tern/Black_Tern_0083_144083.jpg
+8330 142.Black_Tern/Black_Tern_0073_144638.jpg
+8332 142.Black_Tern/Black_Tern_0102_144344.jpg
+8333 142.Black_Tern/Black_Tern_0098_144089.jpg
+8334 142.Black_Tern/Black_Tern_0012_144091.jpg
+8335 142.Black_Tern/Black_Tern_0055_144607.jpg
+8336 142.Black_Tern/Black_Tern_0038_144102.jpg
+8337 142.Black_Tern/Black_Tern_0041_144103.jpg
+8338 142.Black_Tern/Black_Tern_0034_144106.jpg
+8339 142.Black_Tern/Black_Tern_0037_144110.jpg
+8340 142.Black_Tern/Black_Tern_0077_144117.jpg
+8341 142.Black_Tern/Black_Tern_0097_144724.jpg
+8342 142.Black_Tern/Black_Tern_0105_144380.jpg
+8343 142.Black_Tern/Black_Tern_0010_144341.jpg
+8344 143.Caspian_Tern/Caspian_Tern_0015_145664.jpg
+8345 143.Caspian_Tern/Caspian_Tern_0024_146033.jpg
+8347 143.Caspian_Tern/Caspian_Tern_0115_145927.jpg
+8348 143.Caspian_Tern/Caspian_Tern_0102_145928.jpg
+8349 143.Caspian_Tern/Caspian_Tern_0005_145929.jpg
+8350 143.Caspian_Tern/Caspian_Tern_0051_145930.jpg
+8351 143.Caspian_Tern/Caspian_Tern_0069_145931.jpg
+8355 143.Caspian_Tern/Caspian_Tern_0109_145948.jpg
+8356 143.Caspian_Tern/Caspian_Tern_0010_145667.jpg
+8357 143.Caspian_Tern/Caspian_Tern_0074_145964.jpg
+8358 143.Caspian_Tern/Caspian_Tern_0105_145673.jpg
+8361 143.Caspian_Tern/Caspian_Tern_0101_145164.jpg
+8363 143.Caspian_Tern/Caspian_Tern_0066_147680.jpg
+8364 143.Caspian_Tern/Caspian_Tern_0119_145492.jpg
+8365 143.Caspian_Tern/Caspian_Tern_0060_146007.jpg
+8366 143.Caspian_Tern/Caspian_Tern_0070_147545.jpg
+8367 143.Caspian_Tern/Caspian_Tern_0018_146010.jpg
+8368 143.Caspian_Tern/Caspian_Tern_0049_145755.jpg
+8372 143.Caspian_Tern/Caspian_Tern_0108_145278.jpg
+8373 143.Caspian_Tern/Caspian_Tern_0029_147589.jpg
+8374 143.Caspian_Tern/Caspian_Tern_0011_146058.jpg
+8377 143.Caspian_Tern/Caspian_Tern_0045_145554.jpg
+8378 143.Caspian_Tern/Caspian_Tern_0078_146824.jpg
+8379 143.Caspian_Tern/Caspian_Tern_0009_145057.jpg
+8380 143.Caspian_Tern/Caspian_Tern_0063_146082.jpg
+8381 143.Caspian_Tern/Caspian_Tern_0059_145582.jpg
+8382 143.Caspian_Tern/Caspian_Tern_0012_147632.jpg
+8383 143.Caspian_Tern/Caspian_Tern_0068_146615.jpg
+8385 143.Caspian_Tern/Caspian_Tern_0034_147643.jpg
+8389 143.Caspian_Tern/Caspian_Tern_0022_144922.jpg
+8390 143.Caspian_Tern/Caspian_Tern_0116_145607.jpg
+8391 143.Caspian_Tern/Caspian_Tern_0075_147650.jpg
+8392 143.Caspian_Tern/Caspian_Tern_0114_145612.jpg
+8393 143.Caspian_Tern/Caspian_Tern_0067_145107.jpg
+8394 143.Caspian_Tern/Caspian_Tern_0046_145627.jpg
+8395 143.Caspian_Tern/Caspian_Tern_0058_145886.jpg
+8396 143.Caspian_Tern/Caspian_Tern_0054_145890.jpg
+8397 143.Caspian_Tern/Caspian_Tern_0026_145125.jpg
+8398 143.Caspian_Tern/Caspian_Tern_0107_145639.jpg
+8399 143.Caspian_Tern/Caspian_Tern_0014_145640.jpg
+8400 143.Caspian_Tern/Caspian_Tern_0027_145899.jpg
+8402 143.Caspian_Tern/Caspian_Tern_0072_147667.jpg
+8403 143.Caspian_Tern/Caspian_Tern_0023_147194.jpg
+8404 144.Common_Tern/Common_Tern_0040_147973.jpg
+8405 144.Common_Tern/Common_Tern_0019_149769.jpg
+8406 144.Common_Tern/Common_Tern_0084_147980.jpg
+8407 144.Common_Tern/Common_Tern_0025_147728.jpg
+8409 144.Common_Tern/Common_Tern_0067_149540.jpg
+8410 144.Common_Tern/Common_Tern_0100_149541.jpg
+8411 144.Common_Tern/Common_Tern_0043_147753.jpg
+8415 144.Common_Tern/Common_Tern_0054_148028.jpg
+8424 144.Common_Tern/Common_Tern_0027_150113.jpg
+8425 144.Common_Tern/Common_Tern_0028_150117.jpg
+8427 144.Common_Tern/Common_Tern_0079_148844.jpg
+8428 144.Common_Tern/Common_Tern_0087_147945.jpg
+8429 144.Common_Tern/Common_Tern_0070_150292.jpg
+8434 144.Common_Tern/Common_Tern_0055_149486.jpg
+8436 144.Common_Tern/Common_Tern_0071_148796.jpg
+8437 144.Common_Tern/Common_Tern_0049_149159.jpg
+8438 144.Common_Tern/Common_Tern_0108_149672.jpg
+8439 144.Common_Tern/Common_Tern_0078_149161.jpg
+8440 144.Common_Tern/Common_Tern_0106_149345.jpg
+8442 144.Common_Tern/Common_Tern_0042_147897.jpg
+8445 144.Common_Tern/Common_Tern_0033_148675.jpg
+8453 144.Common_Tern/Common_Tern_0085_147937.jpg
+8455 144.Common_Tern/Common_Tern_0014_149194.jpg
+8457 144.Common_Tern/Common_Tern_0115_149482.jpg
+8458 144.Common_Tern/Common_Tern_0076_148391.jpg
+8459 144.Common_Tern/Common_Tern_0081_149228.jpg
+8460 144.Common_Tern/Common_Tern_0113_147949.jpg
+8461 144.Common_Tern/Common_Tern_0057_149749.jpg
+8462 144.Common_Tern/Common_Tern_0053_148472.jpg
+8463 144.Common_Tern/Common_Tern_0012_148477.jpg
+8464 145.Elegant_Tern/Elegant_Tern_0093_150534.jpg
+8465 145.Elegant_Tern/Elegant_Tern_0080_150538.jpg
+8466 145.Elegant_Tern/Elegant_Tern_0032_150488.jpg
+8470 145.Elegant_Tern/Elegant_Tern_0034_45914.jpg
+8473 145.Elegant_Tern/Elegant_Tern_0088_151089.jpg
+8476 145.Elegant_Tern/Elegant_Tern_0024_150852.jpg
+8477 145.Elegant_Tern/Elegant_Tern_0058_150853.jpg
+8478 145.Elegant_Tern/Elegant_Tern_0089_150854.jpg
+8479 145.Elegant_Tern/Elegant_Tern_0066_150864.jpg
+8481 145.Elegant_Tern/Elegant_Tern_0106_150872.jpg
+8482 145.Elegant_Tern/Elegant_Tern_0063_150873.jpg
+8483 145.Elegant_Tern/Elegant_Tern_0070_147548.jpg
+8484 145.Elegant_Tern/Elegant_Tern_0047_150626.jpg
+8485 145.Elegant_Tern/Elegant_Tern_0090_45924.jpg
+8487 145.Elegant_Tern/Elegant_Tern_0023_150654.jpg
+8488 145.Elegant_Tern/Elegant_Tern_0072_150911.jpg
+8489 145.Elegant_Tern/Elegant_Tern_0053_150507.jpg
+8490 145.Elegant_Tern/Elegant_Tern_0084_150922.jpg
+8491 145.Elegant_Tern/Elegant_Tern_0073_150925.jpg
+8492 145.Elegant_Tern/Elegant_Tern_0067_151185.jpg
+8493 145.Elegant_Tern/Elegant_Tern_0042_150851.jpg
+8494 145.Elegant_Tern/Elegant_Tern_0008_145044.jpg
+8495 145.Elegant_Tern/Elegant_Tern_0099_150682.jpg
+8496 145.Elegant_Tern/Elegant_Tern_0078_151196.jpg
+8498 145.Elegant_Tern/Elegant_Tern_0004_150948.jpg
+8499 145.Elegant_Tern/Elegant_Tern_0048_150693.jpg
+8500 145.Elegant_Tern/Elegant_Tern_0052_150695.jpg
+8501 145.Elegant_Tern/Elegant_Tern_0079_150953.jpg
+8502 145.Elegant_Tern/Elegant_Tern_0009_150954.jpg
+8503 145.Elegant_Tern/Elegant_Tern_0107_150960.jpg
+8504 145.Elegant_Tern/Elegant_Tern_0006_150963.jpg
+8505 145.Elegant_Tern/Elegant_Tern_0005_150708.jpg
+8506 145.Elegant_Tern/Elegant_Tern_0101_150715.jpg
+8508 145.Elegant_Tern/Elegant_Tern_0039_150944.jpg
+8509 145.Elegant_Tern/Elegant_Tern_0044_150946.jpg
+8510 145.Elegant_Tern/Elegant_Tern_0050_150521.jpg
+8511 145.Elegant_Tern/Elegant_Tern_0035_150744.jpg
+8512 145.Elegant_Tern/Elegant_Tern_0103_150493.jpg
+8513 145.Elegant_Tern/Elegant_Tern_0029_150494.jpg
+8515 145.Elegant_Tern/Elegant_Tern_0061_150524.jpg
+8521 145.Elegant_Tern/Elegant_Tern_0014_150523.jpg
+8522 145.Elegant_Tern/Elegant_Tern_0074_151036.jpg
+8523 145.Elegant_Tern/Elegant_Tern_0068_150526.jpg
+8524 146.Forsters_Tern/Forsters_Tern_0012_151558.jpg
+8526 146.Forsters_Tern/Forsters_Tern_0118_151564.jpg
+8527 146.Forsters_Tern/Forsters_Tern_0068_152078.jpg
+8529 146.Forsters_Tern/Forsters_Tern_0109_152094.jpg
+8530 146.Forsters_Tern/Forsters_Tern_0076_151330.jpg
+8531 146.Forsters_Tern/Forsters_Tern_0043_151332.jpg
+8533 146.Forsters_Tern/Forsters_Tern_0007_152110.jpg
+8534 146.Forsters_Tern/Forsters_Tern_0089_152372.jpg
+8536 146.Forsters_Tern/Forsters_Tern_0002_151622.jpg
+8537 146.Forsters_Tern/Forsters_Tern_0071_152142.jpg
+8538 146.Forsters_Tern/Forsters_Tern_0049_151631.jpg
+8539 146.Forsters_Tern/Forsters_Tern_0041_149586.jpg
+8541 146.Forsters_Tern/Forsters_Tern_0091_151895.jpg
+8542 146.Forsters_Tern/Forsters_Tern_0032_151384.jpg
+8543 146.Forsters_Tern/Forsters_Tern_0121_151385.jpg
+8544 146.Forsters_Tern/Forsters_Tern_0104_152666.jpg
+8550 146.Forsters_Tern/Forsters_Tern_0053_152175.jpg
+8551 146.Forsters_Tern/Forsters_Tern_0017_152696.jpg
+8552 146.Forsters_Tern/Forsters_Tern_0082_151937.jpg
+8554 146.Forsters_Tern/Forsters_Tern_0116_151688.jpg
+8555 146.Forsters_Tern/Forsters_Tern_0065_152206.jpg
+8557 146.Forsters_Tern/Forsters_Tern_0127_150418.jpg
+8559 146.Forsters_Tern/Forsters_Tern_0027_151456.jpg
+8560 146.Forsters_Tern/Forsters_Tern_0086_152738.jpg
+8561 146.Forsters_Tern/Forsters_Tern_0097_151731.jpg
+8562 146.Forsters_Tern/Forsters_Tern_0066_151478.jpg
+8563 146.Forsters_Tern/Forsters_Tern_0087_151226.jpg
+8564 146.Forsters_Tern/Forsters_Tern_0045_151227.jpg
+8565 146.Forsters_Tern/Forsters_Tern_0029_151228.jpg
+8566 146.Forsters_Tern/Forsters_Tern_0069_151229.jpg
+8569 146.Forsters_Tern/Forsters_Tern_0075_152258.jpg
+8570 146.Forsters_Tern/Forsters_Tern_0080_152521.jpg
+8571 146.Forsters_Tern/Forsters_Tern_0010_151243.jpg
+8572 146.Forsters_Tern/Forsters_Tern_0035_151757.jpg
+8573 146.Forsters_Tern/Forsters_Tern_0126_151257.jpg
+8574 146.Forsters_Tern/Forsters_Tern_0100_151774.jpg
+8575 146.Forsters_Tern/Forsters_Tern_0003_151547.jpg
+8576 146.Forsters_Tern/Forsters_Tern_0062_151780.jpg
+8577 146.Forsters_Tern/Forsters_Tern_0059_151269.jpg
+8578 146.Forsters_Tern/Forsters_Tern_0099_152529.jpg
+8580 146.Forsters_Tern/Forsters_Tern_0095_152067.jpg
+8581 146.Forsters_Tern/Forsters_Tern_0083_151282.jpg
+8582 146.Forsters_Tern/Forsters_Tern_0004_152358.jpg
+8584 147.Least_Tern/Least_Tern_0109_154127.jpg
+8585 147.Least_Tern/Least_Tern_0016_153560.jpg
+8586 147.Least_Tern/Least_Tern_0127_154141.jpg
+8587 147.Least_Tern/Least_Tern_0067_154145.jpg
+8588 147.Least_Tern/Least_Tern_0095_154680.jpg
+8589 147.Least_Tern/Least_Tern_0036_153658.jpg
+8590 147.Least_Tern/Least_Tern_0007_153661.jpg
+8591 147.Least_Tern/Least_Tern_0025_153678.jpg
+8592 147.Least_Tern/Least_Tern_0075_153691.jpg
+8593 147.Least_Tern/Least_Tern_0026_153702.jpg
+8594 147.Least_Tern/Least_Tern_0116_153715.jpg
+8595 147.Least_Tern/Least_Tern_0011_153722.jpg
+8602 147.Least_Tern/Least_Tern_0062_153259.jpg
+8604 147.Least_Tern/Least_Tern_0028_153781.jpg
+8607 147.Least_Tern/Least_Tern_0133_153816.jpg
+8608 147.Least_Tern/Least_Tern_0098_153820.jpg
+8610 147.Least_Tern/Least_Tern_0008_153313.jpg
+8611 147.Least_Tern/Least_Tern_0024_153317.jpg
+8612 147.Least_Tern/Least_Tern_0114_153840.jpg
+8613 147.Least_Tern/Least_Tern_0096_153868.jpg
+8614 147.Least_Tern/Least_Tern_0012_153871.jpg
+8615 147.Least_Tern/Least_Tern_0092_153361.jpg
+8616 147.Least_Tern/Least_Tern_0082_154396.jpg
+8618 147.Least_Tern/Least_Tern_0132_154149.jpg
+8620 147.Least_Tern/Least_Tern_0089_152912.jpg
+8622 147.Least_Tern/Least_Tern_0035_152932.jpg
+8623 147.Least_Tern/Least_Tern_0129_153449.jpg
+8624 147.Least_Tern/Least_Tern_0034_153963.jpg
+8625 147.Least_Tern/Least_Tern_0056_153965.jpg
+8626 147.Least_Tern/Least_Tern_0020_153458.jpg
+8627 147.Least_Tern/Least_Tern_0100_153461.jpg
+8628 147.Least_Tern/Least_Tern_0104_152950.jpg
+8629 147.Least_Tern/Least_Tern_0021_153979.jpg
+8630 147.Least_Tern/Least_Tern_0041_153470.jpg
+8631 147.Least_Tern/Least_Tern_0131_153983.jpg
+8632 147.Least_Tern/Least_Tern_0006_153921.jpg
+8633 147.Least_Tern/Least_Tern_0125_153996.jpg
+8635 147.Least_Tern/Least_Tern_0052_154021.jpg
+8637 147.Least_Tern/Least_Tern_0122_153012.jpg
+8638 147.Least_Tern/Least_Tern_0048_153550.jpg
+8639 147.Least_Tern/Least_Tern_0040_153039.jpg
+8640 147.Least_Tern/Least_Tern_0029_154064.jpg
+8641 147.Least_Tern/Least_Tern_0050_153254.jpg
+8642 147.Least_Tern/Least_Tern_0112_153074.jpg
+8643 147.Least_Tern/Least_Tern_0038_153087.jpg
+8645 148.Green_tailed_Towhee/Green_Tailed_Towhee_0061_154880.jpg
+8646 148.Green_tailed_Towhee/Green_Tailed_Towhee_0099_154882.jpg
+8648 148.Green_tailed_Towhee/Green_Tailed_Towhee_0069_797441.jpg
+8649 148.Green_tailed_Towhee/Green_Tailed_Towhee_0035_154888.jpg
+8650 148.Green_tailed_Towhee/Green_Tailed_Towhee_0022_154892.jpg
+8651 148.Green_tailed_Towhee/Green_Tailed_Towhee_0050_154898.jpg
+8652 148.Green_tailed_Towhee/Green_Tailed_Towhee_0101_154907.jpg
+8655 148.Green_tailed_Towhee/Green_Tailed_Towhee_0044_154934.jpg
+8657 148.Green_tailed_Towhee/Green_Tailed_Towhee_0096_154945.jpg
+8659 148.Green_tailed_Towhee/Green_Tailed_Towhee_0004_154951.jpg
+8660 148.Green_tailed_Towhee/Green_Tailed_Towhee_0100_154966.jpg
+8661 148.Green_tailed_Towhee/Green_Tailed_Towhee_0046_154967.jpg
+8662 148.Green_tailed_Towhee/Green_Tailed_Towhee_0024_154855.jpg
+8664 148.Green_tailed_Towhee/Green_Tailed_Towhee_0079_154764.jpg
+8665 148.Green_tailed_Towhee/Green_Tailed_Towhee_0051_154768.jpg
+8668 148.Green_tailed_Towhee/Green_Tailed_Towhee_0068_154783.jpg
+8670 148.Green_tailed_Towhee/Green_Tailed_Towhee_0042_154801.jpg
+8671 148.Green_tailed_Towhee/Green_Tailed_Towhee_0039_154802.jpg
+8672 148.Green_tailed_Towhee/Green_Tailed_Towhee_0053_154921.jpg
+8673 148.Green_tailed_Towhee/Green_Tailed_Towhee_0060_154820.jpg
+8674 148.Green_tailed_Towhee/Green_Tailed_Towhee_0043_797430.jpg
+8675 148.Green_tailed_Towhee/Green_Tailed_Towhee_0085_154822.jpg
+8676 148.Green_tailed_Towhee/Green_Tailed_Towhee_0027_154823.jpg
+8677 148.Green_tailed_Towhee/Green_Tailed_Towhee_0018_154825.jpg
+8678 148.Green_tailed_Towhee/Green_Tailed_Towhee_0082_797395.jpg
+8679 148.Green_tailed_Towhee/Green_Tailed_Towhee_0094_797396.jpg
+8680 148.Green_tailed_Towhee/Green_Tailed_Towhee_0092_797397.jpg
+8681 148.Green_tailed_Towhee/Green_Tailed_Towhee_0058_797399.jpg
+8683 148.Green_tailed_Towhee/Green_Tailed_Towhee_0025_797401.jpg
+8685 148.Green_tailed_Towhee/Green_Tailed_Towhee_0070_154844.jpg
+8686 148.Green_tailed_Towhee/Green_Tailed_Towhee_0037_797405.jpg
+8687 148.Green_tailed_Towhee/Green_Tailed_Towhee_0011_797410.jpg
+8688 148.Green_tailed_Towhee/Green_Tailed_Towhee_0012_797435.jpg
+8689 148.Green_tailed_Towhee/Green_Tailed_Towhee_0001_797412.jpg
+8690 148.Green_tailed_Towhee/Green_Tailed_Towhee_0003_797414.jpg
+8696 148.Green_tailed_Towhee/Green_Tailed_Towhee_0067_797426.jpg
+8697 148.Green_tailed_Towhee/Green_Tailed_Towhee_0110_154868.jpg
+8699 148.Green_tailed_Towhee/Green_Tailed_Towhee_0010_797431.jpg
+8700 148.Green_tailed_Towhee/Green_Tailed_Towhee_0090_797434.jpg
+8701 148.Green_tailed_Towhee/Green_Tailed_Towhee_0036_154875.jpg
+8702 148.Green_tailed_Towhee/Green_Tailed_Towhee_0105_797438.jpg
+8703 148.Green_tailed_Towhee/Green_Tailed_Towhee_0066_797439.jpg
+8704 149.Brown_Thrasher/Brown_Thrasher_0034_155139.jpg
+8705 149.Brown_Thrasher/Brown_Thrasher_0061_155140.jpg
+8711 149.Brown_Thrasher/Brown_Thrasher_0021_155160.jpg
+8712 149.Brown_Thrasher/Brown_Thrasher_0057_155164.jpg
+8713 149.Brown_Thrasher/Brown_Thrasher_0015_155165.jpg
+8714 149.Brown_Thrasher/Brown_Thrasher_0119_155170.jpg
+8715 149.Brown_Thrasher/Brown_Thrasher_0005_155176.jpg
+8717 149.Brown_Thrasher/Brown_Thrasher_0112_155183.jpg
+8718 149.Brown_Thrasher/Brown_Thrasher_0105_155187.jpg
+8719 149.Brown_Thrasher/Brown_Thrasher_0084_155189.jpg
+8720 149.Brown_Thrasher/Brown_Thrasher_0127_155193.jpg
+8721 149.Brown_Thrasher/Brown_Thrasher_0126_155199.jpg
+8722 149.Brown_Thrasher/Brown_Thrasher_0080_155200.jpg
+8724 149.Brown_Thrasher/Brown_Thrasher_0019_155216.jpg
+8726 149.Brown_Thrasher/Brown_Thrasher_0020_155223.jpg
+8728 149.Brown_Thrasher/Brown_Thrasher_0010_155231.jpg
+8730 149.Brown_Thrasher/Brown_Thrasher_0052_155254.jpg
+8731 149.Brown_Thrasher/Brown_Thrasher_0081_155256.jpg
+8734 149.Brown_Thrasher/Brown_Thrasher_0013_155329.jpg
+8735 149.Brown_Thrasher/Brown_Thrasher_0132_155337.jpg
+8742 149.Brown_Thrasher/Brown_Thrasher_0011_155370.jpg
+8743 149.Brown_Thrasher/Brown_Thrasher_0073_155376.jpg
+8746 149.Brown_Thrasher/Brown_Thrasher_0072_155406.jpg
+8748 149.Brown_Thrasher/Brown_Thrasher_0092_155415.jpg
+8749 149.Brown_Thrasher/Brown_Thrasher_0014_155421.jpg
+8750 149.Brown_Thrasher/Brown_Thrasher_0026_155438.jpg
+8757 149.Brown_Thrasher/Brown_Thrasher_0049_155110.jpg
+8760 149.Brown_Thrasher/Brown_Thrasher_0063_155127.jpg
+8766 150.Sage_Thrasher/Sage_Thrasher_0040_155667.jpg
+8767 150.Sage_Thrasher/Sage_Thrasher_0018_796443.jpg
+8768 150.Sage_Thrasher/Sage_Thrasher_0036_796444.jpg
+8769 150.Sage_Thrasher/Sage_Thrasher_0076_796445.jpg
+8770 150.Sage_Thrasher/Sage_Thrasher_0095_796446.jpg
+8771 150.Sage_Thrasher/Sage_Thrasher_0098_796448.jpg
+8772 150.Sage_Thrasher/Sage_Thrasher_0039_796449.jpg
+8773 150.Sage_Thrasher/Sage_Thrasher_0083_796450.jpg
+8774 150.Sage_Thrasher/Sage_Thrasher_0031_796455.jpg
+8775 150.Sage_Thrasher/Sage_Thrasher_0056_796457.jpg
+8776 150.Sage_Thrasher/Sage_Thrasher_0029_796459.jpg
+8777 150.Sage_Thrasher/Sage_Thrasher_0062_796462.jpg
+8780 150.Sage_Thrasher/Sage_Thrasher_0022_155447.jpg
+8784 150.Sage_Thrasher/Sage_Thrasher_0002_155455.jpg
+8785 150.Sage_Thrasher/Sage_Thrasher_0090_155713.jpg
+8786 150.Sage_Thrasher/Sage_Thrasher_0079_155718.jpg
+8787 150.Sage_Thrasher/Sage_Thrasher_0051_155464.jpg
+8788 150.Sage_Thrasher/Sage_Thrasher_0055_155467.jpg
+8789 150.Sage_Thrasher/Sage_Thrasher_0081_155724.jpg
+8790 150.Sage_Thrasher/Sage_Thrasher_0060_155728.jpg
+8793 150.Sage_Thrasher/Sage_Thrasher_0006_155478.jpg
+8794 150.Sage_Thrasher/Sage_Thrasher_0092_155482.jpg
+8795 150.Sage_Thrasher/Sage_Thrasher_0057_155488.jpg
+8801 150.Sage_Thrasher/Sage_Thrasher_0104_155529.jpg
+8802 150.Sage_Thrasher/Sage_Thrasher_0064_155531.jpg
+8804 150.Sage_Thrasher/Sage_Thrasher_0014_155541.jpg
+8806 150.Sage_Thrasher/Sage_Thrasher_0021_155548.jpg
+8807 150.Sage_Thrasher/Sage_Thrasher_0061_155462.jpg
+8809 150.Sage_Thrasher/Sage_Thrasher_0009_155463.jpg
+8810 150.Sage_Thrasher/Sage_Thrasher_0019_107436.jpg
+8811 150.Sage_Thrasher/Sage_Thrasher_0016_155566.jpg
+8812 150.Sage_Thrasher/Sage_Thrasher_0005_155569.jpg
+8813 150.Sage_Thrasher/Sage_Thrasher_0043_155574.jpg
+8814 150.Sage_Thrasher/Sage_Thrasher_0103_155575.jpg
+8816 150.Sage_Thrasher/Sage_Thrasher_0077_155608.jpg
+8817 150.Sage_Thrasher/Sage_Thrasher_0044_155610.jpg
+8818 150.Sage_Thrasher/Sage_Thrasher_0073_155614.jpg
+8819 150.Sage_Thrasher/Sage_Thrasher_0106_155618.jpg
+8820 150.Sage_Thrasher/Sage_Thrasher_0071_155642.jpg
+8822 150.Sage_Thrasher/Sage_Thrasher_0026_155646.jpg
+8824 151.Black_capped_Vireo/Black_Capped_Vireo_0044_155819.jpg
+8826 151.Black_capped_Vireo/Black_Capped_Vireo_0034_797448.jpg
+8827 151.Black_capped_Vireo/Black_Capped_Vireo_0048_797449.jpg
+8830 151.Black_capped_Vireo/Black_Capped_Vireo_0041_797452.jpg
+8832 151.Black_capped_Vireo/Black_Capped_Vireo_0008_797454.jpg
+8836 151.Black_capped_Vireo/Black_Capped_Vireo_0022_797459.jpg
+8838 151.Black_capped_Vireo/Black_Capped_Vireo_0014_797462.jpg
+8839 151.Black_capped_Vireo/Black_Capped_Vireo_0028_155799.jpg
+8840 151.Black_capped_Vireo/Black_Capped_Vireo_0045_797464.jpg
+8841 151.Black_capped_Vireo/Black_Capped_Vireo_0038_797465.jpg
+8843 151.Black_capped_Vireo/Black_Capped_Vireo_0003_797467.jpg
+8844 151.Black_capped_Vireo/Black_Capped_Vireo_0049_797468.jpg
+8845 151.Black_capped_Vireo/Black_Capped_Vireo_0029_797469.jpg
+8853 151.Black_capped_Vireo/Black_Capped_Vireo_0013_155815.jpg
+8854 151.Black_capped_Vireo/Black_Capped_Vireo_0021_797480.jpg
+8855 151.Black_capped_Vireo/Black_Capped_Vireo_0007_797481.jpg
+8856 151.Black_capped_Vireo/Black_Capped_Vireo_0042_797483.jpg
+8857 151.Black_capped_Vireo/Black_Capped_Vireo_0023_797486.jpg
+8858 151.Black_capped_Vireo/Black_Capped_Vireo_0052_797487.jpg
+8859 151.Black_capped_Vireo/Black_Capped_Vireo_0011_797488.jpg
+8860 151.Black_capped_Vireo/Black_Capped_Vireo_0016_797489.jpg
+8861 151.Black_capped_Vireo/Black_Capped_Vireo_0006_797491.jpg
+8863 151.Black_capped_Vireo/Black_Capped_Vireo_0009_797493.jpg
+8864 151.Black_capped_Vireo/Black_Capped_Vireo_0046_797494.jpg
+8865 151.Black_capped_Vireo/Black_Capped_Vireo_0037_797495.jpg
+8866 151.Black_capped_Vireo/Black_Capped_Vireo_0010_155832.jpg
+8867 151.Black_capped_Vireo/Black_Capped_Vireo_0050_155836.jpg
+8868 151.Black_capped_Vireo/Black_Capped_Vireo_0030_155861.jpg
+8869 151.Black_capped_Vireo/Black_Capped_Vireo_0040_797463.jpg
+8871 151.Black_capped_Vireo/Black_Capped_Vireo_0047_155743.jpg
+8874 152.Blue_headed_Vireo/Blue_Headed_Vireo_0088_156416.jpg
+8876 152.Blue_headed_Vireo/Blue_Headed_Vireo_0012_156434.jpg
+8877 152.Blue_headed_Vireo/Blue_Headed_Vireo_0075_156181.jpg
+8878 152.Blue_headed_Vireo/Blue_Headed_Vireo_0025_156439.jpg
+8880 152.Blue_headed_Vireo/Blue_Headed_Vireo_0123_156443.jpg
+8881 152.Blue_headed_Vireo/Blue_Headed_Vireo_0020_155994.jpg
+8882 152.Blue_headed_Vireo/Blue_Headed_Vireo_0091_155934.jpg
+8883 152.Blue_headed_Vireo/Blue_Headed_Vireo_0118_156193.jpg
+8886 152.Blue_headed_Vireo/Blue_Headed_Vireo_0101_156203.jpg
+8887 152.Blue_headed_Vireo/Blue_Headed_Vireo_0087_156461.jpg
+8888 152.Blue_headed_Vireo/Blue_Headed_Vireo_0008_155950.jpg
+8889 152.Blue_headed_Vireo/Blue_Headed_Vireo_0110_155952.jpg
+8891 152.Blue_headed_Vireo/Blue_Headed_Vireo_0037_155955.jpg
+8893 152.Blue_headed_Vireo/Blue_Headed_Vireo_0082_155965.jpg
+8894 152.Blue_headed_Vireo/Blue_Headed_Vireo_0068_156222.jpg
+8895 152.Blue_headed_Vireo/Blue_Headed_Vireo_0105_156229.jpg
+8897 152.Blue_headed_Vireo/Blue_Headed_Vireo_0032_156239.jpg
+8898 152.Blue_headed_Vireo/Blue_Headed_Vireo_0002_156241.jpg
+8899 152.Blue_headed_Vireo/Blue_Headed_Vireo_0072_155987.jpg
+8900 152.Blue_headed_Vireo/Blue_Headed_Vireo_0086_156244.jpg
+8902 152.Blue_headed_Vireo/Blue_Headed_Vireo_0055_156247.jpg
+8904 152.Blue_headed_Vireo/Blue_Headed_Vireo_0117_156026.jpg
+8907 152.Blue_headed_Vireo/Blue_Headed_Vireo_0119_156259.jpg
+8908 152.Blue_headed_Vireo/Blue_Headed_Vireo_0065_156260.jpg
+8910 152.Blue_headed_Vireo/Blue_Headed_Vireo_0005_156007.jpg
+8911 152.Blue_headed_Vireo/Blue_Headed_Vireo_0095_156092.jpg
+8912 152.Blue_headed_Vireo/Blue_Headed_Vireo_0097_156272.jpg
+8913 152.Blue_headed_Vireo/Blue_Headed_Vireo_0122_156017.jpg
+8914 152.Blue_headed_Vireo/Blue_Headed_Vireo_0011_156276.jpg
+8915 152.Blue_headed_Vireo/Blue_Headed_Vireo_0096_155969.jpg
+8916 152.Blue_headed_Vireo/Blue_Headed_Vireo_0019_156311.jpg
+8917 152.Blue_headed_Vireo/Blue_Headed_Vireo_0031_156056.jpg
+8918 152.Blue_headed_Vireo/Blue_Headed_Vireo_0089_156062.jpg
+8919 152.Blue_headed_Vireo/Blue_Headed_Vireo_0017_156063.jpg
+8920 152.Blue_headed_Vireo/Blue_Headed_Vireo_0113_156332.jpg
+8921 152.Blue_headed_Vireo/Blue_Headed_Vireo_0044_156080.jpg
+8922 152.Blue_headed_Vireo/Blue_Headed_Vireo_0049_156082.jpg
+8923 152.Blue_headed_Vireo/Blue_Headed_Vireo_0079_156086.jpg
+8924 152.Blue_headed_Vireo/Blue_Headed_Vireo_0010_156344.jpg
+8925 152.Blue_headed_Vireo/Blue_Headed_Vireo_0098_156348.jpg
+8926 152.Blue_headed_Vireo/Blue_Headed_Vireo_0115_156099.jpg
+8931 152.Blue_headed_Vireo/Blue_Headed_Vireo_0103_156382.jpg
+8932 152.Blue_headed_Vireo/Blue_Headed_Vireo_0116_156049.jpg
+8934 153.Philadelphia_Vireo/Philadelphia_Vireo_0044_156548.jpg
+8935 153.Philadelphia_Vireo/Philadelphia_Vireo_0002_156591.jpg
+8936 153.Philadelphia_Vireo/Philadelphia_Vireo_0008_156551.jpg
+8937 153.Philadelphia_Vireo/Philadelphia_Vireo_0060_156555.jpg
+8938 153.Philadelphia_Vireo/Philadelphia_Vireo_0074_156492.jpg
+8939 153.Philadelphia_Vireo/Philadelphia_Vireo_0056_156502.jpg
+8940 153.Philadelphia_Vireo/Philadelphia_Vireo_0028_156510.jpg
+8941 153.Philadelphia_Vireo/Philadelphia_Vireo_0047_156521.jpg
+8942 153.Philadelphia_Vireo/Philadelphia_Vireo_0057_156525.jpg
+8943 153.Philadelphia_Vireo/Philadelphia_Vireo_0042_156528.jpg
+8944 153.Philadelphia_Vireo/Philadelphia_Vireo_0030_156533.jpg
+8946 153.Philadelphia_Vireo/Philadelphia_Vireo_0022_156546.jpg
+8948 153.Philadelphia_Vireo/Philadelphia_Vireo_0085_794757.jpg
+8949 153.Philadelphia_Vireo/Philadelphia_Vireo_0070_794758.jpg
+8950 153.Philadelphia_Vireo/Philadelphia_Vireo_0038_794759.jpg
+8951 153.Philadelphia_Vireo/Philadelphia_Vireo_0029_794760.jpg
+8952 153.Philadelphia_Vireo/Philadelphia_Vireo_0083_794761.jpg
+8954 153.Philadelphia_Vireo/Philadelphia_Vireo_0068_794763.jpg
+8956 153.Philadelphia_Vireo/Philadelphia_Vireo_0021_794765.jpg
+8957 153.Philadelphia_Vireo/Philadelphia_Vireo_0034_794766.jpg
+8958 153.Philadelphia_Vireo/Philadelphia_Vireo_0087_794767.jpg
+8959 153.Philadelphia_Vireo/Philadelphia_Vireo_0010_794769.jpg
+8961 153.Philadelphia_Vireo/Philadelphia_Vireo_0013_794772.jpg
+8962 153.Philadelphia_Vireo/Philadelphia_Vireo_0003_156565.jpg
+8963 153.Philadelphia_Vireo/Philadelphia_Vireo_0052_794774.jpg
+8965 153.Philadelphia_Vireo/Philadelphia_Vireo_0062_794777.jpg
+8967 153.Philadelphia_Vireo/Philadelphia_Vireo_0063_794781.jpg
+8968 153.Philadelphia_Vireo/Philadelphia_Vireo_0082_156574.jpg
+8969 153.Philadelphia_Vireo/Philadelphia_Vireo_0055_156575.jpg
+8970 153.Philadelphia_Vireo/Philadelphia_Vireo_0012_794785.jpg
+8972 153.Philadelphia_Vireo/Philadelphia_Vireo_0043_794792.jpg
+8974 153.Philadelphia_Vireo/Philadelphia_Vireo_0039_794794.jpg
+8975 153.Philadelphia_Vireo/Philadelphia_Vireo_0071_794796.jpg
+8976 153.Philadelphia_Vireo/Philadelphia_Vireo_0023_794797.jpg
+8977 153.Philadelphia_Vireo/Philadelphia_Vireo_0046_794798.jpg
+8978 153.Philadelphia_Vireo/Philadelphia_Vireo_0059_794799.jpg
+8979 153.Philadelphia_Vireo/Philadelphia_Vireo_0035_156596.jpg
+8981 153.Philadelphia_Vireo/Philadelphia_Vireo_0005_156599.jpg
+8982 153.Philadelphia_Vireo/Philadelphia_Vireo_0045_156608.jpg
+8986 153.Philadelphia_Vireo/Philadelphia_Vireo_0031_156632.jpg
+8987 153.Philadelphia_Vireo/Philadelphia_Vireo_0019_156640.jpg
+8988 153.Philadelphia_Vireo/Philadelphia_Vireo_0041_156642.jpg
+8989 153.Philadelphia_Vireo/Philadelphia_Vireo_0024_156645.jpg
+8990 153.Philadelphia_Vireo/Philadelphia_Vireo_0072_156655.jpg
+8991 153.Philadelphia_Vireo/Philadelphia_Vireo_0067_156584.jpg
+8992 153.Philadelphia_Vireo/Philadelphia_Vireo_0020_156663.jpg
+8993 154.Red_eyed_Vireo/Red_Eyed_Vireo_0052_157185.jpg
+8994 154.Red_eyed_Vireo/Red_Eyed_Vireo_0132_156686.jpg
+9000 154.Red_eyed_Vireo/Red_Eyed_Vireo_0003_157226.jpg
+9001 154.Red_eyed_Vireo/Red_Eyed_Vireo_0036_156727.jpg
+9002 154.Red_eyed_Vireo/Red_Eyed_Vireo_0112_156742.jpg
+9003 154.Red_eyed_Vireo/Red_Eyed_Vireo_0026_156751.jpg
+9004 154.Red_eyed_Vireo/Red_Eyed_Vireo_0046_157265.jpg
+9005 154.Red_eyed_Vireo/Red_Eyed_Vireo_0131_156765.jpg
+9006 154.Red_eyed_Vireo/Red_Eyed_Vireo_0029_156777.jpg
+9007 154.Red_eyed_Vireo/Red_Eyed_Vireo_0123_156780.jpg
+9008 154.Red_eyed_Vireo/Red_Eyed_Vireo_0129_156781.jpg
+9009 154.Red_eyed_Vireo/Red_Eyed_Vireo_0049_156785.jpg
+9011 154.Red_eyed_Vireo/Red_Eyed_Vireo_0023_156800.jpg
+9012 154.Red_eyed_Vireo/Red_Eyed_Vireo_0062_157324.jpg
+9013 154.Red_eyed_Vireo/Red_Eyed_Vireo_0020_156875.jpg
+9014 154.Red_eyed_Vireo/Red_Eyed_Vireo_0053_156885.jpg
+9015 154.Red_eyed_Vireo/Red_Eyed_Vireo_0032_156897.jpg
+9016 154.Red_eyed_Vireo/Red_Eyed_Vireo_0134_156919.jpg
+9018 154.Red_eyed_Vireo/Red_Eyed_Vireo_0084_156943.jpg
+9021 154.Red_eyed_Vireo/Red_Eyed_Vireo_0038_156963.jpg
+9022 154.Red_eyed_Vireo/Red_Eyed_Vireo_0058_156965.jpg
+9024 154.Red_eyed_Vireo/Red_Eyed_Vireo_0056_156968.jpg
+9025 154.Red_eyed_Vireo/Red_Eyed_Vireo_0016_156971.jpg
+9026 154.Red_eyed_Vireo/Red_Eyed_Vireo_0059_156974.jpg
+9028 154.Red_eyed_Vireo/Red_Eyed_Vireo_0030_156987.jpg
+9030 154.Red_eyed_Vireo/Red_Eyed_Vireo_0140_157237.jpg
+9031 154.Red_eyed_Vireo/Red_Eyed_Vireo_0115_157004.jpg
+9032 154.Red_eyed_Vireo/Red_Eyed_Vireo_0077_157005.jpg
+9033 154.Red_eyed_Vireo/Red_Eyed_Vireo_0096_157013.jpg
+9034 154.Red_eyed_Vireo/Red_Eyed_Vireo_0065_157019.jpg
+9035 154.Red_eyed_Vireo/Red_Eyed_Vireo_0006_157025.jpg
+9036 154.Red_eyed_Vireo/Red_Eyed_Vireo_0111_157030.jpg
+9037 154.Red_eyed_Vireo/Red_Eyed_Vireo_0086_157038.jpg
+9038 154.Red_eyed_Vireo/Red_Eyed_Vireo_0014_157062.jpg
+9039 154.Red_eyed_Vireo/Red_Eyed_Vireo_0083_157063.jpg
+9040 154.Red_eyed_Vireo/Red_Eyed_Vireo_0045_157252.jpg
+9042 154.Red_eyed_Vireo/Red_Eyed_Vireo_0055_157096.jpg
+9043 154.Red_eyed_Vireo/Red_Eyed_Vireo_0106_157102.jpg
+9044 154.Red_eyed_Vireo/Red_Eyed_Vireo_0075_158151.jpg
+9045 154.Red_eyed_Vireo/Red_Eyed_Vireo_0054_157158.jpg
+9046 154.Red_eyed_Vireo/Red_Eyed_Vireo_0133_156668.jpg
+9047 154.Red_eyed_Vireo/Red_Eyed_Vireo_0043_157162.jpg
+9048 154.Red_eyed_Vireo/Red_Eyed_Vireo_0074_157170.jpg
+9050 154.Red_eyed_Vireo/Red_Eyed_Vireo_0079_158198.jpg
+9052 154.Red_eyed_Vireo/Red_Eyed_Vireo_0126_157179.jpg
+9053 155.Warbling_Vireo/Warbling_Vireo_0009_158721.jpg
+9054 155.Warbling_Vireo/Warbling_Vireo_0105_158727.jpg
+9055 155.Warbling_Vireo/Warbling_Vireo_0116_158740.jpg
+9056 155.Warbling_Vireo/Warbling_Vireo_0047_158250.jpg
+9057 155.Warbling_Vireo/Warbling_Vireo_0036_158268.jpg
+9060 155.Warbling_Vireo/Warbling_Vireo_0067_158283.jpg
+9061 155.Warbling_Vireo/Warbling_Vireo_0083_158284.jpg
+9062 155.Warbling_Vireo/Warbling_Vireo_0118_158285.jpg
+9063 155.Warbling_Vireo/Warbling_Vireo_0104_158800.jpg
+9064 155.Warbling_Vireo/Warbling_Vireo_0018_158304.jpg
+9065 155.Warbling_Vireo/Warbling_Vireo_0119_158819.jpg
+9066 155.Warbling_Vireo/Warbling_Vireo_0019_158313.jpg
+9067 155.Warbling_Vireo/Warbling_Vireo_0073_158315.jpg
+9068 155.Warbling_Vireo/Warbling_Vireo_0002_158319.jpg
+9069 155.Warbling_Vireo/Warbling_Vireo_0054_158321.jpg
+9070 155.Warbling_Vireo/Warbling_Vireo_0056_21117.jpg
+9071 155.Warbling_Vireo/Warbling_Vireo_0081_158344.jpg
+9072 155.Warbling_Vireo/Warbling_Vireo_0099_158744.jpg
+9073 155.Warbling_Vireo/Warbling_Vireo_0087_158355.jpg
+9074 155.Warbling_Vireo/Warbling_Vireo_0004_158376.jpg
+9075 155.Warbling_Vireo/Warbling_Vireo_0001_158397.jpg
+9076 155.Warbling_Vireo/Warbling_Vireo_0045_158399.jpg
+9077 155.Warbling_Vireo/Warbling_Vireo_0090_158403.jpg
+9078 155.Warbling_Vireo/Warbling_Vireo_0014_158412.jpg
+9079 155.Warbling_Vireo/Warbling_Vireo_0091_158419.jpg
+9080 155.Warbling_Vireo/Warbling_Vireo_0132_158420.jpg
+9082 155.Warbling_Vireo/Warbling_Vireo_0111_158423.jpg
+9083 155.Warbling_Vireo/Warbling_Vireo_0077_158427.jpg
+9084 155.Warbling_Vireo/Warbling_Vireo_0064_158437.jpg
+9085 155.Warbling_Vireo/Warbling_Vireo_0088_158452.jpg
+9086 155.Warbling_Vireo/Warbling_Vireo_0107_158453.jpg
+9087 155.Warbling_Vireo/Warbling_Vireo_0070_158459.jpg
+9088 155.Warbling_Vireo/Warbling_Vireo_0006_158467.jpg
+9089 155.Warbling_Vireo/Warbling_Vireo_0075_158480.jpg
+9090 155.Warbling_Vireo/Warbling_Vireo_0003_158484.jpg
+9092 155.Warbling_Vireo/Warbling_Vireo_0028_158492.jpg
+9094 155.Warbling_Vireo/Warbling_Vireo_0076_158500.jpg
+9098 155.Warbling_Vireo/Warbling_Vireo_0058_158539.jpg
+9100 155.Warbling_Vireo/Warbling_Vireo_0027_158576.jpg
+9102 155.Warbling_Vireo/Warbling_Vireo_0113_158588.jpg
+9103 155.Warbling_Vireo/Warbling_Vireo_0127_158601.jpg
+9106 155.Warbling_Vireo/Warbling_Vireo_0029_158679.jpg
+9108 155.Warbling_Vireo/Warbling_Vireo_0068_158684.jpg
+9109 155.Warbling_Vireo/Warbling_Vireo_0092_158688.jpg
+9110 155.Warbling_Vireo/Warbling_Vireo_0126_158696.jpg
+9111 155.Warbling_Vireo/Warbling_Vireo_0102_158704.jpg
+9112 155.Warbling_Vireo/Warbling_Vireo_0007_158717.jpg
+9113 156.White_eyed_Vireo/White_Eyed_Vireo_0045_159232.jpg
+9114 156.White_eyed_Vireo/White_Eyed_Vireo_0001_159237.jpg
+9115 156.White_eyed_Vireo/White_Eyed_Vireo_0136_156418.jpg
+9122 156.White_eyed_Vireo/White_Eyed_Vireo_0029_159334.jpg
+9123 156.White_eyed_Vireo/White_Eyed_Vireo_0129_158823.jpg
+9124 156.White_eyed_Vireo/White_Eyed_Vireo_0132_158908.jpg
+9125 156.White_eyed_Vireo/White_Eyed_Vireo_0050_158829.jpg
+9126 156.White_eyed_Vireo/White_Eyed_Vireo_0009_158830.jpg
+9127 156.White_eyed_Vireo/White_Eyed_Vireo_0049_158835.jpg
+9128 156.White_eyed_Vireo/White_Eyed_Vireo_0046_158849.jpg
+9129 156.White_eyed_Vireo/White_Eyed_Vireo_0126_159341.jpg
+9130 156.White_eyed_Vireo/White_Eyed_Vireo_0111_158864.jpg
+9131 156.White_eyed_Vireo/White_Eyed_Vireo_0078_159382.jpg
+9133 156.White_eyed_Vireo/White_Eyed_Vireo_0134_158889.jpg
+9134 156.White_eyed_Vireo/White_Eyed_Vireo_0102_159420.jpg
+9135 156.White_eyed_Vireo/White_Eyed_Vireo_0115_158932.jpg
+9136 156.White_eyed_Vireo/White_Eyed_Vireo_0099_158933.jpg
+9137 156.White_eyed_Vireo/White_Eyed_Vireo_0018_159450.jpg
+9138 156.White_eyed_Vireo/White_Eyed_Vireo_0110_158947.jpg
+9139 156.White_eyed_Vireo/White_Eyed_Vireo_0135_158955.jpg
+9140 156.White_eyed_Vireo/White_Eyed_Vireo_0090_158958.jpg
+9141 156.White_eyed_Vireo/White_Eyed_Vireo_0026_158963.jpg
+9142 156.White_eyed_Vireo/White_Eyed_Vireo_0066_159477.jpg
+9143 156.White_eyed_Vireo/White_Eyed_Vireo_0016_158978.jpg
+9144 156.White_eyed_Vireo/White_Eyed_Vireo_0012_159495.jpg
+9145 156.White_eyed_Vireo/White_Eyed_Vireo_0128_158993.jpg
+9146 156.White_eyed_Vireo/White_Eyed_Vireo_0042_159012.jpg
+9147 156.White_eyed_Vireo/White_Eyed_Vireo_0116_159028.jpg
+9148 156.White_eyed_Vireo/White_Eyed_Vireo_0041_159032.jpg
+9149 156.White_eyed_Vireo/White_Eyed_Vireo_0051_159033.jpg
+9150 156.White_eyed_Vireo/White_Eyed_Vireo_0118_159036.jpg
+9152 156.White_eyed_Vireo/White_Eyed_Vireo_0061_159042.jpg
+9153 156.White_eyed_Vireo/White_Eyed_Vireo_0091_159045.jpg
+9154 156.White_eyed_Vireo/White_Eyed_Vireo_0071_159072.jpg
+9155 156.White_eyed_Vireo/White_Eyed_Vireo_0130_159075.jpg
+9157 156.White_eyed_Vireo/White_Eyed_Vireo_0033_159079.jpg
+9158 156.White_eyed_Vireo/White_Eyed_Vireo_0015_159081.jpg
+9159 156.White_eyed_Vireo/White_Eyed_Vireo_0088_159084.jpg
+9160 156.White_eyed_Vireo/White_Eyed_Vireo_0080_159087.jpg
+9161 156.White_eyed_Vireo/White_Eyed_Vireo_0019_159095.jpg
+9162 156.White_eyed_Vireo/White_Eyed_Vireo_0040_159101.jpg
+9163 156.White_eyed_Vireo/White_Eyed_Vireo_0085_159119.jpg
+9164 156.White_eyed_Vireo/White_Eyed_Vireo_0032_159145.jpg
+9165 156.White_eyed_Vireo/White_Eyed_Vireo_0112_159147.jpg
+9166 156.White_eyed_Vireo/White_Eyed_Vireo_0002_159180.jpg
+9167 156.White_eyed_Vireo/White_Eyed_Vireo_0082_159186.jpg
+9168 156.White_eyed_Vireo/White_Eyed_Vireo_0024_159193.jpg
+9169 156.White_eyed_Vireo/White_Eyed_Vireo_0086_159202.jpg
+9170 156.White_eyed_Vireo/White_Eyed_Vireo_0083_159203.jpg
+9172 156.White_eyed_Vireo/White_Eyed_Vireo_0059_159225.jpg
+9174 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0022_795012.jpg
+9175 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0085_159580.jpg
+9176 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0013_159531.jpg
+9177 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0055_159532.jpg
+9178 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0052_794973.jpg
+9180 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0023_159584.jpg
+9181 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0076_794984.jpg
+9182 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0057_159570.jpg
+9184 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0008_159573.jpg
+9185 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0079_159576.jpg
+9188 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0007_794972.jpg
+9191 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0073_159583.jpg
+9193 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0012_794977.jpg
+9194 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0050_794979.jpg
+9195 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0016_794981.jpg
+9197 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0029_794985.jpg
+9198 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0011_794986.jpg
+9199 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0036_159595.jpg
+9200 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0017_794988.jpg
+9202 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0080_794990.jpg
+9203 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0035_794991.jpg
+9204 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0064_794992.jpg
+9205 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0034_794993.jpg
+9206 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0058_794994.jpg
+9208 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0010_795000.jpg
+9209 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0075_795004.jpg
+9210 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0066_795007.jpg
+9211 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0028_795008.jpg
+9212 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0025_795009.jpg
+9213 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0068_159620.jpg
+9214 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0040_159624.jpg
+9215 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0002_159625.jpg
+9217 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0082_159597.jpg
+9220 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0054_159635.jpg
+9222 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0042_159655.jpg
+9224 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0046_159668.jpg
+9225 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0063_159677.jpg
+9227 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0006_159693.jpg
+9228 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0078_159694.jpg
+9231 157.Yellow_throated_Vireo/Yellow_Throated_Vireo_0031_159712.jpg
+9232 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0026_159744.jpg
+9234 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0099_159753.jpg
+9236 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0093_159764.jpg
+9237 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0062_159783.jpg
+9238 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0013_159787.jpg
+9239 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0032_797150.jpg
+9240 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0057_159818.jpg
+9241 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0112_159839.jpg
+9242 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0086_159860.jpg
+9251 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0033_159912.jpg
+9252 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0085_797107.jpg
+9253 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0071_797108.jpg
+9254 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0064_797109.jpg
+9255 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0095_797113.jpg
+9256 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0072_797114.jpg
+9257 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0008_797115.jpg
+9258 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0007_797118.jpg
+9262 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0054_797124.jpg
+9263 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0052_797125.jpg
+9264 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0090_797128.jpg
+9265 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0049_797129.jpg
+9266 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0051_797132.jpg
+9268 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0016_797134.jpg
+9269 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0045_797135.jpg
+9270 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0031_797137.jpg
+9271 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0073_797138.jpg
+9273 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0100_797142.jpg
+9274 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0105_797143.jpg
+9275 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0077_797144.jpg
+9277 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0081_159963.jpg
+9278 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0039_797152.jpg
+9279 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0043_797154.jpg
+9280 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0053_797157.jpg
+9281 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0097_159974.jpg
+9282 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0042_797160.jpg
+9283 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0078_797163.jpg
+9284 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0012_797171.jpg
+9285 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0110_159735.jpg
+9286 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0011_159736.jpg
+9287 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0020_159737.jpg
+9288 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0005_159739.jpg
+9290 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0079_159998.jpg
+9291 158.Bay_breasted_Warbler/Bay_Breasted_Warbler_0089_797141.jpg
+9292 159.Black_and_white_Warbler/Black_And_White_Warbler_0031_160773.jpg
+9293 159.Black_and_white_Warbler/Black_And_White_Warbler_0048_160287.jpg
+9295 159.Black_and_white_Warbler/Black_And_White_Warbler_0098_160808.jpg
+9298 159.Black_and_white_Warbler/Black_And_White_Warbler_0111_160342.jpg
+9300 159.Black_and_white_Warbler/Black_And_White_Warbler_0072_160353.jpg
+9301 159.Black_and_white_Warbler/Black_And_White_Warbler_0070_160354.jpg
+9302 159.Black_and_white_Warbler/Black_And_White_Warbler_0074_160361.jpg
+9303 159.Black_and_white_Warbler/Black_And_White_Warbler_0118_160363.jpg
+9304 159.Black_and_white_Warbler/Black_And_White_Warbler_0078_160365.jpg
+9305 159.Black_and_white_Warbler/Black_And_White_Warbler_0117_160369.jpg
+9306 159.Black_and_white_Warbler/Black_And_White_Warbler_0089_160370.jpg
+9308 159.Black_and_white_Warbler/Black_And_White_Warbler_0080_160375.jpg
+9311 159.Black_and_white_Warbler/Black_And_White_Warbler_0119_160898.jpg
+9313 159.Black_and_white_Warbler/Black_And_White_Warbler_0095_160406.jpg
+9314 159.Black_and_white_Warbler/Black_And_White_Warbler_0018_160438.jpg
+9315 159.Black_and_white_Warbler/Black_And_White_Warbler_0077_160440.jpg
+9316 159.Black_and_white_Warbler/Black_And_White_Warbler_0125_160482.jpg
+9317 159.Black_and_white_Warbler/Black_And_White_Warbler_0022_160512.jpg
+9318 159.Black_and_white_Warbler/Black_And_White_Warbler_0053_160010.jpg
+9320 159.Black_and_white_Warbler/Black_And_White_Warbler_0114_160537.jpg
+9321 159.Black_and_white_Warbler/Black_And_White_Warbler_0073_160539.jpg
+9322 159.Black_and_white_Warbler/Black_And_White_Warbler_0127_160031.jpg
+9323 159.Black_and_white_Warbler/Black_And_White_Warbler_0047_160547.jpg
+9324 159.Black_and_white_Warbler/Black_And_White_Warbler_0057_160037.jpg
+9325 159.Black_and_white_Warbler/Black_And_White_Warbler_0024_160057.jpg
+9326 159.Black_and_white_Warbler/Black_And_White_Warbler_0081_110906.jpg
+9327 159.Black_and_white_Warbler/Black_And_White_Warbler_0025_160584.jpg
+9330 159.Black_and_white_Warbler/Black_And_White_Warbler_0032_160569.jpg
+9332 159.Black_and_white_Warbler/Black_And_White_Warbler_0035_160102.jpg
+9333 159.Black_and_white_Warbler/Black_And_White_Warbler_0122_160106.jpg
+9334 159.Black_and_white_Warbler/Black_And_White_Warbler_0085_160110.jpg
+9335 159.Black_and_white_Warbler/Black_And_White_Warbler_0065_160111.jpg
+9338 159.Black_and_white_Warbler/Black_And_White_Warbler_0083_160237.jpg
+9340 159.Black_and_white_Warbler/Black_And_White_Warbler_0086_160836.jpg
+9341 159.Black_and_white_Warbler/Black_And_White_Warbler_0076_160173.jpg
+9342 159.Black_and_white_Warbler/Black_And_White_Warbler_0021_160686.jpg
+9344 159.Black_and_white_Warbler/Black_And_White_Warbler_0010_160200.jpg
+9345 159.Black_and_white_Warbler/Black_And_White_Warbler_0046_160202.jpg
+9346 159.Black_and_white_Warbler/Black_And_White_Warbler_0090_160247.jpg
+9347 159.Black_and_white_Warbler/Black_And_White_Warbler_0003_160228.jpg
+9348 159.Black_and_white_Warbler/Black_And_White_Warbler_0049_160749.jpg
+9349 159.Black_and_white_Warbler/Black_And_White_Warbler_0109_160245.jpg
+9350 159.Black_and_white_Warbler/Black_And_White_Warbler_0007_160758.jpg
+9351 159.Black_and_white_Warbler/Black_And_White_Warbler_0060_160764.jpg
+9355 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0113_161407.jpg
+9356 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0119_161416.jpg
+9359 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0043_161438.jpg
+9361 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0090_161507.jpg
+9362 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0101_161510.jpg
+9363 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0047_161511.jpg
+9364 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0042_161512.jpg
+9365 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0036_161517.jpg
+9366 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0022_161520.jpg
+9368 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0099_161524.jpg
+9371 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0133_161539.jpg
+9372 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0123_161542.jpg
+9373 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0006_161557.jpg
+9374 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0073_161558.jpg
+9377 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0085_161621.jpg
+9378 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0100_161622.jpg
+9380 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0072_161636.jpg
+9381 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0010_161169.jpg
+9383 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0096_161654.jpg
+9385 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0048_161665.jpg
+9386 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0050_161154.jpg
+9387 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0061_161667.jpg
+9388 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0054_161158.jpg
+9389 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0102_161161.jpg
+9390 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0076_161162.jpg
+9391 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0005_161168.jpg
+9392 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0080_161681.jpg
+9393 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0130_161682.jpg
+9394 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0053_161684.jpg
+9396 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0127_161176.jpg
+9397 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0027_104004.jpg
+9398 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0001_161189.jpg
+9400 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0037_161707.jpg
+9406 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0063_161213.jpg
+9407 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0110_161726.jpg
+9408 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0016_161216.jpg
+9409 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0017_161220.jpg
+9410 160.Black_throated_Blue_Warbler/Black_Throated_Blue_Warbler_0107_161214.jpg
+9413 161.Blue_winged_Warbler/Blue_Winged_Warbler_0041_161802.jpg
+9414 161.Blue_winged_Warbler/Blue_Winged_Warbler_0043_161804.jpg
+9415 161.Blue_winged_Warbler/Blue_Winged_Warbler_0059_162064.jpg
+9422 161.Blue_winged_Warbler/Blue_Winged_Warbler_0030_162088.jpg
+9423 161.Blue_winged_Warbler/Blue_Winged_Warbler_0005_162095.jpg
+9425 161.Blue_winged_Warbler/Blue_Winged_Warbler_0036_161758.jpg
+9426 161.Blue_winged_Warbler/Blue_Winged_Warbler_0049_161856.jpg
+9429 161.Blue_winged_Warbler/Blue_Winged_Warbler_0034_161861.jpg
+9430 161.Blue_winged_Warbler/Blue_Winged_Warbler_0054_161862.jpg
+9431 161.Blue_winged_Warbler/Blue_Winged_Warbler_0042_161869.jpg
+9432 161.Blue_winged_Warbler/Blue_Winged_Warbler_0018_161871.jpg
+9433 161.Blue_winged_Warbler/Blue_Winged_Warbler_0025_161873.jpg
+9434 161.Blue_winged_Warbler/Blue_Winged_Warbler_0020_161875.jpg
+9437 161.Blue_winged_Warbler/Blue_Winged_Warbler_0009_161880.jpg
+9438 161.Blue_winged_Warbler/Blue_Winged_Warbler_0040_161883.jpg
+9441 161.Blue_winged_Warbler/Blue_Winged_Warbler_0002_161890.jpg
+9444 161.Blue_winged_Warbler/Blue_Winged_Warbler_0071_161900.jpg
+9445 161.Blue_winged_Warbler/Blue_Winged_Warbler_0079_161909.jpg
+9449 161.Blue_winged_Warbler/Blue_Winged_Warbler_0072_161991.jpg
+9462 161.Blue_winged_Warbler/Blue_Winged_Warbler_0089_162026.jpg
+9466 161.Blue_winged_Warbler/Blue_Winged_Warbler_0065_162030.jpg
+9467 161.Blue_winged_Warbler/Blue_Winged_Warbler_0007_161785.jpg
+9468 161.Blue_winged_Warbler/Blue_Winged_Warbler_0028_161787.jpg
+9470 161.Blue_winged_Warbler/Blue_Winged_Warbler_0094_161790.jpg
+9472 162.Canada_Warbler/Canada_Warbler_0119_162307.jpg
+9473 162.Canada_Warbler/Canada_Warbler_0115_162309.jpg
+9474 162.Canada_Warbler/Canada_Warbler_0121_162310.jpg
+9478 162.Canada_Warbler/Canada_Warbler_0048_162326.jpg
+9480 162.Canada_Warbler/Canada_Warbler_0039_162330.jpg
+9481 162.Canada_Warbler/Canada_Warbler_0004_162224.jpg
+9482 162.Canada_Warbler/Canada_Warbler_0103_162339.jpg
+9483 162.Canada_Warbler/Canada_Warbler_0088_162341.jpg
+9485 162.Canada_Warbler/Canada_Warbler_0009_162343.jpg
+9486 162.Canada_Warbler/Canada_Warbler_0104_162345.jpg
+9488 162.Canada_Warbler/Canada_Warbler_0040_162352.jpg
+9492 162.Canada_Warbler/Canada_Warbler_0074_162366.jpg
+9494 162.Canada_Warbler/Canada_Warbler_0013_162375.jpg
+9496 162.Canada_Warbler/Canada_Warbler_0091_162378.jpg
+9497 162.Canada_Warbler/Canada_Warbler_0049_162379.jpg
+9498 162.Canada_Warbler/Canada_Warbler_0023_162383.jpg
+9501 162.Canada_Warbler/Canada_Warbler_0005_162389.jpg
+9505 162.Canada_Warbler/Canada_Warbler_0114_162396.jpg
+9508 162.Canada_Warbler/Canada_Warbler_0113_162403.jpg
+9510 162.Canada_Warbler/Canada_Warbler_0056_162407.jpg
+9511 162.Canada_Warbler/Canada_Warbler_0019_162409.jpg
+9513 162.Canada_Warbler/Canada_Warbler_0120_162415.jpg
+9515 162.Canada_Warbler/Canada_Warbler_0064_162417.jpg
+9516 162.Canada_Warbler/Canada_Warbler_0041_162418.jpg
+9518 162.Canada_Warbler/Canada_Warbler_0002_162426.jpg
+9522 162.Canada_Warbler/Canada_Warbler_0047_162439.jpg
+9523 162.Canada_Warbler/Canada_Warbler_0107_162440.jpg
+9524 162.Canada_Warbler/Canada_Warbler_0051_162447.jpg
+9531 163.Cape_May_Warbler/Cape_May_Warbler_0001_139008.jpg
+9532 163.Cape_May_Warbler/Cape_May_Warbler_0076_163075.jpg
+9533 163.Cape_May_Warbler/Cape_May_Warbler_0117_163079.jpg
+9536 163.Cape_May_Warbler/Cape_May_Warbler_0108_163108.jpg
+9537 163.Cape_May_Warbler/Cape_May_Warbler_0115_163121.jpg
+9538 163.Cape_May_Warbler/Cape_May_Warbler_0113_163130.jpg
+9539 163.Cape_May_Warbler/Cape_May_Warbler_0122_163131.jpg
+9540 163.Cape_May_Warbler/Cape_May_Warbler_0023_163133.jpg
+9542 163.Cape_May_Warbler/Cape_May_Warbler_0085_162628.jpg
+9543 163.Cape_May_Warbler/Cape_May_Warbler_0020_162629.jpg
+9544 163.Cape_May_Warbler/Cape_May_Warbler_0068_163147.jpg
+9546 163.Cape_May_Warbler/Cape_May_Warbler_0101_163169.jpg
+9551 163.Cape_May_Warbler/Cape_May_Warbler_0049_162909.jpg
+9553 163.Cape_May_Warbler/Cape_May_Warbler_0022_162912.jpg
+9554 163.Cape_May_Warbler/Cape_May_Warbler_0026_162913.jpg
+9556 163.Cape_May_Warbler/Cape_May_Warbler_0055_163171.jpg
+9557 163.Cape_May_Warbler/Cape_May_Warbler_0043_163172.jpg
+9558 163.Cape_May_Warbler/Cape_May_Warbler_0003_162920.jpg
+9560 163.Cape_May_Warbler/Cape_May_Warbler_0100_162923.jpg
+9561 163.Cape_May_Warbler/Cape_May_Warbler_0004_162928.jpg
+9562 163.Cape_May_Warbler/Cape_May_Warbler_0081_162936.jpg
+9564 163.Cape_May_Warbler/Cape_May_Warbler_0107_162941.jpg
+9570 163.Cape_May_Warbler/Cape_May_Warbler_0012_162701.jpg
+9571 163.Cape_May_Warbler/Cape_May_Warbler_0104_162958.jpg
+9572 163.Cape_May_Warbler/Cape_May_Warbler_0111_162959.jpg
+9575 163.Cape_May_Warbler/Cape_May_Warbler_0128_162971.jpg
+9577 163.Cape_May_Warbler/Cape_May_Warbler_0119_162976.jpg
+9579 163.Cape_May_Warbler/Cape_May_Warbler_0069_162980.jpg
+9582 163.Cape_May_Warbler/Cape_May_Warbler_0066_163005.jpg
+9583 163.Cape_May_Warbler/Cape_May_Warbler_0031_163012.jpg
+9584 163.Cape_May_Warbler/Cape_May_Warbler_0008_163062.jpg
+9585 163.Cape_May_Warbler/Cape_May_Warbler_0040_163036.jpg
+9586 163.Cape_May_Warbler/Cape_May_Warbler_0124_163037.jpg
+9587 163.Cape_May_Warbler/Cape_May_Warbler_0067_162539.jpg
+9588 163.Cape_May_Warbler/Cape_May_Warbler_0044_163055.jpg
+9589 163.Cape_May_Warbler/Cape_May_Warbler_0061_163061.jpg
+9590 163.Cape_May_Warbler/Cape_May_Warbler_0084_163132.jpg
+9591 164.Cerulean_Warbler/Cerulean_Warbler_0019_797186.jpg
+9593 164.Cerulean_Warbler/Cerulean_Warbler_0022_797189.jpg
+9594 164.Cerulean_Warbler/Cerulean_Warbler_0023_797191.jpg
+9595 164.Cerulean_Warbler/Cerulean_Warbler_0088_797194.jpg
+9599 164.Cerulean_Warbler/Cerulean_Warbler_0017_797198.jpg
+9600 164.Cerulean_Warbler/Cerulean_Warbler_0004_797199.jpg
+9601 164.Cerulean_Warbler/Cerulean_Warbler_0094_797200.jpg
+9603 164.Cerulean_Warbler/Cerulean_Warbler_0077_797202.jpg
+9604 164.Cerulean_Warbler/Cerulean_Warbler_0043_797203.jpg
+9607 164.Cerulean_Warbler/Cerulean_Warbler_0060_797209.jpg
+9609 164.Cerulean_Warbler/Cerulean_Warbler_0047_797211.jpg
+9611 164.Cerulean_Warbler/Cerulean_Warbler_0007_797215.jpg
+9614 164.Cerulean_Warbler/Cerulean_Warbler_0046_797222.jpg
+9615 164.Cerulean_Warbler/Cerulean_Warbler_0042_797223.jpg
+9621 164.Cerulean_Warbler/Cerulean_Warbler_0090_797195.jpg
+9623 164.Cerulean_Warbler/Cerulean_Warbler_0024_163406.jpg
+9624 164.Cerulean_Warbler/Cerulean_Warbler_0089_163412.jpg
+9625 164.Cerulean_Warbler/Cerulean_Warbler_0012_163417.jpg
+9626 164.Cerulean_Warbler/Cerulean_Warbler_0039_163420.jpg
+9628 164.Cerulean_Warbler/Cerulean_Warbler_0092_163455.jpg
+9629 164.Cerulean_Warbler/Cerulean_Warbler_0072_163200.jpg
+9630 164.Cerulean_Warbler/Cerulean_Warbler_0071_163201.jpg
+9635 164.Cerulean_Warbler/Cerulean_Warbler_0086_797214.jpg
+9636 164.Cerulean_Warbler/Cerulean_Warbler_0016_163265.jpg
+9637 164.Cerulean_Warbler/Cerulean_Warbler_0055_163524.jpg
+9638 164.Cerulean_Warbler/Cerulean_Warbler_0035_163269.jpg
+9639 164.Cerulean_Warbler/Cerulean_Warbler_0078_163271.jpg
+9640 164.Cerulean_Warbler/Cerulean_Warbler_0041_163535.jpg
+9642 164.Cerulean_Warbler/Cerulean_Warbler_0076_163294.jpg
+9643 164.Cerulean_Warbler/Cerulean_Warbler_0028_163302.jpg
+9645 164.Cerulean_Warbler/Cerulean_Warbler_0025_797232.jpg
+9646 164.Cerulean_Warbler/Cerulean_Warbler_0033_797176.jpg
+9647 164.Cerulean_Warbler/Cerulean_Warbler_0084_797177.jpg
+9648 164.Cerulean_Warbler/Cerulean_Warbler_0081_797179.jpg
+9649 164.Cerulean_Warbler/Cerulean_Warbler_0082_797180.jpg
+9650 164.Cerulean_Warbler/Cerulean_Warbler_0018_797183.jpg
+9651 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0098_164352.jpg
+9652 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0038_164354.jpg
+9653 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0035_163587.jpg
+9654 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0108_164356.jpg
+9655 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0030_163847.jpg
+9656 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0124_164109.jpg
+9657 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0081_163854.jpg
+9658 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0046_163856.jpg
+9660 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0006_163858.jpg
+9661 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0062_163859.jpg
+9662 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0127_163860.jpg
+9663 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0033_163607.jpg
+9664 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0073_163868.jpg
+9666 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0053_163615.jpg
+9667 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0084_163872.jpg
+9670 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0018_164148.jpg
+9672 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0094_164152.jpg
+9673 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0034_163911.jpg
+9674 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0110_164023.jpg
+9675 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0069_163921.jpg
+9676 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0103_163669.jpg
+9677 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0063_163927.jpg
+9678 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0068_164184.jpg
+9679 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0101_164324.jpg
+9681 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0043_164114.jpg
+9682 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0128_163696.jpg
+9683 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0057_163957.jpg
+9685 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0044_163975.jpg
+9686 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0037_164233.jpg
+9687 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0061_163978.jpg
+9688 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0052_163728.jpg
+9689 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0058_163990.jpg
+9690 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0049_163735.jpg
+9692 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0008_164001.jpg
+9694 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0097_163750.jpg
+9695 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0071_163784.jpg
+9703 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0014_163801.jpg
+9704 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0016_164060.jpg
+9708 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0001_163813.jpg
+9709 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0066_164078.jpg
+9710 165.Chestnut_sided_Warbler/Chestnut_Sided_Warbler_0126_164090.jpg
+9712 166.Golden_winged_Warbler/Golden_Winged_Warbler_0060_164368.jpg
+9713 166.Golden_winged_Warbler/Golden_Winged_Warbler_0071_164370.jpg
+9714 166.Golden_winged_Warbler/Golden_Winged_Warbler_0041_164379.jpg
+9715 166.Golden_winged_Warbler/Golden_Winged_Warbler_0083_794801.jpg
+9717 166.Golden_winged_Warbler/Golden_Winged_Warbler_0077_164432.jpg
+9718 166.Golden_winged_Warbler/Golden_Winged_Warbler_0042_164437.jpg
+9720 166.Golden_winged_Warbler/Golden_Winged_Warbler_0070_164460.jpg
+9721 166.Golden_winged_Warbler/Golden_Winged_Warbler_0030_164462.jpg
+9722 166.Golden_winged_Warbler/Golden_Winged_Warbler_0084_164541.jpg
+9724 166.Golden_winged_Warbler/Golden_Winged_Warbler_0092_164465.jpg
+9726 166.Golden_winged_Warbler/Golden_Winged_Warbler_0004_164470.jpg
+9727 166.Golden_winged_Warbler/Golden_Winged_Warbler_0043_164476.jpg
+9731 166.Golden_winged_Warbler/Golden_Winged_Warbler_0061_164516.jpg
+9732 166.Golden_winged_Warbler/Golden_Winged_Warbler_0034_794800.jpg
+9734 166.Golden_winged_Warbler/Golden_Winged_Warbler_0066_794803.jpg
+9737 166.Golden_winged_Warbler/Golden_Winged_Warbler_0091_794808.jpg
+9738 166.Golden_winged_Warbler/Golden_Winged_Warbler_0095_794809.jpg
+9739 166.Golden_winged_Warbler/Golden_Winged_Warbler_0087_794810.jpg
+9740 166.Golden_winged_Warbler/Golden_Winged_Warbler_0011_794812.jpg
+9741 166.Golden_winged_Warbler/Golden_Winged_Warbler_0009_794813.jpg
+9743 166.Golden_winged_Warbler/Golden_Winged_Warbler_0036_794817.jpg
+9744 166.Golden_winged_Warbler/Golden_Winged_Warbler_0039_794818.jpg
+9745 166.Golden_winged_Warbler/Golden_Winged_Warbler_0015_794819.jpg
+9746 166.Golden_winged_Warbler/Golden_Winged_Warbler_0079_794820.jpg
+9749 166.Golden_winged_Warbler/Golden_Winged_Warbler_0078_794827.jpg
+9750 166.Golden_winged_Warbler/Golden_Winged_Warbler_0046_794828.jpg
+9751 166.Golden_winged_Warbler/Golden_Winged_Warbler_0018_164558.jpg
+9752 166.Golden_winged_Warbler/Golden_Winged_Warbler_0022_794833.jpg
+9753 166.Golden_winged_Warbler/Golden_Winged_Warbler_0044_794836.jpg
+9755 166.Golden_winged_Warbler/Golden_Winged_Warbler_0037_794839.jpg
+9756 166.Golden_winged_Warbler/Golden_Winged_Warbler_0031_794840.jpg
+9758 166.Golden_winged_Warbler/Golden_Winged_Warbler_0065_794842.jpg
+9760 166.Golden_winged_Warbler/Golden_Winged_Warbler_0056_794845.jpg
+9761 166.Golden_winged_Warbler/Golden_Winged_Warbler_0067_794846.jpg
+9763 166.Golden_winged_Warbler/Golden_Winged_Warbler_0032_794849.jpg
+9764 166.Golden_winged_Warbler/Golden_Winged_Warbler_0062_794850.jpg
+9765 166.Golden_winged_Warbler/Golden_Winged_Warbler_0059_794855.jpg
+9771 167.Hooded_Warbler/Hooded_Warbler_0106_164869.jpg
+9772 167.Hooded_Warbler/Hooded_Warbler_0068_164872.jpg
+9773 167.Hooded_Warbler/Hooded_Warbler_0028_164883.jpg
+9774 167.Hooded_Warbler/Hooded_Warbler_0012_164891.jpg
+9775 167.Hooded_Warbler/Hooded_Warbler_0051_164892.jpg
+9781 167.Hooded_Warbler/Hooded_Warbler_0124_164923.jpg
+9782 167.Hooded_Warbler/Hooded_Warbler_0125_164925.jpg
+9783 167.Hooded_Warbler/Hooded_Warbler_0039_164928.jpg
+9784 167.Hooded_Warbler/Hooded_Warbler_0070_164930.jpg
+9785 167.Hooded_Warbler/Hooded_Warbler_0128_164620.jpg
+9786 167.Hooded_Warbler/Hooded_Warbler_0084_164944.jpg
+9789 167.Hooded_Warbler/Hooded_Warbler_0118_164991.jpg
+9791 167.Hooded_Warbler/Hooded_Warbler_0035_165040.jpg
+9792 167.Hooded_Warbler/Hooded_Warbler_0115_165041.jpg
+9793 167.Hooded_Warbler/Hooded_Warbler_0021_165057.jpg
+9794 167.Hooded_Warbler/Hooded_Warbler_0057_164137.jpg
+9797 167.Hooded_Warbler/Hooded_Warbler_0078_165123.jpg
+9798 167.Hooded_Warbler/Hooded_Warbler_0048_164622.jpg
+9800 167.Hooded_Warbler/Hooded_Warbler_0116_164630.jpg
+9801 167.Hooded_Warbler/Hooded_Warbler_0053_164631.jpg
+9803 167.Hooded_Warbler/Hooded_Warbler_0122_164635.jpg
+9804 167.Hooded_Warbler/Hooded_Warbler_0121_164639.jpg
+9805 167.Hooded_Warbler/Hooded_Warbler_0089_164640.jpg
+9806 167.Hooded_Warbler/Hooded_Warbler_0008_164641.jpg
+9807 167.Hooded_Warbler/Hooded_Warbler_0112_164650.jpg
+9809 167.Hooded_Warbler/Hooded_Warbler_0050_164662.jpg
+9810 167.Hooded_Warbler/Hooded_Warbler_0014_164672.jpg
+9811 167.Hooded_Warbler/Hooded_Warbler_0058_164674.jpg
+9814 167.Hooded_Warbler/Hooded_Warbler_0001_164704.jpg
+9815 167.Hooded_Warbler/Hooded_Warbler_0134_164708.jpg
+9817 167.Hooded_Warbler/Hooded_Warbler_0019_164710.jpg
+9819 167.Hooded_Warbler/Hooded_Warbler_0067_164743.jpg
+9820 167.Hooded_Warbler/Hooded_Warbler_0036_164779.jpg
+9821 167.Hooded_Warbler/Hooded_Warbler_0090_164794.jpg
+9822 167.Hooded_Warbler/Hooded_Warbler_0011_164801.jpg
+9824 167.Hooded_Warbler/Hooded_Warbler_0041_164807.jpg
+9825 167.Hooded_Warbler/Hooded_Warbler_0135_164824.jpg
+9826 167.Hooded_Warbler/Hooded_Warbler_0130_164826.jpg
+9827 167.Hooded_Warbler/Hooded_Warbler_0087_164833.jpg
+9831 168.Kentucky_Warbler/Kentucky_Warbler_0059_795905.jpg
+9832 168.Kentucky_Warbler/Kentucky_Warbler_0076_795907.jpg
+9833 168.Kentucky_Warbler/Kentucky_Warbler_0038_795909.jpg
+9834 168.Kentucky_Warbler/Kentucky_Warbler_0010_795912.jpg
+9836 168.Kentucky_Warbler/Kentucky_Warbler_0005_795919.jpg
+9838 168.Kentucky_Warbler/Kentucky_Warbler_0067_165404.jpg
+9840 168.Kentucky_Warbler/Kentucky_Warbler_0079_165339.jpg
+9842 168.Kentucky_Warbler/Kentucky_Warbler_0044_165436.jpg
+9843 168.Kentucky_Warbler/Kentucky_Warbler_0058_165441.jpg
+9844 168.Kentucky_Warbler/Kentucky_Warbler_0027_795917.jpg
+9845 168.Kentucky_Warbler/Kentucky_Warbler_0002_795886.jpg
+9847 168.Kentucky_Warbler/Kentucky_Warbler_0021_165230.jpg
+9848 168.Kentucky_Warbler/Kentucky_Warbler_0043_165240.jpg
+9849 168.Kentucky_Warbler/Kentucky_Warbler_0023_165247.jpg
+9850 168.Kentucky_Warbler/Kentucky_Warbler_0042_165268.jpg
+9851 168.Kentucky_Warbler/Kentucky_Warbler_0074_165269.jpg
+9852 168.Kentucky_Warbler/Kentucky_Warbler_0033_165271.jpg
+9854 168.Kentucky_Warbler/Kentucky_Warbler_0048_165360.jpg
+9855 168.Kentucky_Warbler/Kentucky_Warbler_0066_165290.jpg
+9862 168.Kentucky_Warbler/Kentucky_Warbler_0039_165324.jpg
+9865 168.Kentucky_Warbler/Kentucky_Warbler_0009_795865.jpg
+9868 168.Kentucky_Warbler/Kentucky_Warbler_0082_795869.jpg
+9869 168.Kentucky_Warbler/Kentucky_Warbler_0071_165342.jpg
+9870 168.Kentucky_Warbler/Kentucky_Warbler_0036_795872.jpg
+9871 168.Kentucky_Warbler/Kentucky_Warbler_0052_795874.jpg
+9874 168.Kentucky_Warbler/Kentucky_Warbler_0035_795878.jpg
+9875 168.Kentucky_Warbler/Kentucky_Warbler_0080_165351.jpg
+9883 168.Kentucky_Warbler/Kentucky_Warbler_0003_795892.jpg
+9884 168.Kentucky_Warbler/Kentucky_Warbler_0068_795893.jpg
+9885 168.Kentucky_Warbler/Kentucky_Warbler_0073_795895.jpg
+9886 168.Kentucky_Warbler/Kentucky_Warbler_0062_795897.jpg
+9888 168.Kentucky_Warbler/Kentucky_Warbler_0020_795903.jpg
+9890 169.Magnolia_Warbler/Magnolia_Warbler_0112_166406.jpg
+9891 169.Magnolia_Warbler/Magnolia_Warbler_0047_165900.jpg
+9893 169.Magnolia_Warbler/Magnolia_Warbler_0040_165921.jpg
+9897 169.Magnolia_Warbler/Magnolia_Warbler_0045_165448.jpg
+9898 169.Magnolia_Warbler/Magnolia_Warbler_0054_165965.jpg
+9899 169.Magnolia_Warbler/Magnolia_Warbler_0097_165455.jpg
+9900 169.Magnolia_Warbler/Magnolia_Warbler_0120_165462.jpg
+9903 169.Magnolia_Warbler/Magnolia_Warbler_0111_165478.jpg
+9905 169.Magnolia_Warbler/Magnolia_Warbler_0026_165498.jpg
+9906 169.Magnolia_Warbler/Magnolia_Warbler_0137_165507.jpg
+9907 169.Magnolia_Warbler/Magnolia_Warbler_0039_165532.jpg
+9908 169.Magnolia_Warbler/Magnolia_Warbler_0072_165534.jpg
+9910 169.Magnolia_Warbler/Magnolia_Warbler_0029_165567.jpg
+9911 169.Magnolia_Warbler/Magnolia_Warbler_0139_166081.jpg
+9913 169.Magnolia_Warbler/Magnolia_Warbler_0034_166097.jpg
+9916 169.Magnolia_Warbler/Magnolia_Warbler_0063_166121.jpg
+9917 169.Magnolia_Warbler/Magnolia_Warbler_0046_166150.jpg
+9918 169.Magnolia_Warbler/Magnolia_Warbler_0051_165646.jpg
+9919 169.Magnolia_Warbler/Magnolia_Warbler_0103_165647.jpg
+9920 169.Magnolia_Warbler/Magnolia_Warbler_0105_165661.jpg
+9921 169.Magnolia_Warbler/Magnolia_Warbler_0066_166184.jpg
+9926 169.Magnolia_Warbler/Magnolia_Warbler_0106_165689.jpg
+9927 169.Magnolia_Warbler/Magnolia_Warbler_0022_165693.jpg
+9928 169.Magnolia_Warbler/Magnolia_Warbler_0104_165696.jpg
+9929 169.Magnolia_Warbler/Magnolia_Warbler_0041_165709.jpg
+9931 169.Magnolia_Warbler/Magnolia_Warbler_0043_165774.jpg
+9932 169.Magnolia_Warbler/Magnolia_Warbler_0020_166211.jpg
+9933 169.Magnolia_Warbler/Magnolia_Warbler_0030_165782.jpg
+9934 169.Magnolia_Warbler/Magnolia_Warbler_0079_165783.jpg
+9935 169.Magnolia_Warbler/Magnolia_Warbler_0134_165801.jpg
+9941 169.Magnolia_Warbler/Magnolia_Warbler_0042_159690.jpg
+9942 169.Magnolia_Warbler/Magnolia_Warbler_0048_165862.jpg
+9944 169.Magnolia_Warbler/Magnolia_Warbler_0011_166382.jpg
+9945 169.Magnolia_Warbler/Magnolia_Warbler_0136_166388.jpg
+9946 169.Magnolia_Warbler/Magnolia_Warbler_0123_166389.jpg
+9948 170.Mourning_Warbler/Mourning_Warbler_0014_166427.jpg
+9950 170.Mourning_Warbler/Mourning_Warbler_0036_166432.jpg
+9952 170.Mourning_Warbler/Mourning_Warbler_0055_166436.jpg
+9953 170.Mourning_Warbler/Mourning_Warbler_0020_166440.jpg
+9956 170.Mourning_Warbler/Mourning_Warbler_0049_166469.jpg
+9961 170.Mourning_Warbler/Mourning_Warbler_0031_166494.jpg
+9965 170.Mourning_Warbler/Mourning_Warbler_0073_166524.jpg
+9966 170.Mourning_Warbler/Mourning_Warbler_0029_166530.jpg
+9968 170.Mourning_Warbler/Mourning_Warbler_0015_166535.jpg
+9969 170.Mourning_Warbler/Mourning_Warbler_0052_166537.jpg
+9970 170.Mourning_Warbler/Mourning_Warbler_0026_166538.jpg
+9971 170.Mourning_Warbler/Mourning_Warbler_0039_166546.jpg
+9972 170.Mourning_Warbler/Mourning_Warbler_0038_166549.jpg
+9973 170.Mourning_Warbler/Mourning_Warbler_0069_166559.jpg
+9974 170.Mourning_Warbler/Mourning_Warbler_0021_166560.jpg
+9976 170.Mourning_Warbler/Mourning_Warbler_0077_166567.jpg
+9977 170.Mourning_Warbler/Mourning_Warbler_0082_166574.jpg
+9981 170.Mourning_Warbler/Mourning_Warbler_0048_166596.jpg
+9982 170.Mourning_Warbler/Mourning_Warbler_0061_166598.jpg
+9983 170.Mourning_Warbler/Mourning_Warbler_0057_795342.jpg
+9986 170.Mourning_Warbler/Mourning_Warbler_0053_795345.jpg
+9991 170.Mourning_Warbler/Mourning_Warbler_0041_795358.jpg
+9992 170.Mourning_Warbler/Mourning_Warbler_0023_795362.jpg
+9993 170.Mourning_Warbler/Mourning_Warbler_0024_795363.jpg
+9994 170.Mourning_Warbler/Mourning_Warbler_0059_795365.jpg
+9995 170.Mourning_Warbler/Mourning_Warbler_0074_795367.jpg
+9997 170.Mourning_Warbler/Mourning_Warbler_0005_795372.jpg
+9998 170.Mourning_Warbler/Mourning_Warbler_0047_795373.jpg
+9999 170.Mourning_Warbler/Mourning_Warbler_0065_795374.jpg
+10001 170.Mourning_Warbler/Mourning_Warbler_0078_795377.jpg
+10003 170.Mourning_Warbler/Mourning_Warbler_0011_795380.jpg
+10004 170.Mourning_Warbler/Mourning_Warbler_0037_795381.jpg
+10005 170.Mourning_Warbler/Mourning_Warbler_0034_795384.jpg
+10011 171.Myrtle_Warbler/Myrtle_Warbler_0086_166926.jpg
+10012 171.Myrtle_Warbler/Myrtle_Warbler_0008_166927.jpg
+10013 171.Myrtle_Warbler/Myrtle_Warbler_0064_166679.jpg
+10021 171.Myrtle_Warbler/Myrtle_Warbler_0039_166709.jpg
+10025 171.Myrtle_Warbler/Myrtle_Warbler_0009_166752.jpg
+10026 171.Myrtle_Warbler/Myrtle_Warbler_0102_166725.jpg
+10027 171.Myrtle_Warbler/Myrtle_Warbler_0033_166727.jpg
+10028 171.Myrtle_Warbler/Myrtle_Warbler_0054_166985.jpg
+10029 171.Myrtle_Warbler/Myrtle_Warbler_0093_166986.jpg
+10030 171.Myrtle_Warbler/Myrtle_Warbler_0047_166987.jpg
+10031 171.Myrtle_Warbler/Myrtle_Warbler_0016_166736.jpg
+10032 171.Myrtle_Warbler/Myrtle_Warbler_0083_166738.jpg
+10033 171.Myrtle_Warbler/Myrtle_Warbler_0020_166997.jpg
+10034 171.Myrtle_Warbler/Myrtle_Warbler_0015_166713.jpg
+10035 171.Myrtle_Warbler/Myrtle_Warbler_0097_167001.jpg
+10036 171.Myrtle_Warbler/Myrtle_Warbler_0084_166747.jpg
+10037 171.Myrtle_Warbler/Myrtle_Warbler_0077_166749.jpg
+10038 171.Myrtle_Warbler/Myrtle_Warbler_0112_166754.jpg
+10039 171.Myrtle_Warbler/Myrtle_Warbler_0091_166762.jpg
+10046 171.Myrtle_Warbler/Myrtle_Warbler_0073_166798.jpg
+10047 171.Myrtle_Warbler/Myrtle_Warbler_0028_166905.jpg
+10048 171.Myrtle_Warbler/Myrtle_Warbler_0061_166816.jpg
+10049 171.Myrtle_Warbler/Myrtle_Warbler_0050_166820.jpg
+10050 171.Myrtle_Warbler/Myrtle_Warbler_0067_166828.jpg
+10052 171.Myrtle_Warbler/Myrtle_Warbler_0014_166831.jpg
+10053 171.Myrtle_Warbler/Myrtle_Warbler_0036_166833.jpg
+10054 171.Myrtle_Warbler/Myrtle_Warbler_0113_166834.jpg
+10055 171.Myrtle_Warbler/Myrtle_Warbler_0032_166847.jpg
+10058 171.Myrtle_Warbler/Myrtle_Warbler_0005_166853.jpg
+10059 171.Myrtle_Warbler/Myrtle_Warbler_0030_166732.jpg
+10060 171.Myrtle_Warbler/Myrtle_Warbler_0037_166690.jpg
+10061 171.Myrtle_Warbler/Myrtle_Warbler_0100_166871.jpg
+10062 171.Myrtle_Warbler/Myrtle_Warbler_0078_166875.jpg
+10064 171.Myrtle_Warbler/Myrtle_Warbler_0074_166637.jpg
+10065 171.Myrtle_Warbler/Myrtle_Warbler_0088_166639.jpg
+10066 171.Myrtle_Warbler/Myrtle_Warbler_0089_166896.jpg
+10067 171.Myrtle_Warbler/Myrtle_Warbler_0007_166897.jpg
+10068 172.Nashville_Warbler/Nashville_Warbler_0109_167428.jpg
+10069 172.Nashville_Warbler/Nashville_Warbler_0015_167429.jpg
+10070 172.Nashville_Warbler/Nashville_Warbler_0105_167452.jpg
+10071 172.Nashville_Warbler/Nashville_Warbler_0040_167454.jpg
+10072 172.Nashville_Warbler/Nashville_Warbler_0103_167455.jpg
+10073 172.Nashville_Warbler/Nashville_Warbler_0092_167457.jpg
+10074 172.Nashville_Warbler/Nashville_Warbler_0036_167461.jpg
+10075 172.Nashville_Warbler/Nashville_Warbler_0128_166444.jpg
+10077 172.Nashville_Warbler/Nashville_Warbler_0127_167494.jpg
+10081 172.Nashville_Warbler/Nashville_Warbler_0029_167044.jpg
+10082 172.Nashville_Warbler/Nashville_Warbler_0086_167045.jpg
+10083 172.Nashville_Warbler/Nashville_Warbler_0129_167053.jpg
+10085 172.Nashville_Warbler/Nashville_Warbler_0048_167071.jpg
+10086 172.Nashville_Warbler/Nashville_Warbler_0121_167078.jpg
+10087 172.Nashville_Warbler/Nashville_Warbler_0104_167096.jpg
+10091 172.Nashville_Warbler/Nashville_Warbler_0056_167123.jpg
+10094 172.Nashville_Warbler/Nashville_Warbler_0107_167186.jpg
+10096 172.Nashville_Warbler/Nashville_Warbler_0018_167191.jpg
+10097 172.Nashville_Warbler/Nashville_Warbler_0102_167195.jpg
+10098 172.Nashville_Warbler/Nashville_Warbler_0020_167198.jpg
+10099 172.Nashville_Warbler/Nashville_Warbler_0079_167213.jpg
+10101 172.Nashville_Warbler/Nashville_Warbler_0100_167226.jpg
+10102 172.Nashville_Warbler/Nashville_Warbler_0081_167234.jpg
+10103 172.Nashville_Warbler/Nashville_Warbler_0023_167242.jpg
+10104 172.Nashville_Warbler/Nashville_Warbler_0051_167250.jpg
+10105 172.Nashville_Warbler/Nashville_Warbler_0054_167258.jpg
+10111 172.Nashville_Warbler/Nashville_Warbler_0035_167283.jpg
+10113 172.Nashville_Warbler/Nashville_Warbler_0098_167293.jpg
+10115 172.Nashville_Warbler/Nashville_Warbler_0123_167324.jpg
+10116 172.Nashville_Warbler/Nashville_Warbler_0013_167326.jpg
+10117 172.Nashville_Warbler/Nashville_Warbler_0055_167331.jpg
+10118 172.Nashville_Warbler/Nashville_Warbler_0042_167346.jpg
+10119 172.Nashville_Warbler/Nashville_Warbler_0060_167347.jpg
+10120 172.Nashville_Warbler/Nashville_Warbler_0118_167350.jpg
+10121 172.Nashville_Warbler/Nashville_Warbler_0061_167355.jpg
+10122 172.Nashville_Warbler/Nashville_Warbler_0044_167357.jpg
+10123 172.Nashville_Warbler/Nashville_Warbler_0032_167385.jpg
+10126 172.Nashville_Warbler/Nashville_Warbler_0064_167411.jpg
+10127 172.Nashville_Warbler/Nashville_Warbler_0075_167419.jpg
+10130 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0065_167952.jpg
+10131 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0064_166929.jpg
+10132 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0080_167960.jpg
+10134 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0049_167974.jpg
+10135 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0037_167687.jpg
+10136 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0113_167984.jpg
+10137 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0117_167987.jpg
+10138 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0033_167991.jpg
+10139 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0006_167998.jpg
+10140 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0051_168002.jpg
+10141 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0097_168004.jpg
+10143 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0128_168012.jpg
+10144 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0052_168013.jpg
+10145 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0040_168029.jpg
+10149 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0103_168566.jpg
+10151 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0016_168082.jpg
+10153 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0091_167578.jpg
+10155 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0068_167585.jpg
+10157 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0067_167588.jpg
+10158 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0032_167589.jpg
+10161 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0048_167610.jpg
+10162 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0018_168126.jpg
+10163 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0011_167615.jpg
+10164 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0019_167626.jpg
+10165 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0118_167640.jpg
+10166 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0028_167641.jpg
+10168 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0050_168166.jpg
+10169 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0119_167658.jpg
+10170 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0001_167660.jpg
+10171 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0034_168185.jpg
+10178 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0005_168314.jpg
+10181 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0027_168381.jpg
+10182 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0038_168384.jpg
+10183 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0056_167876.jpg
+10184 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0057_168424.jpg
+10186 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0087_168439.jpg
+10187 173.Orange_crowned_Warbler/Orange_Crowned_Warbler_0126_168445.jpg
+10189 174.Palm_Warbler/Palm_Warbler_0093_170499.jpg
+10190 174.Palm_Warbler/Palm_Warbler_0024_170501.jpg
+10191 174.Palm_Warbler/Palm_Warbler_0089_168968.jpg
+10192 174.Palm_Warbler/Palm_Warbler_0051_169487.jpg
+10193 174.Palm_Warbler/Palm_Warbler_0110_169490.jpg
+10194 174.Palm_Warbler/Palm_Warbler_0117_170073.jpg
+10196 174.Palm_Warbler/Palm_Warbler_0050_170042.jpg
+10198 174.Palm_Warbler/Palm_Warbler_0077_169042.jpg
+10199 174.Palm_Warbler/Palm_Warbler_0113_170080.jpg
+10200 174.Palm_Warbler/Palm_Warbler_0118_170081.jpg
+10201 174.Palm_Warbler/Palm_Warbler_0106_169571.jpg
+10203 174.Palm_Warbler/Palm_Warbler_0092_170604.jpg
+10206 174.Palm_Warbler/Palm_Warbler_0046_169837.jpg
+10207 174.Palm_Warbler/Palm_Warbler_0015_169626.jpg
+10210 174.Palm_Warbler/Palm_Warbler_0111_169663.jpg
+10214 174.Palm_Warbler/Palm_Warbler_0055_170219.jpg
+10215 174.Palm_Warbler/Palm_Warbler_0060_168686.jpg
+10216 174.Palm_Warbler/Palm_Warbler_0068_170243.jpg
+10217 174.Palm_Warbler/Palm_Warbler_0082_168709.jpg
+10218 174.Palm_Warbler/Palm_Warbler_0100_168725.jpg
+10219 174.Palm_Warbler/Palm_Warbler_0081_169256.jpg
+10220 174.Palm_Warbler/Palm_Warbler_0083_170281.jpg
+10224 174.Palm_Warbler/Palm_Warbler_0066_169284.jpg
+10225 174.Palm_Warbler/Palm_Warbler_0126_170311.jpg
+10232 174.Palm_Warbler/Palm_Warbler_0096_170867.jpg
+10233 174.Palm_Warbler/Palm_Warbler_0102_168829.jpg
+10234 174.Palm_Warbler/Palm_Warbler_0047_169354.jpg
+10235 174.Palm_Warbler/Palm_Warbler_0039_170894.jpg
+10236 174.Palm_Warbler/Palm_Warbler_0020_168857.jpg
+10237 174.Palm_Warbler/Palm_Warbler_0049_169885.jpg
+10238 174.Palm_Warbler/Palm_Warbler_0105_170429.jpg
+10239 174.Palm_Warbler/Palm_Warbler_0005_169918.jpg
+10240 174.Palm_Warbler/Palm_Warbler_0040_169922.jpg
+10241 174.Palm_Warbler/Palm_Warbler_0013_169411.jpg
+10242 174.Palm_Warbler/Palm_Warbler_0108_169426.jpg
+10243 174.Palm_Warbler/Palm_Warbler_0006_169429.jpg
+10244 174.Palm_Warbler/Palm_Warbler_0061_169954.jpg
+10245 174.Palm_Warbler/Palm_Warbler_0003_170474.jpg
+10247 174.Palm_Warbler/Palm_Warbler_0134_168943.jpg
+10250 175.Pine_Warbler/Pine_Warbler_0129_171035.jpg
+10254 175.Pine_Warbler/Pine_Warbler_0111_171040.jpg
+10256 175.Pine_Warbler/Pine_Warbler_0095_171588.jpg
+10257 175.Pine_Warbler/Pine_Warbler_0076_172104.jpg
+10258 175.Pine_Warbler/Pine_Warbler_0065_172119.jpg
+10259 175.Pine_Warbler/Pine_Warbler_0035_98396.jpg
+10260 175.Pine_Warbler/Pine_Warbler_0108_170597.jpg
+10261 175.Pine_Warbler/Pine_Warbler_0044_171104.jpg
+10262 175.Pine_Warbler/Pine_Warbler_0106_171107.jpg
+10263 175.Pine_Warbler/Pine_Warbler_0025_171110.jpg
+10264 175.Pine_Warbler/Pine_Warbler_0091_171627.jpg
+10266 175.Pine_Warbler/Pine_Warbler_0060_171635.jpg
+10267 175.Pine_Warbler/Pine_Warbler_0003_171639.jpg
+10269 175.Pine_Warbler/Pine_Warbler_0037_171649.jpg
+10270 175.Pine_Warbler/Pine_Warbler_0033_171657.jpg
+10271 175.Pine_Warbler/Pine_Warbler_0102_171147.jpg
+10272 175.Pine_Warbler/Pine_Warbler_0045_171150.jpg
+10273 175.Pine_Warbler/Pine_Warbler_0118_171152.jpg
+10274 175.Pine_Warbler/Pine_Warbler_0104_171668.jpg
+10275 175.Pine_Warbler/Pine_Warbler_0078_171374.jpg
+10276 175.Pine_Warbler/Pine_Warbler_0097_171671.jpg
+10278 175.Pine_Warbler/Pine_Warbler_0022_172197.jpg
+10279 175.Pine_Warbler/Pine_Warbler_0002_171176.jpg
+10280 175.Pine_Warbler/Pine_Warbler_0056_172064.jpg
+10281 175.Pine_Warbler/Pine_Warbler_0004_171215.jpg
+10282 175.Pine_Warbler/Pine_Warbler_0050_159442.jpg
+10284 175.Pine_Warbler/Pine_Warbler_0010_171239.jpg
+10285 175.Pine_Warbler/Pine_Warbler_0141_171263.jpg
+10286 175.Pine_Warbler/Pine_Warbler_0122_171274.jpg
+10287 175.Pine_Warbler/Pine_Warbler_0126_171282.jpg
+10288 175.Pine_Warbler/Pine_Warbler_0054_171287.jpg
+10291 175.Pine_Warbler/Pine_Warbler_0009_171869.jpg
+10292 175.Pine_Warbler/Pine_Warbler_0052_171380.jpg
+10293 175.Pine_Warbler/Pine_Warbler_0136_171382.jpg
+10294 175.Pine_Warbler/Pine_Warbler_0084_172409.jpg
+10295 175.Pine_Warbler/Pine_Warbler_0038_171386.jpg
+10296 175.Pine_Warbler/Pine_Warbler_0103_171922.jpg
+10297 175.Pine_Warbler/Pine_Warbler_0075_171933.jpg
+10298 175.Pine_Warbler/Pine_Warbler_0132_171936.jpg
+10299 175.Pine_Warbler/Pine_Warbler_0113_172456.jpg
+10300 175.Pine_Warbler/Pine_Warbler_0046_171452.jpg
+10301 175.Pine_Warbler/Pine_Warbler_0080_171975.jpg
+10302 175.Pine_Warbler/Pine_Warbler_0020_171989.jpg
+10303 175.Pine_Warbler/Pine_Warbler_0088_170980.jpg
+10304 175.Pine_Warbler/Pine_Warbler_0085_170981.jpg
+10305 175.Pine_Warbler/Pine_Warbler_0105_170983.jpg
+10306 175.Pine_Warbler/Pine_Warbler_0041_171477.jpg
+10308 176.Prairie_Warbler/Prairie_Warbler_0113_172544.jpg
+10311 176.Prairie_Warbler/Prairie_Warbler_0034_172549.jpg
+10312 176.Prairie_Warbler/Prairie_Warbler_0037_172550.jpg
+10313 176.Prairie_Warbler/Prairie_Warbler_0108_172559.jpg
+10315 176.Prairie_Warbler/Prairie_Warbler_0007_173081.jpg
+10317 176.Prairie_Warbler/Prairie_Warbler_0096_172577.jpg
+10318 176.Prairie_Warbler/Prairie_Warbler_0048_173095.jpg
+10320 176.Prairie_Warbler/Prairie_Warbler_0091_172597.jpg
+10325 176.Prairie_Warbler/Prairie_Warbler_0028_173123.jpg
+10326 176.Prairie_Warbler/Prairie_Warbler_0104_172615.jpg
+10327 176.Prairie_Warbler/Prairie_Warbler_0029_172618.jpg
+10328 176.Prairie_Warbler/Prairie_Warbler_0002_172622.jpg
+10332 176.Prairie_Warbler/Prairie_Warbler_0138_172695.jpg
+10335 176.Prairie_Warbler/Prairie_Warbler_0075_172709.jpg
+10336 176.Prairie_Warbler/Prairie_Warbler_0080_172724.jpg
+10337 176.Prairie_Warbler/Prairie_Warbler_0078_172729.jpg
+10338 176.Prairie_Warbler/Prairie_Warbler_0079_172735.jpg
+10339 176.Prairie_Warbler/Prairie_Warbler_0011_172744.jpg
+10340 176.Prairie_Warbler/Prairie_Warbler_0135_172745.jpg
+10341 176.Prairie_Warbler/Prairie_Warbler_0118_173261.jpg
+10342 176.Prairie_Warbler/Prairie_Warbler_0062_172755.jpg
+10343 176.Prairie_Warbler/Prairie_Warbler_0133_173279.jpg
+10344 176.Prairie_Warbler/Prairie_Warbler_0136_172768.jpg
+10345 176.Prairie_Warbler/Prairie_Warbler_0073_172771.jpg
+10346 176.Prairie_Warbler/Prairie_Warbler_0106_173071.jpg
+10348 176.Prairie_Warbler/Prairie_Warbler_0082_172783.jpg
+10349 176.Prairie_Warbler/Prairie_Warbler_0120_173097.jpg
+10350 176.Prairie_Warbler/Prairie_Warbler_0031_172818.jpg
+10351 176.Prairie_Warbler/Prairie_Warbler_0066_173350.jpg
+10352 176.Prairie_Warbler/Prairie_Warbler_0094_91950.jpg
+10353 176.Prairie_Warbler/Prairie_Warbler_0020_173359.jpg
+10355 176.Prairie_Warbler/Prairie_Warbler_0052_173400.jpg
+10356 176.Prairie_Warbler/Prairie_Warbler_0021_172902.jpg
+10357 176.Prairie_Warbler/Prairie_Warbler_0109_172909.jpg
+10358 176.Prairie_Warbler/Prairie_Warbler_0127_172913.jpg
+10359 176.Prairie_Warbler/Prairie_Warbler_0126_172931.jpg
+10361 176.Prairie_Warbler/Prairie_Warbler_0027_172465.jpg
+10362 176.Prairie_Warbler/Prairie_Warbler_0105_172982.jpg
+10363 176.Prairie_Warbler/Prairie_Warbler_0025_165306.jpg
+10364 176.Prairie_Warbler/Prairie_Warbler_0009_173022.jpg
+10365 176.Prairie_Warbler/Prairie_Warbler_0086_172534.jpg
+10366 176.Prairie_Warbler/Prairie_Warbler_0125_172536.jpg
+10369 177.Prothonotary_Warbler/Prothonotary_Warbler_0102_174595.jpg
+10371 177.Prothonotary_Warbler/Prothonotary_Warbler_0105_174097.jpg
+10372 177.Prothonotary_Warbler/Prothonotary_Warbler_0046_174104.jpg
+10373 177.Prothonotary_Warbler/Prothonotary_Warbler_0064_174106.jpg
+10374 177.Prothonotary_Warbler/Prothonotary_Warbler_0117_174622.jpg
+10376 177.Prothonotary_Warbler/Prothonotary_Warbler_0088_173606.jpg
+10377 177.Prothonotary_Warbler/Prothonotary_Warbler_0094_173607.jpg
+10379 177.Prothonotary_Warbler/Prothonotary_Warbler_0020_174122.jpg
+10380 177.Prothonotary_Warbler/Prothonotary_Warbler_0033_174123.jpg
+10381 177.Prothonotary_Warbler/Prothonotary_Warbler_0089_174636.jpg
+10382 177.Prothonotary_Warbler/Prothonotary_Warbler_0108_174125.jpg
+10384 177.Prothonotary_Warbler/Prothonotary_Warbler_0022_174138.jpg
+10388 177.Prothonotary_Warbler/Prothonotary_Warbler_0124_173686.jpg
+10389 177.Prothonotary_Warbler/Prothonotary_Warbler_0071_173690.jpg
+10390 177.Prothonotary_Warbler/Prothonotary_Warbler_0069_174210.jpg
+10391 177.Prothonotary_Warbler/Prothonotary_Warbler_0049_174213.jpg
+10392 177.Prothonotary_Warbler/Prothonotary_Warbler_0106_174221.jpg
+10393 177.Prothonotary_Warbler/Prothonotary_Warbler_0023_173788.jpg
+10394 177.Prothonotary_Warbler/Prothonotary_Warbler_0076_174118.jpg
+10395 177.Prothonotary_Warbler/Prothonotary_Warbler_0066_174318.jpg
+10396 177.Prothonotary_Warbler/Prothonotary_Warbler_0057_173865.jpg
+10397 177.Prothonotary_Warbler/Prothonotary_Warbler_0021_173816.jpg
+10400 177.Prothonotary_Warbler/Prothonotary_Warbler_0085_173829.jpg
+10401 177.Prothonotary_Warbler/Prothonotary_Warbler_0019_173838.jpg
+10402 177.Prothonotary_Warbler/Prothonotary_Warbler_0110_173857.jpg
+10404 177.Prothonotary_Warbler/Prothonotary_Warbler_0079_173899.jpg
+10405 177.Prothonotary_Warbler/Prothonotary_Warbler_0062_174412.jpg
+10406 177.Prothonotary_Warbler/Prothonotary_Warbler_0098_173913.jpg
+10407 177.Prothonotary_Warbler/Prothonotary_Warbler_0070_174650.jpg
+10408 177.Prothonotary_Warbler/Prothonotary_Warbler_0107_173921.jpg
+10409 177.Prothonotary_Warbler/Prothonotary_Warbler_0083_173929.jpg
+10410 177.Prothonotary_Warbler/Prothonotary_Warbler_0037_173418.jpg
+10411 177.Prothonotary_Warbler/Prothonotary_Warbler_0055_173419.jpg
+10412 177.Prothonotary_Warbler/Prothonotary_Warbler_0065_173422.jpg
+10413 177.Prothonotary_Warbler/Prothonotary_Warbler_0008_173425.jpg
+10414 177.Prothonotary_Warbler/Prothonotary_Warbler_0084_173939.jpg
+10416 177.Prothonotary_Warbler/Prothonotary_Warbler_0058_173440.jpg
+10417 177.Prothonotary_Warbler/Prothonotary_Warbler_0074_173443.jpg
+10418 177.Prothonotary_Warbler/Prothonotary_Warbler_0116_173444.jpg
+10419 177.Prothonotary_Warbler/Prothonotary_Warbler_0040_173447.jpg
+10420 177.Prothonotary_Warbler/Prothonotary_Warbler_0082_173970.jpg
+10421 177.Prothonotary_Warbler/Prothonotary_Warbler_0004_173475.jpg
+10422 177.Prothonotary_Warbler/Prothonotary_Warbler_0081_173510.jpg
+10423 177.Prothonotary_Warbler/Prothonotary_Warbler_0100_174539.jpg
+10424 177.Prothonotary_Warbler/Prothonotary_Warbler_0097_174554.jpg
+10425 177.Prothonotary_Warbler/Prothonotary_Warbler_0054_174556.jpg
+10426 177.Prothonotary_Warbler/Prothonotary_Warbler_0045_173536.jpg
+10427 177.Prothonotary_Warbler/Prothonotary_Warbler_0031_174578.jpg
+10430 178.Swainson_Warbler/Swainson_Warbler_0038_794882.jpg
+10433 178.Swainson_Warbler/Swainson_Warbler_0024_794885.jpg
+10440 178.Swainson_Warbler/Swainson_Warbler_0041_794893.jpg
+10442 178.Swainson_Warbler/Swainson_Warbler_0042_794895.jpg
+10444 178.Swainson_Warbler/Swainson_Warbler_0021_794898.jpg
+10445 178.Swainson_Warbler/Swainson_Warbler_0012_174739.jpg
+10446 178.Swainson_Warbler/Swainson_Warbler_0051_794900.jpg
+10447 178.Swainson_Warbler/Swainson_Warbler_0035_174741.jpg
+10448 178.Swainson_Warbler/Swainson_Warbler_0007_174745.jpg
+10449 178.Swainson_Warbler/Swainson_Warbler_0026_794884.jpg
+10457 178.Swainson_Warbler/Swainson_Warbler_0011_174680.jpg
+10458 178.Swainson_Warbler/Swainson_Warbler_0002_174683.jpg
+10461 178.Swainson_Warbler/Swainson_Warbler_0037_174691.jpg
+10464 178.Swainson_Warbler/Swainson_Warbler_0006_794857.jpg
+10466 178.Swainson_Warbler/Swainson_Warbler_0039_794859.jpg
+10467 178.Swainson_Warbler/Swainson_Warbler_0040_794860.jpg
+10468 178.Swainson_Warbler/Swainson_Warbler_0050_794861.jpg
+10469 178.Swainson_Warbler/Swainson_Warbler_0020_794863.jpg
+10470 178.Swainson_Warbler/Swainson_Warbler_0030_794864.jpg
+10473 178.Swainson_Warbler/Swainson_Warbler_0055_794899.jpg
+10474 178.Swainson_Warbler/Swainson_Warbler_0022_794868.jpg
+10475 178.Swainson_Warbler/Swainson_Warbler_0001_794869.jpg
+10477 178.Swainson_Warbler/Swainson_Warbler_0056_794871.jpg
+10478 178.Swainson_Warbler/Swainson_Warbler_0046_794872.jpg
+10480 178.Swainson_Warbler/Swainson_Warbler_0052_794875.jpg
+10482 178.Swainson_Warbler/Swainson_Warbler_0027_794877.jpg
+10483 178.Swainson_Warbler/Swainson_Warbler_0023_174717.jpg
+10484 179.Tennessee_Warbler/Tennessee_Warbler_0074_175058.jpg
+10485 179.Tennessee_Warbler/Tennessee_Warbler_0050_174851.jpg
+10486 179.Tennessee_Warbler/Tennessee_Warbler_0034_174854.jpg
+10487 179.Tennessee_Warbler/Tennessee_Warbler_0026_175118.jpg
+10488 179.Tennessee_Warbler/Tennessee_Warbler_0014_175126.jpg
+10489 179.Tennessee_Warbler/Tennessee_Warbler_0039_174883.jpg
+10490 179.Tennessee_Warbler/Tennessee_Warbler_0002_174884.jpg
+10493 179.Tennessee_Warbler/Tennessee_Warbler_0003_175154.jpg
+10494 179.Tennessee_Warbler/Tennessee_Warbler_0041_174900.jpg
+10495 179.Tennessee_Warbler/Tennessee_Warbler_0095_174903.jpg
+10497 179.Tennessee_Warbler/Tennessee_Warbler_0100_175168.jpg
+10500 179.Tennessee_Warbler/Tennessee_Warbler_0040_174933.jpg
+10502 179.Tennessee_Warbler/Tennessee_Warbler_0062_174949.jpg
+10503 179.Tennessee_Warbler/Tennessee_Warbler_0063_168561.jpg
+10504 179.Tennessee_Warbler/Tennessee_Warbler_0085_156530.jpg
+10508 179.Tennessee_Warbler/Tennessee_Warbler_0024_174980.jpg
+10513 179.Tennessee_Warbler/Tennessee_Warbler_0043_175003.jpg
+10514 179.Tennessee_Warbler/Tennessee_Warbler_0049_175006.jpg
+10515 179.Tennessee_Warbler/Tennessee_Warbler_0065_174757.jpg
+10516 179.Tennessee_Warbler/Tennessee_Warbler_0051_175015.jpg
+10517 179.Tennessee_Warbler/Tennessee_Warbler_0038_174760.jpg
+10518 179.Tennessee_Warbler/Tennessee_Warbler_0021_174761.jpg
+10522 179.Tennessee_Warbler/Tennessee_Warbler_0081_174771.jpg
+10523 179.Tennessee_Warbler/Tennessee_Warbler_0033_174772.jpg
+10525 179.Tennessee_Warbler/Tennessee_Warbler_0042_175092.jpg
+10527 179.Tennessee_Warbler/Tennessee_Warbler_0091_175050.jpg
+10528 179.Tennessee_Warbler/Tennessee_Warbler_0007_174796.jpg
+10529 179.Tennessee_Warbler/Tennessee_Warbler_0080_167714.jpg
+10530 179.Tennessee_Warbler/Tennessee_Warbler_0046_174798.jpg
+10532 179.Tennessee_Warbler/Tennessee_Warbler_0098_174800.jpg
+10533 179.Tennessee_Warbler/Tennessee_Warbler_0031_174802.jpg
+10534 179.Tennessee_Warbler/Tennessee_Warbler_0027_174805.jpg
+10536 179.Tennessee_Warbler/Tennessee_Warbler_0092_174810.jpg
+10537 179.Tennessee_Warbler/Tennessee_Warbler_0013_163552.jpg
+10538 179.Tennessee_Warbler/Tennessee_Warbler_0048_175079.jpg
+10539 179.Tennessee_Warbler/Tennessee_Warbler_0044_174824.jpg
+10546 180.Wilson_Warbler/Wilson_Warbler_0133_175626.jpg
+10548 180.Wilson_Warbler/Wilson_Warbler_0074_175645.jpg
+10549 180.Wilson_Warbler/Wilson_Warbler_0066_117820.jpg
+10550 180.Wilson_Warbler/Wilson_Warbler_0070_175169.jpg
+10551 180.Wilson_Warbler/Wilson_Warbler_0019_175175.jpg
+10553 180.Wilson_Warbler/Wilson_Warbler_0069_175181.jpg
+10556 180.Wilson_Warbler/Wilson_Warbler_0100_175726.jpg
+10557 180.Wilson_Warbler/Wilson_Warbler_0075_175234.jpg
+10558 180.Wilson_Warbler/Wilson_Warbler_0010_175750.jpg
+10559 180.Wilson_Warbler/Wilson_Warbler_0059_175249.jpg
+10561 180.Wilson_Warbler/Wilson_Warbler_0129_175256.jpg
+10562 180.Wilson_Warbler/Wilson_Warbler_0102_175769.jpg
+10563 180.Wilson_Warbler/Wilson_Warbler_0080_175770.jpg
+10564 180.Wilson_Warbler/Wilson_Warbler_0033_175259.jpg
+10566 180.Wilson_Warbler/Wilson_Warbler_0117_175262.jpg
+10567 180.Wilson_Warbler/Wilson_Warbler_0118_175779.jpg
+10569 180.Wilson_Warbler/Wilson_Warbler_0056_175269.jpg
+10570 180.Wilson_Warbler/Wilson_Warbler_0024_175278.jpg
+10572 180.Wilson_Warbler/Wilson_Warbler_0027_175290.jpg
+10574 180.Wilson_Warbler/Wilson_Warbler_0047_175304.jpg
+10576 180.Wilson_Warbler/Wilson_Warbler_0012_175328.jpg
+10577 180.Wilson_Warbler/Wilson_Warbler_0040_175347.jpg
+10578 180.Wilson_Warbler/Wilson_Warbler_0064_175361.jpg
+10579 180.Wilson_Warbler/Wilson_Warbler_0073_175876.jpg
+10580 180.Wilson_Warbler/Wilson_Warbler_0126_175368.jpg
+10581 180.Wilson_Warbler/Wilson_Warbler_0134_175374.jpg
+10586 180.Wilson_Warbler/Wilson_Warbler_0122_175937.jpg
+10588 180.Wilson_Warbler/Wilson_Warbler_0072_175958.jpg
+10593 180.Wilson_Warbler/Wilson_Warbler_0020_175505.jpg
+10594 180.Wilson_Warbler/Wilson_Warbler_0016_175532.jpg
+10595 180.Wilson_Warbler/Wilson_Warbler_0025_175859.jpg
+10597 180.Wilson_Warbler/Wilson_Warbler_0002_175571.jpg
+10598 180.Wilson_Warbler/Wilson_Warbler_0050_175573.jpg
+10599 180.Wilson_Warbler/Wilson_Warbler_0076_175780.jpg
+10600 180.Wilson_Warbler/Wilson_Warbler_0109_175578.jpg
+10606 181.Worm_eating_Warbler/Worm_Eating_Warbler_0050_176150.jpg
+10607 181.Worm_eating_Warbler/Worm_Eating_Warbler_0057_176006.jpg
+10609 181.Worm_eating_Warbler/Worm_Eating_Warbler_0097_176010.jpg
+10611 181.Worm_eating_Warbler/Worm_Eating_Warbler_0069_176055.jpg
+10612 181.Worm_eating_Warbler/Worm_Eating_Warbler_0022_176111.jpg
+10614 181.Worm_eating_Warbler/Worm_Eating_Warbler_0081_175971.jpg
+10615 181.Worm_eating_Warbler/Worm_Eating_Warbler_0005_175977.jpg
+10616 181.Worm_eating_Warbler/Worm_Eating_Warbler_0087_175978.jpg
+10617 181.Worm_eating_Warbler/Worm_Eating_Warbler_0012_795515.jpg
+10618 181.Worm_eating_Warbler/Worm_Eating_Warbler_0045_795518.jpg
+10619 181.Worm_eating_Warbler/Worm_Eating_Warbler_0067_795520.jpg
+10620 181.Worm_eating_Warbler/Worm_Eating_Warbler_0094_795522.jpg
+10621 181.Worm_eating_Warbler/Worm_Eating_Warbler_0090_795523.jpg
+10622 181.Worm_eating_Warbler/Worm_Eating_Warbler_0092_795524.jpg
+10623 181.Worm_eating_Warbler/Worm_Eating_Warbler_0016_795528.jpg
+10626 181.Worm_eating_Warbler/Worm_Eating_Warbler_0013_795534.jpg
+10627 181.Worm_eating_Warbler/Worm_Eating_Warbler_0061_795537.jpg
+10629 181.Worm_eating_Warbler/Worm_Eating_Warbler_0021_795545.jpg
+10630 181.Worm_eating_Warbler/Worm_Eating_Warbler_0018_795546.jpg
+10631 181.Worm_eating_Warbler/Worm_Eating_Warbler_0056_795547.jpg
+10633 181.Worm_eating_Warbler/Worm_Eating_Warbler_0065_795551.jpg
+10634 181.Worm_eating_Warbler/Worm_Eating_Warbler_0063_795553.jpg
+10636 181.Worm_eating_Warbler/Worm_Eating_Warbler_0055_795555.jpg
+10638 181.Worm_eating_Warbler/Worm_Eating_Warbler_0006_176037.jpg
+10639 181.Worm_eating_Warbler/Worm_Eating_Warbler_0072_795559.jpg
+10642 181.Worm_eating_Warbler/Worm_Eating_Warbler_0098_795565.jpg
+10647 181.Worm_eating_Warbler/Worm_Eating_Warbler_0036_795573.jpg
+10649 181.Worm_eating_Warbler/Worm_Eating_Warbler_0027_176062.jpg
+10651 181.Worm_eating_Warbler/Worm_Eating_Warbler_0102_176069.jpg
+10652 181.Worm_eating_Warbler/Worm_Eating_Warbler_0086_176073.jpg
+10653 181.Worm_eating_Warbler/Worm_Eating_Warbler_0031_176075.jpg
+10654 181.Worm_eating_Warbler/Worm_Eating_Warbler_0053_176079.jpg
+10656 181.Worm_eating_Warbler/Worm_Eating_Warbler_0074_176093.jpg
+10657 181.Worm_eating_Warbler/Worm_Eating_Warbler_0101_795557.jpg
+10658 181.Worm_eating_Warbler/Worm_Eating_Warbler_0026_176096.jpg
+10659 181.Worm_eating_Warbler/Worm_Eating_Warbler_0023_176118.jpg
+10661 181.Worm_eating_Warbler/Worm_Eating_Warbler_0039_176120.jpg
+10662 182.Yellow_Warbler/Yellow_Warbler_0038_176388.jpg
+10663 182.Yellow_Warbler/Yellow_Warbler_0028_176391.jpg
+10664 182.Yellow_Warbler/Yellow_Warbler_0071_176655.jpg
+10665 182.Yellow_Warbler/Yellow_Warbler_0121_176402.jpg
+10667 182.Yellow_Warbler/Yellow_Warbler_0080_176542.jpg
+10668 182.Yellow_Warbler/Yellow_Warbler_0118_176409.jpg
+10670 182.Yellow_Warbler/Yellow_Warbler_0018_176674.jpg
+10672 182.Yellow_Warbler/Yellow_Warbler_0011_176676.jpg
+10673 182.Yellow_Warbler/Yellow_Warbler_0003_176429.jpg
+10674 182.Yellow_Warbler/Yellow_Warbler_0013_176437.jpg
+10675 182.Yellow_Warbler/Yellow_Warbler_0122_176182.jpg
+10676 182.Yellow_Warbler/Yellow_Warbler_0039_176444.jpg
+10677 182.Yellow_Warbler/Yellow_Warbler_0025_176189.jpg
+10678 182.Yellow_Warbler/Yellow_Warbler_0016_176452.jpg
+10680 182.Yellow_Warbler/Yellow_Warbler_0114_176201.jpg
+10683 182.Yellow_Warbler/Yellow_Warbler_0046_176212.jpg
+10685 182.Yellow_Warbler/Yellow_Warbler_0073_176218.jpg
+10689 182.Yellow_Warbler/Yellow_Warbler_0040_176954.jpg
+10691 182.Yellow_Warbler/Yellow_Warbler_0007_176616.jpg
+10692 182.Yellow_Warbler/Yellow_Warbler_0043_176247.jpg
+10693 182.Yellow_Warbler/Yellow_Warbler_0049_176526.jpg
+10702 182.Yellow_Warbler/Yellow_Warbler_0056_176320.jpg
+10703 182.Yellow_Warbler/Yellow_Warbler_0042_176460.jpg
+10705 182.Yellow_Warbler/Yellow_Warbler_0088_176336.jpg
+10713 182.Yellow_Warbler/Yellow_Warbler_0105_176849.jpg
+10714 182.Yellow_Warbler/Yellow_Warbler_0035_176360.jpg
+10723 183.Northern_Waterthrush/Northern_Waterthrush_0103_177162.jpg
+10727 183.Northern_Waterthrush/Northern_Waterthrush_0061_177172.jpg
+10732 183.Northern_Waterthrush/Northern_Waterthrush_0060_177213.jpg
+10733 183.Northern_Waterthrush/Northern_Waterthrush_0033_177214.jpg
+10734 183.Northern_Waterthrush/Northern_Waterthrush_0044_176961.jpg
+10746 183.Northern_Waterthrush/Northern_Waterthrush_0042_177272.jpg
+10748 183.Northern_Waterthrush/Northern_Waterthrush_0036_177274.jpg
+10749 183.Northern_Waterthrush/Northern_Waterthrush_0005_177023.jpg
+10761 183.Northern_Waterthrush/Northern_Waterthrush_0070_177096.jpg
+10762 183.Northern_Waterthrush/Northern_Waterthrush_0110_177074.jpg
+10763 183.Northern_Waterthrush/Northern_Waterthrush_0050_177331.jpg
+10764 183.Northern_Waterthrush/Northern_Waterthrush_0009_177078.jpg
+10765 183.Northern_Waterthrush/Northern_Waterthrush_0080_177080.jpg
+10769 183.Northern_Waterthrush/Northern_Waterthrush_0086_177358.jpg
+10770 183.Northern_Waterthrush/Northern_Waterthrush_0062_177364.jpg
+10771 183.Northern_Waterthrush/Northern_Waterthrush_0066_177110.jpg
+10772 183.Northern_Waterthrush/Northern_Waterthrush_0055_177114.jpg
+10773 183.Northern_Waterthrush/Northern_Waterthrush_0098_177116.jpg
+10774 183.Northern_Waterthrush/Northern_Waterthrush_0051_177120.jpg
+10782 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0027_177539.jpg
+10783 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0023_795269.jpg
+10784 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0078_177444.jpg
+10785 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0018_177557.jpg
+10792 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0003_177479.jpg
+10793 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0054_176977.jpg
+10796 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0014_795238.jpg
+10797 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0016_795240.jpg
+10800 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0049_795244.jpg
+10802 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0091_795246.jpg
+10804 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0030_795248.jpg
+10809 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0010_795255.jpg
+10812 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0066_795259.jpg
+10813 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0087_795261.jpg
+10814 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0029_795262.jpg
+10815 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0086_795263.jpg
+10818 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0062_177285.jpg
+10819 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0057_795270.jpg
+10820 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0001_795271.jpg
+10821 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0045_795274.jpg
+10822 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0048_795277.jpg
+10823 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0041_795279.jpg
+10824 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0055_795280.jpg
+10825 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0033_795281.jpg
+10826 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0081_795283.jpg
+10828 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0002_795285.jpg
+10831 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0019_177062.jpg
+10835 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0046_177604.jpg
+10836 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0080_177379.jpg
+10837 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0064_177380.jpg
+10838 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0032_177385.jpg
+10840 184.Louisiana_Waterthrush/Louisiana_Waterthrush_0022_177397.jpg
+10843 185.Bohemian_Waxwing/Bohemian_Waxwing_0075_796678.jpg
+10844 185.Bohemian_Waxwing/Bohemian_Waxwing_0001_796680.jpg
+10845 185.Bohemian_Waxwing/Bohemian_Waxwing_0068_796682.jpg
+10846 185.Bohemian_Waxwing/Bohemian_Waxwing_0062_796683.jpg
+10848 185.Bohemian_Waxwing/Bohemian_Waxwing_0079_796687.jpg
+10849 185.Bohemian_Waxwing/Bohemian_Waxwing_0019_177684.jpg
+10856 185.Bohemian_Waxwing/Bohemian_Waxwing_0037_796638.jpg
+10857 185.Bohemian_Waxwing/Bohemian_Waxwing_0084_796639.jpg
+10859 185.Bohemian_Waxwing/Bohemian_Waxwing_0002_177986.jpg
+10860 185.Bohemian_Waxwing/Bohemian_Waxwing_0099_177747.jpg
+10862 185.Bohemian_Waxwing/Bohemian_Waxwing_0101_796653.jpg
+10864 185.Bohemian_Waxwing/Bohemian_Waxwing_0078_796649.jpg
+10866 185.Bohemian_Waxwing/Bohemian_Waxwing_0102_796692.jpg
+10867 185.Bohemian_Waxwing/Bohemian_Waxwing_0022_177642.jpg
+10868 185.Bohemian_Waxwing/Bohemian_Waxwing_0119_177942.jpg
+10869 185.Bohemian_Waxwing/Bohemian_Waxwing_0004_796652.jpg
+10870 185.Bohemian_Waxwing/Bohemian_Waxwing_0092_796666.jpg
+10874 185.Bohemian_Waxwing/Bohemian_Waxwing_0113_177823.jpg
+10876 185.Bohemian_Waxwing/Bohemian_Waxwing_0026_177845.jpg
+10878 185.Bohemian_Waxwing/Bohemian_Waxwing_0046_177864.jpg
+10879 185.Bohemian_Waxwing/Bohemian_Waxwing_0054_796623.jpg
+10881 185.Bohemian_Waxwing/Bohemian_Waxwing_0100_796627.jpg
+10882 185.Bohemian_Waxwing/Bohemian_Waxwing_0050_796630.jpg
+10885 185.Bohemian_Waxwing/Bohemian_Waxwing_0091_796634.jpg
+10887 185.Bohemian_Waxwing/Bohemian_Waxwing_0041_177630.jpg
+10889 185.Bohemian_Waxwing/Bohemian_Waxwing_0060_796642.jpg
+10894 185.Bohemian_Waxwing/Bohemian_Waxwing_0006_796651.jpg
+10895 185.Bohemian_Waxwing/Bohemian_Waxwing_0072_177901.jpg
+10896 185.Bohemian_Waxwing/Bohemian_Waxwing_0122_796654.jpg
+10897 185.Bohemian_Waxwing/Bohemian_Waxwing_0013_796660.jpg
+10898 185.Bohemian_Waxwing/Bohemian_Waxwing_0036_796661.jpg
+10899 185.Bohemian_Waxwing/Bohemian_Waxwing_0040_177914.jpg
+10900 185.Bohemian_Waxwing/Bohemian_Waxwing_0029_177915.jpg
+10901 185.Bohemian_Waxwing/Bohemian_Waxwing_0114_177621.jpg
+10903 186.Cedar_Waxwing/Cedar_Waxwing_0028_179724.jpg
+10905 186.Cedar_Waxwing/Cedar_Waxwing_0077_178191.jpg
+10907 186.Cedar_Waxwing/Cedar_Waxwing_0066_178719.jpg
+10908 186.Cedar_Waxwing/Cedar_Waxwing_0049_178723.jpg
+10910 186.Cedar_Waxwing/Cedar_Waxwing_0033_178737.jpg
+10911 186.Cedar_Waxwing/Cedar_Waxwing_0024_178230.jpg
+10914 186.Cedar_Waxwing/Cedar_Waxwing_0062_178788.jpg
+10916 186.Cedar_Waxwing/Cedar_Waxwing_0058_178795.jpg
+10920 186.Cedar_Waxwing/Cedar_Waxwing_0013_178830.jpg
+10921 186.Cedar_Waxwing/Cedar_Waxwing_0043_178321.jpg
+10922 186.Cedar_Waxwing/Cedar_Waxwing_0069_179310.jpg
+10923 186.Cedar_Waxwing/Cedar_Waxwing_0124_178857.jpg
+10924 186.Cedar_Waxwing/Cedar_Waxwing_0026_178878.jpg
+10925 186.Cedar_Waxwing/Cedar_Waxwing_0042_179391.jpg
+10926 186.Cedar_Waxwing/Cedar_Waxwing_0006_179394.jpg
+10927 186.Cedar_Waxwing/Cedar_Waxwing_0074_178888.jpg
+10928 186.Cedar_Waxwing/Cedar_Waxwing_0010_178891.jpg
+10929 186.Cedar_Waxwing/Cedar_Waxwing_0053_178892.jpg
+10930 186.Cedar_Waxwing/Cedar_Waxwing_0051_178385.jpg
+10931 186.Cedar_Waxwing/Cedar_Waxwing_0125_178921.jpg
+10933 186.Cedar_Waxwing/Cedar_Waxwing_0048_178960.jpg
+10935 186.Cedar_Waxwing/Cedar_Waxwing_0019_178654.jpg
+10941 186.Cedar_Waxwing/Cedar_Waxwing_0029_179569.jpg
+10943 186.Cedar_Waxwing/Cedar_Waxwing_0094_178049.jpg
+10944 186.Cedar_Waxwing/Cedar_Waxwing_0003_178570.jpg
+10945 186.Cedar_Waxwing/Cedar_Waxwing_0107_179098.jpg
+10947 186.Cedar_Waxwing/Cedar_Waxwing_0075_179114.jpg
+10949 186.Cedar_Waxwing/Cedar_Waxwing_0113_178627.jpg
+10950 186.Cedar_Waxwing/Cedar_Waxwing_0016_178629.jpg
+10951 186.Cedar_Waxwing/Cedar_Waxwing_0011_179149.jpg
+10952 186.Cedar_Waxwing/Cedar_Waxwing_0100_178643.jpg
+10953 186.Cedar_Waxwing/Cedar_Waxwing_0093_178139.jpg
+10955 186.Cedar_Waxwing/Cedar_Waxwing_0001_179170.jpg
+10956 186.Cedar_Waxwing/Cedar_Waxwing_0041_179183.jpg
+10957 186.Cedar_Waxwing/Cedar_Waxwing_0095_178163.jpg
+10958 186.Cedar_Waxwing/Cedar_Waxwing_0096_178164.jpg
+10959 186.Cedar_Waxwing/Cedar_Waxwing_0008_178345.jpg
+10961 186.Cedar_Waxwing/Cedar_Waxwing_0037_179710.jpg
+10963 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0034_796165.jpg
+10964 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0037_796166.jpg
+10965 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0011_179847.jpg
+10966 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0039_796168.jpg
+10967 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0033_796169.jpg
+10969 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0031_796172.jpg
+10970 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0028_796175.jpg
+10972 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0038_796182.jpg
+10974 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0050_796186.jpg
+10975 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0043_796187.jpg
+10976 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0019_179870.jpg
+10977 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0049_796191.jpg
+10978 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0010_179874.jpg
+10980 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0013_179833.jpg
+10981 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0014_179882.jpg
+10982 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0002_179885.jpg
+10983 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0015_179827.jpg
+10984 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0003_179891.jpg
+10986 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0032_796170.jpg
+10990 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0023_179909.jpg
+10992 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0018_179831.jpg
+10993 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0017_179830.jpg
+10994 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0025_179918.jpg
+10995 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0009_179919.jpg
+10996 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0016_179927.jpg
+10997 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0007_179932.jpg
+10998 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0022_179933.jpg
+10999 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0006_179838.jpg
+11000 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0029_796143.jpg
+11001 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0030_796144.jpg
+11002 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0036_796146.jpg
+11003 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0027_796147.jpg
+11005 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0042_796149.jpg
+11006 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0041_796150.jpg
+11007 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0044_796151.jpg
+11009 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0046_796153.jpg
+11011 187.American_Three_toed_Woodpecker/American_Three_Toed_Woodpecker_0035_796158.jpg
+11013 188.Pileated_Woodpecker/Pileated_Woodpecker_0125_179971.jpg
+11014 188.Pileated_Woodpecker/Pileated_Woodpecker_0119_180030.jpg
+11016 188.Pileated_Woodpecker/Pileated_Woodpecker_0012_179976.jpg
+11020 188.Pileated_Woodpecker/Pileated_Woodpecker_0081_180249.jpg
+11021 188.Pileated_Woodpecker/Pileated_Woodpecker_0025_180253.jpg
+11022 188.Pileated_Woodpecker/Pileated_Woodpecker_0028_180258.jpg
+11023 188.Pileated_Woodpecker/Pileated_Woodpecker_0072_180006.jpg
+11024 188.Pileated_Woodpecker/Pileated_Woodpecker_0011_180519.jpg
+11025 188.Pileated_Woodpecker/Pileated_Woodpecker_0110_180521.jpg
+11026 188.Pileated_Woodpecker/Pileated_Woodpecker_0082_180523.jpg
+11027 188.Pileated_Woodpecker/Pileated_Woodpecker_0039_180012.jpg
+11029 188.Pileated_Woodpecker/Pileated_Woodpecker_0121_180026.jpg
+11030 188.Pileated_Woodpecker/Pileated_Woodpecker_0077_180286.jpg
+11032 188.Pileated_Woodpecker/Pileated_Woodpecker_0067_179979.jpg
+11033 188.Pileated_Woodpecker/Pileated_Woodpecker_0083_180038.jpg
+11036 188.Pileated_Woodpecker/Pileated_Woodpecker_0004_180307.jpg
+11037 188.Pileated_Woodpecker/Pileated_Woodpecker_0088_180054.jpg
+11038 188.Pileated_Woodpecker/Pileated_Woodpecker_0065_180324.jpg
+11039 188.Pileated_Woodpecker/Pileated_Woodpecker_0015_180072.jpg
+11041 188.Pileated_Woodpecker/Pileated_Woodpecker_0080_180589.jpg
+11046 188.Pileated_Woodpecker/Pileated_Woodpecker_0009_180460.jpg
+11047 188.Pileated_Woodpecker/Pileated_Woodpecker_0057_180612.jpg
+11049 188.Pileated_Woodpecker/Pileated_Woodpecker_0026_180078.jpg
+11050 188.Pileated_Woodpecker/Pileated_Woodpecker_0079_180388.jpg
+11051 188.Pileated_Woodpecker/Pileated_Woodpecker_0097_180392.jpg
+11052 188.Pileated_Woodpecker/Pileated_Woodpecker_0118_180138.jpg
+11053 188.Pileated_Woodpecker/Pileated_Woodpecker_0050_180398.jpg
+11054 188.Pileated_Woodpecker/Pileated_Woodpecker_0008_180400.jpg
+11055 188.Pileated_Woodpecker/Pileated_Woodpecker_0086_180096.jpg
+11056 188.Pileated_Woodpecker/Pileated_Woodpecker_0034_180419.jpg
+11057 188.Pileated_Woodpecker/Pileated_Woodpecker_0124_180168.jpg
+11058 188.Pileated_Woodpecker/Pileated_Woodpecker_0098_180170.jpg
+11060 188.Pileated_Woodpecker/Pileated_Woodpecker_0033_180179.jpg
+11061 188.Pileated_Woodpecker/Pileated_Woodpecker_0112_180439.jpg
+11062 188.Pileated_Woodpecker/Pileated_Woodpecker_0060_180443.jpg
+11066 188.Pileated_Woodpecker/Pileated_Woodpecker_0041_180461.jpg
+11067 188.Pileated_Woodpecker/Pileated_Woodpecker_0030_180208.jpg
+11069 188.Pileated_Woodpecker/Pileated_Woodpecker_0087_179959.jpg
+11070 188.Pileated_Woodpecker/Pileated_Woodpecker_0053_179960.jpg
+11071 188.Pileated_Woodpecker/Pileated_Woodpecker_0051_179965.jpg
+11072 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0069_181248.jpg
+11073 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0012_181765.jpg
+11074 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0066_182253.jpg
+11075 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0073_180994.jpg
+11076 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0050_180751.jpg
+11077 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0079_181010.jpg
+11078 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0049_180755.jpg
+11079 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0025_180756.jpg
+11080 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0106_180757.jpg
+11081 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0016_180760.jpg
+11082 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0099_180766.jpg
+11083 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0021_182303.jpg
+11084 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0055_180768.jpg
+11087 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0115_180775.jpg
+11088 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0125_180780.jpg
+11089 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0058_182317.jpg
+11090 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0026_180783.jpg
+11091 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0075_180788.jpg
+11093 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0020_182335.jpg
+11094 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0081_182336.jpg
+11095 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0103_180803.jpg
+11097 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0039_180814.jpg
+11098 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0032_181587.jpg
+11099 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0112_180827.jpg
+11100 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0044_181122.jpg
+11101 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0104_181616.jpg
+11102 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0097_181363.jpg
+11103 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0008_180858.jpg
+11105 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0071_180866.jpg
+11106 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0086_181891.jpg
+11107 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0057_182154.jpg
+11108 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0017_181131.jpg
+11110 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0089_181907.jpg
+11111 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0035_181913.jpg
+11112 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0042_181062.jpg
+11114 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0054_182031.jpg
+11115 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0070_181182.jpg
+11116 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0110_181188.jpg
+11118 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0074_180936.jpg
+11120 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0088_180941.jpg
+11121 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0022_181969.jpg
+11122 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0056_180946.jpg
+11123 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0095_180948.jpg
+11124 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0068_180949.jpg
+11125 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0092_182235.jpg
+11126 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0108_180956.jpg
+11128 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0007_182242.jpg
+11129 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0114_181092.jpg
+11131 189.Red_bellied_Woodpecker/Red_Bellied_Woodpecker_0123_182116.jpg
+11132 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0052_794752.jpg
+11133 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0008_794753.jpg
+11135 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0028_182395.jpg
+11136 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0041_182408.jpg
+11137 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0009_182540.jpg
+11139 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0020_182683.jpg
+11144 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0049_182452.jpg
+11145 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0061_794728.jpg
+11146 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0015_182459.jpg
+11147 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0036_182519.jpg
+11149 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0040_182502.jpg
+11151 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0004_182340.jpg
+11152 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0003_794695.jpg
+11153 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0002_794696.jpg
+11154 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0012_794697.jpg
+11155 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0021_182647.jpg
+11156 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0022_794700.jpg
+11157 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0023_794701.jpg
+11160 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0053_794707.jpg
+11163 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0025_794710.jpg
+11165 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0017_794712.jpg
+11166 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0027_794713.jpg
+11167 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0016_182493.jpg
+11169 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0038_794719.jpg
+11170 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0034_794720.jpg
+11171 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0047_794704.jpg
+11172 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0046_794722.jpg
+11173 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0062_182371.jpg
+11174 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0029_794724.jpg
+11175 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0057_794725.jpg
+11178 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0032_182376.jpg
+11179 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0060_182377.jpg
+11180 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0045_794727.jpg
+11181 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0037_794733.jpg
+11182 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0056_794734.jpg
+11183 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0039_794736.jpg
+11185 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0058_794739.jpg
+11186 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0013_794740.jpg
+11187 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0050_794743.jpg
+11188 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0055_182520.jpg
+11189 190.Red_cockaded_Woodpecker/Red_Cockaded_Woodpecker_0063_794726.jpg
+11190 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0073_182784.jpg
+11191 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0024_183297.jpg
+11192 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0092_182787.jpg
+11193 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0041_182788.jpg
+11194 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0087_183271.jpg
+11195 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0101_182538.jpg
+11196 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0011_182803.jpg
+11197 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0034_182806.jpg
+11198 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0066_183322.jpg
+11199 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0081_182811.jpg
+11200 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0029_183337.jpg
+11201 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0058_183086.jpg
+11202 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0045_182832.jpg
+11204 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0031_183096.jpg
+11207 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0065_182863.jpg
+11210 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0071_183132.jpg
+11212 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0044_183141.jpg
+11213 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0091_183144.jpg
+11214 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0094_183401.jpg
+11215 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0108_183403.jpg
+11216 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0068_183662.jpg
+11217 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0049_183229.jpg
+11218 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0103_183571.jpg
+11220 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0078_183427.jpg
+11221 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0095_183688.jpg
+11222 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0089_183435.jpg
+11223 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0093_182925.jpg
+11224 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0014_183701.jpg
+11226 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0021_183454.jpg
+11227 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0018_183455.jpg
+11228 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0020_183255.jpg
+11229 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0052_182702.jpg
+11232 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0013_182721.jpg
+11233 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0057_183234.jpg
+11234 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0051_182724.jpg
+11235 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0005_183414.jpg
+11236 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0007_182728.jpg
+11237 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0098_182732.jpg
+11240 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0055_183515.jpg
+11241 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0084_183004.jpg
+11242 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0016_183007.jpg
+11243 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0017_183777.jpg
+11244 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0022_183010.jpg
+11247 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0027_183029.jpg
+11249 191.Red_headed_Woodpecker/Red_Headed_Woodpecker_0107_183290.jpg
+11250 192.Downy_Woodpecker/Downy_Woodpecker_0116_184326.jpg
+11251 192.Downy_Woodpecker/Downy_Woodpecker_0062_184343.jpg
+11252 192.Downy_Woodpecker/Downy_Woodpecker_0075_184346.jpg
+11253 192.Downy_Woodpecker/Downy_Woodpecker_0124_184364.jpg
+11255 192.Downy_Woodpecker/Downy_Woodpecker_0078_184375.jpg
+11256 192.Downy_Woodpecker/Downy_Woodpecker_0138_184385.jpg
+11258 192.Downy_Woodpecker/Downy_Woodpecker_0072_184401.jpg
+11259 192.Downy_Woodpecker/Downy_Woodpecker_0132_184408.jpg
+11260 192.Downy_Woodpecker/Downy_Woodpecker_0113_184413.jpg
+11261 192.Downy_Woodpecker/Downy_Woodpecker_0038_184418.jpg
+11262 192.Downy_Woodpecker/Downy_Woodpecker_0074_183907.jpg
+11263 192.Downy_Woodpecker/Downy_Woodpecker_0056_183913.jpg
+11264 192.Downy_Woodpecker/Downy_Woodpecker_0073_184430.jpg
+11265 192.Downy_Woodpecker/Downy_Woodpecker_0049_183920.jpg
+11266 192.Downy_Woodpecker/Downy_Woodpecker_0082_183922.jpg
+11267 192.Downy_Woodpecker/Downy_Woodpecker_0120_183926.jpg
+11268 192.Downy_Woodpecker/Downy_Woodpecker_0003_183933.jpg
+11269 192.Downy_Woodpecker/Downy_Woodpecker_0011_183934.jpg
+11271 192.Downy_Woodpecker/Downy_Woodpecker_0066_183953.jpg
+11272 192.Downy_Woodpecker/Downy_Woodpecker_0090_183964.jpg
+11273 192.Downy_Woodpecker/Downy_Woodpecker_0094_184478.jpg
+11276 192.Downy_Woodpecker/Downy_Woodpecker_0014_183975.jpg
+11277 192.Downy_Woodpecker/Downy_Woodpecker_0121_184002.jpg
+11278 192.Downy_Woodpecker/Downy_Woodpecker_0058_184520.jpg
+11279 192.Downy_Woodpecker/Downy_Woodpecker_0096_184532.jpg
+11280 192.Downy_Woodpecker/Downy_Woodpecker_0136_184534.jpg
+11281 192.Downy_Woodpecker/Downy_Woodpecker_0091_184537.jpg
+11283 192.Downy_Woodpecker/Downy_Woodpecker_0041_184528.jpg
+11284 192.Downy_Woodpecker/Downy_Woodpecker_0029_184046.jpg
+11285 192.Downy_Woodpecker/Downy_Woodpecker_0036_184048.jpg
+11286 192.Downy_Woodpecker/Downy_Woodpecker_0007_184051.jpg
+11287 192.Downy_Woodpecker/Downy_Woodpecker_0131_184446.jpg
+11288 192.Downy_Woodpecker/Downy_Woodpecker_0098_184567.jpg
+11289 192.Downy_Woodpecker/Downy_Woodpecker_0040_184061.jpg
+11291 192.Downy_Woodpecker/Downy_Woodpecker_0115_184096.jpg
+11293 192.Downy_Woodpecker/Downy_Woodpecker_0032_184622.jpg
+11294 192.Downy_Woodpecker/Downy_Woodpecker_0031_184120.jpg
+11295 192.Downy_Woodpecker/Downy_Woodpecker_0033_184636.jpg
+11296 192.Downy_Woodpecker/Downy_Woodpecker_0028_184131.jpg
+11297 192.Downy_Woodpecker/Downy_Woodpecker_0025_184545.jpg
+11298 192.Downy_Woodpecker/Downy_Woodpecker_0004_184648.jpg
+11299 192.Downy_Woodpecker/Downy_Woodpecker_0101_184139.jpg
+11300 192.Downy_Woodpecker/Downy_Woodpecker_0042_184144.jpg
+11301 192.Downy_Woodpecker/Downy_Woodpecker_0048_184164.jpg
+11302 192.Downy_Woodpecker/Downy_Woodpecker_0044_184170.jpg
+11303 192.Downy_Woodpecker/Downy_Woodpecker_0123_184692.jpg
+11304 192.Downy_Woodpecker/Downy_Woodpecker_0080_184240.jpg
+11305 192.Downy_Woodpecker/Downy_Woodpecker_0039_184243.jpg
+11306 192.Downy_Woodpecker/Downy_Woodpecker_0102_184263.jpg
+11309 192.Downy_Woodpecker/Downy_Woodpecker_0043_184314.jpg
+11310 193.Bewick_Wren/Bewick_Wren_0056_184834.jpg
+11316 193.Bewick_Wren/Bewick_Wren_0042_184878.jpg
+11317 193.Bewick_Wren/Bewick_Wren_0023_185400.jpg
+11320 193.Bewick_Wren/Bewick_Wren_0061_184898.jpg
+11321 193.Bewick_Wren/Bewick_Wren_0092_184901.jpg
+11325 193.Bewick_Wren/Bewick_Wren_0051_185425.jpg
+11328 193.Bewick_Wren/Bewick_Wren_0025_184932.jpg
+11329 193.Bewick_Wren/Bewick_Wren_0121_184765.jpg
+11330 193.Bewick_Wren/Bewick_Wren_0112_184956.jpg
+11332 193.Bewick_Wren/Bewick_Wren_0015_184981.jpg
+11335 193.Bewick_Wren/Bewick_Wren_0106_185013.jpg
+11337 193.Bewick_Wren/Bewick_Wren_0075_185046.jpg
+11342 193.Bewick_Wren/Bewick_Wren_0081_185080.jpg
+11344 193.Bewick_Wren/Bewick_Wren_0017_185127.jpg
+11345 193.Bewick_Wren/Bewick_Wren_0034_185130.jpg
+11346 193.Bewick_Wren/Bewick_Wren_0096_185139.jpg
+11350 193.Bewick_Wren/Bewick_Wren_0083_185190.jpg
+11352 193.Bewick_Wren/Bewick_Wren_0005_184699.jpg
+11354 193.Bewick_Wren/Bewick_Wren_0110_185216.jpg
+11356 193.Bewick_Wren/Bewick_Wren_0084_184715.jpg
+11357 193.Bewick_Wren/Bewick_Wren_0055_185230.jpg
+11359 193.Bewick_Wren/Bewick_Wren_0065_185247.jpg
+11360 193.Bewick_Wren/Bewick_Wren_0135_185251.jpg
+11361 193.Bewick_Wren/Bewick_Wren_0127_184756.jpg
+11368 193.Bewick_Wren/Bewick_Wren_0037_185332.jpg
+11369 193.Bewick_Wren/Bewick_Wren_0049_185339.jpg
+11379 194.Cactus_Wren/Cactus_Wren_0027_185893.jpg
+11381 194.Cactus_Wren/Cactus_Wren_0096_185898.jpg
+11382 194.Cactus_Wren/Cactus_Wren_0078_185899.jpg
+11383 194.Cactus_Wren/Cactus_Wren_0080_185901.jpg
+11384 194.Cactus_Wren/Cactus_Wren_0102_185902.jpg
+11385 194.Cactus_Wren/Cactus_Wren_0058_185903.jpg
+11386 194.Cactus_Wren/Cactus_Wren_0125_185648.jpg
+11387 194.Cactus_Wren/Cactus_Wren_0073_185670.jpg
+11389 194.Cactus_Wren/Cactus_Wren_0002_185680.jpg
+11390 194.Cactus_Wren/Cactus_Wren_0041_185691.jpg
+11391 194.Cactus_Wren/Cactus_Wren_0118_185788.jpg
+11393 194.Cactus_Wren/Cactus_Wren_0092_185951.jpg
+11396 194.Cactus_Wren/Cactus_Wren_0075_186066.jpg
+11397 194.Cactus_Wren/Cactus_Wren_0001_185645.jpg
+11400 194.Cactus_Wren/Cactus_Wren_0077_186003.jpg
+11402 194.Cactus_Wren/Cactus_Wren_0124_185501.jpg
+11403 194.Cactus_Wren/Cactus_Wren_0033_186014.jpg
+11404 194.Cactus_Wren/Cactus_Wren_0046_186017.jpg
+11405 194.Cactus_Wren/Cactus_Wren_0103_185506.jpg
+11409 194.Cactus_Wren/Cactus_Wren_0042_185514.jpg
+11410 194.Cactus_Wren/Cactus_Wren_0085_185515.jpg
+11421 194.Cactus_Wren/Cactus_Wren_0034_185817.jpg
+11422 194.Cactus_Wren/Cactus_Wren_0036_185563.jpg
+11423 194.Cactus_Wren/Cactus_Wren_0098_185637.jpg
+11425 194.Cactus_Wren/Cactus_Wren_0008_186083.jpg
+11427 194.Cactus_Wren/Cactus_Wren_0063_185589.jpg
+11429 194.Cactus_Wren/Cactus_Wren_0123_186068.jpg
+11430 195.Carolina_Wren/Carolina_Wren_0130_186369.jpg
+11431 195.Carolina_Wren/Carolina_Wren_0024_186377.jpg
+11434 195.Carolina_Wren/Carolina_Wren_0080_186919.jpg
+11435 195.Carolina_Wren/Carolina_Wren_0058_186409.jpg
+11437 195.Carolina_Wren/Carolina_Wren_0082_186421.jpg
+11438 195.Carolina_Wren/Carolina_Wren_0090_186942.jpg
+11441 195.Carolina_Wren/Carolina_Wren_0142_186443.jpg
+11442 195.Carolina_Wren/Carolina_Wren_0001_186455.jpg
+11444 195.Carolina_Wren/Carolina_Wren_0125_187009.jpg
+11445 195.Carolina_Wren/Carolina_Wren_0002_186506.jpg
+11446 195.Carolina_Wren/Carolina_Wren_0051_186510.jpg
+11447 195.Carolina_Wren/Carolina_Wren_0065_186517.jpg
+11448 195.Carolina_Wren/Carolina_Wren_0014_186525.jpg
+11449 195.Carolina_Wren/Carolina_Wren_0028_186526.jpg
+11450 195.Carolina_Wren/Carolina_Wren_0019_186527.jpg
+11451 195.Carolina_Wren/Carolina_Wren_0095_186561.jpg
+11454 195.Carolina_Wren/Carolina_Wren_0078_186570.jpg
+11455 195.Carolina_Wren/Carolina_Wren_0013_187086.jpg
+11456 195.Carolina_Wren/Carolina_Wren_0128_186581.jpg
+11459 195.Carolina_Wren/Carolina_Wren_0005_186109.jpg
+11467 195.Carolina_Wren/Carolina_Wren_0021_186683.jpg
+11468 195.Carolina_Wren/Carolina_Wren_0020_186702.jpg
+11469 195.Carolina_Wren/Carolina_Wren_0031_186713.jpg
+11477 195.Carolina_Wren/Carolina_Wren_0060_186296.jpg
+11479 195.Carolina_Wren/Carolina_Wren_0072_186309.jpg
+11480 195.Carolina_Wren/Carolina_Wren_0056_186313.jpg
+11481 195.Carolina_Wren/Carolina_Wren_0068_186830.jpg
+11482 195.Carolina_Wren/Carolina_Wren_0083_186324.jpg
+11484 195.Carolina_Wren/Carolina_Wren_0033_186848.jpg
+11487 195.Carolina_Wren/Carolina_Wren_0035_186356.jpg
+11488 195.Carolina_Wren/Carolina_Wren_0011_186871.jpg
+11492 196.House_Wren/House_Wren_0083_187406.jpg
+11493 196.House_Wren/House_Wren_0087_187946.jpg
+11494 196.House_Wren/House_Wren_0061_187911.jpg
+11496 196.House_Wren/House_Wren_0012_187973.jpg
+11497 196.House_Wren/House_Wren_0103_187466.jpg
+11499 196.House_Wren/House_Wren_0064_187489.jpg
+11500 196.House_Wren/House_Wren_0117_187492.jpg
+11503 196.House_Wren/House_Wren_0114_188016.jpg
+11504 196.House_Wren/House_Wren_0057_187157.jpg
+11505 196.House_Wren/House_Wren_0047_188036.jpg
+11506 196.House_Wren/House_Wren_0091_188046.jpg
+11507 196.House_Wren/House_Wren_0001_188047.jpg
+11508 196.House_Wren/House_Wren_0011_187547.jpg
+11509 196.House_Wren/House_Wren_0119_187552.jpg
+11510 196.House_Wren/House_Wren_0063_188076.jpg
+11512 196.House_Wren/House_Wren_0116_187604.jpg
+11517 196.House_Wren/House_Wren_0108_187102.jpg
+11518 196.House_Wren/House_Wren_0130_187109.jpg
+11519 196.House_Wren/House_Wren_0110_187111.jpg
+11520 196.House_Wren/House_Wren_0034_187120.jpg
+11525 196.House_Wren/House_Wren_0139_187177.jpg
+11526 196.House_Wren/House_Wren_0137_187273.jpg
+11528 196.House_Wren/House_Wren_0062_187194.jpg
+11529 196.House_Wren/House_Wren_0035_187708.jpg
+11530 196.House_Wren/House_Wren_0085_187723.jpg
+11531 196.House_Wren/House_Wren_0043_187224.jpg
+11532 196.House_Wren/House_Wren_0094_187226.jpg
+11533 196.House_Wren/House_Wren_0107_187230.jpg
+11536 196.House_Wren/House_Wren_0097_187760.jpg
+11537 196.House_Wren/House_Wren_0090_187762.jpg
+11538 196.House_Wren/House_Wren_0125_187251.jpg
+11539 196.House_Wren/House_Wren_0086_187815.jpg
+11540 196.House_Wren/House_Wren_0127_187832.jpg
+11541 196.House_Wren/House_Wren_0017_187330.jpg
+11542 196.House_Wren/House_Wren_0122_187331.jpg
+11545 196.House_Wren/House_Wren_0045_187374.jpg
+11548 196.House_Wren/House_Wren_0072_187899.jpg
+11552 197.Marsh_Wren/Marsh_Wren_0068_188446.jpg
+11553 197.Marsh_Wren/Marsh_Wren_0040_188252.jpg
+11556 197.Marsh_Wren/Marsh_Wren_0118_188512.jpg
+11557 197.Marsh_Wren/Marsh_Wren_0038_188530.jpg
+11561 197.Marsh_Wren/Marsh_Wren_0133_188565.jpg
+11565 197.Marsh_Wren/Marsh_Wren_0058_188107.jpg
+11567 197.Marsh_Wren/Marsh_Wren_0071_188111.jpg
+11570 197.Marsh_Wren/Marsh_Wren_0102_188654.jpg
+11571 197.Marsh_Wren/Marsh_Wren_0050_188657.jpg
+11572 197.Marsh_Wren/Marsh_Wren_0095_188371.jpg
+11574 197.Marsh_Wren/Marsh_Wren_0117_188676.jpg
+11575 197.Marsh_Wren/Marsh_Wren_0082_188699.jpg
+11578 197.Marsh_Wren/Marsh_Wren_0042_188195.jpg
+11582 197.Marsh_Wren/Marsh_Wren_0097_188214.jpg
+11583 197.Marsh_Wren/Marsh_Wren_0134_188213.jpg
+11584 197.Marsh_Wren/Marsh_Wren_0005_188235.jpg
+11585 197.Marsh_Wren/Marsh_Wren_0056_188241.jpg
+11587 197.Marsh_Wren/Marsh_Wren_0051_188260.jpg
+11589 197.Marsh_Wren/Marsh_Wren_0033_188778.jpg
+11590 197.Marsh_Wren/Marsh_Wren_0044_188270.jpg
+11591 197.Marsh_Wren/Marsh_Wren_0012_188275.jpg
+11593 197.Marsh_Wren/Marsh_Wren_0022_188280.jpg
+11600 197.Marsh_Wren/Marsh_Wren_0015_188852.jpg
+11604 197.Marsh_Wren/Marsh_Wren_0122_188323.jpg
+11605 197.Marsh_Wren/Marsh_Wren_0036_188374.jpg
+11606 197.Marsh_Wren/Marsh_Wren_0027_188376.jpg
+11610 198.Rock_Wren/Rock_Wren_0043_188933.jpg
+11611 198.Rock_Wren/Rock_Wren_0034_187656.jpg
+11612 198.Rock_Wren/Rock_Wren_0059_188941.jpg
+11613 198.Rock_Wren/Rock_Wren_0024_188942.jpg
+11614 198.Rock_Wren/Rock_Wren_0086_188944.jpg
+11615 198.Rock_Wren/Rock_Wren_0098_188947.jpg
+11616 198.Rock_Wren/Rock_Wren_0113_189204.jpg
+11617 198.Rock_Wren/Rock_Wren_0125_188951.jpg
+11618 198.Rock_Wren/Rock_Wren_0073_188952.jpg
+11619 198.Rock_Wren/Rock_Wren_0022_188958.jpg
+11620 198.Rock_Wren/Rock_Wren_0078_188960.jpg
+11627 198.Rock_Wren/Rock_Wren_0087_188988.jpg
+11628 198.Rock_Wren/Rock_Wren_0065_188995.jpg
+11629 198.Rock_Wren/Rock_Wren_0035_188998.jpg
+11630 198.Rock_Wren/Rock_Wren_0025_188897.jpg
+11631 198.Rock_Wren/Rock_Wren_0037_189256.jpg
+11632 198.Rock_Wren/Rock_Wren_0042_189006.jpg
+11633 198.Rock_Wren/Rock_Wren_0114_189283.jpg
+11634 198.Rock_Wren/Rock_Wren_0027_189331.jpg
+11635 198.Rock_Wren/Rock_Wren_0012_189021.jpg
+11639 198.Rock_Wren/Rock_Wren_0036_189245.jpg
+11641 198.Rock_Wren/Rock_Wren_0062_189045.jpg
+11643 198.Rock_Wren/Rock_Wren_0111_189443.jpg
+11644 198.Rock_Wren/Rock_Wren_0050_189207.jpg
+11645 198.Rock_Wren/Rock_Wren_0038_189328.jpg
+11646 198.Rock_Wren/Rock_Wren_0023_189075.jpg
+11649 198.Rock_Wren/Rock_Wren_0116_189101.jpg
+11650 198.Rock_Wren/Rock_Wren_0071_189213.jpg
+11651 198.Rock_Wren/Rock_Wren_0053_189112.jpg
+11652 198.Rock_Wren/Rock_Wren_0063_189121.jpg
+11653 198.Rock_Wren/Rock_Wren_0044_189127.jpg
+11654 198.Rock_Wren/Rock_Wren_0058_189346.jpg
+11655 198.Rock_Wren/Rock_Wren_0076_189141.jpg
+11657 198.Rock_Wren/Rock_Wren_0123_189405.jpg
+11660 198.Rock_Wren/Rock_Wren_0045_189153.jpg
+11663 198.Rock_Wren/Rock_Wren_0009_189162.jpg
+11664 198.Rock_Wren/Rock_Wren_0003_189167.jpg
+11666 198.Rock_Wren/Rock_Wren_0021_189175.jpg
+11668 198.Rock_Wren/Rock_Wren_0033_189397.jpg
+11669 199.Winter_Wren/Winter_Wren_0095_189985.jpg
+11672 199.Winter_Wren/Winter_Wren_0013_189500.jpg
+11673 199.Winter_Wren/Winter_Wren_0062_189501.jpg
+11674 199.Winter_Wren/Winter_Wren_0049_189504.jpg
+11675 199.Winter_Wren/Winter_Wren_0112_189507.jpg
+11676 199.Winter_Wren/Winter_Wren_0056_189508.jpg
+11678 199.Winter_Wren/Winter_Wren_0038_189510.jpg
+11680 199.Winter_Wren/Winter_Wren_0050_189514.jpg
+11683 199.Winter_Wren/Winter_Wren_0073_190044.jpg
+11684 199.Winter_Wren/Winter_Wren_0019_189533.jpg
+11686 199.Winter_Wren/Winter_Wren_0007_190052.jpg
+11689 199.Winter_Wren/Winter_Wren_0082_189549.jpg
+11700 199.Winter_Wren/Winter_Wren_0111_189596.jpg
+11701 199.Winter_Wren/Winter_Wren_0021_189597.jpg
+11707 199.Winter_Wren/Winter_Wren_0141_190152.jpg
+11709 199.Winter_Wren/Winter_Wren_0004_189670.jpg
+11710 199.Winter_Wren/Winter_Wren_0065_189675.jpg
+11711 199.Winter_Wren/Winter_Wren_0048_189683.jpg
+11713 199.Winter_Wren/Winter_Wren_0071_189689.jpg
+11714 199.Winter_Wren/Winter_Wren_0086_189692.jpg
+11715 199.Winter_Wren/Winter_Wren_0005_189750.jpg
+11716 199.Winter_Wren/Winter_Wren_0030_190311.jpg
+11718 199.Winter_Wren/Winter_Wren_0126_190342.jpg
+11719 199.Winter_Wren/Winter_Wren_0116_189834.jpg
+11720 199.Winter_Wren/Winter_Wren_0003_189838.jpg
+11721 199.Winter_Wren/Winter_Wren_0129_189843.jpg
+11722 199.Winter_Wren/Winter_Wren_0109_189850.jpg
+11723 199.Winter_Wren/Winter_Wren_0132_189861.jpg
+11724 199.Winter_Wren/Winter_Wren_0029_190376.jpg
+11725 199.Winter_Wren/Winter_Wren_0142_190379.jpg
+11726 199.Winter_Wren/Winter_Wren_0077_190366.jpg
+11727 199.Winter_Wren/Winter_Wren_0047_190390.jpg
+11728 199.Winter_Wren/Winter_Wren_0118_189805.jpg
+11729 200.Common_Yellowthroat/Common_Yellowthroat_0020_190720.jpg
+11731 200.Common_Yellowthroat/Common_Yellowthroat_0077_190990.jpg
+11732 200.Common_Yellowthroat/Common_Yellowthroat_0104_190489.jpg
+11733 200.Common_Yellowthroat/Common_Yellowthroat_0114_190501.jpg
+11735 200.Common_Yellowthroat/Common_Yellowthroat_0039_190513.jpg
+11738 200.Common_Yellowthroat/Common_Yellowthroat_0081_190525.jpg
+11739 200.Common_Yellowthroat/Common_Yellowthroat_0028_190527.jpg
+11740 200.Common_Yellowthroat/Common_Yellowthroat_0099_190531.jpg
+11741 200.Common_Yellowthroat/Common_Yellowthroat_0125_190902.jpg
+11742 200.Common_Yellowthroat/Common_Yellowthroat_0050_190535.jpg
+11744 200.Common_Yellowthroat/Common_Yellowthroat_0025_190547.jpg
+11747 200.Common_Yellowthroat/Common_Yellowthroat_0045_190563.jpg
+11748 200.Common_Yellowthroat/Common_Yellowthroat_0035_190567.jpg
+11750 200.Common_Yellowthroat/Common_Yellowthroat_0122_190570.jpg
+11751 200.Common_Yellowthroat/Common_Yellowthroat_0112_190571.jpg
+11759 200.Common_Yellowthroat/Common_Yellowthroat_0088_190594.jpg
+11761 200.Common_Yellowthroat/Common_Yellowthroat_0046_190446.jpg
+11763 200.Common_Yellowthroat/Common_Yellowthroat_0093_190609.jpg
+11764 200.Common_Yellowthroat/Common_Yellowthroat_0027_190869.jpg
+11765 200.Common_Yellowthroat/Common_Yellowthroat_0126_190407.jpg
+11766 200.Common_Yellowthroat/Common_Yellowthroat_0086_190639.jpg
+11772 200.Common_Yellowthroat/Common_Yellowthroat_0069_190400.jpg
+11773 200.Common_Yellowthroat/Common_Yellowthroat_0011_190401.jpg
+11774 200.Common_Yellowthroat/Common_Yellowthroat_0072_190402.jpg
+11775 200.Common_Yellowthroat/Common_Yellowthroat_0029_190403.jpg
+11777 200.Common_Yellowthroat/Common_Yellowthroat_0071_190665.jpg
+11781 200.Common_Yellowthroat/Common_Yellowthroat_0098_190430.jpg
+11783 200.Common_Yellowthroat/Common_Yellowthroat_0063_190440.jpg
+11784 200.Common_Yellowthroat/Common_Yellowthroat_0037_190698.jpg
+11786 200.Common_Yellowthroat/Common_Yellowthroat_0008_190703.jpg
+11788 200.Common_Yellowthroat/Common_Yellowthroat_0055_190967.jpg
diff --git a/data/download_carla.sh b/data/download_carla.sh
new file mode 100755
index 0000000..f18c5a9
--- /dev/null
+++ b/data/download_carla.sh
@@ -0,0 +1,5 @@
+mkdir -p ./carla
+cd ./carla
+wget https://s3.eu-central-1.amazonaws.com/avg-projects/graf/data/carla.zip
+unzip carla.zip
+cd ..
\ No newline at end of file
diff --git a/data/preprocess_cats.py b/data/preprocess_cats.py
new file mode 100644
index 0000000..245efa3
--- /dev/null
+++ b/data/preprocess_cats.py
@@ -0,0 +1,127 @@
+### adapted from https://github.com/AlexiaJM/RelativisticGAN/blob/master/code/preprocess_cat_dataset.py
+### original code from https://github.com/microe/angora-blue/blob/master/cascade_training/describe.py by Erik Hovland
+import argparse
+import cv2
+import glob
+import math
+import os
+from tqdm import tqdm
+
+
+def rotateCoords(coords, center, angleRadians):
+ # Positive y is down so reverse the angle, too.
+ angleRadians = -angleRadians
+ xs, ys = coords[::2], coords[1::2]
+ newCoords = []
+ n = min(len(xs), len(ys))
+ i = 0
+ centerX = center[0]
+ centerY = center[1]
+ cosAngle = math.cos(angleRadians)
+ sinAngle = math.sin(angleRadians)
+ while i < n:
+ xOffset = xs[i] - centerX
+ yOffset = ys[i] - centerY
+ newX = xOffset * cosAngle - yOffset * sinAngle + centerX
+ newY = xOffset * sinAngle + yOffset * cosAngle + centerY
+ newCoords += [newX, newY]
+ i += 1
+ return newCoords
+
+
+def preprocessCatFace(coords, image):
+ leftEyeX, leftEyeY = coords[0], coords[1]
+ rightEyeX, rightEyeY = coords[2], coords[3]
+ mouthX = coords[4]
+ if leftEyeX > rightEyeX and leftEyeY < rightEyeY and \
+ mouthX > rightEyeX:
+ # The "right eye" is in the second quadrant of the face,
+ # while the "left eye" is in the fourth quadrant (from the
+ # viewer's perspective.) Swap the eyes' labels in order to
+ # simplify the rotation logic.
+ leftEyeX, rightEyeX = rightEyeX, leftEyeX
+ leftEyeY, rightEyeY = rightEyeY, leftEyeY
+
+ eyesCenter = (0.5 * (leftEyeX + rightEyeX),
+ 0.5 * (leftEyeY + rightEyeY))
+
+ eyesDeltaX = rightEyeX - leftEyeX
+ eyesDeltaY = rightEyeY - leftEyeY
+ eyesAngleRadians = math.atan2(eyesDeltaY, eyesDeltaX)
+ eyesAngleDegrees = eyesAngleRadians * 180.0 / math.pi
+
+ # Straighten the image and fill in gray for blank borders.
+ rotation = cv2.getRotationMatrix2D(
+ eyesCenter, eyesAngleDegrees, 1.0)
+ imageSize = image.shape[1::-1]
+ straight = cv2.warpAffine(image, rotation, imageSize,
+ borderValue=(128, 128, 128))
+
+ # Straighten the coordinates of the features.
+ newCoords = rotateCoords(
+ coords, eyesCenter, eyesAngleRadians)
+
+ # Make the face as wide as the space between the ear bases.
+ w = abs(newCoords[16] - newCoords[6])
+ # Make the face square.
+ h = w
+ # Put the center point between the eyes at (0.5, 0.4) in
+ # proportion to the entire face.
+ minX = eyesCenter[0] - w / 2
+ if minX < 0:
+ w += minX
+ minX = 0
+ minY = eyesCenter[1] - h * 2 / 5
+ if minY < 0:
+ h += minY
+ minY = 0
+
+ # Crop the face.
+ crop = straight[int(minY):int(minY + h), int(minX):int(minX + w)]
+ # Return the crop.
+ return crop
+
+
+def describePositive(root, outdir):
+ filenames = glob.glob('%s/CAT_*/*.jpg' % root)
+
+ for imagePath in tqdm(filenames, total=len(filenames), desc='Process images...'):
+ # Open the '.cat' annotation file associated with this
+ # image.
+ if not os.path.isfile('%s.cat' % imagePath):
+ print('.cat file missing at %s' % imagePath)
+ continue
+ input = open('%s.cat' % imagePath, 'r')
+ # Read the coordinates of the cat features from the
+ # file. Discard the first number, which is the number
+ # of features.
+ coords = [int(i) for i in input.readline().split()[1:]]
+ # Read the image.
+ image = cv2.imread(imagePath)
+ # Straighten and crop the cat face.
+ crop = preprocessCatFace(coords, image)
+ if crop is None:
+ print('Failed to preprocess image at %s' % imagePath)
+ continue
+ # Save the crop to folders based on size
+ h, w, colors = crop.shape
+ if min(h, w) >= 64:
+ Path1 = imagePath.replace(root, outdir)
+ os.makedirs(os.path.dirname(Path1), exist_ok=True)
+ resized_crop = cv2.resize(crop, (64, 64))
+ cv2.imwrite(Path1, resized_crop)
+
+
+if __name__ == '__main__':
+ # Arguments
+ parser = argparse.ArgumentParser(
+ description='Crop cats from the CatDataset.'
+ )
+ parser.add_argument('root', type=str, help='Path to data directory containing "CAT_00" - "CAT_06" folders.')
+ args = parser.parse_args()
+
+ outdir = './cats'
+ os.makedirs(outdir, exist_ok=True)
+
+ describePositive(args.root, outdir)
+ print('Preprocessed {} images.'.format(len(glob.glob(os.path.join(outdir, '*/*.jpg')))))
\ No newline at end of file
diff --git a/data/preprocess_cub.py b/data/preprocess_cub.py
new file mode 100644
index 0000000..fdeb8dd
--- /dev/null
+++ b/data/preprocess_cub.py
@@ -0,0 +1,65 @@
+import argparse
+import os
+from tqdm import tqdm
+from PIL import Image
+import numpy as np
+import glob
+from torchvision.transforms import CenterCrop
+
+
+if __name__ == '__main__':
+ # Arguments
+ parser = argparse.ArgumentParser(
+ description='Select split from CUB200-2011 and crop birds from images.'
+ )
+ parser.add_argument('root', type=str,
+ help='Path to data directory containing bounding box file and "images" folder.')
+ parser.add_argument('maskdir', type=str, help='Path to data directory containing the segmentation masks.')
+ args = parser.parse_args()
+
+ imdir = os.path.join(args.root, 'images')
+ bboxfile = os.path.join(args.root, 'bounding_boxes.txt')
+ maskdir = args.maskdir
+ namefile = './cub/filtered_files.txt'
+ outdir = './cub'
+ os.makedirs(outdir, exist_ok=True)
+
+ # load files
+ with open(namefile, 'r') as f:
+ id_filename = [line.split(' ') for line in f.read().splitlines()]
+
+ # load bounding boxes
+ boxes = {}
+ with open(bboxfile, 'r') as f:
+ for line in f.read().splitlines():
+ k, x, y, w, h = line.split(' ')
+ box = float(x), float(y), float(x) + float(w), float(y) + float(h) # (left, up, right, down)
+ boxes[k] = box
+
+ for i, (id, filename) in tqdm(enumerate(id_filename), total=len(id_filename)):
+ path = os.path.join(imdir, filename)
+ img = Image.open(path).convert('RGBA')
+
+ # load alpha
+ path = os.path.join(maskdir, filename.replace('.jpg', '.png'))
+ alpha = Image.open(path)
+ if alpha.mode == 'RGBA':
+ alpha = alpha.split()[-1]
+ alpha = alpha.convert('L')
+ img.putalpha(alpha)
+
+ # crop square images using bbox
+ img = img.crop(boxes[id])
+ s = max(img.size)
+ img = CenterCrop(s)(img) # CenterCrop pads image to square using zeros (also for alpha)
+
+ # composite
+ img = np.array(img)
+ alpha = (img[..., 3:4]) > 127 # convert to binary mask
+ bg = np.array(255 * (1. - alpha), np.uint8)
+ img = img[..., :3] * alpha + bg
+ img = Image.fromarray(img)
+
+ img.save(os.path.join(outdir, '%06d.png' % i))
+
+ print('Preprocessed {} images.'.format(len(glob.glob(os.path.join(outdir, '*.png')))))
diff --git a/environment.yml b/environment.yml
new file mode 100644
index 0000000..4a91167
--- /dev/null
+++ b/environment.yml
@@ -0,0 +1,67 @@
+name: graf
+channels:
+ - conda-forge
+ - anaconda
+ - defaults
+dependencies:
+ - blas=1.0=mkl
+ - ca-certificates=2020.11.8=ha878542_0
+ - certifi=2020.11.8=py38h578d9bd_0
+ - intel-openmp=2020.2=254
+ - joblib=0.17.0=py_0
+ - ld_impl_linux-64=2.33.1=h53a641e_7
+ - libedit=3.1.20191231=h14c3975_1
+ - libffi=3.3=he6710b0_2
+ - libgcc-ng=9.1.0=hdf63c60_0
+ - libgfortran-ng=7.3.0=hdf63c60_0
+ - libprotobuf=3.13.0.1=h8b12597_0
+ - libstdcxx-ng=9.1.0=hdf63c60_0
+ - mkl=2019.4=243
+ - mkl-service=2.3.0=py38he904b0f_0
+ - mkl_fft=1.2.0=py38h23d657b_0
+ - mkl_random=1.1.0=py38h962f231_0
+ - ncurses=6.2=he6710b0_1
+ - numpy-base=1.19.1=py38hfa32c7d_0
+ - openssl=1.1.1h=h516909a_0
+ - pip=20.2.4=py38_0
+ - python=3.8.5=h7579374_1
+ - python_abi=3.8=1_cp38
+ - pyyaml=5.3.1=py38h7b6447c_1
+ - readline=8.0=h7b6447c_0
+ - scikit-learn=0.23.2=py38h0573a6f_0
+ - scipy=1.5.2=py38h0b6359f_0
+ - setuptools=50.3.0=py38hb0f4dca_1
+ - six=1.15.0=py_0
+ - sqlite=3.33.0=h62c20be_0
+ - tensorboardx=2.1=py_0
+ - threadpoolctl=2.1.0=pyh5ca1d4c_0
+ - tk=8.6.10=hbc83047_0
+ - wheel=0.35.1=py_0
+ - xz=5.2.5=h7b6447c_0
+ - yaml=0.2.5=h7b6447c_0
+ - zlib=1.2.11=h7b6447c_3
+ - pip:
+ - absl-py==0.11.0
+ - configargparse==1.2.3
+ - cycler==0.10.0
+ - dataclasses==0.6
+ - future==0.18.2
+ - grpcio==1.33.2
+ - imageio==2.9.0
+ - imageio-ffmpeg==0.4.2
+ - kiwisolver==1.3.1
+ - markdown==3.3.3
+ - matplotlib==3.3.3
+ - numpy==1.19.4
+ - opencv-python==4.4.0.46
+ - pillow==8.0.1
+ - protobuf==3.14.0
+ - pyparsing==2.4.7
+ - python-dateutil==2.8.1
+ - tensorboard==1.14.0
+ - torch==1.7.0
+ - torchsearchsorted==1.1
+ - torchvision==0.8.1
+ - tqdm==4.53.0
+ - typing-extensions==3.7.4.3
+ - werkzeug==1.0.1
diff --git a/eval.py b/eval.py
new file mode 100644
index 0000000..c846458
--- /dev/null
+++ b/eval.py
@@ -0,0 +1,286 @@
+import argparse
+import os
+from os import path
+import numpy as np
+import time
+import copy
+import csv
+import torch
+torch.set_default_tensor_type('torch.cuda.FloatTensor')
+from torchvision.utils import save_image
+
+from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
+import matplotlib
+matplotlib.use('Agg')
+
+# import ssl # enable if downloading models gives CERTIFICATE_VERIFY_FAILED error
+# ssl._create_default_https_context = ssl._create_unverified_context
+
+import sys
+sys.path.append('submodules') # needed to make imports work in GAN_stability
+
+from graf.gan_training import Evaluator as Evaluator
+from graf.config import get_data, build_models, update_config, get_render_poses
+from graf.utils import count_trainable_parameters, to_phi, to_theta, get_nsamples
+from graf.transforms import ImgToPatch
+
+from submodules.GAN_stability.gan_training.checkpoints import CheckpointIO
+from submodules.GAN_stability.gan_training.distributions import get_ydist, get_zdist
+from submodules.GAN_stability.gan_training.config import (
+ load_config,
+)
+
+from external.colmap.filter_points import filter_ply
+
+
+if __name__ == '__main__':
+ # Arguments
+ parser = argparse.ArgumentParser(
+ description='Train a GAN with different regularization strategies.'
+ )
+ parser.add_argument('config', type=str, help='Path to config file.')
+ parser.add_argument('--fid_kid', action='store_true', help='Evaluate FID and KID.')
+ parser.add_argument('--rotation_elevation', action='store_true', help='Generate videos with changing camera pose.')
+ parser.add_argument('--shape_appearance', action='store_true', help='Create grid image showing shape/appearance variation.')
+ parser.add_argument('--pretrained', action='store_true', help='Load pretrained model.')
+ parser.add_argument('--reconstruction', action='store_true', help='Generate images and run COLMAP for 3D reconstruction.')
+
+ args, unknown = parser.parse_known_args()
+ config = load_config(args.config, 'configs/default.yaml')
+ config['data']['fov'] = float(config['data']['fov'])
+ config = update_config(config, unknown)
+
+ # Short hands
+ batch_size = config['training']['batch_size']
+ out_dir = os.path.join(config['training']['outdir'], config['expname'])
+ if args.pretrained:
+ config['expname'] = '%s_%s' % (config['data']['type'], config['data']['imsize'])
+ out_dir = os.path.join(config['training']['outdir'], config['expname'] + '_from_pretrained')
+ checkpoint_dir = path.join(out_dir, 'chkpts')
+ eval_dir = os.path.join(out_dir, 'eval')
+ os.makedirs(eval_dir, exist_ok=True)
+ fid_kid = int(args.fid_kid)
+
+ config['training']['nworkers'] = 0
+
+ # Logger
+ checkpoint_io = CheckpointIO(
+ checkpoint_dir=checkpoint_dir
+ )
+
+ device = torch.device("cuda:0")
+
+ # Dataset
+ train_dataset, hwfr, render_poses = get_data(config)
+ # in case of orthographic projection replace focal length by far-near
+ if config['data']['orthographic']:
+ hw_ortho = (config['data']['far']-config['data']['near'], config['data']['far']-config['data']['near'])
+ hwfr[2] = hw_ortho
+
+ config['data']['hwfr'] = hwfr # add for building generator
+ print(train_dataset, hwfr, render_poses.shape)
+
+ val_dataset = train_dataset # evaluate on training dataset for GANs
+ if args.fid_kid:
+ val_loader = torch.utils.data.DataLoader(
+ val_dataset,
+ batch_size=batch_size,
+ num_workers=config['training']['nworkers'],
+ shuffle=True, pin_memory=False, sampler=None, drop_last=False # enable shuffle for fid/kid computation
+ )
+
+ # Create models
+ generator, _ = build_models(config, disc=False)
+ print('Generator params: %d' % count_trainable_parameters(generator))
+
+ # Put models on gpu if needed
+ generator = generator.to(device)
+
+ # input transform
+ img_to_patch = ImgToPatch(generator.ray_sampler, hwfr[:3])
+
+ # Register modules to checkpoint
+ checkpoint_io.register_modules(
+ **generator.module_dict # treat NeRF specially
+ )
+
+ # Get model file
+ if args.pretrained:
+ config_pretrained = load_config('configs/pretrained_models.yaml', 'configs/pretrained_models.yaml')
+ model_file = config_pretrained[config['data']['type']][config['data']['imsize']]
+ else:
+ model_file = 'model_best.pt'
+
+ # Distributions
+ ydist = get_ydist(1, device=device) # Dummy to keep GAN training structure in tact
+ y = torch.zeros(batch_size) # Dummy to keep GAN training structure in tact
+ zdist = get_zdist(config['z_dist']['type'], config['z_dist']['dim'],
+ device=device)
+
+ # Test generator, use model average
+ generator_test = copy.deepcopy(generator)
+ generator_test.parameters = lambda: generator_test._parameters
+ generator_test.named_parameters = lambda: generator_test._named_parameters
+ checkpoint_io.register_modules(**{k + '_test': v for k, v in generator_test.module_dict.items()})
+
+ # Evaluator
+ evaluator = Evaluator(fid_kid, generator_test, zdist, ydist,
+ batch_size=batch_size, device=device)
+
+ # Train
+ tstart = t0 = time.time()
+
+ # Load checkpoint
+ print('load %s' % os.path.join(checkpoint_dir, model_file))
+ load_dict = checkpoint_io.load(model_file)
+ it = load_dict.get('it', -1)
+ epoch_idx = load_dict.get('epoch_idx', -1)
+
+ # Evaluation loop
+ if args.fid_kid:
+ # Specifically generate samples that can be saved
+ n_samples = 1000
+ ztest = zdist.sample((n_samples,))
+
+ samples, _, _ = evaluator.create_samples(ztest.to(device))
+ samples = (samples / 2 + 0.5).mul_(255).clamp_(0, 255).to(torch.uint8) # convert to unit8
+
+ filename = 'samples_fid_kid_{:06d}.npy'.format(n_samples)
+ outpath = os.path.join(eval_dir, filename)
+ np.save(outpath, samples.numpy())
+ print('Saved {} samples to {}.'.format(n_samples, outpath))
+
+ samples = samples.to(torch.float) / 255
+
+ n_vis = 8
+ filename = 'fake_samples.png'
+ outpath = os.path.join(eval_dir, filename)
+ save_image(samples[:n_vis**2].clone(), outpath, nrow=n_vis)
+ print('Plot examples under {}.'.format(outpath))
+
+ filename = 'real_samples.png'
+ outpath = os.path.join(eval_dir, filename)
+ real = get_nsamples(val_loader, n_vis**2) / 2 + 0.5
+ save_image(real[:n_vis ** 2].clone(), outpath, nrow=n_vis)
+ print('Plot examples under {}.'.format(outpath))
+
+ # Compute FID and KID
+ fid_cache_file = os.path.join(out_dir, 'fid_cache_train.npz')
+ kid_cache_file = os.path.join(out_dir, 'kid_cache_train.npz')
+ evaluator.inception_eval.initialize_target(val_loader, cache_file=fid_cache_file, act_cache_file=kid_cache_file)
+
+ samples = samples * 2 - 1
+ sample_loader = torch.utils.data.DataLoader(
+ samples,
+ batch_size=evaluator.batch_size, num_workers=config['training']['nworkers'],
+ shuffle=False, pin_memory=False, sampler=None, drop_last=False
+ )
+ fid, kid = evaluator.compute_fid_kid(sample_loader)
+
+ filename = 'fid_kid.csv'
+ outpath = os.path.join(eval_dir, filename)
+ with open(outpath, mode='w') as csv_file:
+ fieldnames = ['fid', 'kid']
+ writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
+
+ writer.writeheader()
+ writer.writerow({'fid': fid, 'kid': kid})
+
+ print('Saved FID ({:.1f}) and KIDx100 ({:.2f}) to {}.'.format(fid, kid*100, outpath))
+
+ if args.rotation_elevation:
+ N_samples = 8
+ N_poses = 20 # corresponds to number of frames
+ render_radius = config['data']['radius']
+ if isinstance(render_radius, str): # use maximum radius
+ render_radius = float(render_radius.split(',')[1])
+
+ # compute render poses
+ def get_render_poses_rotation_elevation(N_poses=float('inf')):
+ """Compute equidistant render poses varying azimuth and polar angle, respectively."""
+ range_theta = (to_theta(config['data']['vmin']), to_theta(config['data']['vmax']))
+ range_phi = (to_phi(config['data']['umin']), to_phi(config['data']['umax']))
+
+ theta_mean = 0.5 * sum(range_theta)
+ phi_mean = 0.5 * sum(range_phi)
+
+ N_theta = min(int(range_theta[1] - range_theta[0]), N_poses) # at least 1 frame per degree
+ N_phi = min(int(range_phi[1] - range_phi[0]), N_poses) # at least 1 frame per degree
+
+ render_poses_rotation = get_render_poses(render_radius, angle_range=range_phi, theta=theta_mean, N=N_phi)
+ render_poses_elevation = get_render_poses(render_radius, angle_range=range_theta, theta=phi_mean, N=N_theta,
+ swap_angles=True)
+
+ return {'rotation': render_poses_rotation, 'elevation': render_poses_elevation}
+
+ z = zdist.sample((N_samples,))
+
+ for name, poses in get_render_poses_rotation_elevation(N_poses).items():
+ outpath = os.path.join(eval_dir, '{}/'.format(name))
+ os.makedirs(outpath, exist_ok=True)
+ evaluator.make_video(outpath, z, poses, as_gif=False)
+ torch.cuda.empty_cache()
+
+ if args.shape_appearance:
+ N_shapes = 5
+ N_appearances = 5
+
+ # constant pose
+ pose = render_poses[len(render_poses) // 2]
+ pose = pose.unsqueeze(0).expand(N_shapes * N_appearances, -1, -1)
+
+ # sample shape latent codes
+ z_shape = zdist.sample((N_shapes, 1))[..., :config['z_dist']['dim'] - config['z_dist']['dim_appearance']]
+ z_shape = z_shape.expand(-1, N_appearances, -1)
+
+ z_appearance = zdist.sample((1, N_appearances,))[..., config['z_dist']['dim_appearance']:]
+ z_appearance = z_appearance.expand(N_shapes, -1, -1)
+
+ z_grid = torch.cat([z_shape, z_appearance], dim=-1).flatten(0, 1)
+
+ rgbs, _, _ = evaluator.create_samples(z_grid, poses=pose)
+ rgbs = rgbs / 2 + 0.5
+
+ outpath = os.path.join(eval_dir, 'shape_appearance.png')
+ save_image(rgbs, outpath, nrow=N_shapes, padding=0)
+
+ if args.reconstruction:
+
+ N_samples = 8
+ N_poses = 400 # corresponds to number of frames
+ ztest = zdist.sample((N_samples,))
+
+ # sample from mean radius
+ radius_orig = generator_test.radius
+ if isinstance(radius_orig, tuple):
+ generator_test.radius = 0.5 * (radius_orig[0]+radius_orig[1])
+
+ # output directories
+ rec_dir = os.path.join(eval_dir, 'reconstruction')
+ image_dir = os.path.join(rec_dir, 'images')
+ colmap_dir = os.path.join(rec_dir, 'models')
+
+ # generate samples and run reconstruction
+ for i, z_i in enumerate(ztest):
+ outpath = os.path.join(image_dir, 'object_{:04d}'.format(i))
+ os.makedirs(outpath, exist_ok=True)
+
+ # create samples
+ z_i = z_i.reshape(1,-1).repeat(N_poses, 1)
+ rgbs, _, _ = evaluator.create_samples(z_i.to(device))
+ rgbs = rgbs / 2 + 0.5
+ for j, rgb in enumerate(rgbs):
+ save_image(rgb.clone(), os.path.join(outpath, '{:04d}.png'.format(j)))
+
+ # run COLMAP for 3D reconstruction
+ colmap_input_dir = os.path.join(image_dir, 'object_{:04d}'.format(i))
+ colmap_output_dir = os.path.join(colmap_dir, 'object_{:04d}'.format(i))
+ colmap_cmd = './external/colmap/run_colmap_automatic.sh {} {}'.format(colmap_input_dir, colmap_output_dir)
+ print(colmap_cmd)
+ os.system(colmap_cmd)
+
+ # filter out white points
+ filter_ply(colmap_output_dir)
+
+ # reset radius for generator
+ generator_test.radius = radius_orig
diff --git a/external/colmap/__init__.py b/external/colmap/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/external/colmap/filter_points.py b/external/colmap/filter_points.py
new file mode 100644
index 0000000..56e27b1
--- /dev/null
+++ b/external/colmap/filter_points.py
@@ -0,0 +1,73 @@
+import os
+import sys
+import glob
+import struct
+import numpy as np
+
+def readBinaryPly(pcdFile, fmt='ffffffBBB', fmt_len=27):
+
+ with open(pcdFile, 'rb') as f:
+ plyData = f.readlines()
+
+ headLine = plyData.index(b'end_header\n')+1
+ plyData = plyData[headLine:]
+ plyData = b"".join(plyData)
+
+ n_pts_loaded = int(len(plyData)/fmt_len)
+
+ data = []
+ for i in range(n_pts_loaded):
+ pts=struct.unpack(fmt, plyData[i*fmt_len:(i+1)*fmt_len])
+ data.append(pts)
+ data=np.asarray(data)
+
+ return data
+
+def writeBinaryPly(pcdFile, data):
+ fmt = '=ffffffBBB'
+ fmt_len = 27
+ n_pts = data.shape[0]
+
+ with open(pcdFile, 'wb') as f:
+ f.write(b'ply\n')
+ f.write(b'format binary_little_endian 1.0\n')
+ f.write(b'comment\n')
+ f.write(b'element vertex %d\n' % n_pts)
+ f.write(b'property float x\n')
+ f.write(b'property float y\n')
+ f.write(b'property float z\n')
+ f.write(b'property float nx\n')
+ f.write(b'property float ny\n')
+ f.write(b'property float nz\n')
+ f.write(b'property uchar red\n')
+ f.write(b'property uchar green\n')
+ f.write(b'property uchar blue\n')
+ f.write(b'end_header\n')
+
+ for i in range(n_pts):
+ f.write(struct.pack(fmt, *data[i,0:6], *data[i,6:9].astype(np.uint8)))
+
+
+def filter_ply(object_dir):
+
+ ply_files = sorted(glob.glob(os.path.join(object_dir, 'dense', '*', 'fused.ply')))
+
+ for ply_file in ply_files:
+ ply_filter_file = ply_file.replace('.ply', '_filtered.ply')
+ plydata = readBinaryPly(ply_file)
+ vertex = plydata[:,0:3]
+ normal = plydata[:,3:6]
+ color = plydata[:,6:9]
+
+ mask = np.mean(color,1)<(0.85 * 255.)
+ color = color[mask, :]
+ normal = normal[mask, :]
+ vertex = vertex[mask, :]
+ plydata = np.hstack((vertex, normal, color))
+ writeBinaryPly(ply_filter_file, plydata)
+ print('Processed file {}'.format(ply_filter_file))
+
+if __name__=='__main__':
+
+ object_dir=sys.argv[1]
+ filter_ply(object_dir)
diff --git a/external/colmap/run_colmap_automatic.sh b/external/colmap/run_colmap_automatic.sh
new file mode 100755
index 0000000..dbe9e34
--- /dev/null
+++ b/external/colmap/run_colmap_automatic.sh
@@ -0,0 +1,13 @@
+#set -e
+
+input_dir=$1
+output_dir=$2
+
+mkdir -p ${output_dir}
+echo Processing ${input_dir} ...
+colmap automatic_reconstructor \
+ --workspace_path ${output_dir} \
+ --image_path ${input_dir}/ \
+ --single_camera=1 \
+ --dense=1 \
+ --gpu_index=0
diff --git a/graf/config.py b/graf/config.py
new file mode 100644
index 0000000..f4cc58b
--- /dev/null
+++ b/graf/config.py
@@ -0,0 +1,181 @@
+import numpy as np
+import torch
+from torchvision.transforms import *
+
+from .datasets import *
+from .transforms import FlexGridRaySampler
+from .utils import polar_to_cartesian, look_at, to_phi, to_theta
+
+
+def save_config(outpath, config):
+ from yaml import safe_dump
+ with open(outpath, 'w') as f:
+ safe_dump(config, f)
+
+
+def update_config(config, unknown):
+ # update config given args
+ for idx,arg in enumerate(unknown):
+ if arg.startswith("--"):
+ if (':') in arg:
+ k1,k2 = arg.replace("--","").split(':')
+ argtype = type(config[k1][k2])
+ if argtype == bool:
+ v = unknown[idx+1].lower() == 'true'
+ else:
+ if config[k1][k2] is not None:
+ v = type(config[k1][k2])(unknown[idx+1])
+ else:
+ v = unknown[idx+1]
+ print(f'Changing {k1}:{k2} ---- {config[k1][k2]} to {v}')
+ config[k1][k2] = v
+ else:
+ k = arg.replace('--','')
+ v = unknown[idx+1]
+ argtype = type(config[k])
+ print(f'Changing {k} ---- {config[k]} to {v}')
+ config[k] = v
+
+ return config
+
+
+def get_data(config):
+ H = W = imsize = config['data']['imsize']
+ dset_type = config['data']['type']
+ fov = config['data']['fov']
+
+ transforms = Compose([
+ Resize(imsize),
+ ToTensor(),
+ Lambda(lambda x: x * 2 - 1),
+ ])
+
+ kwargs = {
+ 'data_dirs': config['data']['datadir'],
+ 'transforms': transforms
+ }
+
+ if dset_type == 'carla':
+ dset = Carla(**kwargs)
+
+ elif dset_type == 'celebA':
+ assert imsize <= 128, 'cropped GT data has lower resolution than imsize, consider using celebA_hq instead'
+ transforms.transforms.insert(0, RandomHorizontalFlip())
+ transforms.transforms.insert(0, CenterCrop(108))
+
+ dset = CelebA(**kwargs)
+
+ elif dset_type == 'celebA_hq':
+ transforms.transforms.insert(0, RandomHorizontalFlip())
+ transforms.transforms.insert(0, CenterCrop(650))
+
+ dset = CelebAHQ(**kwargs)
+
+ elif dset_type == 'cats':
+ transforms.transforms.insert(0, RandomHorizontalFlip())
+ dset = Cats(**kwargs)
+
+ elif dset_type == 'cub':
+ dset = CUB(**kwargs)
+
+ dset.H = dset.W = imsize
+ dset.focal = W/2 * 1 / np.tan((.5 * fov * np.pi/180.))
+ radius = config['data']['radius']
+ render_radius = radius
+ if isinstance(radius, str):
+ radius = tuple(float(r) for r in radius.split(','))
+ render_radius = max(radius)
+ dset.radius = radius
+
+ # compute render poses
+ N = 40
+ theta = 0.5 * (to_theta(config['data']['vmin']) + to_theta(config['data']['vmax']))
+ angle_range = (to_phi(config['data']['umin']), to_phi(config['data']['umax']))
+ render_poses = get_render_poses(render_radius, angle_range=angle_range, theta=theta, N=N)
+
+ print('Loaded {}'.format(dset_type), imsize, len(dset), render_poses.shape, [H,W,dset.focal,dset.radius], config['data']['datadir'])
+ return dset, [H,W,dset.focal,dset.radius], render_poses
+
+
+def get_render_poses(radius, angle_range=(0, 360), theta=0, N=40, swap_angles=False):
+ poses = []
+ theta = max(0.1, theta)
+ for angle in np.linspace(angle_range[0],angle_range[1],N+1)[:-1]:
+ angle = max(0.1, angle)
+ if swap_angles:
+ loc = polar_to_cartesian(radius, theta, angle, deg=True)
+ else:
+ loc = polar_to_cartesian(radius, angle, theta, deg=True)
+ R = look_at(loc)[0]
+ RT = np.concatenate([R, loc.reshape(3, 1)], axis=1)
+ poses.append(RT)
+ return torch.from_numpy(np.stack(poses))
+
+
+def build_models(config, disc=True):
+ from argparse import Namespace
+ from submodules.nerf_pytorch.run_nerf_mod import create_nerf
+ from .models.generator import Generator
+ from .models.discriminator import Discriminator
+
+ config_nerf = Namespace(**config['nerf'])
+ # Update config for NERF
+ config_nerf.chunk = config['training']['chunk']
+ config_nerf.netchunk = config['training']['netchunk']
+ config_nerf.white_bkgd = config['data']['white_bkgd']
+ config_nerf.feat_dim = config['z_dist']['dim']
+ config_nerf.feat_dim_appearance = config['z_dist']['dim_appearance']
+
+ render_kwargs_train, render_kwargs_test, params, named_parameters = create_nerf(config_nerf)
+
+ bds_dict = {'near': config['data']['near'], 'far': config['data']['far']}
+ render_kwargs_train.update(bds_dict)
+ render_kwargs_test.update(bds_dict)
+
+ ray_sampler = FlexGridRaySampler(N_samples=config['ray_sampler']['N_samples'],
+ min_scale=config['ray_sampler']['min_scale'],
+ max_scale=config['ray_sampler']['max_scale'],
+ scale_anneal=config['ray_sampler']['scale_anneal'],
+ orthographic=config['data']['orthographic'])
+
+ H, W, f, r = config['data']['hwfr']
+ generator = Generator(H, W, f, r,
+ ray_sampler=ray_sampler,
+ render_kwargs_train=render_kwargs_train, render_kwargs_test=render_kwargs_test,
+ parameters=params, named_parameters=named_parameters,
+ chunk=config['training']['chunk'],
+ range_u=(float(config['data']['umin']), float(config['data']['umax'])),
+ range_v=(float(config['data']['vmin']), float(config['data']['vmax'])),
+ orthographic=config['data']['orthographic'],
+ )
+
+ discriminator = None
+ if disc:
+ disc_kwargs = {'nc': 3, # channels for patch discriminator
+ 'ndf': config['discriminator']['ndf'],
+ 'imsize': int(np.sqrt(config['ray_sampler']['N_samples'])),
+ 'hflip': config['discriminator']['hflip']}
+
+ discriminator = Discriminator(**disc_kwargs)
+
+ return generator, discriminator
+
+
+def build_lr_scheduler(optimizer, config, last_epoch=-1):
+ import torch.optim as optim
+ step_size = config['training']['lr_anneal_every']
+ if isinstance(step_size, str):
+ milestones = [int(m) for m in step_size.split(',')]
+ lr_scheduler = optim.lr_scheduler.MultiStepLR(
+ optimizer,
+ milestones=milestones,
+ gamma=config['training']['lr_anneal'],
+ last_epoch=last_epoch)
+ else:
+ lr_scheduler = optim.lr_scheduler.StepLR(
+ optimizer,
+ step_size=step_size,
+ gamma=config['training']['lr_anneal'],
+ last_epoch=last_epoch
+ )
+ return lr_scheduler
diff --git a/graf/datasets.py b/graf/datasets.py
new file mode 100644
index 0000000..2277260
--- /dev/null
+++ b/graf/datasets.py
@@ -0,0 +1,88 @@
+import glob
+import numpy as np
+from PIL import Image
+
+from torchvision.datasets.vision import VisionDataset
+
+
+class ImageDataset(VisionDataset):
+ """
+ Load images from multiple data directories.
+ Folder structure: data_dir/filename.png
+ """
+
+ def __init__(self, data_dirs, transforms=None):
+ # Use multiple root folders
+ if not isinstance(data_dirs, list):
+ data_dirs = [data_dirs]
+
+ # initialize base class
+ VisionDataset.__init__(self, root=data_dirs, transform=transforms)
+
+ self.filenames = []
+ root = []
+
+ for ddir in self.root:
+ filenames = self._get_files(ddir)
+ self.filenames.extend(filenames)
+ root.append(ddir)
+
+ def __len__(self):
+ return len(self.filenames)
+
+ @staticmethod
+ def _get_files(root_dir):
+ return glob.glob(f'{root_dir}/*.png') + glob.glob(f'{root_dir}/*.jpg')
+
+ def __getitem__(self, idx):
+ filename = self.filenames[idx]
+ img = Image.open(filename).convert('RGB')
+ if self.transform is not None:
+ img = self.transform(img)
+ return img
+
+
+class Carla(ImageDataset):
+ def __init__(self, *args, **kwargs):
+ super(Carla, self).__init__(*args, **kwargs)
+
+
+class CelebA(ImageDataset):
+ def __init__(self, *args, **kwargs):
+ super(CelebA, self).__init__(*args, **kwargs)
+
+
+class CUB(ImageDataset):
+ def __init__(self, *args, **kwargs):
+ super(CUB, self).__init__(*args, **kwargs)
+
+
+class Cats(ImageDataset):
+ def __init__(self, *args, **kwargs):
+ super(Cats, self).__init__(*args, **kwargs)
+
+ @staticmethod
+ def _get_files(root_dir):
+ return glob.glob(f'{root_dir}/CAT_*/*.jpg')
+
+
+class CelebAHQ(ImageDataset):
+ def __init__(self, *args, **kwargs):
+ super(CelebAHQ, self).__init__(*args, **kwargs)
+
+ def _get_files(self, root):
+ return glob.glob(f'{root}/*.npy')
+
+ def __getitem__(self, idx):
+ img = np.load(self.filenames[idx]).squeeze(0).transpose(1,2,0)
+ if img.dtype == np.uint8:
+ pass
+ elif img.dtype == np.float32:
+ img = (img * 255).astype(np.uint8)
+ else:
+ raise NotImplementedError
+ img = Image.fromarray(img).convert('RGB')
+ if self.transform is not None:
+ img = self.transform(img)
+
+ return img
diff --git a/graf/gan_training.py b/graf/gan_training.py
new file mode 100644
index 0000000..c0f4836
--- /dev/null
+++ b/graf/gan_training.py
@@ -0,0 +1,119 @@
+import torch
+import numpy as np
+import os
+from tqdm import tqdm
+
+from submodules.GAN_stability.gan_training.eval import Evaluator as EvaluatorBase
+from submodules.GAN_stability.gan_training.metrics import FIDEvaluator, KIDEvaluator
+
+from .utils import save_video, color_depth_map
+
+
+class Evaluator(EvaluatorBase):
+ def __init__(self, eval_fid_kid, *args, **kwargs):
+ super(Evaluator, self).__init__(*args, **kwargs)
+ if eval_fid_kid:
+ self.inception_eval = FIDEvaluator(
+ device=self.device,
+ batch_size=self.batch_size,
+ resize=True,
+ n_samples=20000,
+ n_samples_fake=1000,
+ )
+
+ def get_rays(self, pose):
+ return self.generator.val_ray_sampler(self.generator.H, self.generator.W,
+ self.generator.focal, pose)[0]
+
+ def create_samples(self, z, poses=None):
+ self.generator.eval()
+
+ N_samples = len(z)
+ device = self.generator.device
+ z = z.to(device).split(self.batch_size)
+ if poses is None:
+ rays = [None] * len(z)
+ else:
+ rays = torch.stack([self.get_rays(poses[i].to(device)) for i in range(N_samples)])
+ rays = rays.split(self.batch_size)
+
+ rgb, disp, acc = [], [], []
+ with torch.no_grad():
+ for z_i, rays_i in tqdm(zip(z, rays), total=len(z), desc='Create samples...'):
+ bs = len(z_i)
+ if rays_i is not None:
+ rays_i = rays_i.permute(1, 0, 2, 3).flatten(1, 2) # Bx2x(HxW)xC -> 2x(BxHxW)x3
+ rgb_i, disp_i, acc_i, _ = self.generator(z_i, rays=rays_i)
+
+ reshape = lambda x: x.view(bs, self.generator.H, self.generator.W, x.shape[1]).permute(0, 3, 1, 2) # (NxHxW)xC -> NxCxHxW
+ rgb.append(reshape(rgb_i).cpu())
+ disp.append(reshape(disp_i).cpu())
+ acc.append(reshape(acc_i).cpu())
+
+ rgb = torch.cat(rgb)
+ disp = torch.cat(disp)
+ acc = torch.cat(acc)
+
+ depth = self.disp_to_cdepth(disp)
+
+ return rgb, depth, acc
+
+ def make_video(self, basename, z, poses, as_gif=True):
+ """ Generate images and save them as video.
+ z (N_samples, zdim): latent codes
+ poses (N_frames, 3 x 4): camera poses for all frames of video
+ """
+ N_samples, N_frames = len(z), len(poses)
+
+ # reshape inputs
+ z = z.unsqueeze(1).expand(-1, N_frames, -1).flatten(0, 1) # (N_samples x N_frames) x z_dim
+ poses = poses.unsqueeze(0) \
+ .expand(N_samples, -1, -1, -1).flatten(0, 1) # (N_samples x N_frames) x 3 x 4
+
+ rgbs, depths, accs = self.create_samples(z, poses=poses)
+
+ reshape = lambda x: x.view(N_samples, N_frames, *x.shape[1:])
+ rgbs = reshape(rgbs)
+ depths = reshape(depths)
+ print('Done, saving', rgbs.shape)
+
+ fps = min(int(N_frames / 2.), 25) # aim for at least 2 second video
+ for i in range(N_samples):
+ save_video(rgbs[i], basename + '{:04d}_rgb.mp4'.format(i), as_gif=as_gif, fps=fps)
+ save_video(depths[i], basename + '{:04d}_depth.mp4'.format(i), as_gif=as_gif, fps=fps)
+
+ def disp_to_cdepth(self, disps):
+ """Convert depth to color values"""
+ if (disps == 2e10).all(): # no values predicted
+ return torch.ones_like(disps)
+
+ near, far = self.generator.render_kwargs_test['near'], self.generator.render_kwargs_test['far']
+
+ disps = disps / 2 + 0.5 # [-1, 1] -> [0, 1]
+
+ depth = 1. / torch.max(1e-10 * torch.ones_like(disps), disps) # disparity -> depth
+ depth[disps == 1e10] = far # set undefined values to far plane
+
+ # scale between near, far plane for better visualization
+ depth = (depth - near) / (far - near)
+
+ depth = np.stack([color_depth_map(d) for d in depth[:, 0].detach().cpu().numpy()]) # convert to color
+ depth = (torch.from_numpy(depth).permute(0, 3, 1, 2) / 255.) * 2 - 1 # [0, 255] -> [-1, 1]
+
+ return depth
+
+ def compute_fid_kid(self, sample_generator=None):
+ if sample_generator is None:
+ def sample():
+ while True:
+ z = self.zdist.sample((self.batch_size,))
+ rgb, _, _ = self.create_samples(z)
+ # convert to uint8 and back to get correct binning
+ rgb = (rgb / 2 + 0.5).mul_(255).clamp_(0, 255).to(torch.uint8).to(torch.float) / 255. * 2 - 1
+ yield rgb.cpu()
+
+ sample_generator = sample()
+
+ fid, (kids, vars) = self.inception_eval.get_fid_kid(sample_generator)
+ kid = np.mean(kids)
+ return fid, kid
diff --git a/graf/models/discriminator.py b/graf/models/discriminator.py
new file mode 100644
index 0000000..66222df
--- /dev/null
+++ b/graf/models/discriminator.py
@@ -0,0 +1,81 @@
+import torch
+import torch.nn as nn
+
+
+class Discriminator(nn.Module):
+ def __init__(self, nc=3, ndf=64, imsize=64, hflip=False):
+ super(Discriminator, self).__init__()
+ self.nc = nc
+ assert(imsize==32 or imsize==64 or imsize==128)
+ self.imsize = imsize
+ self.hflip = hflip
+
+ SN = torch.nn.utils.spectral_norm
+ IN = lambda x : nn.InstanceNorm2d(x)
+
+ blocks = []
+ if self.imsize==128:
+ blocks += [
+ # input is (nc) x 128 x 128
+ SN(nn.Conv2d(nc, ndf//2, 4, 2, 1, bias=False)),
+ nn.LeakyReLU(0.2, inplace=True),
+ # input is (ndf//2) x 64 x 64
+ SN(nn.Conv2d(ndf//2, ndf, 4, 2, 1, bias=False)),
+ IN(ndf),
+ nn.LeakyReLU(0.2, inplace=True),
+ # state size. (ndf) x 32 x 32
+ SN(nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False)),
+ #nn.BatchNorm2d(ndf * 2),
+ IN(ndf * 2),
+ nn.LeakyReLU(0.2, inplace=True),
+ ]
+ elif self.imsize==64:
+ blocks += [
+ # input is (nc) x 64 x 64
+ SN(nn.Conv2d(nc, ndf, 4, 2, 1, bias=False)),
+ nn.LeakyReLU(0.2, inplace=True),
+ # state size. (ndf) x 32 x 32
+ SN(nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False)),
+ #nn.BatchNorm2d(ndf * 2),
+ IN(ndf * 2),
+ nn.LeakyReLU(0.2, inplace=True),
+ ]
+ else:
+ blocks += [
+ # input is (nc) x 32 x 32
+ SN(nn.Conv2d(nc, ndf * 2, 4, 2, 1, bias=False)),
+ #nn.BatchNorm2d(ndf * 2),
+ IN(ndf * 2),
+ nn.LeakyReLU(0.2, inplace=True),
+ ]
+
+ blocks += [
+ # state size. (ndf*2) x 16 x 16
+ SN(nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False)),
+ #nn.BatchNorm2d(ndf * 4),
+ IN(ndf * 4),
+ nn.LeakyReLU(0.2, inplace=True),
+ # state size. (ndf*4) x 8 x 8
+ SN(nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False)),
+ #nn.BatchNorm2d(ndf * 8),
+ IN(ndf * 8),
+ nn.LeakyReLU(0.2, inplace=True),
+ # state size. (ndf*8) x 4 x 4
+ SN(nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False)),
+ # nn.Sigmoid()
+ ]
+ blocks = [x for x in blocks if x]
+ self.main = nn.Sequential(*blocks)
+
+ def forward(self, input, y=None):
+ input = input[:, :self.nc]
+ input = input.view(-1, self.imsize, self.imsize, self.nc).permute(0, 3, 1, 2) # (BxN_samples)xC -> BxCxHxW
+
+ if self.hflip: # Randomly flip input horizontally
+ input_flipped = input.flip(3)
+ mask = torch.randint(0, 2, (len(input),1, 1, 1)).bool().expand(-1, *input.shape[1:])
+ input = torch.where(mask, input, input_flipped)
+
+ return self.main(input)
+
+
diff --git a/graf/models/generator.py b/graf/models/generator.py
new file mode 100644
index 0000000..671f2d4
--- /dev/null
+++ b/graf/models/generator.py
@@ -0,0 +1,130 @@
+import numpy as np
+import torch
+from ..utils import sample_on_sphere, look_at, to_sphere
+from ..transforms import FullRaySampler
+from submodules.nerf_pytorch.run_nerf_mod import render, run_network # import conditional render
+from functools import partial
+
+
+class Generator(object):
+ def __init__(self, H, W, focal, radius, ray_sampler, render_kwargs_train, render_kwargs_test, parameters, named_parameters,
+ range_u=(0,1), range_v=(0.01,0.49), chunk=None, device='cuda', orthographic=False):
+ self.device = device
+ self.H = int(H)
+ self.W = int(W)
+ self.focal = focal
+ self.radius = radius
+ self.range_u = range_u
+ self.range_v = range_v
+ self.chunk = chunk
+ coords = torch.from_numpy(np.stack(np.meshgrid(np.arange(H), np.arange(W), indexing='ij'), -1))
+ self.coords = coords.view(-1, 2)
+
+ self.ray_sampler = ray_sampler
+ self.val_ray_sampler = FullRaySampler(orthographic=orthographic)
+ self.render_kwargs_train = render_kwargs_train
+ self.render_kwargs_test = render_kwargs_test
+ self.initial_raw_noise_std = self.render_kwargs_train['raw_noise_std']
+ self._parameters = parameters
+ self._named_parameters = named_parameters
+ self.module_dict = {'generator': self.render_kwargs_train['network_fn']}
+ for name, module in [('generator_fine', self.render_kwargs_train['network_fine'])]:
+ if module is not None:
+ self.module_dict[name] = module
+
+ for k, v in self.module_dict.items():
+ if k in ['generator', 'generator_fine']:
+ continue # parameters already included
+ self._parameters += list(v.parameters())
+ self._named_parameters += list(v.named_parameters())
+
+ self.parameters = lambda: self._parameters # save as function to enable calling model.parameters()
+ self.named_parameters = lambda: self._named_parameters # save as function to enable calling model.named_parameters()
+ self.use_test_kwargs = False
+
+ self.render = partial(render, H=self.H, W=self.W, focal=self.focal, chunk=self.chunk)
+
+ def __call__(self, z, y=None, rays=None):
+ bs = z.shape[0]
+ if rays is None:
+ rays = torch.cat([self.sample_rays() for _ in range(bs)], dim=1)
+
+ render_kwargs = self.render_kwargs_test if self.use_test_kwargs else self.render_kwargs_train
+ render_kwargs = dict(render_kwargs) # copy
+
+ # in the case of a variable radius
+ # we need to adjust near and far plane for the rays
+ # so they stay within the bounds defined wrt. maximal radius
+ # otherwise each camera samples within its own near/far plane (relative to this camera's radius)
+ # instead of the absolute value (relative to maximum camera radius)
+ if isinstance(self.radius, tuple):
+ assert self.radius[1] - self.radius[0] <= render_kwargs['near'], 'Your smallest radius lies behind your near plane!'
+
+ rays_radius = rays[0].norm(dim=-1)
+ shift = (self.radius[1] - rays_radius).view(-1, 1).float() # reshape s.t. shape matches required shape in run_nerf
+ render_kwargs['near'] = render_kwargs['near'] - shift
+ render_kwargs['far'] = render_kwargs['far'] - shift
+ assert (render_kwargs['near'] >= 0).all() and (render_kwargs['far'] >= 0).all(), \
+ (rays_radius.min(), rays_radius.max(), shift.min(), shift.max())
+
+
+ render_kwargs['features'] = z
+ rgb, disp, acc, extras = render(self.H, self.W, self.focal, chunk=self.chunk, rays=rays,
+ **render_kwargs)
+
+ rays_to_output = lambda x: x.view(len(x), -1) * 2 - 1 # (BxN_samples)xC
+
+ if self.use_test_kwargs: # return all outputs
+ return rays_to_output(rgb), \
+ rays_to_output(disp), \
+ rays_to_output(acc), extras
+
+ rgb = rays_to_output(rgb)
+ return rgb
+
+ def decrease_nerf_noise(self, it):
+ end_it = 5000
+ if it < end_it:
+ noise_std = self.initial_raw_noise_std - self.initial_raw_noise_std/end_it * it
+ self.render_kwargs_train['raw_noise_std'] = noise_std
+
+ def sample_pose(self):
+ # sample location on unit sphere
+ loc = sample_on_sphere(self.range_u, self.range_v)
+
+ # sample radius if necessary
+ radius = self.radius
+ if isinstance(radius, tuple):
+ radius = np.random.uniform(*radius)
+
+ loc = loc * radius
+ R = look_at(loc)[0]
+
+ RT = np.concatenate([R, loc.reshape(3, 1)], axis=1)
+ RT = torch.Tensor(RT.astype(np.float32))
+ return RT
+
+ def sample_rays(self):
+ pose = self.sample_pose()
+ sampler = self.val_ray_sampler if self.use_test_kwargs else self.ray_sampler
+ batch_rays, _, _ = sampler(self.H, self.W, self.focal, pose)
+ return batch_rays
+
+ def to(self, device):
+ self.render_kwargs_train['network_fn'].to(device)
+ if self.render_kwargs_train['network_fine'] is not None:
+ self.render_kwargs_train['network_fine'].to(device)
+ self.device = device
+ return self
+
+ def train(self):
+ self.use_test_kwargs = False
+ self.render_kwargs_train['network_fn'].train()
+ if self.render_kwargs_train['network_fine'] is not None:
+ self.render_kwargs_train['network_fine'].train()
+
+ def eval(self):
+ self.use_test_kwargs = True
+ self.render_kwargs_train['network_fn'].eval()
+ if self.render_kwargs_train['network_fine'] is not None:
+ self.render_kwargs_train['network_fine'].eval()
diff --git a/graf/transforms.py b/graf/transforms.py
new file mode 100644
index 0000000..5bb08ea
--- /dev/null
+++ b/graf/transforms.py
@@ -0,0 +1,130 @@
+import torch
+from math import sqrt, exp
+
+from submodules.nerf_pytorch.run_nerf_helpers_mod import get_rays, get_rays_ortho
+
+
+class ImgToPatch(object):
+ def __init__(self, ray_sampler, hwf):
+ self.ray_sampler = ray_sampler
+ self.hwf = hwf # camera intrinsics
+
+ def __call__(self, img):
+ rgbs = []
+ for img_i in img:
+ pose = torch.eye(4) # use dummy pose to infer pixel values
+ _, selected_idcs, pixels_i = self.ray_sampler(H=self.hwf[0], W=self.hwf[1], focal=self.hwf[2], pose=pose)
+ if selected_idcs is not None:
+ rgbs_i = img_i.flatten(1, 2).t()[selected_idcs]
+ else:
+ rgbs_i = torch.nn.functional.grid_sample(img_i.unsqueeze(0),
+ pixels_i.unsqueeze(0), mode='bilinear', align_corners=True)[0]
+ rgbs_i = rgbs_i.flatten(1, 2).t()
+ rgbs.append(rgbs_i)
+
+ rgbs = torch.cat(rgbs, dim=0) # (B*N)x3
+
+ return rgbs
+
+
+class RaySampler(object):
+ def __init__(self, N_samples, orthographic=False):
+ super(RaySampler, self).__init__()
+ self.N_samples = N_samples
+ self.scale = torch.ones(1,).float()
+ self.return_indices = True
+ self.orthographic = orthographic
+
+ def __call__(self, H, W, focal, pose):
+ if self.orthographic:
+ size_h, size_w = focal # Hacky
+ rays_o, rays_d = get_rays_ortho(H, W, pose, size_h, size_w)
+ else:
+ rays_o, rays_d = get_rays(H, W, focal, pose)
+
+ select_inds = self.sample_rays(H, W)
+
+ if self.return_indices:
+ rays_o = rays_o.view(-1, 3)[select_inds]
+ rays_d = rays_d.view(-1, 3)[select_inds]
+
+ h = (select_inds // W) / float(H) - 0.5
+ w = (select_inds % W) / float(W) - 0.5
+
+ hw = torch.stack([h,w]).t()
+
+ else:
+ rays_o = torch.nn.functional.grid_sample(rays_o.permute(2,0,1).unsqueeze(0),
+ select_inds.unsqueeze(0), mode='bilinear', align_corners=True)[0]
+ rays_d = torch.nn.functional.grid_sample(rays_d.permute(2,0,1).unsqueeze(0),
+ select_inds.unsqueeze(0), mode='bilinear', align_corners=True)[0]
+ rays_o = rays_o.permute(1,2,0).view(-1, 3)
+ rays_d = rays_d.permute(1,2,0).view(-1, 3)
+
+ hw = select_inds
+ select_inds = None
+
+ return torch.stack([rays_o, rays_d]), select_inds, hw
+
+ def sample_rays(self, H, W):
+ raise NotImplementedError
+
+
+class FullRaySampler(RaySampler):
+ def __init__(self, **kwargs):
+ super(FullRaySampler, self).__init__(N_samples=None, **kwargs)
+
+ def sample_rays(self, H, W):
+ return torch.arange(0, H*W)
+
+
+class FlexGridRaySampler(RaySampler):
+ def __init__(self, N_samples, random_shift=True, random_scale=True, min_scale=0.25, max_scale=1., scale_anneal=-1,
+ **kwargs):
+ self.N_samples_sqrt = int(sqrt(N_samples))
+ super(FlexGridRaySampler, self).__init__(self.N_samples_sqrt**2, **kwargs)
+
+ self.random_shift = random_shift
+ self.random_scale = random_scale
+
+ self.min_scale = min_scale
+ self.max_scale = max_scale
+
+ # nn.functional.grid_sample grid value range in [-1,1]
+ self.w, self.h = torch.meshgrid([torch.linspace(-1,1,self.N_samples_sqrt),
+ torch.linspace(-1,1,self.N_samples_sqrt)])
+ self.h = self.h.unsqueeze(2)
+ self.w = self.w.unsqueeze(2)
+
+ # directly return grid for grid_sample
+ self.return_indices = False
+
+ self.iterations = 0
+ self.scale_anneal = scale_anneal
+
+ def sample_rays(self, H, W):
+
+ if self.scale_anneal>0:
+ k_iter = self.iterations // 1000 * 3
+ min_scale = max(self.min_scale, self.max_scale * exp(-k_iter*self.scale_anneal))
+ min_scale = min(0.9, min_scale)
+ else:
+ min_scale = self.min_scale
+
+ scale = 1
+ if self.random_scale:
+ scale = torch.Tensor(1).uniform_(min_scale, self.max_scale)
+ h = self.h * scale
+ w = self.w * scale
+
+ if self.random_shift:
+ max_offset = 1-scale.item()
+ h_offset = torch.Tensor(1).uniform_(0, max_offset) * (torch.randint(2,(1,)).float()-0.5)*2
+ w_offset = torch.Tensor(1).uniform_(0, max_offset) * (torch.randint(2,(1,)).float()-0.5)*2
+
+ h += h_offset
+ w += w_offset
+
+ self.scale = scale
+
+ return torch.cat([h, w], dim=2)
diff --git a/graf/utils.py b/graf/utils.py
new file mode 100644
index 0000000..d7958f5
--- /dev/null
+++ b/graf/utils.py
@@ -0,0 +1,170 @@
+import numpy as np
+import torch
+import imageio
+import os
+
+
+def get_nsamples(data_loader, N):
+ x = []
+ n = 0
+ while n < N:
+ x_next = next(iter(data_loader))
+ x.append(x_next)
+ n += x_next.size(0)
+ x = torch.cat(x, dim=0)[:N]
+ return x
+
+
+def count_trainable_parameters(model):
+ model_parameters = filter(lambda p: p.requires_grad, model.parameters())
+ return sum([np.prod(p.size()) for p in model_parameters])
+
+
+def save_video(imgs, fname, as_gif=False, fps=24, quality=8):
+ # convert to np.uint8
+ imgs = (255 * np.clip(imgs.permute(0, 2, 3, 1).detach().cpu().numpy() / 2 + 0.5, 0, 1)).astype(np.uint8)
+ imageio.mimwrite(fname, imgs, fps=fps, quality=quality)
+
+ if as_gif: # save as gif, too
+ os.system(f'ffmpeg -i {fname} -r 15 '
+ f'-vf "scale=512:-1,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse" {os.path.splitext(fname)[0] + ".gif"}')
+
+
+def color_depth_map(depths, scale=None):
+ """
+ Color an input depth map.
+
+ Arguments:
+ depths -- HxW numpy array of depths
+ [scale=None] -- scaling the values (defaults to the maximum depth)
+
+ Returns:
+ colored_depths -- HxWx3 numpy array visualizing the depths
+ """
+
+ _color_map_depths = np.array([
+ [0, 0, 0], # 0.000
+ [0, 0, 255], # 0.114
+ [255, 0, 0], # 0.299
+ [255, 0, 255], # 0.413
+ [0, 255, 0], # 0.587
+ [0, 255, 255], # 0.701
+ [255, 255, 0], # 0.886
+ [255, 255, 255], # 1.000
+ [255, 255, 255], # 1.000
+ ]).astype(float)
+ _color_map_bincenters = np.array([
+ 0.0,
+ 0.114,
+ 0.299,
+ 0.413,
+ 0.587,
+ 0.701,
+ 0.886,
+ 1.000,
+ 2.000, # doesn't make a difference, just strictly higher than 1
+ ])
+
+ if scale is None:
+ scale = depths.max()
+
+ values = np.clip(depths.flatten() / scale, 0, 1)
+ # for each value, figure out where they fit in in the bincenters: what is the last bincenter smaller than this value?
+ lower_bin = ((values.reshape(-1, 1) >= _color_map_bincenters.reshape(1, -1)) * np.arange(0, 9)).max(axis=1)
+ lower_bin_value = _color_map_bincenters[lower_bin]
+ higher_bin_value = _color_map_bincenters[lower_bin + 1]
+ alphas = (values - lower_bin_value) / (higher_bin_value - lower_bin_value)
+ colors = _color_map_depths[lower_bin] * (1 - alphas).reshape(-1, 1) + _color_map_depths[
+ lower_bin + 1] * alphas.reshape(-1, 1)
+ return colors.reshape(depths.shape[0], depths.shape[1], 3).astype(np.uint8)
+
+
+# Virtual camera utils
+
+
+def to_sphere(u, v):
+ theta = 2 * np.pi * u
+ phi = np.arccos(1 - 2 * v)
+ cx = np.sin(phi) * np.cos(theta)
+ cy = np.sin(phi) * np.sin(theta)
+ cz = np.cos(phi)
+ s = np.stack([cx, cy, cz])
+ return s
+
+
+def polar_to_cartesian(r, theta, phi, deg=True):
+ if deg:
+ phi = phi * np.pi / 180
+ theta = theta * np.pi / 180
+ cx = np.sin(phi) * np.cos(theta)
+ cy = np.sin(phi) * np.sin(theta)
+ cz = np.cos(phi)
+ return r * np.stack([cx, cy, cz])
+
+
+def to_uv(loc):
+ # normalize to unit sphere
+ loc = loc / loc.norm(dim=1, keepdim=True)
+
+ cx, cy, cz = loc.t()
+ v = (1 - cz) / 2
+
+ phi = torch.acos(cz)
+ sin_phi = torch.sin(phi)
+
+ # ensure we do not divide by zero
+ eps = 1e-8
+ sin_phi[sin_phi.abs() < eps] = eps
+
+ theta = torch.acos(cx / sin_phi)
+
+ # check for sign of phi
+ cx_rec = sin_phi * torch.cos(theta)
+ if not np.isclose(cx.numpy(), cx_rec.numpy(), atol=1e-5).all():
+ sin_phi = -sin_phi
+
+ # check for sign of theta
+ cy_rec = sin_phi * torch.sin(theta)
+ if not np.isclose(cy.numpy(), cy_rec.numpy(), atol=1e-5).all():
+ theta = -theta
+
+ u = theta / (2 * np.pi)
+ assert np.isclose(to_sphere(u, v).detach().cpu().numpy(), loc.t().detach().cpu().numpy(), atol=1e-5).all()
+
+ return u, v
+
+
+def to_phi(u):
+ return 360 * u # 2*pi*u*180/pi
+
+
+def to_theta(v):
+ return np.arccos(1 - 2 * v) * 180. / np.pi
+
+
+def sample_on_sphere(range_u=(0, 1), range_v=(0, 1)):
+ u = np.random.uniform(*range_u)
+ v = np.random.uniform(*range_v)
+ return to_sphere(u, v)
+
+
+def look_at(eye, at=np.array([0, 0, 0]), up=np.array([0, 0, 1]), eps=1e-5):
+ at = at.astype(float).reshape(1, 3)
+ up = up.astype(float).reshape(1, 3)
+
+ eye = eye.reshape(-1, 3)
+ up = up.repeat(eye.shape[0] // up.shape[0], axis=0)
+ eps = np.array([eps]).reshape(1, 1).repeat(up.shape[0], axis=0)
+
+ z_axis = eye - at
+ z_axis /= np.max(np.stack([np.linalg.norm(z_axis, axis=1, keepdims=True), eps]))
+
+ x_axis = np.cross(up, z_axis)
+ x_axis /= np.max(np.stack([np.linalg.norm(x_axis, axis=1, keepdims=True), eps]))
+
+ y_axis = np.cross(z_axis, x_axis)
+ y_axis /= np.max(np.stack([np.linalg.norm(y_axis, axis=1, keepdims=True), eps]))
+
+ r_mat = np.concatenate((x_axis.reshape(-1, 3, 1), y_axis.reshape(-1, 3, 1), z_axis.reshape(-1, 3, 1)), axis=2)
+
+ return r_mat
diff --git a/submodules/GAN_stability/.gitignore b/submodules/GAN_stability/.gitignore
new file mode 100644
index 0000000..78e88ee
--- /dev/null
+++ b/submodules/GAN_stability/.gitignore
@@ -0,0 +1,5 @@
+output
+data
+*_lmdb
+__pycache__
+*.pyc
diff --git a/submodules/GAN_stability/LICENSE b/submodules/GAN_stability/LICENSE
new file mode 100644
index 0000000..1dcacc4
--- /dev/null
+++ b/submodules/GAN_stability/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2018 Lars Mescheder
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/submodules/GAN_stability/README.md b/submodules/GAN_stability/README.md
new file mode 100644
index 0000000..78398ce
--- /dev/null
+++ b/submodules/GAN_stability/README.md
@@ -0,0 +1,72 @@
+# GAN stability
+This repository contains the experiments in the supplementary material for the paper [Which Training Methods for GANs do actually Converge?](https://avg.is.tuebingen.mpg.de/publications/meschedericml2018).
+
+To cite this work, please use
+```
+@INPROCEEDINGS{Mescheder2018ICML,
+ author = {Lars Mescheder and Sebastian Nowozin and Andreas Geiger},
+ title = {Which Training Methods for GANs do actually Converge?},
+ booktitle = {International Conference on Machine Learning (ICML)},
+ year = {2018}
+}
+```
+You can find further details on [our project page](https://avg.is.tuebingen.mpg.de/research_projects/convergence-and-stability-of-gan-training).
+
+# Usage
+First download your data and put it into the `./data` folder.
+
+To train a new model, first create a config script similar to the ones provided in the `./configs` folder. You can then train you model using
+```
+python train.py PATH_TO_CONFIG
+```
+
+To compute the inception score for your model and generate samples, use
+```
+python test.py PATH_TO_CONFIG
+```
+
+Finally, you can create nice latent space interpolations using
+```
+python interpolate.py PATH_TO_CONFIG
+```
+or
+```
+python interpolate_class.py PATH_TO_CONFIG
+```
+
+# Pretrained models
+We also provide several pretrained models.
+
+You can use the models for sampling by entering
+```
+python test.py PATH_TO_CONFIG
+```
+where `PATH_TO_CONFIG` is one of the config files
+```
+configs/pretrained/celebA_pretrained.yaml
+configs/pretrained/celebAHQ_pretrained.yaml
+configs/pretrained/imagenet_pretrained.yaml
+configs/pretrained/lsun_bedroom_pretrained.yaml
+configs/pretrained/lsun_bridge_pretrained.yaml
+configs/pretrained/lsun_church_pretrained.yaml
+configs/pretrained/lsun_tower_pretrained.yaml
+```
+Our script will automatically download the model checkpoints and run the generation.
+You can find the outputs in the `output/pretrained` folders.
+Similarly, you can use the scripts `interpolate.py` and `interpolate_class.py` for generating interpolations for the pretrained models.
+
+Please note that the config files `*_pretrained.yaml` are only for generation, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pretrained model.
+
+# Notes
+* Batch normalization is currently *not* supported when using an exponential running average, as the running average is only computed over the parameters of the models and not the other buffers of the model.
+
+# Results
+## celebA-HQ
+
+
+## Imagenet
+
+
+
+
+
diff --git a/submodules/GAN_stability/configs/celebAHQ.yaml b/submodules/GAN_stability/configs/celebAHQ.yaml
new file mode 100644
index 0000000..719627b
--- /dev/null
+++ b/submodules/GAN_stability/configs/celebAHQ.yaml
@@ -0,0 +1,30 @@
+data:
+ type: npy
+ train_dir: data/celebA-HQ
+ test_dir: data/celebA-HQ
+ img_size: 1024
+generator:
+ name: resnet
+ kwargs:
+ nfilter: 16
+ nfilter_max: 512
+ embed_size: 1
+discriminator:
+ name: resnet
+ kwargs:
+ nfilter: 16
+ nfilter_max: 512
+ embed_size: 1
+z_dist:
+ type: gauss
+ dim: 256
+training:
+ out_dir: output/celebAHQ
+ batch_size: 24
+test:
+ batch_size: 4
+ sample_size: 6
+ sample_nrow: 3
+interpolations:
+ nzs: 10
+ nsubsteps: 75
diff --git a/submodules/GAN_stability/configs/default.yaml b/submodules/GAN_stability/configs/default.yaml
new file mode 100644
index 0000000..d356b3c
--- /dev/null
+++ b/submodules/GAN_stability/configs/default.yaml
@@ -0,0 +1,53 @@
+data:
+ type: lsun
+ train_dir: data/LSUN
+ test_dir: data/LSUN
+ lsun_categories_train: [bedroom_train]
+ lsun_categories_test: [bedroom_test]
+ img_size: 256
+ nlabels: 1
+generator:
+ name: resnet
+ kwargs:
+discriminator:
+ name: resnet
+ kwargs:
+z_dist:
+ type: gauss
+ dim: 256
+training:
+ out_dir: output/default
+ gan_type: standard
+ reg_type: real
+ reg_param: 10.
+ batch_size: 64
+ nworkers: 16
+ take_model_average: true
+ model_average_beta: 0.999
+ model_average_reinit: false
+ monitoring: tensorboard
+ sample_every: 1000
+ sample_nlabels: 20
+ inception_every: -1
+ save_every: 900
+ backup_every: 100000
+ restart_every: -1
+ optimizer: rmsprop
+ lr_g: 0.0001
+ lr_d: 0.0001
+ lr_anneal: 1.
+ lr_anneal_every: 150000
+ d_steps: 1
+ equalize_lr: false
+ model_file: model.pt
+test:
+ batch_size: 32
+ sample_size: 64
+ sample_nrow: 8
+ use_model_average: true
+ compute_inception: false
+ conditional_samples: false
+ model_file: model.pt
+interpolations:
+ nzs: 10
+ nsubsteps: 75
diff --git a/submodules/GAN_stability/configs/imagenet.yaml b/submodules/GAN_stability/configs/imagenet.yaml
new file mode 100644
index 0000000..fea3aa3
--- /dev/null
+++ b/submodules/GAN_stability/configs/imagenet.yaml
@@ -0,0 +1,39 @@
+data:
+ type: image
+ train_dir: data/Imagenet
+ test_dir: data/Imagenet
+ img_size: 128
+ nlabels: 1000
+generator:
+ name: resnet2
+ kwargs:
+ nfilter: 64
+ nfilter_max: 1024
+ embed_size: 256
+discriminator:
+ name: resnet2
+ kwargs:
+ nfilter: 64
+ nfilter_max: 1024
+ embed_size: 256
+z_dist:
+ type: gauss
+ dim: 256
+training:
+ out_dir: output/imagenet
+ gan_type: standard
+ sample_nlabels: 20
+ inception_every: 10000
+ batch_size: 128
+test:
+ batch_size: 32
+ sample_size: 64
+ sample_nrow: 8
+ compute_inception: true
+ conditional_samples: true
+interpolations:
+ ys: [15, 157, 307, 321, 442, 483, 484, 525,
+ 536, 598, 607, 734, 768, 795, 927, 977,
+ 963, 946, 979]
+ nzs: 10
+ nsubsteps: 75
diff --git a/submodules/GAN_stability/configs/lsun_bedroom.yaml b/submodules/GAN_stability/configs/lsun_bedroom.yaml
new file mode 100644
index 0000000..c963c17
--- /dev/null
+++ b/submodules/GAN_stability/configs/lsun_bedroom.yaml
@@ -0,0 +1,31 @@
+data:
+ type: lsun
+ train_dir: data/LSUN
+ test_dir: data/LSUN
+ lsun_categories_train: [bedroom_train]
+ lsun_categories_test: [bedroom_test]
+ img_size: 256
+generator:
+ name: resnet
+ kwargs:
+ nfilter: 64
+ nfilter_max: 1024
+ embed_size: 1
+discriminator:
+ name: resnet
+ kwargs:
+ nfilter: 64
+ nfilter_max: 1024
+ embed_size: 1
+z_dist:
+ type: gauss
+ dim: 256
+training:
+ out_dir: output/lsun_bedroom
+test:
+ batch_size: 32
+ sample_size: 64
+ sample_nrow: 8
+interpolations:
+ nzs: 10
+ nsubsteps: 75
diff --git a/submodules/GAN_stability/configs/lsun_bridge.yaml b/submodules/GAN_stability/configs/lsun_bridge.yaml
new file mode 100644
index 0000000..4f1fc98
--- /dev/null
+++ b/submodules/GAN_stability/configs/lsun_bridge.yaml
@@ -0,0 +1,31 @@
+data:
+ type: lsun
+ train_dir: data/LSUN
+ test_dir: data/LSUN
+ lsun_categories_train: [bridge_train]
+ lsun_categories_test: [bridge_train]
+ img_size: 256
+generator:
+ name: resnet
+ kwargs:
+ nfilter: 64
+ nfilter_max: 1024
+ embed_size: 1
+discriminator:
+ name: resnet
+ kwargs:
+ nfilter: 64
+ nfilter_max: 1024
+ embed_size: 1
+z_dist:
+ type: gauss
+ dim: 256
+training:
+ out_dir: output/lsun_bridge
+test:
+ batch_size: 32
+ sample_size: 64
+ sample_nrow: 8
+interpolations:
+ nzs: 10
+ nsubsteps: 75
diff --git a/submodules/GAN_stability/configs/lsun_church.yaml b/submodules/GAN_stability/configs/lsun_church.yaml
new file mode 100644
index 0000000..4ab0d7b
--- /dev/null
+++ b/submodules/GAN_stability/configs/lsun_church.yaml
@@ -0,0 +1,31 @@
+data:
+ type: lsun
+ train_dir: data/LSUN
+ test_dir: data/LSUN
+ lsun_categories_train: [church_outdoor_train]
+ lsun_categories_test: [church_outdoor_test]
+ img_size: 256
+generator:
+ name: resnet
+ kwargs:
+ nfilter: 64
+ nfilter_max: 1024
+ embed_size: 1
+discriminator:
+ name: resnet
+ kwargs:
+ nfilter: 64
+ nfilter_max: 1024
+ embed_size: 1
+z_dist:
+ type: gauss
+ dim: 256
+training:
+ out_dir: output/lsun_church
+test:
+ batch_size: 32
+ sample_size: 64
+ sample_nrow: 8
+interpolations:
+ nzs: 10
+ nsubsteps: 75
diff --git a/submodules/GAN_stability/configs/lsun_tower.yaml b/submodules/GAN_stability/configs/lsun_tower.yaml
new file mode 100644
index 0000000..674ab53
--- /dev/null
+++ b/submodules/GAN_stability/configs/lsun_tower.yaml
@@ -0,0 +1,31 @@
+data:
+ type: lsun
+ train_dir: data/LSUN
+ test_dir: data/LSUN
+ lsun_categories_train: [tower_train]
+ lsun_categories_test: [tower_test]
+ img_size: 256
+generator:
+ name: resnet
+ kwargs:
+ nfilter: 64
+ nfilter_max: 1024
+ embed_size: 1
+discriminator:
+ name: resnet
+ kwargs:
+ nfilter: 64
+ nfilter_max: 1024
+ embed_size: 1
+z_dist:
+ type: gauss
+ dim: 256
+training:
+ out_dir: output/lsun_tower
+test:
+ batch_size: 32
+ sample_size: 64
+ sample_nrow: 8
+interpolations:
+ nzs: 10
+ nsubsteps: 75
diff --git a/submodules/GAN_stability/configs/pretrained/celebAHQ_pretrained.yaml b/submodules/GAN_stability/configs/pretrained/celebAHQ_pretrained.yaml
new file mode 100644
index 0000000..b827f4e
--- /dev/null
+++ b/submodules/GAN_stability/configs/pretrained/celebAHQ_pretrained.yaml
@@ -0,0 +1,31 @@
+data:
+ type: npy
+ train_dir: data/celebA-HQ
+ test_dir: data/celebA-HQ
+ img_size: 1024
+generator:
+ name: resnet
+ kwargs:
+ nfilter: 16
+ nfilter_max: 512
+ embed_size: 1
+discriminator:
+ name: resnet
+ kwargs:
+ nfilter: 16
+ nfilter_max: 512
+ embed_size: 1
+z_dist:
+ type: gauss
+ dim: 256
+training:
+ out_dir: output/pretrained/celebAHQ
+ batch_size: 24
+test:
+ model_file: https://s3.eu-central-1.amazonaws.com/avg-projects/gan_stability/models/celebahq-baab46b2.pt
+ batch_size: 4
+ sample_size: 6
+ sample_nrow: 3
+interpolations:
+ nzs: 10
+ nsubsteps: 75
diff --git a/submodules/GAN_stability/configs/pretrained/celebA_pretrained.yaml b/submodules/GAN_stability/configs/pretrained/celebA_pretrained.yaml
new file mode 100644
index 0000000..1c9bc14
--- /dev/null
+++ b/submodules/GAN_stability/configs/pretrained/celebA_pretrained.yaml
@@ -0,0 +1,28 @@
+data:
+ type: image
+ train_dir: data/celebA
+ test_dir: data/celebA
+ img_size: 256
+generator:
+ name: resnet4
+ kwargs:
+ nfilter: 64
+ embed_size: 1
+discriminator:
+ name: resnet4
+ kwargs:
+ nfilter: 64
+ embed_size: 1
+z_dist:
+ type: gauss
+ dim: 256
+training:
+ out_dir: output/pretrained/celebA
+test:
+ model_file: https://s3.eu-central-1.amazonaws.com/avg-projects/gan_stability/models/celeba-ab478c9d.pt
+ batch_size: 32
+ sample_size: 64
+ sample_nrow: 8
+interpolations:
+ nzs: 10
+ nsubsteps: 75
diff --git a/submodules/GAN_stability/configs/pretrained/imagenet_pretrained.yaml b/submodules/GAN_stability/configs/pretrained/imagenet_pretrained.yaml
new file mode 100644
index 0000000..09184a8
--- /dev/null
+++ b/submodules/GAN_stability/configs/pretrained/imagenet_pretrained.yaml
@@ -0,0 +1,39 @@
+data:
+ type: image
+ train_dir: data/Imagenet
+ test_dir: data/Imagenet
+ img_size: 128
+ nlabels: 1000
+generator:
+ name: resnet2
+ kwargs:
+ nfilter: 64
+ nfilter_max: 1024
+ embed_size: 256
+discriminator:
+ name: resnet2
+ kwargs:
+ nfilter: 64
+ nfilter_max: 1024
+ embed_size: 256
+z_dist:
+ type: gauss
+ dim: 256
+training:
+ out_dir: output/pretrained/imagenet
+ sample_nlabels: 20
+ inception_every: 10000
+ batch_size: 128
+test:
+ model_file: https://s3.eu-central-1.amazonaws.com/avg-projects/gan_stability/models/imagenet-8c505f47.pt
+ batch_size: 32
+ sample_size: 64
+ sample_nrow: 8
+ compute_inception: false
+ conditional_samples: true
+interpolations:
+ ys: [15, 157, 307, 321, 442, 483, 484, 525,
+ 536, 598, 607, 734, 768, 795, 927, 977,
+ 963, 946, 979]
+ nzs: 10
+ nsubsteps: 75
diff --git a/submodules/GAN_stability/configs/pretrained/lsun_bedroom_pretrained.yaml b/submodules/GAN_stability/configs/pretrained/lsun_bedroom_pretrained.yaml
new file mode 100644
index 0000000..8ccd06d
--- /dev/null
+++ b/submodules/GAN_stability/configs/pretrained/lsun_bedroom_pretrained.yaml
@@ -0,0 +1,30 @@
+data:
+ type: lsun
+ train_dir: data/LSUN
+ test_dir: data/LSUN
+ lsun_categories_train: [bedroom_train]
+ lsun_categories_test: [bedroom_test]
+ img_size: 256
+generator:
+ name: resnet3
+ kwargs:
+ nfilter: 64
+ embed_size: 1
+discriminator:
+ name: resnet3
+ kwargs:
+ nfilter: 64
+ embed_size: 1
+z_dist:
+ type: gauss
+ dim: 256
+training:
+ out_dir: output/pretrained/lsun_bedroom
+test:
+ model_file: https://s3.eu-central-1.amazonaws.com/avg-projects/gan_stability/models/lsun_bedroom-df4e7dd2.pt
+ batch_size: 32
+ sample_size: 64
+ sample_nrow: 8
+interpolations:
+ nzs: 10
+ nsubsteps: 75
diff --git a/submodules/GAN_stability/configs/pretrained/lsun_bridge_pretrained.yaml b/submodules/GAN_stability/configs/pretrained/lsun_bridge_pretrained.yaml
new file mode 100644
index 0000000..ccddd9f
--- /dev/null
+++ b/submodules/GAN_stability/configs/pretrained/lsun_bridge_pretrained.yaml
@@ -0,0 +1,30 @@
+data:
+ type: lsun
+ train_dir: data/LSUN
+ test_dir: data/LSUN
+ lsun_categories_train: [bridge_train]
+ lsun_categories_test: [bridge_test]
+ img_size: 256
+generator:
+ name: resnet3
+ kwargs:
+ nfilter: 64
+ embed_size: 1
+discriminator:
+ name: resnet3
+ kwargs:
+ nfilter: 64
+ embed_size: 1
+z_dist:
+ type: gauss
+ dim: 256
+training:
+ out_dir: output/pretrained/lsun_bridge
+test:
+ model_file: https://s3.eu-central-1.amazonaws.com/avg-projects/gan_stability/models/lsun_bridge-82887d22.pt
+ batch_size: 32
+ sample_size: 64
+ sample_nrow: 8
+interpolations:
+ nzs: 10
+ nsubsteps: 75
diff --git a/submodules/GAN_stability/configs/pretrained/lsun_church_pretrained.yaml b/submodules/GAN_stability/configs/pretrained/lsun_church_pretrained.yaml
new file mode 100644
index 0000000..2aa7f1f
--- /dev/null
+++ b/submodules/GAN_stability/configs/pretrained/lsun_church_pretrained.yaml
@@ -0,0 +1,30 @@
+data:
+ type: lsun
+ train_dir: data/LSUN
+ test_dir: data/LSUN
+ lsun_categories_train: [church_outdoor_train]
+ lsun_categories_test: [church_outdoor_test]
+ img_size: 256
+generator:
+ name: resnet3
+ kwargs:
+ nfilter: 64
+ embed_size: 1
+discriminator:
+ name: resnet3
+ kwargs:
+ nfilter: 64
+ embed_size: 1
+z_dist:
+ type: gauss
+ dim: 256
+training:
+ out_dir: output/pretrained/lsun_church
+test:
+ model_file: https://s3.eu-central-1.amazonaws.com/avg-projects/gan_stability/models/lsun_church-b6f0191b.pt
+ batch_size: 32
+ sample_size: 64
+ sample_nrow: 8
+interpolations:
+ nzs: 10
+ nsubsteps: 75
diff --git a/submodules/GAN_stability/configs/pretrained/lsun_tower_pretrained.yaml b/submodules/GAN_stability/configs/pretrained/lsun_tower_pretrained.yaml
new file mode 100644
index 0000000..10f96a0
--- /dev/null
+++ b/submodules/GAN_stability/configs/pretrained/lsun_tower_pretrained.yaml
@@ -0,0 +1,30 @@
+data:
+ type: lsun
+ train_dir: data/LSUN
+ test_dir: data/LSUN
+ lsun_categories_train: [tower_train]
+ lsun_categories_test: [tower_test]
+ img_size: 256
+generator:
+ name: resnet3
+ kwargs:
+ nfilter: 64
+ embed_size: 1
+discriminator:
+ name: resnet3
+ kwargs:
+ nfilter: 64
+ embed_size: 1
+z_dist:
+ type: gauss
+ dim: 256
+training:
+ out_dir: output/pretrained/lsun_tower
+test:
+ model_file: https://s3.eu-central-1.amazonaws.com/avg-projects/gan_stability/models/lsun_tower-1af5e570.pt
+ batch_size: 32
+ sample_size: 64
+ sample_nrow: 8
+interpolations:
+ nzs: 10
+ nsubsteps: 75
diff --git a/submodules/GAN_stability/gan_training/__init__.py b/submodules/GAN_stability/gan_training/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/submodules/GAN_stability/gan_training/checkpoints.py b/submodules/GAN_stability/gan_training/checkpoints.py
new file mode 100644
index 0000000..790ca8e
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/checkpoints.py
@@ -0,0 +1,101 @@
+
+import os
+import urllib
+import torch
+from torch.utils import model_zoo
+
+
+class CheckpointIO(object):
+ ''' CheckpointIO class.
+
+ It handles saving and loading checkpoints.
+
+ Args:
+ checkpoint_dir (str): path where checkpoints are saved
+ '''
+ def __init__(self, checkpoint_dir='./chkpts', **kwargs):
+ self.module_dict = kwargs
+ self.checkpoint_dir = checkpoint_dir
+ if not os.path.exists(checkpoint_dir):
+ os.makedirs(checkpoint_dir)
+
+ def register_modules(self, **kwargs):
+ ''' Registers modules in current module dictionary.
+ '''
+ self.module_dict.update(kwargs)
+
+ def save(self, filename, **kwargs):
+ ''' Saves the current module dictionary.
+
+ Args:
+ filename (str): name of output file
+ '''
+ if not os.path.isabs(filename):
+ filename = os.path.join(self.checkpoint_dir, filename)
+
+ outdict = kwargs
+ for k, v in self.module_dict.items():
+ outdict[k] = v.state_dict()
+ torch.save(outdict, filename)
+
+ def load(self, filename):
+ '''Loads a module dictionary from local file or url.
+
+ Args:
+ filename (str): name of saved module dictionary
+ '''
+ if is_url(filename):
+ return self.load_url(filename)
+ else:
+ return self.load_file(filename)
+
+ def load_file(self, filename):
+ '''Loads a module dictionary from file.
+
+ Args:
+ filename (str): name of saved module dictionary
+ '''
+
+ if not os.path.isabs(filename):
+ filename = os.path.join(self.checkpoint_dir, filename)
+
+ if os.path.exists(filename):
+ print(filename)
+ print('=> Loading checkpoint from local file...')
+ state_dict = torch.load(filename)
+ scalars = self.parse_state_dict(state_dict)
+ return scalars
+ else:
+ raise FileNotFoundError
+
+ def load_url(self, url):
+ '''Load a module dictionary from url.
+
+ Args:
+ url (str): url to saved model
+ '''
+ print(url)
+ print('=> Loading checkpoint from url...')
+ state_dict = model_zoo.load_url(url, progress=True)
+ scalars = self.parse_state_dict(state_dict)
+ return scalars
+
+ def parse_state_dict(self, state_dict):
+ '''Parse state_dict of model and return scalars.
+
+ Args:
+ state_dict (dict): State dict of model
+ '''
+
+ for k, v in self.module_dict.items():
+ if k in state_dict:
+ v.load_state_dict(state_dict[k])
+ else:
+ print('Warning: Could not find %s in checkpoint!' % k)
+ scalars = {k: v for k, v in state_dict.items()
+ if k not in self.module_dict}
+ return scalars
+
+def is_url(url):
+ scheme = urllib.parse.urlparse(url).scheme
+ return scheme in ('http', 'https')
\ No newline at end of file
diff --git a/submodules/GAN_stability/gan_training/config.py b/submodules/GAN_stability/gan_training/config.py
new file mode 100644
index 0000000..967ab48
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/config.py
@@ -0,0 +1,136 @@
+import yaml
+from torch import optim
+from os import path
+from GAN_stability.gan_training.models import generator_dict, discriminator_dict
+from GAN_stability.gan_training.train import toggle_grad
+
+
+# General config
+def load_config(path, default_path):
+ ''' Loads config file.
+
+ Args:
+ path (str): path to config file
+ default_path (bool): whether to use default path
+ '''
+ # Load configuration from file itself
+ with open(path, 'r') as f:
+ cfg_special = yaml.load(f)
+
+ # Check if we should inherit from a config
+ inherit_from = cfg_special.get('inherit_from')
+
+ # If yes, load this config first as default
+ # If no, use the default_path
+ if inherit_from is not None:
+ cfg = load_config(inherit_from, default_path)
+ elif default_path is not None:
+ with open(default_path, 'r') as f:
+ cfg = yaml.load(f)
+ else:
+ cfg = dict()
+
+ # Include main configuration
+ update_recursive(cfg, cfg_special)
+
+ return cfg
+
+
+def update_recursive(dict1, dict2):
+ ''' Update two config dictionaries recursively.
+
+ Args:
+ dict1 (dict): first dictionary to be updated
+ dict2 (dict): second dictionary which entries should be used
+
+ '''
+ for k, v in dict2.items():
+ # Add item if not yet in dict1
+ if k not in dict1:
+ dict1[k] = None
+ # Update
+ if isinstance(dict1[k], dict):
+ update_recursive(dict1[k], v)
+ else:
+ dict1[k] = v
+
+
+def build_models(config):
+ # Get classes
+ Generator = generator_dict[config['generator']['name']]
+ Discriminator = discriminator_dict[config['discriminator']['name']]
+
+ # Build models
+ generator = Generator(
+ z_dim=config['z_dist']['dim'],
+ nlabels=config['data']['nlabels'],
+ size=config['data']['img_size'],
+ **config['generator']['kwargs']
+ )
+ discriminator = Discriminator(
+ config['discriminator']['name'],
+ nlabels=config['data']['nlabels'],
+ size=config['data']['img_size'],
+ **config['discriminator']['kwargs']
+ )
+
+ return generator, discriminator
+
+
+def build_optimizers(generator, discriminator, config):
+ optimizer = config['training']['optimizer']
+ lr_g = config['training']['lr_g']
+ lr_d = config['training']['lr_d']
+ equalize_lr = config['training']['equalize_lr']
+
+ toggle_grad(generator, True)
+ toggle_grad(discriminator, True)
+
+ if equalize_lr:
+ g_gradient_scales = getattr(generator, 'gradient_scales', dict())
+ d_gradient_scales = getattr(discriminator, 'gradient_scales', dict())
+
+ g_params = get_parameter_groups(generator.parameters(),
+ g_gradient_scales,
+ base_lr=lr_g)
+ d_params = get_parameter_groups(discriminator.parameters(),
+ d_gradient_scales,
+ base_lr=lr_d)
+ else:
+ g_params = generator.parameters()
+ d_params = discriminator.parameters()
+
+ # Optimizers
+ if optimizer == 'rmsprop':
+ g_optimizer = optim.RMSprop(g_params, lr=lr_g, alpha=0.99, eps=1e-8)
+ d_optimizer = optim.RMSprop(d_params, lr=lr_d, alpha=0.99, eps=1e-8)
+ elif optimizer == 'adam':
+ g_optimizer = optim.Adam(g_params, lr=lr_g, betas=(0., 0.99), eps=1e-8)
+ d_optimizer = optim.Adam(d_params, lr=lr_d, betas=(0., 0.99), eps=1e-8)
+ elif optimizer == 'sgd':
+ g_optimizer = optim.SGD(g_params, lr=lr_g, momentum=0.)
+ d_optimizer = optim.SGD(d_params, lr=lr_d, momentum=0.)
+
+ return g_optimizer, d_optimizer
+
+
+def build_lr_scheduler(optimizer, config, last_epoch=-1):
+ lr_scheduler = optim.lr_scheduler.StepLR(
+ optimizer,
+ step_size=config['training']['lr_anneal_every'],
+ gamma=config['training']['lr_anneal'],
+ last_epoch=last_epoch
+ )
+ return lr_scheduler
+
+
+# Some utility functions
+def get_parameter_groups(parameters, gradient_scales, base_lr):
+ param_groups = []
+ for p in parameters:
+ c = gradient_scales.get(p, 1.)
+ param_groups.append({
+ 'params': [p],
+ 'lr': c * base_lr
+ })
+ return param_groups
diff --git a/submodules/GAN_stability/gan_training/distributions.py b/submodules/GAN_stability/gan_training/distributions.py
new file mode 100644
index 0000000..bba8026
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/distributions.py
@@ -0,0 +1,43 @@
+import torch
+from torch import distributions
+
+
+def get_zdist(dist_name, dim, device=None):
+ # Get distribution
+ if dist_name == 'uniform':
+ low = -torch.ones(dim, device=device)
+ high = torch.ones(dim, device=device)
+ zdist = distributions.Uniform(low, high)
+ elif dist_name == 'gauss':
+ mu = torch.zeros(dim, device=device)
+ scale = torch.ones(dim, device=device)
+ zdist = distributions.Normal(mu, scale)
+ else:
+ raise NotImplementedError
+
+ # Add dim attribute
+ zdist.dim = dim
+
+ return zdist
+
+
+def get_ydist(nlabels, device=None):
+ logits = torch.zeros(nlabels, device=device)
+ ydist = distributions.categorical.Categorical(logits=logits)
+
+ # Add nlabels attribute
+ ydist.nlabels = nlabels
+
+ return ydist
+
+
+def interpolate_sphere(z1, z2, t):
+ p = (z1 * z2).sum(dim=-1, keepdim=True)
+ p = p / z1.pow(2).sum(dim=-1, keepdim=True).sqrt()
+ p = p / z2.pow(2).sum(dim=-1, keepdim=True).sqrt()
+ omega = torch.acos(p)
+ s1 = torch.sin((1-t)*omega)/torch.sin(omega)
+ s2 = torch.sin(t*omega)/torch.sin(omega)
+ z = s1 * z1 + s2 * z2
+
+ return z
diff --git a/submodules/GAN_stability/gan_training/eval.py b/submodules/GAN_stability/gan_training/eval.py
new file mode 100644
index 0000000..7c89016
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/eval.py
@@ -0,0 +1,45 @@
+import torch
+from GAN_stability.gan_training.metrics import inception_score
+
+
+class Evaluator(object):
+ def __init__(self, generator, zdist, ydist, batch_size=64,
+ inception_nsamples=60000, device=None):
+ self.generator = generator
+ self.zdist = zdist
+ self.ydist = ydist
+ self.inception_nsamples = inception_nsamples
+ self.batch_size = batch_size
+ self.device = device
+
+ def compute_inception_score(self):
+ self.generator.eval()
+ imgs = []
+ while(len(imgs) < self.inception_nsamples):
+ ztest = self.zdist.sample((self.batch_size,))
+ ytest = self.ydist.sample((self.batch_size,))
+
+ samples = self.generator(ztest, ytest)
+ samples = [s.data.cpu().numpy() for s in samples]
+ imgs.extend(samples)
+
+ imgs = imgs[:self.inception_nsamples]
+ score, score_std = inception_score(
+ imgs, device=self.device, resize=True, splits=10
+ )
+
+ return score, score_std
+
+ def create_samples(self, z, y=None):
+ self.generator.eval()
+ batch_size = z.size(0)
+ # Parse y
+ if y is None:
+ y = self.ydist.sample((batch_size,))
+ elif isinstance(y, int):
+ y = torch.full((batch_size,), y,
+ device=self.device, dtype=torch.int64)
+ # Sample x
+ with torch.no_grad():
+ x = self.generator(z, y)
+ return x
diff --git a/submodules/GAN_stability/gan_training/inputs.py b/submodules/GAN_stability/gan_training/inputs.py
new file mode 100644
index 0000000..4eeb77c
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/inputs.py
@@ -0,0 +1,58 @@
+import torch
+import torchvision.transforms as transforms
+import torchvision.datasets as datasets
+import numpy as np
+
+
+def get_dataset(name, data_dir, size=64, lsun_categories=None):
+ transform = transforms.Compose([
+ transforms.Resize(size),
+ transforms.CenterCrop(size),
+ transforms.RandomHorizontalFlip(),
+ transforms.ToTensor(),
+ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
+ transforms.Lambda(lambda x: x + 1./128 * torch.rand(x.size())),
+ ])
+
+ if name == 'image':
+ dataset = datasets.ImageFolder(data_dir, transform)
+ nlabels = len(dataset.classes)
+ elif name == 'npy':
+ # Only support normalization for now
+ dataset = datasets.DatasetFolder(data_dir, npy_loader, ['npy'])
+ nlabels = len(dataset.classes)
+ elif name == 'cifar10':
+ dataset = datasets.CIFAR10(root=data_dir, train=True, download=True,
+ transform=transform)
+ nlabels = 10
+ elif name == 'lsun':
+ if lsun_categories is None:
+ lsun_categories = 'train'
+ dataset = datasets.LSUN(data_dir, lsun_categories, transform)
+ nlabels = len(dataset.classes)
+ elif name == 'lsun_class':
+ dataset = datasets.LSUNClass(data_dir, transform,
+ target_transform=(lambda t: 0))
+ nlabels = 1
+ else:
+ raise NotImplemented
+
+ return dataset, nlabels
+
+
+def npy_loader(path):
+ img = np.load(path)
+
+ if img.dtype == np.uint8:
+ img = img.astype(np.float32)
+ img = img/127.5 - 1.
+ elif img.dtype == np.float32:
+ img = img * 2 - 1.
+ else:
+ raise NotImplementedError
+
+ img = torch.Tensor(img)
+ if len(img.size()) == 4:
+ img.squeeze_(0)
+
+ return img
diff --git a/submodules/GAN_stability/gan_training/logger.py b/submodules/GAN_stability/gan_training/logger.py
new file mode 100644
index 0000000..18ef6f1
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/logger.py
@@ -0,0 +1,94 @@
+import pickle
+import os
+import torchvision
+
+
+class Logger(object):
+ def __init__(self, log_dir='./logs', img_dir='./imgs',
+ monitoring=None, monitoring_dir=None):
+ self.stats = dict()
+ self.log_dir = log_dir
+ self.img_dir = img_dir
+
+ if not os.path.exists(log_dir):
+ os.makedirs(log_dir)
+
+ if not os.path.exists(img_dir):
+ os.makedirs(img_dir)
+
+ if not (monitoring is None or monitoring == 'none'):
+ self.setup_monitoring(monitoring, monitoring_dir)
+ else:
+ self.monitoring = None
+ self.monitoring_dir = None
+
+ def setup_monitoring(self, monitoring, monitoring_dir=None):
+ self.monitoring = monitoring
+ self.monitoring_dir = monitoring_dir
+
+ if monitoring == 'telemetry':
+ import telemetry
+ self.tm = telemetry.ApplicationTelemetry()
+ if self.tm.get_status() == 0:
+ print('Telemetry successfully connected.')
+ elif monitoring == 'tensorboard':
+ import tensorboardX
+ self.tb = tensorboardX.SummaryWriter(monitoring_dir)
+ else:
+ raise NotImplementedError('Monitoring tool "%s" not supported!'
+ % monitoring)
+
+ def add(self, category, k, v, it):
+ if category not in self.stats:
+ self.stats[category] = {}
+
+ if k not in self.stats[category]:
+ self.stats[category][k] = []
+
+ self.stats[category][k].append((it, v))
+
+ k_name = '%s/%s' % (category, k)
+ if self.monitoring == 'telemetry':
+ self.tm.metric_push_async({
+ 'metric': k_name, 'value': v, 'it': it
+ })
+ elif self.monitoring == 'tensorboard':
+ self.tb.add_scalar(k_name, v, it)
+
+ def add_imgs(self, imgs, class_name, it):
+ outdir = os.path.join(self.img_dir, class_name)
+ if not os.path.exists(outdir):
+ os.makedirs(outdir)
+ outfile = os.path.join(outdir, '%08d.png' % it)
+
+ imgs = imgs / 2 + 0.5
+ imgs = torchvision.utils.make_grid(imgs)
+ torchvision.utils.save_image(imgs.clone(), outfile, nrow=8)
+
+ if self.monitoring == 'tensorboard':
+ self.tb.add_image(class_name, imgs, it)
+
+ def get_last(self, category, k, default=0.):
+ if category not in self.stats:
+ return default
+ elif k not in self.stats[category]:
+ return default
+ else:
+ return self.stats[category][k][-1][1]
+
+ def save_stats(self, filename):
+ filename = os.path.join(self.log_dir, filename)
+ with open(filename, 'wb') as f:
+ pickle.dump(self.stats, f)
+
+ def load_stats(self, filename):
+ filename = os.path.join(self.log_dir, filename)
+ if not os.path.exists(filename):
+ print('Warning: file "%s" does not exist!' % filename)
+ return
+
+ try:
+ with open(filename, 'rb') as f:
+ self.stats = pickle.load(f)
+ except EOFError:
+ print('Warning: log file corrupted!')
diff --git a/submodules/GAN_stability/gan_training/metrics/__init__.py b/submodules/GAN_stability/gan_training/metrics/__init__.py
new file mode 100644
index 0000000..253fd46
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/metrics/__init__.py
@@ -0,0 +1,9 @@
+from GAN_stability.gan_training.metrics.inception_score import inception_score
+from GAN_stability.gan_training.metrics.fid_score import FIDEvaluator
+from GAN_stability.gan_training.metrics.kid_score import KIDEvaluator
+
+__all__ = [
+ inception_score,
+ FIDEvaluator,
+ KIDEvaluator
+]
diff --git a/submodules/GAN_stability/gan_training/metrics/fid_score.py b/submodules/GAN_stability/gan_training/metrics/fid_score.py
new file mode 100644
index 0000000..862b52b
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/metrics/fid_score.py
@@ -0,0 +1,226 @@
+import os
+import torch
+from torch import nn
+import torch.utils.data
+from tqdm import tqdm
+
+from torchvision.models.inception import inception_v3
+
+import numpy as np
+from scipy import linalg
+
+import sys
+from .inception import InceptionV3
+from .kid_score import polynomial_mmd_averages
+
+
+class Identity(nn.Module):
+ def __init__(self):
+ super(Identity, self).__init__()
+
+ def forward(self, x):
+ return x
+
+
+def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
+ """Numpy implementation of the Frechet Distance.
+ The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
+ and X_2 ~ N(mu_2, C_2) is
+ d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
+
+ Stable version by Dougal J. Sutherland.
+
+ Params:
+ -- mu1 : Numpy array containing the activations of a layer of the
+ inception net (like returned by the function 'get_predictions')
+ for generated samples.
+ -- mu2 : The sample mean over activations, precalculated on an
+ representative data set.
+ -- sigma1: The covariance matrix over activations for generated samples.
+ -- sigma2: The covariance matrix over activations, precalculated on an
+ representative data set.
+
+ Returns:
+ -- : The Frechet Distance.
+ """
+
+ mu1 = np.atleast_1d(mu1)
+ mu2 = np.atleast_1d(mu2)
+
+ sigma1 = np.atleast_2d(sigma1)
+ sigma2 = np.atleast_2d(sigma2)
+
+ assert mu1.shape == mu2.shape, \
+ 'Training and test mean vectors have different lengths'
+ assert sigma1.shape == sigma2.shape, \
+ 'Training and test covariances have different dimensions'
+
+ diff = mu1 - mu2
+
+ # Product might be almost singular
+ covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
+ if not np.isfinite(covmean).all():
+ msg = ('fid calculation produces singular product; '
+ 'adding %s to diagonal of cov estimates') % eps
+ print(msg)
+ offset = np.eye(sigma1.shape[0]) * eps
+ covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
+
+ # Numerical error might give slight imaginary component
+ if np.iscomplexobj(covmean):
+ if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
+ m = np.max(np.abs(covmean.imag))
+ print('FID has imaginary component {}. Set to "nan"'.format(m))
+ return float('nan')
+ covmean = covmean.real
+
+ tr_covmean = np.trace(covmean)
+
+ return (diff.dot(diff) + np.trace(sigma1) +
+ np.trace(sigma2) - 2 * tr_covmean)
+
+
+def get_activations(data_loader, model, device=None, batch_size=32, resize=False, n_samples=None):
+ """Computes the inception score of the generated images imgs
+
+ Args:
+ imgs: Torch dataset of (3xHxW) numpy images normalized in the
+ range [-1, 1]
+ cuda: whether or not to run on GPU
+ batch_size: batch size for feeding into Inception v3
+ splits: number of splits
+ """
+ try:
+ n_batches = len(data_loader)
+ except TypeError: # data_loader can also be a generator object
+ n_batches = float('inf')
+
+ assert batch_size > 0
+ if n_samples is not None:
+ assert n_samples <= n_batches * batch_size
+ n_batches = int(np.ceil(n_samples / batch_size))
+
+ model = model.to(device)
+ model.eval()
+ up = nn.Upsample(size=(299, 299), mode='bilinear', align_corners=False).to(device)
+
+ def get_feat(x):
+ with torch.no_grad():
+ x = x.to(device)
+ if resize:
+ x = up(x)
+ _, out = model(x)
+ out = out[0].flatten(1,3)
+ return out.cpu().numpy()
+
+ # Get predictions
+ feat = []
+ for batch in tqdm(data_loader, 'Compute statistics', total=n_batches):
+ if len(feat) >= n_batches:
+ break
+ if isinstance(batch, tuple) or isinstance(batch, list): # img, label
+ batch = batch[0]
+
+ batch = batch.to(device)
+ feat_i = get_feat(batch[:, :3]) # rgb only
+ feat.append(feat_i)
+
+ feat = np.concatenate(feat)
+ if n_samples is not None:
+ feat = feat[:n_samples]
+
+ return feat
+
+def get_statistics(feat):
+
+ # Now compute mean and std
+ mu = np.mean(feat, axis=0)
+ sigma = np.cov(feat, rowvar=False)
+
+ return mu, sigma
+
+
+def fid_score(data_loader1, data_loader2, device=None, batch_size=32, resize=False):
+ mu1, sigma1 = get_statistics(data_loader1, device=device, batch_size=batch_size, resize=resize)
+ mu2, sigma2 = get_statistics(data_loader2, device=device, batch_size=batch_size, resize=resize)
+ return calculate_frechet_distance(mu1, sigma1, mu2, sigma2)
+
+
+class FIDEvaluator(object):
+ def __init__(self, device=None, batch_size=32, resize=False, n_samples=None, n_samples_fake=1000, subset_size_kid=1000, subsets_kid=100):
+ self.device = device
+ self.batch_size = batch_size
+ self.resize = resize
+ self.n_samples = n_samples
+ self.n_samples_fake = n_samples_fake
+ self.subset_size_kid = subset_size_kid
+ self.subsets_kid = subsets_kid
+
+ self.init_model()
+
+ self.mu_target = None
+ self.sigma_target = None
+ self.act_target = None
+
+ def init_model(self):
+ block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048]
+ self.model = InceptionV3([block_idx]).to(self.device)
+ # model = inception_v3(pretrained=True, transform_input=False)
+ # # replace fc layer by identity mapping to obtain features
+ # model.fc = Identity()
+ # return model
+
+ def get_activations(self, data_loader, n_samples):
+ return get_activations(data_loader, self.model, device=self.device, batch_size=self.batch_size,
+ resize=self.resize, n_samples=n_samples)
+
+ def get_statistics(self, act):
+ return get_statistics(act)
+
+ def initialize_target(self, target_loader, cache_file=None, act_cache_file=None):
+ if self.n_samples is None:
+ self.n_samples = self.batch_size * len(target_loader)
+ elif self.n_samples > self.batch_size * len(target_loader):
+ print('WARNING: Total number of images smaller than %d, changing n_samples to %d!' % (self.n_samples, self.batch_size*len(target_loader)))
+ self.n_samples = self.batch_size * len(target_loader)
+
+ if act_cache_file is not None: # activation caches for KID
+ if os.path.isfile(act_cache_file):
+ cache = np.load(act_cache_file)
+ self.act_target = cache['act']
+ else:
+ self.act_target = self.get_activations(target_loader, self.n_samples)
+ np.savez(act_cache_file, act=self.act_target)
+
+ if cache_file is not None:
+ if os.path.isfile(cache_file):
+ cache = np.load(cache_file)
+ self.mu_target, self.sigma_target = cache['mu_target'], cache['sigma_target']
+ else:
+ self.mu_target, self.sigma_target = self.get_statistics(self.act_target)
+ np.savez(cache_file, mu_target=self.mu_target, sigma_target=self.sigma_target)
+ else:
+ self.act_target = self.get_activations(target_loader, self.n_samples)
+ self.mu_target, self.sigma_target = self.get_statistics(self.act_target)
+
+ def is_initialized(self):
+ return not any([self.mu_target is None, self.sigma_target is None, self.act_target is None])
+
+ def get_fid(self, data_loader):
+ assert self.is_initialized()
+ act = self.get_activations(data_loader, self.n_samples_fake)
+ mu, sigma = self.get_statistics(act)
+ return calculate_frechet_distance(mu, sigma, self.mu_target, self.sigma_target)
+
+ def get_kid(self, data_loader):
+ assert self.is_initialized()
+ act = self.get_activations(data_loader, self.n_samples_fake)
+ return polynomial_mmd_averages(self.act_target, act, n_subsets=self.subsets_kid, subset_size=self.subset_size_kid)
+
+ def get_fid_kid(self, data_loader):
+ assert self.is_initialized()
+ act = self.get_activations(data_loader, self.n_samples_fake)
+ mu, sigma = self.get_statistics(act)
+ fid = calculate_frechet_distance(mu, sigma, self.mu_target, self.sigma_target)
+ kid = polynomial_mmd_averages(self.act_target, act, n_subsets=self.subsets_kid, subset_size=self.subset_size_kid)
+ return fid, kid
diff --git a/submodules/GAN_stability/gan_training/metrics/inception.py b/submodules/GAN_stability/gan_training/metrics/inception.py
new file mode 100644
index 0000000..0860d51
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/metrics/inception.py
@@ -0,0 +1,310 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torchvision import models
+
+try:
+ from torchvision.models.utils import load_state_dict_from_url
+except ImportError:
+ from torch.utils.model_zoo import load_url as load_state_dict_from_url
+
+# Inception weights ported to Pytorch from
+# http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
+FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth'
+
+
+class InceptionV3(nn.Module):
+ """Pretrained InceptionV3 network returning feature maps"""
+
+ # Index of default block of inception to return,
+ # corresponds to output of final average pooling
+ DEFAULT_BLOCK_INDEX = 3
+
+ # Maps feature dimensionality to their output blocks indices
+ BLOCK_INDEX_BY_DIM = {
+ 64: 0, # First max pooling features
+ 192: 1, # Second max pooling featurs
+ 768: 2, # Pre-aux classifier features
+ 2048: 3 # Final average pooling features
+ }
+
+ def __init__(self,
+ output_blocks=[DEFAULT_BLOCK_INDEX],
+ resize_input=True,
+ normalize_input=True,
+ requires_grad=False,
+ use_fid_inception=True):
+ """Build pretrained InceptionV3
+
+ Parameters
+ ----------
+ output_blocks : list of int
+ Indices of blocks to return features of. Possible values are:
+ - 0: corresponds to output of first max pooling
+ - 1: corresponds to output of second max pooling
+ - 2: corresponds to output which is fed to aux classifier
+ - 3: corresponds to output of final average pooling
+ resize_input : bool
+ If true, bilinearly resizes input to width and height 299 before
+ feeding input to model. As the network without fully connected
+ layers is fully convolutional, it should be able to handle inputs
+ of arbitrary size, so resizing might not be strictly needed
+ normalize_input : bool
+ If true, scales the input from range (0, 1) to the range the
+ pretrained Inception network expects, namely (-1, 1)
+ requires_grad : bool
+ If true, parameters of the model require gradients. Possibly useful
+ for finetuning the network
+ use_fid_inception : bool
+ If true, uses the pretrained Inception model used in Tensorflow's
+ FID implementation. If false, uses the pretrained Inception model
+ available in torchvision. The FID Inception model has different
+ weights and a slightly different structure from torchvision's
+ Inception model. If you want to compute FID scores, you are
+ strongly advised to set this parameter to true to get comparable
+ results.
+ """
+ super(InceptionV3, self).__init__()
+
+ self.resize_input = resize_input
+ self.normalize_input = normalize_input
+ self.output_blocks = sorted(output_blocks)
+
+ self.blocks = nn.ModuleList()
+
+ if use_fid_inception:
+ inception = fid_inception_v3()
+ else:
+ inception = models.inception_v3(pretrained=True)
+
+ # Block 0: input to maxpool1
+ block0 = [
+ inception.Conv2d_1a_3x3,
+ inception.Conv2d_2a_3x3,
+ inception.Conv2d_2b_3x3,
+ nn.MaxPool2d(kernel_size=3, stride=2)
+ ]
+ self.blocks.append(nn.Sequential(*block0))
+
+ # Block 1: maxpool1 to maxpool2
+ block1 = [
+ inception.Conv2d_3b_1x1,
+ inception.Conv2d_4a_3x3,
+ nn.MaxPool2d(kernel_size=3, stride=2)
+ ]
+ self.blocks.append(nn.Sequential(*block1))
+
+ # Block 2: maxpool2 to aux classifier
+ block2 = [
+ inception.Mixed_5b,
+ inception.Mixed_5c,
+ inception.Mixed_5d,
+ inception.Mixed_6a,
+ inception.Mixed_6b,
+ inception.Mixed_6c,
+ inception.Mixed_6d,
+ inception.Mixed_6e,
+ ]
+ self.blocks.append(nn.Sequential(*block2))
+
+ # Block 3: aux classifier to final avgpool
+ block3 = [
+ inception.Mixed_7a,
+ inception.Mixed_7b,
+ inception.Mixed_7c,
+ nn.AdaptiveAvgPool2d(output_size=(1, 1))
+ ]
+ self.blocks.append(nn.Sequential(*block3))
+
+ # Fully connected
+ self.fc = inception.fc
+
+ for param in self.parameters():
+ param.requires_grad = requires_grad
+
+ def forward(self, x):
+ """Get Inception feature maps
+
+ Parameters
+ ----------
+ inp : torch.autograd.Variable
+ Input tensor of shape Bx3xHxW. Values are expected to be in
+ range (0, 1)
+
+ Returns
+ -------
+ List of torch.autograd.Variable, corresponding to the selected output
+ block, sorted ascending by index
+ """
+ outp = []
+
+ if self.resize_input:
+ x = F.interpolate(
+ x,
+ size=(299, 299),
+ mode='bilinear',
+ align_corners=False
+ )
+
+ if self.normalize_input:
+ x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1)
+
+ net = x
+ for idx, block in enumerate(self.blocks):
+ net = block(net)
+ if idx in self.output_blocks:
+ outp.append(net)
+
+ # N x 2048 x 1 x 1
+ net = F.dropout(net, training=self.training)
+ # N x 2048 x 1 x 1
+ net = torch.flatten(net, 1)
+ # N x 2048
+ logits = self.fc(net)
+
+ return logits[:, :1000], outp
+
+
+def fid_inception_v3():
+ """Build pretrained Inception model for FID computation
+
+ The Inception model for FID computation uses a different set of weights
+ and has a slightly different structure than torchvision's Inception.
+
+ This method first constructs torchvision's Inception and then patches the
+ necessary parts that are different in the FID Inception model.
+ """
+ inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False)
+ inception.Mixed_5b = FIDInceptionA(192, pool_features=32)
+ inception.Mixed_5c = FIDInceptionA(256, pool_features=64)
+ inception.Mixed_5d = FIDInceptionA(288, pool_features=64)
+ inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128)
+ inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160)
+ inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160)
+ inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192)
+ inception.Mixed_7b = FIDInceptionE_1(1280)
+ inception.Mixed_7c = FIDInceptionE_2(2048)
+
+ state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True)
+ inception.load_state_dict(state_dict)
+ return inception
+
+
+class FIDInceptionA(models.inception.InceptionA):
+ """InceptionA block patched for FID computation"""
+ def __init__(self, in_channels, pool_features):
+ super(FIDInceptionA, self).__init__(in_channels, pool_features)
+
+ def forward(self, x):
+ branch1x1 = self.branch1x1(x)
+
+ branch5x5 = self.branch5x5_1(x)
+ branch5x5 = self.branch5x5_2(branch5x5)
+
+ branch3x3dbl = self.branch3x3dbl_1(x)
+ branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
+ branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
+
+ # Patch: Tensorflow's average pool does not use the padded zero's in
+ # its average calculation
+ branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
+ count_include_pad=False)
+ branch_pool = self.branch_pool(branch_pool)
+
+ outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
+ return torch.cat(outputs, 1)
+
+
+class FIDInceptionC(models.inception.InceptionC):
+ """InceptionC block patched for FID computation"""
+ def __init__(self, in_channels, channels_7x7):
+ super(FIDInceptionC, self).__init__(in_channels, channels_7x7)
+
+ def forward(self, x):
+ branch1x1 = self.branch1x1(x)
+
+ branch7x7 = self.branch7x7_1(x)
+ branch7x7 = self.branch7x7_2(branch7x7)
+ branch7x7 = self.branch7x7_3(branch7x7)
+
+ branch7x7dbl = self.branch7x7dbl_1(x)
+ branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
+ branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
+ branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
+ branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
+
+ # Patch: Tensorflow's average pool does not use the padded zero's in
+ # its average calculation
+ branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
+ count_include_pad=False)
+ branch_pool = self.branch_pool(branch_pool)
+
+ outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
+ return torch.cat(outputs, 1)
+
+
+class FIDInceptionE_1(models.inception.InceptionE):
+ """First InceptionE block patched for FID computation"""
+ def __init__(self, in_channels):
+ super(FIDInceptionE_1, self).__init__(in_channels)
+
+ def forward(self, x):
+ branch1x1 = self.branch1x1(x)
+
+ branch3x3 = self.branch3x3_1(x)
+ branch3x3 = [
+ self.branch3x3_2a(branch3x3),
+ self.branch3x3_2b(branch3x3),
+ ]
+ branch3x3 = torch.cat(branch3x3, 1)
+
+ branch3x3dbl = self.branch3x3dbl_1(x)
+ branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
+ branch3x3dbl = [
+ self.branch3x3dbl_3a(branch3x3dbl),
+ self.branch3x3dbl_3b(branch3x3dbl),
+ ]
+ branch3x3dbl = torch.cat(branch3x3dbl, 1)
+
+ # Patch: Tensorflow's average pool does not use the padded zero's in
+ # its average calculation
+ branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
+ count_include_pad=False)
+ branch_pool = self.branch_pool(branch_pool)
+
+ outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
+ return torch.cat(outputs, 1)
+
+
+class FIDInceptionE_2(models.inception.InceptionE):
+ """Second InceptionE block patched for FID computation"""
+ def __init__(self, in_channels):
+ super(FIDInceptionE_2, self).__init__(in_channels)
+
+ def forward(self, x):
+ branch1x1 = self.branch1x1(x)
+
+ branch3x3 = self.branch3x3_1(x)
+ branch3x3 = [
+ self.branch3x3_2a(branch3x3),
+ self.branch3x3_2b(branch3x3),
+ ]
+ branch3x3 = torch.cat(branch3x3, 1)
+
+ branch3x3dbl = self.branch3x3dbl_1(x)
+ branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
+ branch3x3dbl = [
+ self.branch3x3dbl_3a(branch3x3dbl),
+ self.branch3x3dbl_3b(branch3x3dbl),
+ ]
+ branch3x3dbl = torch.cat(branch3x3dbl, 1)
+
+ # Patch: The FID Inception model uses max pooling instead of average
+ # pooling. This is likely an error in this specific Inception
+ # implementation, as other Inception models use average pooling here
+ # (which matches the description in the paper).
+ branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
+ branch_pool = self.branch_pool(branch_pool)
+
+ outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
+ return torch.cat(outputs, 1)
diff --git a/submodules/GAN_stability/gan_training/metrics/inception_score.py b/submodules/GAN_stability/gan_training/metrics/inception_score.py
new file mode 100644
index 0000000..eccdfc0
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/metrics/inception_score.py
@@ -0,0 +1,66 @@
+import torch
+from torch import nn
+from torch.nn import functional as F
+import torch.utils.data
+
+from torchvision.models.inception import inception_v3
+
+import numpy as np
+from scipy.stats import entropy
+
+
+def inception_score(imgs, device=None, batch_size=32, resize=False, splits=1):
+ """Computes the inception score of the generated images imgs
+
+ Args:
+ imgs: Torch dataset of (3xHxW) numpy images normalized in the
+ range [-1, 1]
+ cuda: whether or not to run on GPU
+ batch_size: batch size for feeding into Inception v3
+ splits: number of splits
+ """
+ N = len(imgs)
+
+ assert batch_size > 0
+ assert N > batch_size
+
+ # Set up dataloader
+ dataloader = torch.utils.data.DataLoader(imgs, batch_size=batch_size)
+
+ # Load inception model
+ inception_model = inception_v3(pretrained=True, transform_input=False)
+ inception_model = inception_model.to(device)
+ inception_model.eval()
+ up = nn.Upsample(size=(299, 299), mode='bilinear').to(device)
+
+ def get_pred(x):
+ with torch.no_grad():
+ if resize:
+ x = up(x)
+ x = inception_model(x)
+ out = F.softmax(x, dim=-1)
+ out = out.cpu().numpy()
+ return out
+
+ # Get predictions
+ preds = np.zeros((N, 1000))
+
+ for i, batch in enumerate(dataloader, 0):
+ batchv = batch.to(device)
+ batch_size_i = batch.size()[0]
+
+ preds[i*batch_size:i*batch_size + batch_size_i] = get_pred(batchv)
+
+ # Now compute the mean kl-div
+ split_scores = []
+
+ for k in range(splits):
+ part = preds[k * (N // splits): (k+1) * (N // splits), :]
+ py = np.mean(part, axis=0)
+ scores = []
+ for i in range(part.shape[0]):
+ pyx = part[i, :]
+ scores.append(entropy(pyx, py))
+ split_scores.append(np.exp(np.mean(scores)))
+
+ return np.mean(split_scores), np.std(split_scores)
diff --git a/submodules/GAN_stability/gan_training/metrics/kid_score.py b/submodules/GAN_stability/gan_training/metrics/kid_score.py
new file mode 100644
index 0000000..3c82ec6
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/metrics/kid_score.py
@@ -0,0 +1,249 @@
+import os
+import torch
+from torch import nn
+import torch.utils.data
+from tqdm import tqdm
+
+from torchvision.models.inception import inception_v3
+
+import numpy as np
+from sklearn.metrics.pairwise import polynomial_kernel
+from scipy import linalg
+
+import sys
+from .inception import InceptionV3
+
+
+class Identity(nn.Module):
+ def __init__(self):
+ super(Identity, self).__init__()
+
+ def forward(self, x):
+ return x
+
+
+def get_activations(data_loader, model, device=None, batch_size=32, resize=False, n_samples=None):
+ """Computes the activation of the given images
+
+ Args:
+ imgs: Torch dataset of (3xHxW) numpy images normalized in the
+ range [-1, 1]
+ cuda: whether or not to run on GPU
+ batch_size: batch size for feeding into Inception v3
+ splits: number of splits
+ """
+ try:
+ n_batches = len(data_loader)
+ except TypeError: # data_loader can also be a generator object
+ n_batches = float('inf')
+
+ assert batch_size > 0
+ if n_samples is not None:
+ assert n_samples <= n_batches * batch_size
+ n_batches = int(np.ceil(n_samples / batch_size))
+
+ model = model.to(device)
+ model.eval()
+ up = nn.Upsample(size=(299, 299), mode='bilinear', align_corners=False).to(device)
+
+ def get_feat(x):
+ with torch.no_grad():
+ x = x.to(device)
+ if resize:
+ x = up(x)
+ _, out = model(x)
+ out = out[0].flatten(1, 3)
+ return out.cpu().numpy()
+
+ # Get predictions
+ feat = []
+ for batch in tqdm(data_loader, 'Compute activations', total=n_batches):
+ if len(feat) >= n_batches:
+ break
+ if isinstance(batch, tuple) or isinstance(batch, list): # img, label
+ batch = batch[0]
+
+ batch = batch.to(device)
+ feat_i = get_feat(batch[:, :3]) # rgb only
+ feat.append(feat_i)
+
+ feat = np.concatenate(feat)
+ if n_samples is not None:
+ feat = feat[:n_samples]
+
+ return feat
+
+
+def polynomial_mmd_averages(codes_g, codes_r, n_subsets=50, subset_size=1000,
+ ret_var=True, output=sys.stdout, **kernel_args):
+ m = min(codes_g.shape[0], codes_r.shape[0])
+ mmds = np.zeros(n_subsets)
+ if ret_var:
+ vars = np.zeros(n_subsets)
+ choice = np.random.choice
+
+ with tqdm(range(n_subsets), desc='MMD', file=output) as bar:
+ for i in bar:
+ g = codes_g[choice(len(codes_g), min(m, subset_size), replace=False)]
+ r = codes_r[choice(len(codes_r), min(m, subset_size), replace=False)]
+ o = polynomial_mmd(g, r, **kernel_args, var_at_m=m, ret_var=ret_var)
+ if ret_var:
+ mmds[i], vars[i] = o
+ else:
+ mmds[i] = o
+ bar.set_postfix({'mean': mmds[:i + 1].mean()})
+ return (mmds, vars) if ret_var else mmds
+
+
+def polynomial_mmd(codes_g, codes_r, degree=3, gamma=None, coef0=1,
+ var_at_m=None, ret_var=True):
+ # use k(x, y) = (gamma + coef0)^degree
+ # default gamma is 1 / dim
+ X = codes_g
+ Y = codes_r
+
+ K_XX = polynomial_kernel(X, degree=degree, gamma=gamma, coef0=coef0)
+ K_YY = polynomial_kernel(Y, degree=degree, gamma=gamma, coef0=coef0)
+ K_XY = polynomial_kernel(X, Y, degree=degree, gamma=gamma, coef0=coef0)
+
+ return _mmd2_and_variance(K_XX, K_XY, K_YY,
+ var_at_m=var_at_m, ret_var=ret_var)
+
+
+def _mmd2_and_variance(K_XX, K_XY, K_YY, unit_diagonal=False,
+ mmd_est='unbiased', block_size=1024,
+ var_at_m=None, ret_var=True):
+ # based on
+ # https://github.com/dougalsutherland/opt-mmd/blob/master/two_sample/mmd.py
+ # but changed to not compute the full kernel matrix at once
+ m = K_XX.shape[0]
+ print(m, K_XX.shape, K_YY.shape, K_XY.shape)
+ assert K_XX.shape == (m, m)
+ assert K_XY.shape == (m, m)
+ assert K_YY.shape == (m, m)
+ if var_at_m is None:
+ var_at_m = m
+
+ # Get the various sums of kernels that we'll use
+ # Kts drop the diagonal, but we don't need to compute them explicitly
+ if unit_diagonal:
+ diag_X = diag_Y = 1
+ sum_diag_X = sum_diag_Y = m
+ sum_diag2_X = sum_diag2_Y = m
+ else:
+ diag_X = np.diagonal(K_XX)
+ diag_Y = np.diagonal(K_YY)
+
+ sum_diag_X = diag_X.sum()
+ sum_diag_Y = diag_Y.sum()
+
+ sum_diag2_X = _sqn(diag_X)
+ sum_diag2_Y = _sqn(diag_Y)
+
+ Kt_XX_sums = K_XX.sum(axis=1) - diag_X
+ Kt_YY_sums = K_YY.sum(axis=1) - diag_Y
+ K_XY_sums_0 = K_XY.sum(axis=0)
+ K_XY_sums_1 = K_XY.sum(axis=1)
+
+ Kt_XX_sum = Kt_XX_sums.sum()
+ Kt_YY_sum = Kt_YY_sums.sum()
+ K_XY_sum = K_XY_sums_0.sum()
+
+ if mmd_est == 'biased':
+ mmd2 = ((Kt_XX_sum + sum_diag_X) / (m * m)
+ + (Kt_YY_sum + sum_diag_Y) / (m * m)
+ - 2 * K_XY_sum / (m * m))
+ else:
+ assert mmd_est in {'unbiased', 'u-statistic'}
+ mmd2 = (Kt_XX_sum + Kt_YY_sum) / (m * (m - 1))
+ if mmd_est == 'unbiased':
+ mmd2 -= 2 * K_XY_sum / (m * m)
+ else:
+ mmd2 -= 2 * (K_XY_sum - np.trace(K_XY)) / (m * (m - 1))
+
+ if not ret_var:
+ return mmd2
+
+ Kt_XX_2_sum = _sqn(K_XX) - sum_diag2_X
+ Kt_YY_2_sum = _sqn(K_YY) - sum_diag2_Y
+ K_XY_2_sum = _sqn(K_XY)
+
+ dot_XX_XY = Kt_XX_sums.dot(K_XY_sums_1)
+ dot_YY_YX = Kt_YY_sums.dot(K_XY_sums_0)
+
+ m1 = m - 1
+ m2 = m - 2
+ zeta1_est = (
+ 1 / (m * m1 * m2) * (
+ _sqn(Kt_XX_sums) - Kt_XX_2_sum + _sqn(Kt_YY_sums) - Kt_YY_2_sum)
+ - 1 / (m * m1) ** 2 * (Kt_XX_sum ** 2 + Kt_YY_sum ** 2)
+ + 1 / (m * m * m1) * (
+ _sqn(K_XY_sums_1) + _sqn(K_XY_sums_0) - 2 * K_XY_2_sum)
+ - 2 / m ** 4 * K_XY_sum ** 2
+ - 2 / (m * m * m1) * (dot_XX_XY + dot_YY_YX)
+ + 2 / (m ** 3 * m1) * (Kt_XX_sum + Kt_YY_sum) * K_XY_sum
+ )
+ zeta2_est = (
+ 1 / (m * m1) * (Kt_XX_2_sum + Kt_YY_2_sum)
+ - 1 / (m * m1) ** 2 * (Kt_XX_sum ** 2 + Kt_YY_sum ** 2)
+ + 2 / (m * m) * K_XY_2_sum
+ - 2 / m ** 4 * K_XY_sum ** 2
+ - 4 / (m * m * m1) * (dot_XX_XY + dot_YY_YX)
+ + 4 / (m ** 3 * m1) * (Kt_XX_sum + Kt_YY_sum) * K_XY_sum
+ )
+ var_est = (4 * (var_at_m - 2) / (var_at_m * (var_at_m - 1)) * zeta1_est
+ + 2 / (var_at_m * (var_at_m - 1)) * zeta2_est)
+
+ return mmd2, var_est
+
+
+def _sqn(arr):
+ flat = np.ravel(arr)
+ return flat.dot(flat)
+
+
+class KIDEvaluator(object):
+ def __init__(self, device=None, batch_size=32, resize=False, n_samples=None, subset_size=1000):
+ self.device = device
+ self.batch_size = batch_size
+ self.resize = resize
+ self.n_samples = n_samples
+ self.subset_size = subset_size
+
+ self.init_model()
+
+ self.act_target = None
+
+ def init_model(self):
+ block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048]
+ self.model = InceptionV3([block_idx]).to(self.device)
+ # model = inception_v3(pretrained=True, transform_input=False)
+ # # replace fc layer by identity mapping to obtain features
+ # model.fc = Identity()
+ # return model
+
+ def get_activations(self, data_loader):
+ return get_activations(data_loader, self.model, device=self.device, batch_size=self.batch_size,
+ resize=self.resize, n_samples=self.n_samples)
+
+ def initialize_target(self, target_loader, cache_file=None):
+ if cache_file is not None:
+ if os.path.isfile(cache_file):
+ cache = np.load(cache_file)
+ self.act_target = cache['act']
+ else:
+ self.act_target = self.get_activations(target_loader)
+ np.savez(cache_file, act=self.act_target)
+ else:
+ self.act_target = self.get_activations(target_loader)
+
+ if self.n_samples is None:
+ self.n_samples = len(self.act_target)
+
+ def is_initialized(self):
+ return self.act_target is not None
+
+ def get_kid(self, data_loader):
+ assert self.is_initialized()
+ act = self.get_activations(data_loader)
+ return polynomial_mmd_averages(self.act_target, act, n_subsets=100, subset_size=self.subset_size)
diff --git a/submodules/GAN_stability/gan_training/models/__init__.py b/submodules/GAN_stability/gan_training/models/__init__.py
new file mode 100644
index 0000000..e4cd2eb
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/models/__init__.py
@@ -0,0 +1,17 @@
+from GAN_stability.gan_training.models import (
+ resnet, resnet2, resnet3, resnet4,
+)
+
+generator_dict = {
+ 'resnet': resnet.Generator,
+ 'resnet2': resnet2.Generator,
+ 'resnet3': resnet3.Generator,
+ 'resnet4': resnet4.Generator,
+}
+
+discriminator_dict = {
+ 'resnet': resnet.Discriminator,
+ 'resnet2': resnet2.Discriminator,
+ 'resnet3': resnet3.Discriminator,
+ 'resnet4': resnet4.Discriminator,
+}
diff --git a/submodules/GAN_stability/gan_training/models/resnet.py b/submodules/GAN_stability/gan_training/models/resnet.py
new file mode 100644
index 0000000..bd79387
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/models/resnet.py
@@ -0,0 +1,147 @@
+import torch
+from torch import nn
+from torch.nn import functional as F
+from torch.autograd import Variable
+import torch.utils.data
+import torch.utils.data.distributed
+import numpy as np
+
+
+class Generator(nn.Module):
+ def __init__(self, z_dim, nlabels, size, embed_size=256, nfilter=64, nfilter_max=512, **kwargs):
+ super().__init__()
+ s0 = self.s0 = 4
+ nf = self.nf = nfilter
+ nf_max = self.nf_max = nfilter_max
+
+ self.z_dim = z_dim
+
+ # Submodules
+ nlayers = int(np.log2(size / s0))
+ self.nf0 = min(nf_max, nf * 2**nlayers)
+
+ self.embedding = nn.Embedding(nlabels, embed_size)
+ self.fc = nn.Linear(z_dim + embed_size, self.nf0*s0*s0)
+
+ blocks = []
+ for i in range(nlayers):
+ nf0 = min(nf * 2**(nlayers-i), nf_max)
+ nf1 = min(nf * 2**(nlayers-i-1), nf_max)
+ blocks += [
+ ResnetBlock(nf0, nf1),
+ nn.Upsample(scale_factor=2)
+ ]
+
+ blocks += [
+ ResnetBlock(nf, nf),
+ ]
+
+ self.resnet = nn.Sequential(*blocks)
+ self.conv_img = nn.Conv2d(nf, 3, 3, padding=1)
+
+ def forward(self, z, y):
+ assert(z.size(0) == y.size(0))
+ batch_size = z.size(0)
+
+ if y.dtype is torch.int64:
+ yembed = self.embedding(y)
+ else:
+ yembed = y
+
+ yembed = yembed / torch.norm(yembed, p=2, dim=1, keepdim=True)
+
+ yz = torch.cat([z, yembed], dim=1)
+ out = self.fc(yz)
+ out = out.view(batch_size, self.nf0, self.s0, self.s0)
+
+ out = self.resnet(out)
+
+ out = self.conv_img(actvn(out))
+ out = torch.tanh(out)
+
+ return out
+
+
+class Discriminator(nn.Module):
+ def __init__(self, z_dim, nlabels, size, embed_size=256, nfilter=64, nfilter_max=1024):
+ super().__init__()
+ self.embed_size = embed_size
+ s0 = self.s0 = 4
+ nf = self.nf = nfilter
+ nf_max = self.nf_max = nfilter_max
+
+ # Submodules
+ nlayers = int(np.log2(size / s0))
+ self.nf0 = min(nf_max, nf * 2**nlayers)
+
+ blocks = [
+ ResnetBlock(nf, nf)
+ ]
+
+ for i in range(nlayers):
+ nf0 = min(nf * 2**i, nf_max)
+ nf1 = min(nf * 2**(i+1), nf_max)
+ blocks += [
+ nn.AvgPool2d(3, stride=2, padding=1),
+ ResnetBlock(nf0, nf1),
+ ]
+
+ self.conv_img = nn.Conv2d(3, 1*nf, 3, padding=1)
+ self.resnet = nn.Sequential(*blocks)
+ self.fc = nn.Linear(self.nf0*s0*s0, nlabels)
+
+ def forward(self, x, y):
+ assert(x.size(0) == y.size(0))
+ batch_size = x.size(0)
+
+ out = self.conv_img(x)
+ out = self.resnet(out)
+ out = out.view(batch_size, self.nf0*self.s0*self.s0)
+ out = self.fc(actvn(out))
+
+ index = Variable(torch.LongTensor(range(out.size(0))))
+ if y.is_cuda:
+ index = index.cuda()
+ out = out[index, y]
+
+ return out
+
+
+class ResnetBlock(nn.Module):
+ def __init__(self, fin, fout, fhidden=None, is_bias=True):
+ super().__init__()
+ # Attributes
+ self.is_bias = is_bias
+ self.learned_shortcut = (fin != fout)
+ self.fin = fin
+ self.fout = fout
+ if fhidden is None:
+ self.fhidden = min(fin, fout)
+ else:
+ self.fhidden = fhidden
+
+ # Submodules
+ self.conv_0 = nn.Conv2d(self.fin, self.fhidden, 3, stride=1, padding=1)
+ self.conv_1 = nn.Conv2d(self.fhidden, self.fout, 3, stride=1, padding=1, bias=is_bias)
+ if self.learned_shortcut:
+ self.conv_s = nn.Conv2d(self.fin, self.fout, 1, stride=1, padding=0, bias=False)
+
+ def forward(self, x):
+ x_s = self._shortcut(x)
+ dx = self.conv_0(actvn(x))
+ dx = self.conv_1(actvn(dx))
+ out = x_s + 0.1*dx
+
+ return out
+
+ def _shortcut(self, x):
+ if self.learned_shortcut:
+ x_s = self.conv_s(x)
+ else:
+ x_s = x
+ return x_s
+
+
+def actvn(x):
+ out = F.leaky_relu(x, 2e-1)
+ return out
diff --git a/submodules/GAN_stability/gan_training/models/resnet2.py b/submodules/GAN_stability/gan_training/models/resnet2.py
new file mode 100644
index 0000000..cf9368a
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/models/resnet2.py
@@ -0,0 +1,194 @@
+import torch
+from torch import nn
+from torch.nn import functional as F
+from torch.autograd import Variable
+import torch.utils.data
+import torch.utils.data.distributed
+
+
+class Generator(nn.Module):
+ def __init__(self, z_dim, nlabels, size, embed_size=256, nfilter=64, **kwargs):
+ super().__init__()
+ s0 = self.s0 = size // 32
+ nf = self.nf = nfilter
+ self.z_dim = z_dim
+
+ # Submodules
+ self.embedding = nn.Embedding(nlabels, embed_size)
+ self.fc = nn.Linear(z_dim + embed_size, 16*nf*s0*s0)
+
+ self.resnet_0_0 = ResnetBlock(16*nf, 16*nf)
+ self.resnet_0_1 = ResnetBlock(16*nf, 16*nf)
+
+ self.resnet_1_0 = ResnetBlock(16*nf, 16*nf)
+ self.resnet_1_1 = ResnetBlock(16*nf, 16*nf)
+
+ self.resnet_2_0 = ResnetBlock(16*nf, 8*nf)
+ self.resnet_2_1 = ResnetBlock(8*nf, 8*nf)
+
+ self.resnet_3_0 = ResnetBlock(8*nf, 4*nf)
+ self.resnet_3_1 = ResnetBlock(4*nf, 4*nf)
+
+ self.resnet_4_0 = ResnetBlock(4*nf, 2*nf)
+ self.resnet_4_1 = ResnetBlock(2*nf, 2*nf)
+
+ self.resnet_5_0 = ResnetBlock(2*nf, 1*nf)
+ self.resnet_5_1 = ResnetBlock(1*nf, 1*nf)
+
+ self.conv_img = nn.Conv2d(nf, 3, 3, padding=1)
+
+ def forward(self, z, y):
+ assert(z.size(0) == y.size(0))
+ batch_size = z.size(0)
+
+ if y.dtype is torch.int64:
+ yembed = self.embedding(y)
+ else:
+ yembed = y
+
+ yembed = yembed / torch.norm(yembed, p=2, dim=1, keepdim=True)
+
+ yz = torch.cat([z, yembed], dim=1)
+ out = self.fc(yz)
+ out = out.view(batch_size, 16*self.nf, self.s0, self.s0)
+
+ out = self.resnet_0_0(out)
+ out = self.resnet_0_1(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_1_0(out)
+ out = self.resnet_1_1(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_2_0(out)
+ out = self.resnet_2_1(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_3_0(out)
+ out = self.resnet_3_1(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_4_0(out)
+ out = self.resnet_4_1(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_5_0(out)
+ out = self.resnet_5_1(out)
+
+ out = self.conv_img(actvn(out))
+ out = torch.tanh(out)
+
+ return out
+
+
+class Discriminator(nn.Module):
+ def __init__(self, z_dim, nlabels, size, embed_size=256, nfilter=64, **kwargs):
+ super().__init__()
+ self.embed_size = embed_size
+ s0 = self.s0 = size // 32
+ nf = self.nf = nfilter
+ ny = nlabels
+
+ # Submodules
+ self.conv_img = nn.Conv2d(3, 1*nf, 3, padding=1)
+
+ self.resnet_0_0 = ResnetBlock(1*nf, 1*nf)
+ self.resnet_0_1 = ResnetBlock(1*nf, 2*nf)
+
+ self.resnet_1_0 = ResnetBlock(2*nf, 2*nf)
+ self.resnet_1_1 = ResnetBlock(2*nf, 4*nf)
+
+ self.resnet_2_0 = ResnetBlock(4*nf, 4*nf)
+ self.resnet_2_1 = ResnetBlock(4*nf, 8*nf)
+
+ self.resnet_3_0 = ResnetBlock(8*nf, 8*nf)
+ self.resnet_3_1 = ResnetBlock(8*nf, 16*nf)
+
+ self.resnet_4_0 = ResnetBlock(16*nf, 16*nf)
+ self.resnet_4_1 = ResnetBlock(16*nf, 16*nf)
+
+ self.resnet_5_0 = ResnetBlock(16*nf, 16*nf)
+ self.resnet_5_1 = ResnetBlock(16*nf, 16*nf)
+
+ self.fc = nn.Linear(16*nf*s0*s0, nlabels)
+
+
+ def forward(self, x, y):
+ assert(x.size(0) == y.size(0))
+ batch_size = x.size(0)
+
+ out = self.conv_img(x)
+
+ out = self.resnet_0_0(out)
+ out = self.resnet_0_1(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_1_0(out)
+ out = self.resnet_1_1(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_2_0(out)
+ out = self.resnet_2_1(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_3_0(out)
+ out = self.resnet_3_1(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_4_0(out)
+ out = self.resnet_4_1(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_5_0(out)
+ out = self.resnet_5_1(out)
+
+ out = out.view(batch_size, 16*self.nf*self.s0*self.s0)
+ out = self.fc(actvn(out))
+
+ index = Variable(torch.LongTensor(range(out.size(0))))
+ if y.is_cuda:
+ index = index.cuda()
+ out = out[index, y]
+
+ return out
+
+
+class ResnetBlock(nn.Module):
+ def __init__(self, fin, fout, fhidden=None, is_bias=True):
+ super().__init__()
+ # Attributes
+ self.is_bias = is_bias
+ self.learned_shortcut = (fin != fout)
+ self.fin = fin
+ self.fout = fout
+ if fhidden is None:
+ self.fhidden = min(fin, fout)
+ else:
+ self.fhidden = fhidden
+
+ # Submodules
+ self.conv_0 = nn.Conv2d(self.fin, self.fhidden, 3, stride=1, padding=1)
+ self.conv_1 = nn.Conv2d(self.fhidden, self.fout, 3, stride=1, padding=1, bias=is_bias)
+ if self.learned_shortcut:
+ self.conv_s = nn.Conv2d(self.fin, self.fout, 1, stride=1, padding=0, bias=False)
+
+
+ def forward(self, x):
+ x_s = self._shortcut(x)
+ dx = self.conv_0(actvn(x))
+ dx = self.conv_1(actvn(dx))
+ out = x_s + 0.1*dx
+
+ return out
+
+ def _shortcut(self, x):
+ if self.learned_shortcut:
+ x_s = self.conv_s(x)
+ else:
+ x_s = x
+ return x_s
+
+
+def actvn(x):
+ out = F.leaky_relu(x, 2e-1)
+ return out
diff --git a/submodules/GAN_stability/gan_training/models/resnet3.py b/submodules/GAN_stability/gan_training/models/resnet3.py
new file mode 100644
index 0000000..2e86b68
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/models/resnet3.py
@@ -0,0 +1,153 @@
+import torch
+from torch import nn
+from torch.nn import functional as F
+from torch.autograd import Variable
+import torch.utils.data
+import torch.utils.data.distributed
+
+
+class Generator(nn.Module):
+ def __init__(self, z_dim, nlabels, size, embed_size=256, nfilter=64, **kwargs):
+ super().__init__()
+ s0 = self.s0 = size // 64
+ nf = self.nf = nfilter
+ self.z_dim = z_dim
+
+ # Submodules
+ self.embedding = nn.Embedding(nlabels, embed_size)
+ self.fc = nn.Linear(z_dim + embed_size, 32*nf*s0*s0)
+
+ self.resnet_0_0 = ResnetBlock(32*nf, 16*nf)
+ self.resnet_1_0 = ResnetBlock(16*nf, 16*nf)
+ self.resnet_2_0 = ResnetBlock(16*nf, 8*nf)
+ self.resnet_3_0 = ResnetBlock(8*nf, 4*nf)
+ self.resnet_4_0 = ResnetBlock(4*nf, 2*nf)
+ self.resnet_5_0 = ResnetBlock(2*nf, 1*nf)
+ self.conv_img = nn.Conv2d(nf, 3, 7, padding=3)
+
+ def forward(self, z, y):
+ assert(z.size(0) == y.size(0))
+ batch_size = z.size(0)
+
+ yembed = self.embedding(y)
+ yz = torch.cat([z, yembed], dim=1)
+ out = self.fc(yz)
+ out = out.view(batch_size, 32*self.nf, self.s0, self.s0)
+
+ out = self.resnet_0_0(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_1_0(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_2_0(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_3_0(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_4_0(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_5_0(out)
+
+ out = F.interpolate(out, scale_factor=2)
+
+ out = self.conv_img(actvn(out))
+ out = torch.tanh(out)
+
+ return out
+
+
+class Discriminator(nn.Module):
+ def __init__(self, z_dim, nlabels, size, embed_size=256, nfilter=64, **kwargs):
+ super().__init__()
+ self.embed_size = embed_size
+ s0 = self.s0 = size // 64
+ nf = self.nf = nfilter
+
+ # Submodules
+ self.conv_img = nn.Conv2d(3, 1*nf, 7, padding=3)
+
+ self.resnet_0_0 = ResnetBlock(1*nf, 2*nf)
+ self.resnet_1_0 = ResnetBlock(2*nf, 4*nf)
+ self.resnet_2_0 = ResnetBlock(4*nf, 8*nf)
+ self.resnet_3_0 = ResnetBlock(8*nf, 16*nf)
+ self.resnet_4_0 = ResnetBlock(16*nf, 16*nf)
+ self.resnet_5_0 = ResnetBlock(16*nf, 32*nf)
+
+ self.fc = nn.Linear(32*nf*s0*s0, nlabels)
+
+ def forward(self, x, y):
+ assert(x.size(0) == y.size(0))
+ batch_size = x.size(0)
+
+ out = self.conv_img(x)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_0_0(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_1_0(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_2_0(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_3_0(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_4_0(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_5_0(out)
+
+ out = out.view(batch_size, 32*self.nf*self.s0*self.s0)
+ out = self.fc(actvn(out))
+
+ index = Variable(torch.LongTensor(range(out.size(0))))
+ if y.is_cuda:
+ index = index.cuda()
+ out = out[index, y]
+
+ return out
+
+
+class ResnetBlock(nn.Module):
+ def __init__(self, fin, fout, fhidden=None, is_bias=True):
+ super().__init__()
+ # Attributes
+ self.is_bias = is_bias
+ self.learned_shortcut = (fin != fout)
+ self.fin = fin
+ self.fout = fout
+ if fhidden is None:
+ self.fhidden = min(fin, fout)
+ else:
+ self.fhidden = fhidden
+
+ # Submodules
+ self.conv_0 = nn.Conv2d(self.fin, self.fhidden, 3, stride=1, padding=1)
+ self.conv_1 = nn.Conv2d(self.fhidden, self.fout, 3, stride=1, padding=1, bias=is_bias)
+ if self.learned_shortcut:
+ self.conv_s = nn.Conv2d(self.fin, self.fout, 1, stride=1, padding=0, bias=False)
+
+ def forward(self, x):
+ x_s = self._shortcut(x)
+ dx = self.conv_0(actvn(x))
+ dx = self.conv_1(actvn(dx))
+ out = x_s + 0.1*dx
+
+ return out
+
+ def _shortcut(self, x):
+ if self.learned_shortcut:
+ x_s = self.conv_s(x)
+ else:
+ x_s = x
+ return x_s
+
+
+def actvn(x):
+ out = F.leaky_relu(x, 2e-1)
+ return out
diff --git a/submodules/GAN_stability/gan_training/models/resnet4.py b/submodules/GAN_stability/gan_training/models/resnet4.py
new file mode 100644
index 0000000..c65c1a3
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/models/resnet4.py
@@ -0,0 +1,157 @@
+import torch
+from torch import nn
+from torch.nn import functional as F
+from torch.autograd import Variable
+import torch.utils.data
+import torch.utils.data.distributed
+
+
+class Generator(nn.Module):
+ def __init__(self, z_dim, nlabels, size, embed_size=256, nfilter=64, **kwargs):
+ super().__init__()
+ s0 = self.s0 = size // 64
+ nf = self.nf = nfilter
+ self.z_dim = z_dim
+
+ # Submodules
+ self.embedding = nn.Embedding(nlabels, embed_size)
+ self.fc = nn.Linear(z_dim + embed_size, 16*nf*s0*s0)
+
+ self.resnet_0_0 = ResnetBlock(16*nf, 16*nf)
+ self.resnet_1_0 = ResnetBlock(16*nf, 16*nf)
+ self.resnet_2_0 = ResnetBlock(16*nf, 8*nf)
+ self.resnet_3_0 = ResnetBlock(8*nf, 4*nf)
+ self.resnet_4_0 = ResnetBlock(4*nf, 2*nf)
+ self.resnet_5_0 = ResnetBlock(2*nf, 1*nf)
+ self.resnet_6_0 = ResnetBlock(1*nf, 1*nf)
+ self.conv_img = nn.Conv2d(nf, 3, 7, padding=3)
+
+
+ def forward(self, z, y):
+ assert(z.size(0) == y.size(0))
+ batch_size = z.size(0)
+
+ yembed = self.embedding(y)
+ yz = torch.cat([z, yembed], dim=1)
+ out = self.fc(yz)
+ out = out.view(batch_size, 16*self.nf, self.s0, self.s0)
+
+ out = self.resnet_0_0(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_1_0(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_2_0(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_3_0(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_4_0(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_5_0(out)
+
+ out = F.interpolate(out, scale_factor=2)
+ out = self.resnet_6_0(out)
+ out = self.conv_img(actvn(out))
+ out = torch.tanh(out)
+
+ return out
+
+
+class Discriminator(nn.Module):
+ def __init__(self, z_dim, nlabels, size, embed_size=256, nfilter=64, **kwargs):
+ super().__init__()
+ self.embed_size = embed_size
+ s0 = self.s0 = size // 64
+ nf = self.nf = nfilter
+
+ # Submodules
+ self.conv_img = nn.Conv2d(3, 1*nf, 7, padding=3)
+
+ self.resnet_0_0 = ResnetBlock(1*nf, 1*nf)
+ self.resnet_1_0 = ResnetBlock(1*nf, 2*nf)
+ self.resnet_2_0 = ResnetBlock(2*nf, 4*nf)
+ self.resnet_3_0 = ResnetBlock(4*nf, 8*nf)
+ self.resnet_4_0 = ResnetBlock(8*nf, 16*nf)
+ self.resnet_5_0 = ResnetBlock(16*nf, 16*nf)
+ self.resnet_6_0 = ResnetBlock(16*nf, 16*nf)
+
+ self.fc = nn.Linear(16*nf*s0*s0, nlabels)
+
+ def forward(self, x, y):
+ assert(x.size(0) == y.size(0))
+ batch_size = x.size(0)
+
+ out = self.conv_img(x)
+ out = self.resnet_0_0(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_1_0(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_2_0(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_3_0(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_4_0(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_5_0(out)
+
+ out = F.avg_pool2d(out, 3, stride=2, padding=1)
+ out = self.resnet_6_0(out)
+
+ out = out.view(batch_size, 16*self.nf*self.s0*self.s0)
+ out = self.fc(actvn(out))
+
+ index = Variable(torch.LongTensor(range(out.size(0))))
+ if y.is_cuda:
+ index = index.cuda()
+ out = out[index, y]
+
+ return out
+
+
+class ResnetBlock(nn.Module):
+ def __init__(self, fin, fout, fhidden=None, is_bias=True):
+ super().__init__()
+ # Attributes
+ self.is_bias = is_bias
+ self.learned_shortcut = (fin != fout)
+ self.fin = fin
+ self.fout = fout
+ if fhidden is None:
+ self.fhidden = min(fin, fout)
+ else:
+ self.fhidden = fhidden
+
+ # Submodules
+ self.conv_0 = nn.Conv2d(self.fin, self.fhidden, 3, stride=1, padding=1)
+ self.conv_1 = nn.Conv2d(self.fhidden, self.fout, 3, stride=1, padding=1, bias=is_bias)
+ if self.learned_shortcut:
+ self.conv_s = nn.Conv2d(self.fin, self.fout, 1, stride=1, padding=0, bias=False)
+
+ def forward(self, x):
+ x_s = self._shortcut(x)
+ dx = self.conv_0(actvn(x))
+ dx = self.conv_1(actvn(dx))
+ out = x_s + 0.1*dx
+
+ return out
+
+ def _shortcut(self, x):
+ if self.learned_shortcut:
+ x_s = self.conv_s(x)
+ else:
+ x_s = x
+ return x_s
+
+
+def actvn(x):
+ out = F.leaky_relu(x, 2e-1)
+ return out
diff --git a/submodules/GAN_stability/gan_training/ops.py b/submodules/GAN_stability/gan_training/ops.py
new file mode 100644
index 0000000..9f9fffd
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/ops.py
@@ -0,0 +1,127 @@
+from torch import nn
+import torch
+from torch.nn import Parameter
+
+
+class SpectralNorm(nn.Module):
+ def __init__(self, module, name='weight', power_iterations=1):
+ super(SpectralNorm, self).__init__()
+ self.module = module
+ self.name = name
+ self.power_iterations = power_iterations
+ if not self._made_params():
+ self._make_params()
+
+ def _update_u_v(self):
+ u = getattr(self.module, self.name + "_u")
+ v = getattr(self.module, self.name + "_v")
+ w = getattr(self.module, self.name + "_bar")
+
+ height = w.data.shape[0]
+ for _ in range(self.power_iterations):
+ v.data = l2normalize(
+ torch.mv(torch.t(w.view(height, -1).data), u.data))
+ u.data = l2normalize(
+ torch.mv(w.view(height, -1).data, v.data))
+
+ # sigma = torch.dot(u.data, torch.mv(w.view(height,-1).data, v.data))
+ sigma = u.dot(w.view(height, -1).mv(v))
+ setattr(self.module, self.name, w / sigma.expand_as(w))
+
+ def _made_params(self):
+ made_params = (
+ hasattr(self.module, self.name + "_u")
+ and hasattr(self.module, self.name + "_v")
+ and hasattr(self.module, self.name + "_bar")
+ )
+ return made_params
+
+ def _make_params(self):
+ w = getattr(self.module, self.name)
+
+ height = w.data.shape[0]
+ width = w.view(height, -1).data.shape[1]
+
+ u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
+ v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
+ u.data = l2normalize(u.data)
+ v.data = l2normalize(v.data)
+ w_bar = Parameter(w.data)
+
+ del self.module._parameters[self.name]
+
+ self.module.register_parameter(self.name + "_u", u)
+ self.module.register_parameter(self.name + "_v", v)
+ self.module.register_parameter(self.name + "_bar", w_bar)
+
+ def forward(self, *args):
+ self._update_u_v()
+ return self.module.forward(*args)
+
+
+def l2normalize(v, eps=1e-12):
+ return v / (v.norm() + eps)
+
+
+class CBatchNorm(nn.Module):
+ def __init__(self, nfilter, nlabels):
+ super().__init__()
+ # Attributes
+ self.nlabels = nlabels
+ self.nfilter = nfilter
+ # Submodules
+ self.alpha_embedding = nn.Embedding(nlabels, nfilter)
+ self.beta_embedding = nn.Embedding(nlabels, nfilter)
+ self.bn = nn.BatchNorm2d(nfilter, affine=False)
+ # Initialize
+ nn.init.constant_(self.alpha_embedding.weight, 1.)
+ nn.init.constant_(self.beta_embedding.weight, 0.)
+
+ def forward(self, x, y):
+ dim = len(x.size())
+ batch_size = x.size(0)
+ assert(dim >= 2)
+ assert(x.size(1) == self.nfilter)
+
+ s = [batch_size, self.nfilter] + [1] * (dim - 2)
+ alpha = self.alpha_embedding(y)
+ alpha = alpha.view(s)
+ beta = self.beta_embedding(y)
+ beta = beta.view(s)
+
+ out = self.bn(x)
+ out = alpha * out + beta
+
+ return out
+
+
+class CInstanceNorm(nn.Module):
+ def __init__(self, nfilter, nlabels):
+ super().__init__()
+ # Attributes
+ self.nlabels = nlabels
+ self.nfilter = nfilter
+ # Submodules
+ self.alpha_embedding = nn.Embedding(nlabels, nfilter)
+ self.beta_embedding = nn.Embedding(nlabels, nfilter)
+ self.bn = nn.InstanceNorm2d(nfilter, affine=False)
+ # Initialize
+ nn.init.uniform(self.alpha_embedding.weight, -1., 1.)
+ nn.init.constant_(self.beta_embedding.weight, 0.)
+
+ def forward(self, x, y):
+ dim = len(x.size())
+ batch_size = x.size(0)
+ assert(dim >= 2)
+ assert(x.size(1) == self.nfilter)
+
+ s = [batch_size, self.nfilter] + [1] * (dim - 2)
+ alpha = self.alpha_embedding(y)
+ alpha = alpha.view(s)
+ beta = self.beta_embedding(y)
+ beta = beta.view(s)
+
+ out = self.bn(x)
+ out = alpha * out + beta
+
+ return out
diff --git a/submodules/GAN_stability/gan_training/train.py b/submodules/GAN_stability/gan_training/train.py
new file mode 100644
index 0000000..6dfe24a
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/train.py
@@ -0,0 +1,153 @@
+# coding: utf-8
+import torch
+from torch.nn import functional as F
+import torch.utils.data
+import torch.utils.data.distributed
+from torch import autograd
+
+
+class Trainer(object):
+ def __init__(self, generator, discriminator, g_optimizer, d_optimizer,
+ gan_type, reg_type, reg_param):
+ self.generator = generator
+ self.discriminator = discriminator
+ self.g_optimizer = g_optimizer
+ self.d_optimizer = d_optimizer
+
+ self.gan_type = gan_type
+ self.reg_type = reg_type
+ self.reg_param = reg_param
+
+ def generator_trainstep(self, y, z):
+ assert(y.size(0) == z.size(0))
+ toggle_grad(self.generator, True)
+ toggle_grad(self.discriminator, False)
+ self.generator.train()
+ self.discriminator.train()
+ self.g_optimizer.zero_grad()
+
+ x_fake = self.generator(z, y)
+ d_fake = self.discriminator(x_fake, y)
+ gloss = self.compute_loss(d_fake, 1)
+ gloss.backward()
+
+ self.g_optimizer.step()
+
+ return gloss.item()
+
+ def discriminator_trainstep(self, x_real, y, z):
+ toggle_grad(self.generator, False)
+ toggle_grad(self.discriminator, True)
+ self.generator.train()
+ self.discriminator.train()
+ self.d_optimizer.zero_grad()
+
+ # On real data
+ x_real.requires_grad_()
+
+ d_real = self.discriminator(x_real, y)
+ dloss_real = self.compute_loss(d_real, 1)
+
+ if self.reg_type == 'real' or self.reg_type == 'real_fake':
+ dloss_real.backward(retain_graph=True)
+ reg = self.reg_param * compute_grad2(d_real, x_real).mean()
+ reg.backward()
+ else:
+ dloss_real.backward()
+
+ # On fake data
+ with torch.no_grad():
+ x_fake = self.generator(z, y)
+
+ x_fake.requires_grad_()
+ d_fake = self.discriminator(x_fake, y)
+ dloss_fake = self.compute_loss(d_fake, 0)
+
+ if self.reg_type == 'fake' or self.reg_type == 'real_fake':
+ dloss_fake.backward(retain_graph=True)
+ reg = self.reg_param * compute_grad2(d_fake, x_fake).mean()
+ reg.backward()
+ else:
+ dloss_fake.backward()
+
+ if self.reg_type == 'wgangp':
+ reg = self.reg_param * self.wgan_gp_reg(x_real, x_fake, y)
+ reg.backward()
+ elif self.reg_type == 'wgangp0':
+ reg = self.reg_param * self.wgan_gp_reg(x_real, x_fake, y, center=0.)
+ reg.backward()
+
+ self.d_optimizer.step()
+
+ toggle_grad(self.discriminator, False)
+
+ # Output
+ dloss = (dloss_real + dloss_fake)
+
+ if self.reg_type == 'none':
+ reg = torch.tensor(0.)
+
+ return dloss.item(), reg.item()
+
+ def compute_loss(self, d_outs, target):
+
+ d_outs = [d_outs] if not isinstance(d_outs, list) else d_outs
+ loss = 0
+
+ for d_out in d_outs:
+
+ targets = d_out.new_full(size=d_out.size(), fill_value=target)
+
+ if self.gan_type == 'standard':
+ loss += F.binary_cross_entropy_with_logits(d_out, targets)
+ elif self.gan_type == 'wgan':
+ loss += (2*target - 1) * d_out.mean()
+ else:
+ raise NotImplementedError
+
+ return loss / len(d_outs)
+
+ def wgan_gp_reg(self, x_real, x_fake, y, center=1.):
+ batch_size = y.size(0)
+ eps = torch.rand(batch_size, device=y.device).view(batch_size, 1, 1, 1)
+ x_interp = (1 - eps) * x_real + eps * x_fake
+ x_interp = x_interp.detach()
+ x_interp.requires_grad_()
+ d_out = self.discriminator(x_interp, y)
+
+ reg = (compute_grad2(d_out, x_interp).sqrt() - center).pow(2).mean()
+
+ return reg
+
+
+# Utility functions
+def toggle_grad(model, requires_grad):
+ for p in model.parameters():
+ p.requires_grad_(requires_grad)
+
+
+def compute_grad2(d_outs, x_in):
+ d_outs = [d_outs] if not isinstance(d_outs, list) else d_outs
+ reg = 0
+ for d_out in d_outs:
+ batch_size = x_in.size(0)
+ grad_dout = autograd.grad(
+ outputs=d_out.sum(), inputs=x_in,
+ create_graph=True, retain_graph=True, only_inputs=True
+ )[0]
+ grad_dout2 = grad_dout.pow(2)
+ assert(grad_dout2.size() == x_in.size())
+ reg += grad_dout2.view(batch_size, -1).sum(1)
+ return reg / len(d_outs)
+
+
+def update_average(model_tgt, model_src, beta):
+ toggle_grad(model_src, False)
+ toggle_grad(model_tgt, False)
+
+ param_dict_src = dict(model_src.named_parameters())
+
+ for p_name, p_tgt in model_tgt.named_parameters():
+ p_src = param_dict_src[p_name]
+ assert(p_src is not p_tgt)
+ p_tgt.copy_(beta*p_tgt + (1. - beta)*p_src)
diff --git a/submodules/GAN_stability/gan_training/utils.py b/submodules/GAN_stability/gan_training/utils.py
new file mode 100644
index 0000000..fed6b3b
--- /dev/null
+++ b/submodules/GAN_stability/gan_training/utils.py
@@ -0,0 +1,33 @@
+
+import torch
+import torch.utils.data
+import torch.utils.data.distributed
+import torchvision
+
+
+def save_images(imgs, outfile, nrow=8):
+ imgs = imgs / 2 + 0.5 # unnormalize
+ torchvision.utils.save_image(imgs, outfile, nrow=nrow)
+
+
+def get_nsamples(data_loader, N):
+ x = []
+ y = []
+ n = 0
+ while n < N:
+ x_next, y_next = next(iter(data_loader))
+ x.append(x_next)
+ y.append(y_next)
+ n += x_next.size(0)
+ x = torch.cat(x, dim=0)[:N]
+ y = torch.cat(y, dim=0)[:N]
+ return x, y
+
+
+def update_average(model_tgt, model_src, beta):
+ param_dict_src = dict(model_src.named_parameters())
+
+ for p_name, p_tgt in model_tgt.named_parameters():
+ p_src = param_dict_src[p_name]
+ assert(p_src is not p_tgt)
+ p_tgt.copy_(beta*p_tgt + (1. - beta)*p_src)
diff --git a/submodules/GAN_stability/interpolate.py b/submodules/GAN_stability/interpolate.py
new file mode 100644
index 0000000..cce608b
--- /dev/null
+++ b/submodules/GAN_stability/interpolate.py
@@ -0,0 +1,105 @@
+import argparse
+import os
+from os import path
+import copy
+import numpy as np
+import torch
+from torch import nn
+from gan_training import utils
+from gan_training.checkpoints import CheckpointIO
+from gan_training.distributions import get_ydist, get_zdist, interpolate_sphere
+from gan_training.config import (
+ load_config, build_models
+)
+
+# Arguments
+parser = argparse.ArgumentParser(
+ description='Create interpolations for a trained GAN.'
+)
+parser.add_argument('config', type=str, help='Path to config file.')
+parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
+
+args = parser.parse_args()
+
+config = load_config(args.config, 'configs/default.yaml')
+is_cuda = (torch.cuda.is_available() and not args.no_cuda)
+
+# Shorthands
+nlabels = config['data']['nlabels']
+out_dir = config['training']['out_dir']
+batch_size = config['test']['batch_size']
+sample_size = config['test']['sample_size']
+sample_nrow = config['test']['sample_nrow']
+checkpoint_dir = path.join(out_dir, 'chkpts')
+interp_dir = path.join(out_dir, 'test', 'interp')
+
+# Creat missing directories
+if not path.exists(interp_dir):
+ os.makedirs(interp_dir)
+
+# Logger
+checkpoint_io = CheckpointIO(
+ checkpoint_dir=checkpoint_dir
+)
+
+# Get model file
+model_file = config['test']['model_file']
+
+# Models
+device = torch.device("cuda:0" if is_cuda else "cpu")
+
+generator, discriminator = build_models(config)
+print(generator)
+print(discriminator)
+
+# Put models on gpu if needed
+generator = generator.to(device)
+discriminator = discriminator.to(device)
+
+# Use multiple GPUs if possible
+generator = nn.DataParallel(generator)
+discriminator = nn.DataParallel(discriminator)
+
+# Register modules to checkpoint
+checkpoint_io.register_modules(
+ generator=generator,
+ discriminator=discriminator,
+)
+
+# Test generator
+if config['test']['use_model_average']:
+ generator_test = copy.deepcopy(generator)
+ checkpoint_io.register_modules(generator_test=generator_test)
+else:
+ generator_test = generator
+
+# Distributions
+ydist = get_ydist(nlabels, device=device)
+zdist = get_zdist(config['z_dist']['type'], config['z_dist']['dim'],
+ device=device)
+
+
+# Load checkpoint if existant
+load_dict = checkpoint_io.load(model_file)
+it = load_dict.get('it', -1)
+epoch_idx = load_dict.get('epoch_idx', -1)
+
+# Interpolations
+print('Creating interplations...')
+nsteps = config['interpolations']['nzs']
+nsubsteps = config['interpolations']['nsubsteps']
+
+y = ydist.sample((sample_size,))
+zs = [zdist.sample((sample_size,)) for i in range(nsteps)]
+ts = np.linspace(0, 1, nsubsteps)
+
+it = 0
+for z1, z2 in zip(zs, zs[1:] + [zs[0]]):
+ for t in ts:
+ z = interpolate_sphere(z1, z2, float(t))
+ with torch.no_grad():
+ x = generator_test(z, y)
+ utils.save_images(x, path.join(interp_dir, '%04d.png' % it),
+ nrow=sample_nrow)
+ it += 1
+ print('%d/%d done!' % (it, nsteps * nsubsteps))
diff --git a/submodules/GAN_stability/interpolate_class.py b/submodules/GAN_stability/interpolate_class.py
new file mode 100644
index 0000000..d7ce099
--- /dev/null
+++ b/submodules/GAN_stability/interpolate_class.py
@@ -0,0 +1,110 @@
+import argparse
+import os
+from os import path
+import copy
+import numpy as np
+import torch
+from torch import nn
+from gan_training import utils
+from gan_training.checkpoints import CheckpointIO
+from gan_training.distributions import get_ydist, get_zdist, interpolate_sphere
+from gan_training.config import (
+ load_config, build_models
+)
+
+# Arguments
+parser = argparse.ArgumentParser(
+ description='Create interpolations for a trained GAN.'
+)
+parser.add_argument('config', type=str, help='Path to config file.')
+parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
+
+args = parser.parse_args()
+
+config = load_config(args.config, 'configs/default.yaml')
+is_cuda = (torch.cuda.is_available() and not args.no_cuda)
+
+# Shorthands
+nlabels = config['data']['nlabels']
+out_dir = config['training']['out_dir']
+batch_size = config['test']['batch_size']
+sample_size = config['test']['sample_size']
+sample_nrow = config['test']['sample_nrow']
+checkpoint_dir = path.join(out_dir, 'chkpts')
+interp_dir = path.join(out_dir, 'test', 'interp_class')
+
+# Creat missing directories
+if not path.exists(interp_dir):
+ os.makedirs(interp_dir)
+
+# Logger
+checkpoint_io = CheckpointIO(
+ checkpoint_dir=checkpoint_dir
+)
+
+# Get model file
+model_file = config['test']['model_file']
+
+# Models
+device = torch.device("cuda:0" if is_cuda else "cpu")
+
+generator, discriminator = build_models(config)
+print(generator)
+print(discriminator)
+
+# Put models on gpu if needed
+generator = generator.to(device)
+discriminator = discriminator.to(device)
+
+# Use multiple GPUs if possible
+generator = nn.DataParallel(generator)
+discriminator = nn.DataParallel(discriminator)
+
+# Register modules to checkpoint
+checkpoint_io.register_modules(
+ generator=generator,
+ discriminator=discriminator,
+)
+
+# Test generator
+if config['test']['use_model_average']:
+ generator_test = copy.deepcopy(generator)
+ checkpoint_io.register_modules(generator_test=generator_test)
+else:
+ generator_test = generator
+
+# Distributions
+ydist = get_ydist(nlabels, device=device)
+zdist = get_zdist(config['z_dist']['type'], config['z_dist']['dim'],
+ device=device)
+
+
+# Load checkpoint if existant
+load_dict = checkpoint_io.load(model_file)
+it = load_dict.get('it', -1)
+epoch_idx = load_dict.get('epoch_idx', -1)
+
+# Interpolations
+print('Creating interplations...')
+nsubsteps = config['interpolations']['nsubsteps']
+ys = config['interpolations']['ys']
+
+nsteps = len(ys)
+z = zdist.sample((sample_size,))
+ts = np.linspace(0, 1, nsubsteps)
+
+it = 0
+for y1, y2 in zip(ys, ys[1:] + [ys[0]]):
+ for t in ts:
+ y1_pt = torch.full((sample_size,), y1, dtype=torch.int64, device=device)
+ y2_pt = torch.full((sample_size,), y2, dtype=torch.int64, device=device)
+ y1_embed = generator_test.module.embedding(y1_pt)
+ y2_embed = generator_test.module.embedding(y2_pt)
+ t = float(t)
+ y_embed = (1 - t) * y1_embed + t * y2_embed
+ with torch.no_grad():
+ x = generator_test(z, y_embed)
+ utils.save_images(x, path.join(interp_dir, '%04d.png' % it),
+ nrow=sample_nrow)
+ it += 1
+ print('%d/%d done!' % (it, nsteps * nsubsteps))
diff --git a/submodules/GAN_stability/notebooks/DiracGAN.ipynb b/submodules/GAN_stability/notebooks/DiracGAN.ipynb
new file mode 100644
index 0000000..0257bce
--- /dev/null
+++ b/submodules/GAN_stability/notebooks/DiracGAN.ipynb
@@ -0,0 +1,708 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot as plt\n",
+ "import matplotlib.patches as patches\n",
+ "import os\n",
+ "from os import path\n",
+ "from diracgan.gans import *\n",
+ "from diracgan.simulate import *\n",
+ "from diracgan.plotting import *\n",
+ "from diracgan.subplots import *"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [],
+ "source": [
+ "h = 0.2\n",
+ "theta0 = 1.\n",
+ "psi0 = 1.\n",
+ "theta_s = np.linspace(-2, 2., 10)\n",
+ "psi_s = np.linspace(-2, 2, 10)\n",
+ "\n",
+ "plot_configs = [\n",
+ " (GAN(), 'gan', h, h, 500),\n",
+ " (NSGAN(), 'nsgan', h, h, 500),\n",
+ " (WGAN(1.), 'wgan', h, h, 500),\n",
+ " (WGAN_GP(0.7, 1.), 'wgan_gp', h, h, 500),\n",
+ " (GAN_InstNoise(0.7), 'gan_instnoise', h, h, 500),\n",
+ " (GAN_GradPenalty(0.3), 'gan_gradpen',h ,h, 500),\n",
+ " (GAN_GradPenalty(1.), 'gan_gradpen_critical',h ,h, 500),\n",
+ " (GAN_Consensus(1.), 'gan_consensus', h, h, 500),\n",
+ " (NSGAN_GradPenalty(0.3), 'nsgan_gradpen', h, h, 500),\n",
+ "]\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXlYVGX7x78HEFBBwR1F0RRNCw3RNFFzKTW1DW0xrSzTLFPxdWvzrde0zNxK800rM5efuWRlpq+amVuKigvuG24ELiyCIgwM5/v7Y5pxBmaGmWHOOQM8n+s6l8wwc57bw8zzPffy3I9EEgKBQCAQGPHS2gCBQCAQeBZCGAQCgUBggRAGgUAgEFgghEEgEAgEFghhEAgEAoEFQhgEAoFAYIHmwiBJUn1JkrZJknRSkqTjkiSN1tomgUAgKM9IWq9jkCQpBEAIyYOSJAUCiAfwFMkTmhomEAgE5RTNPQaSKSQP/vPzLQAnAdTT1iqBQCAov/hobYA5kiQ1BBAJIM7K74YBGAYAFStWjGrRooWqtllDlmVcunQJ6enpCA8PR5UqVbQ2CdnZ2UhKSsLt27dRv3591KpVSzNbZFnGzZs3kZGRgczMTJBEjRo1EBYW5vI5CwoKkJqaihs3bkCn06FFixaoWLEiACA3twAXL0qoVes2Cgp0yMvLQ35+PvLy8kw/y7Jc5JyVK1fGvffea/HclStAWhpQvTpQv77zdpq/PyREb7I5Ly8PAODr64vg4GAL2/LyCKAhgAvw9iYeeOAB5wd2EyRx9epVJCcnWzwfEREBX19fjayyJCUlBTdu3ECjRo0QGBiotTkmsrOzodPpUK1atSK/O3UKyM527nwVKgB+fsA99xh+doX8/HwkJCQAQCrJmsW+gaRHHAACYAgjxRT32vDwcGrN2bNnGRERQQCsWLEiV65cqak9iYmJfP755wmAAFi9enUuWrRIdTuysrK4fPlyPvXUU/Tz8zPZA4AdOnTgt99+69J5jx07xuHDh7Ny5cqm8/n4+LBbt25s2rQpK1WqRGAWgTQCMy3GNT8qVarEZs2a8ZFHHuHgwYM5adIkrlixwmKs5GQyOJg8eJCsVo1MSXHOVlvv1+v1/Pnnn/nII4/Q19eXN27csHjfqFEFDAoq4IABKdy8eXOxY/Ts6bxtzrJv3z42bdqU3t7ePH36tLKDucDevXu1NsEloqNJoOhRqRLp7096eRkeV61q+NfXlwwNJbt0cf1vfujQIQI4QEfmY0depPQBoAKATQD+5cjro6KiXLsybuKXX35h1apVCYBNmjRhQkKCZrakp6dz3Lhx9PX1JQD6+flxwoQJvHnzpmo2FCcGc+bM4ZUrV5w+r16v508//cRu3brZnOjvHnUIpLFhw6dZoUImn3tuNCdNmsQFCxZww4YNTEhIYEZGBmVZLnbc2FjDYfx5zBjn7Hbk/SdOnLCYaJ0Vo9hYw+udtc0Vbt++zeHDh/PMmTPKD1aOsCUORoEIDr77WJLcIxClRhgASACWAJjj6Hu0Ega9Xs933nnHNBk9+eSTqk7A5uh0On7++eesVq2ayZ4XXniBFy5cUGV8V8XA0TtdWZa5bt06DhkyhG3btqW/v79VQZg8eTITEhL4xhs5HD3aMOm7Mpmb2xccbPjX+NgZr8HV9zsjRs6IiDs9i4KCgpKfRFAEewLh43NXICTprifh60uGhTn/dy1NwtDxny95AoDD/xy97b1HC2G4fv06u3fvTgD08vLiJ598oskXRZZl/vjjj2zSpIlpcuzUqRP37dun+Nju8AxcvdPV6/U8efIkf/jhB77zzjvs3bs3Q0NDGRERwYsXdSWazAvbZ5ygzZ9z1F5X3u+smDgjIsVdb7VCUoLiKU4gjKJgLhAhIc55D6VGGFw51BaGvXv3MjQ0lABYs2ZN/v7776qOb25Hx44dTZNxeHg4f/rpJ4fCI8VhS+TcGSYqaezeGqmpqRwxIq9Ek7k5tr6c0dHKvd8ZMXFGRBy53mqGpASOoWT+QQiDG5BlmfPnz2eFChUIgO3atXMpVl5SrCWW586dy7y8vBKfW6/Xc8qUKdyyZYvpOaVyBiWN3duipJO51jhjvzMiUtz1dkQ4hEehDa7mH4oLLwlhKCHZ2dl88cUXTRPim2++ydzcXMXHNScjI0PRxHJiYiKjo6MJgPHx8YqIgZGSxu4FBhwVEUeutyNCbcujEIKhDq7kH0JCbP9dhDCUgMKlqEuXLlV0vMIonViWZZmLFy9mYGCg6fxGr8hQ3bORbdr0LbEYmFPS2L3AOYq73o4Ihz2PQoSg1MXR/IPxsJV7EMLgIlqWoqqRWE5LS+MzzzxTpLrH6Bk8/PBBVq1a4PYvfGkP95Q2irvejgi1LY/CnmAIT0JZbP1dK1Ys+py10JIQBifRuhRVycSykS1btrBu3bpWRSEwMJDr18e7PTks8EyKEw57HoW9EJTwJJSnuPxD4dyDufcghMEJtCxFVTKxbCQ/P59Tp05laGgoGzduzBYtWrB169bs0KEDu3Xrxt69ezMmJoYREb9zxAjDuCLMU76x5VEMG2ZbMIQnoS72BMJ4mFcuhYWRQIXDFMJQPFqVomZkZHD8+PGarlg2RySHBebYmnTq1rUdghKehDbUrWv9b+XtzSLeA9C6gEIYbKNVKarWK5ZtIZLDAkewJRht2zrvSQgvwj04Wrnk60sCUaQQBusULkUdMWIEdTpdic5ZmIKCAotwlCzLXLt2rSYrlh1BJIcFJcHejYUtT8KaFyHEwnXsCYS/v/FnIQxWKVyKumzZMpfPZQtZlvnmm28yNTWVJBkXF6d4Ylkg0BJnPYnDh617ESLkVHJs/S18fIQwWEWNUlRZljlmzBgC4Pbt2xVPLAsEnowtTyIysqgXYS3kJDwI17DtPQhhMKFWKaosy5w4caJpHEmS3JZYFl8QQWnE1gTl7V3Uixg6tKhYCA+iZBS9/kIYSKpbivrvf/+7yPqAmJgYtySWxRdEUFaw5kUMHUr6+VmKRXCwodxSeBAlIzBQCIMFapaiTp06tYgoAGCzZs0YFxdXonMr0ZVUINAKe6Ww5kRGGg7StgchhMIx7l7zciwMapeifvbZZ0UEITQ0lP379+eMGTO4Z8+eEp1fqa6kAs+hcBWbFpw8eZLHjh1jZmam6mPbS16T5h6EbHGDJDxpxzFcY8eEQSKJ0kabNm144MABq7+7c+cOhg8fjqVLlwIARowYgVmzZim2gfkXX3yBt99+G1FRUWjfvj3at2+Pdu3aITQ01C3nT0kB7rsPOH4cCAkxPL7/fsPjOnXcMoRARTIyMnDmzBmcPn0ap0+fNv1cp04dbNy4Ed7e3prZlpaWhn79+mH79u2oUqUKGjRogPr161scDRo0QLt27VCpUiVFbRkzxvDv7Nl3n2vdGsjKykTTpgNQUPAZQkKaYN06P2zdCjzyiOE7QQKvvAIsXqz+9yM3Nxfe3t6oUKGCugM7gSRJ8STbFPtCR9TD0w5bHoMapajm5OTkMD4+XtEqI7HwzHU8oRw4Pz+fc+bMYXR0NGvWrGk13ChJErds2cL8/HytzaVOp+Nrr71m1U4AfP/991XxbOx5EO+++y4NXYDvsH79jVy+fDlHjNBpnqzW6/Xs168fV65c6RGfPXPS09NJkihvvZK07IqanZ2t2LldXXiW4oFB1/Pnz6ti1969e9m/f39evXrV5muys7OZkJDAtWvXcuPGjYraI8syN2zYwIcfftjmhAsYWp83bdqUffr04ejRo5mTk6OoXfbsnTVrFr28vCzsq169Onft2qWJTeY3SHq9nh07PkMgh8BXHDRoEM+evV0kWX34sPr5hw0bNhAAu3btapqMPYElS5bwww8/LNvCcN9995m+9Fp3Rd24cSPr1KnDAwcOqDamPWRZ5oIFC1ipUiWuXLlSa3MoyzK3bNnCxx9/nJIkcdy4cYqNYz75durUyWLy//TTT/naa6+xS5curFevnsWE16VLF0VsssbevXsZExNjKmUGwODgYIaEhFjYFBAQoPld5/r16y327ADAEydOaGKL7UVbe7lkyRKSRZPVkZHqew+yLLN3796cNWuWeoM6wK1btzhy5MiyLQyBgYH89ttvNe2KShpEwbjb2fjx41Ub1xapqal8+umnTV/iN954QzNbbt26xfnz57N58+Yme3x9fTlq1Ci3jpOXl8elS5eaQojmY9m7O/f29maTJk3Yq1cvfvjhh261yRFOnz7NoUOH0tfXl82aNaMsy7x16xYPHz7M1atX8+uvv1bdJmscPXqUDRs2ZO3atTXzFqxRXLL60CFD47jNm9UvddWqEaYjlGlhAMBu3bpp0hXViLkovPHGG5pXlPz++++mvRYCAwNV33XOyLlz5zhmzBhTWA8AQ0JCOHnyZLuhHWe5desW58yZwwYNGjg0+Y8cOZJffPEFN2zYwLNnz3rM6vPk5GS+/fbbmjdRtMf169fZs2dPrc2witGrKpyLM3oMxryD1vkHT6HMC4PxUKsrqjmeJAo6nY7jx483hSYeeughnj9/XlUbZFnm5s2bTeEi49/moYce4ooVK9zeoDAvL4/z5s3jwIED2aZNmyLhDgD08fFxS57J2bvMslpX7+6/obuxl4uztlhOi/yDJ1AuhMHLy4tz585lbm6uO6+dXTxJFE6ePMnWrVubrsUHH3ygWGVLQUFBkTt+W+Gil156ifv371fEDmvIssyUlBT++eefXLhwIceOHcvHH3+cAwcOpF6vN73OlUnb2btMZ15fVkVEa6xV8nlC/sETKBfCAICRkZFcu3atO6+dTeyJgppfcmOCuWLFigTAsLAwReO/2dnZfOaZZ7hmzRqS6oWL3I2zk7yzK86dfb2j9ggBcQ5n8w/lyXso08Lg7e3NN998k/Hx8e68ZnYpzlNQK35ZOMH8wgsvKJrsSkpKYlRUFAFw0qRJqoWLbOHqJOlKWxFnV5w783pn7HHksyXEwzbF5R/Kk/dQpoUh0ugTqkRxoqBWLyO1E8wHDhwwjVe44kftcJERVwXY2Une2a1OnX29o/Y4+tkSiVXb2Ms/lDfvoUwLgzv3fC4OR3IKSvcy0iLBvGrVKlOoyvyIjY3VLFzkqgC7sp+1syvOnXm9M/Y48tly5LoIj8JAefcehDC4AUdEwZVJxxkKJ5j//e9/K9o6QZZlTp482WYJaHh4OE+fPl2iMVydpFwVYFfaiji74tyZ1ztqj6OfLUeui/AoDJR370EIQwlxtPpIqV5GaieYSfLOnTumHef8/f0ZHh7Obt268eWXX+b777/PBQsWcOPGjUxMTCzROK5MUiURYE/bz9pRexz5bDlyXYrzKMqrN1EevQchDCXAmZJUJSYdtRPMRs6fP8/4+Hhev35dsXYMroaDymMzQUc+W45cl+I8ivLqTZRH70EIg4uovU6h8ATsKSuYlcLVcJCn3fV7CsVdl+I8CuFNGCgv3oMQBhfQQhTee+89kp6xgllplM7HCIpSnEchvAkD5cV7EMLgJFqsaJ49eza9vLx45MgRVRPMJcUdyWPz58r6pKMljrSKcNWbKKuUZe9BCIMTaCEKO3fupI+PD419fdRKMLsDV+8iRTjIsyiJN1GWQ0xl2XsQwuAgWohCSkpKkf77jz32mEe36zVSXu8iyyIl8SbKS4iprHkPQhgcQAtRyM/Pt7qTl6+vL8eMGcM7d+4obkNJUHoxn8AzsOdN2Lo5KIteRFnzHoQwFINWXVLHjx9fRBSioqL42Wef8dKlS6rY4CoieVx+sDch2ro5KOteRFnwHoQw2EErUfjxxx9NYhAREcGpU6fy7NmzqoztDkTyuOxT3PoVWzcHhw/bDjG6y5PIz8/nwoULFd1j3R72xHLfvjxKkmyxY5wnIoTBBhs3bqSvbxiBjXz55YmqicLp06f54IMP8oMPPtBs39ySIpLHZZ+//vqLjz32GD/66CPu2rWrSNdcWzcHkZG2Q4zu9CRmzZrFunXrcuHChZpW7lnzHqpUOcfnnkvi0KFkWJjniMOpU6dMPwthsMJdT2EW/fxuMzZWvc3WMzIyNN/c3ZyyGA8urciyzKysLJ4+fZrbt2/nypUrGRcXp5k9q1evNq2nqVSpEnv06MFp06YxLi6OHTrIVm8OvL2thxjdXayQm5vLsLAwAmCzZs24du1aTb5Xtm6SgF1s3z6BkiRz2DDVzbLKwoULOWnSJMqyLISBJDMzM00/3xWFOvTzu80DBwo82uVTmrIeD7bFlStXmGycwTTgyJEjfPPNNxkTE8MOHTrwnnvuYaVKlSxyTg0aNOCNGzc0s5Ek58+fXyQXBoCNGzfmmTNnLF5rL8RoKx9RkhuTJUuWWNjUvn17bt++3YX/pXsw/h8vXLhAoA6BNDZosJN+frJHJKQTEhIIgBMmTBDCQJJPP/00MzIyLHIKLVv+ztGj724gXlYnRnt3UVqVnOp0Os3c/9TUVI4bN44BAQEWNwzJyckl7hbrLHFxcezWrZvViRcAO3TowNmzZ2sWSzfywQcfWNjl7e3NrVu3FnmdvR3TbBUrlOTGRK/Xs2XLlia7unTpwgMHDpTwf+s6tv7/AQGZjIyUNb8B0+v1DAgIMF6vsisMrVq1KvZi/PnnnwTAwYMHm0ThpZcmMjhYdmtVTVpaGvv371/ijqPu5MaNG+zYsSN3795t9fdalJxu2bKF9957L2fNmqX8YGbcvn2bU6ZMYZUqVQiA9evX5wcffMC+ffua1pL06tVLVZtIg3Bv3rzZtDte4cPPz495eXmq21XYxuHDh1vYZU0YbGHLkxg2rOQ3Jr/99hsBMCgoiO+//77zJ1CA5GSyUqUc1q//IB9//HHGxxdYlLNq6TU8+eST7N27d9kWhho1ati9CLIss127dhYf6DfeeIOjR8turaqRZZn9+vUjAD766KOuncTN3Lhxw3Q3FRUVVcRzULvk9MqVK3z22WdNf4fWrVurkvDX6XScN28ea9eubfPOHAADAgIYExOjuD22KCgo4KpVqxgeHk5jS5Q5c+Zw8uTJmtlkjl6vZ//+/RkeHs4///zTqffaupOuW7fk4SVZlvn4448r2gnYWWJjyddeu8Vjx45RluUi5azDhmkXVkpNTSXJsi0MERERdi+CeVkoAEqSxKFDh/L++zPcWlXzzTffmCaXc+fOuXYSN2IuCuHh4fz777+LvEbJ/SP0er3psU6n46effsrKlSsTACtWrMgpU6YwJyenZAMVQ0FBAZctW8ZGjRrZFIMBAwZw2bJlPHXqlGpVacWRl5fHhQsXsm7duprGy62Rm5vrtrtyezcmzoaXsrKy3GKTuyhuJbm/P1m1qrZhpTItDPZyDPn5+WzWrFmRyeDRRx91axzy9OnTpqTh4sWL3XZeV3FEFEjlSk7fe+8905oMY9jIeO2ffvppXrx4sWQDOMimTZv4r3/9iwMGDGDXrl3ZvHlzBgcHF4nhFy7D9BTu3LnjETcZhXHXXbmS4SVPovD/MzmZ9PMjBw7U9v9XqoQBwCIA1wEcc+T19oRh4cKFFpNA69atuXnzZlevo1V0Op0pNvzcc89p7so6KgpK8cUXXxAAV69ebRE2atKkCTds2KCqLbbIzc3lpUuXuHfvXv7888+8cOGC1iaVSxwNLy3ttYz59cJYAIn5oWHksmWa2u0sxa0c1yqsVNqEoTOA1iUVhuzsbFNC8Z577uGKFSsUCRVMnDjRlMhMT093+/kdJTmZ7NpVx+bNu2omCitWrDDVvBsPtcJGgrJB4fBS+rxlzEYlyxm1UqVSJw5GrIXPtAorlSphMNiLhiUVho8//pg1a9bk3LlzFQsV/PHHH5QkiV5eXprHgl9//Q69vW8SmKmJKGzevJkVKlSwEIUuXbqoFjYSlA2KhJfCwqzfboeFaWRhyfCksFKZEwYAwwAcAHCgQYMGRf7DOTk5nD17tqIJqdTUVNarV48ATDuvacXRo6n/iMID9PJK56FD6vqk+/btMyWWzY/KlStzzpw5FologcAehcMuBZCsC4MkaW2qS9gLK6ndPqPMCYP5oeSez7aQZZkxMTEEwHbt2mlaY37jxg3WqLGEwCyGh4fztdduqeqSnjp1ijVq1LAQhKpVq/KJJ57g7NmzefjwYY+p9hGUPvLrhVmdSfNDw7Q2rcQUDisNHWrQO7XaZwhhcDOeUpp648YNNm/ejUAaGzXqwL///lvV9td///03w8LCGBAQwMcee4zTp0/n/v37hYcgcBtLei2jzscyx6DzqcSlvUpnjsEc87CSUSReeMEQWlLj+yuEwY1oXZp68OBBkubVR7MYFLTIIqeg1grmX3/9lXv27NF8Va6g7BIdTQ7AMl6AoSrpAsI4AMvKRBdfe1VZanx/S5UwAFgBIAVAPoAkAEPsvV5NYdC6NDUuLo6RkZEWJan+/gcUWYsgEAjUwVqlUnAw2aWLsp6Do8LgBQ+A5ACSISQrkAwl+a3WNhn597//jfj4eDRo0ABfffUVJElSbWySePvtt3Ho0CF06NABCQkJCA8Px/nzIVZkAdi1SzXTBAJBCZg+HXj5ZSAkxPA4JARo2BDYs8fwO62RDCJSumjTpg0PHDig+Djbtm1D9+7dIUkStm3bhs6dOys+pjmbNm1Cr169TI8bNmyI3bt3o27duqraIRAI3EvHjsDu3UWff+AB4PJl4PhxoE4d948rSVI8yTbFvc4jPAZnOXsWuHpV2THS0tLw4osvgiTeeecd1UVBlmVMnDjR4rmLFy/iySefxP79+1W1RSAQuJdduyy9/dhYw3HoEPDSS8AHHwC9eik/z9nEkXiTpx3e3lGKJmq0Kk017y65bNmyImsEtN6QRCAQWKckuUclV0bfuXPH4jFKU47BWZo2Bb7/Xjk1/fbbb7F27VoEBARg+fLlqFChgjIDFWL6dGDfPuCTT/R4//33Tc83a9YMa9euxV9//aW65yIQeBL00ND3oUOHsGPHDpfeWzjfABi8iL59Sz7P7dixA5s2bXL6faVSGCpVMrhbSiRpzpw5g9GjRwMA5s2bh8aNG7t/ECukpBg+BFu3At98k4+LF3MQEhKChQsX4tixY3j66adVTXwLBJ7I4cOH8fvvv2ttRhHq1KmDmJgYJCYmOv3e/fuBOXMASTIcdesCOh1w8WLJ5zlfX18MHjwYqampzr3REbfC046oqChFFnVpWZpqXPiSmZnJqlUXMTo6TvOtHQUCTyM3N5dVq1blypUrtTbFAr1eTx8fH7Zo0YI3b950+Tzu3kjrr7/+IgA+9dRTlGW5bIeSAIPb5Q6vQafTmX7WqjTV6C1MmABcvXoVu3c/iZMnH0RWViVVxhcICrN//36sW7fO40I3fn5+aNOmDZ5//nnMmzdPa3NMeHt7o169ejhx4gSef/556PV6l85jLawUGGhIRruCv78/AODnn3/Gd9995/gbHVEPTzuAKLct6po9ezbj4uIsuqbu2LGjZCd1EqV2VRMIXEWv1zMiIoLR0dHctWuX1uZYMGXKFFNBxqRJkzTfD8VIx44dTXbFFv5CO4i9ldGucOLECYsGlyhNK5+dPdy58rldu3aMjo7WtGuqUruqCQQlYf369aZJ5YknnuDx48e1NokkuXv3botqvWHDhnlEr64BAwZY2LVgwYISnc8YVirJrnbnz58vXN3okDCU6wVuFy9eRKNGjUyPW7Vqhf3796tWhSTQnqNHjyIiIkKz8ePi4nD8+HH4+/vD398ffn5+pp8bNGiA+vXra2YbSXTp0sVUbePl5YXBgwfjP//5D0JDQzWzKz8/H8HBwcjOzjY9FxMTg+XLl5tCJ1owceJETDeLbfv4+GDTpk3o1q2bS+cbM8bw7+zZhp8lCZg1y7lzJCcno169euZPld0Fbu5i1apVFo+PHDmC0NBQbN++XSOLBGqh1+sxefJkDB48WFM7WrdujcTERLz44ovo168f+vbti0ceeQSvvPIKfHx8NLVNkiR8+umnpseyLCMrKwtJSUkaWgVUqFABnTp1Mj2uVasWWrRogUOHDmloFdCgQQOLx/369cPatWuRm5vr9LnM846A4d/Fi4GuXZ0rX3VZKB1xKzztiIyMdN6nskLr1q0t3Ky6des6HU+VZZmLFy9mRkaGW2xyF//973956dIlrc0wdYCVZZmTJk3iH3/8obFF5Llz59i+fXsCYHBwMEeOHKm1Sdy5cycbNmxo+iz6+fkxMzNTa7NI0rTY08vLi3PnztXaHJLkp59+Sn9/f4aEhLBr166K7djoDL/88gsDAgIYHR3NJk2acP/+/S6fy1reMTLS0J7bmdxjdnY2fX19OWjQINasWbNs5xgCAgIcvzI2OHPmjIUodOnShVevXnX6PMZ4Z4MGDTxmcxqjTUFBQYruaFcc2dnZjIyMZH5+vmmf7CpVqjAtLU0Te2RZ5qJFixgQEGDxt+/YsaNHJDBv3rzJl156iQD41VdfaW2OiVOnTrFDhw48evSo1qaY2LdvHz/55BNeuXLFI/52JHnkyBGuX7+eGRkZJZ4LbOUdH3jAuXyDXq/nb7/9Rp1OR71eX7aFITQ01NHra5OPPvrINDFMnDiR+fn5Lp3nueeeM53DFuatLpRGr9fzgQceIAC+8847yg9oh2nTphEAe/XqRQD09vbmqlWrNLElNTXVdOdb+GjXrl2Jas/dzapVq3jy5EmtzbBAy82prKHX68vVniDmHkRJKhYdFYZSmXxu2bIlExISSnSOiIgIXL58Gd9//z2eeuopl86RlJSEhg0bgiQuXLhQJMZoZMwYQ7xw8GDnk0fO8uWXX+Ktt95C/fr1cfLkSVSuXFnZAW2Qnp6Oe+65B5mZmQAMdd4rVqzAM888o7otsixj9erVSE9PL5LgNT5u3Lgx6ijRzlIgKCEpKcB99xk6roaEGB7ff79rHVgd7a6q+d2/K0dJy1WPHTvGli1b8syZMyU6z3vvvUcA7Nevn83XuKPkzFGuXbvGqlWrEgDXrFmj3EAOMH78eIu7cl9fX/bv359btmzR1C6BoLThznVOKOsrn0uCXq/Hnj17EB4e7vI5cnNzsXDhQgDAyJEjbb7OuJIxMlK5/k5GJk6ciMzMTPTo0QMxMTHKDVQMV65cwRdffGFeg2RgAAAgAElEQVTxnLe3N5o2bYq2bdtqZJVAUDop3EtJkgyPFd2YyxH18LRD7T2frbF48WICYMuWLW0mv9zd98QexoRzhQoVePr0afcP4ASvvPKKyVPw9vbmsGHDLPanFggErhMba5hXhMfgYZA03RGPGjXKZk8la9v3udNrSE9Px969e1FQUIARI0YAAMaNG4emTZu6ZwAXOHbsGL7//nsAhjru48ePY8GCBWLXOYHADZh3YXa0Jbcsy84P5Ih6eNqhtcdgvDuvVq1akY0wzFG61cXatWt53333cdasWQTA+vXr8/bt2+45uYs8/vjjfPjhh7lnzx5N7RAIyiKuVCdt2rSJ58+fJ+m4x6Dt0spSitFbGDp0KCpWrGjzdYrGAGHYk/r48eP417/+BQCYPXu2ZlVIgKEz7BtvvIFevXqJvSMEAjdj9BaOHzc8njDBUJ00YYL96qTDhw9j8+bNmDFjhsNjlcpyVXf1SnIFR0tU1SAiIgLHjh0zPb733nvRqVMnfPnll6Lfk0CgAbIsw8tLmQi9ee8k8+eK66E0cOBAbNiwAUlJSQgICBC9kpTgq6++QkFBAZ566ilNReHGjRsWogAAgYGB+Pjjj4UoCAQa8fXXX0Opm21b1UnffWc/13DkyBHcvHkTy5cvd3gsIQxOYF6iOmrUKE1t+fPPPy0e9+jRA3/88Qdq1KihjUECgQA//vgjNmzYoMi5d+0qmrGMjTUIhK2CltzcXJw6dQoAMHfuXIfHEsLgBCtXrsSNGzfQsmVLdO7c2eJ3KSlAr14l27jbGbZt22b6ecCAAfj1118REBCgzuACgcAqZ86csWi9rSSOVCidOHECBQUFAFAkwmAPIQwOwmJKVKdPB/btU3YBmzlGYRg1ahSWLVsGX19fdQYWCDwE452wp5CTk4PLly9jx44d2Lt3r+LjObJ49siRI66d3JHSJU871CxXTU9PJ2m/RFXNtheG8ZIJgFOnTvWYzpICgdp07drV5eaXSpCQkGBa2Pn0008rOpaji2djY2Nd2sFNeAzF8NFHH2HTpk12S1TVbHsBALt27cLXX3+Nd999V5SFCsolBQUF2L59O5YuXaq1KSZOnz5t+vnnn3+2eOxuHF08a+4xOLVpjyPq4WmHmh7DU089xSpVqtDHx4deXl5FNr9Rs+2FEU/ZwEUg0IqUlBTTos6cnBytzSFJTpkyxeLu/LXXXlNsLEcWz8qyzJ49e/J///ufKdoB4TG4hytXriArKwt6vR5eXl5o3749hgwZYipJU7rthTWqVKmi3MkFgkKkp6fj/PnzWpthwdV/Mq1XrlzBf//7X42tMXDmzBmLx0uWLEFKSooiY5lXKCUnAz17GpLR5otqSWL9+vV49NFH4ePjg/T0dIfPL4ShGC5fvmz6Wa/XIzQ0FPPmzTOFcGzVFu/bp5XFAoF7IYlBgwZBr9drbYqJq2YlOFOnTkVWVpaG1hgwDx0FBASgdu3aRboMK4GtwhcvLy/4+PjAy8sL9erVc+qcQhjskJubixs3bpge16tXDz///LNFjsFabTGpfDsMgUAt/P39sXfvXnz88cdam2LCXBjS0tIwc+ZMDa0xiKe/vz9+++03AICfnx8uXryIF198UdFxHW2qFxoa6tR5hTDYISkpyfRzxYoVsW7dOtElVFDu8PPzAwBMnjwZcXFxGltj4GqhGXDmzJm4fv26RtYY2LRpE3r16gV/f3+kpaUhMzMTLVq0UHRMRwtf6tev79R5hTDY4cqVK6afly5ditatW2tojaA8kJqairy8PK3NsMDHxwc+Pj4oKCjAoEGDcPv2ba1NKhK7z87OxtSpUzWyBpAkCX5+fvDy8kKTJk0AAOfOnVN0TKO3MGGC4fGECba9BuExuBGjMEyZMgX9+vXT2BpBecDPzw9du3bFDz/84FoffYUweg3nzp3DGGM3Nw25evUqunfvbirBPHjwINq2besReRC1hMGZwhfhMbiRy5cvY+DAgXj33XeL/M68BUZaWppijbNc5dq1ax7xJTGydu1aZGRk4NatW1qbYsHp06c9agVtYGAgBgwYgAEDBnhM2AYw2BUaGoo+ffrg1Vdf1dyrGTBgADZt2oQHHngAlSpVQl5eHgYNGgQfH+13EggPD4eXl5fioS1nCl+c9Rg0X5PgyuHn51fCKmDHWLx4sc0aaeP2erGxMqtWrcrKlSszNTVVFbscoX379qxYsaLHbJgTHh7OiIgI+vn5cf/+/bx48aLWJpEkY2JiGBwczCtXrmhtigmdTsfff/9dazMs2LFjB69fv+5xK+2vXr1KvV6vtRkWZGVlUafTaW2GBbm5uczJyXF4HUOp3I+hcuXKzM7OVnwcklZXFqekAPfdZ6gE6N5dRkZGXQQEZCMrK8sjViLr9XoEBgYiNzcXqampqF69utYmISwszKL096uvvsLrr7+uoUXA3r178frrr2PatGlicyFBuUCSpLK7H4NaDeOK28s5MhLo0eMqgAlo0qSJx0wsJ06cQG5uLsLCwjxCFABD6a+Rvn37YtiwYRpaYyAoKAgHDx7EY4895jF/O4HAExDC4CSFKwE6dNgN4GXUr1+sCCvOgQMHkJiYiPj4eABAmzba22TEKAy1atXCt99+6xET8b333gtvb2+tzRAISowjbf+N7bcdoVQKg5Y7lBWuBEhNPQpgCa5de1kzm4xkZmYiKioK33zzDQCgefPm+N///oeEhASNLbsrDN9++y1q1aqlsTUCgXqo1YK7uLb/GzdudPyEjiQiPO1o1KiR25IyzmKreVWTJlc1s8nI8ePHC7fYZY0aNTRvuifLMgHwjTfe0NQOgUBt9uzZo2gzPdLxtv89evQo2030tAwlFW6BERXVBoCE7747q5lNRurUqVPkuffee0/zpns6nQ7NmjXDjBkzNLVDIFCb6dOnK9p+2zBG8aufz551bn4qlVVJLVu2pCeER0giODgYmZmZSElJsToxq22Pn58f8vPzAQANGjTAmTNnTIuTtOL27ds4deqUR+U8BAKlOX36NJo3b46aNWvi2rVrioxhrJA8ftwQ3k5JAe6/3/DYfDriPxWWZboqScscgzmpqanIzMw0dVLUGkmSLMRp8uTJmosCYOg0KURBUN6YMWMGSOL69eu4efOmImM4uvrZ2WIPjxAGSZJ6SZJ0WpKkc5Ikve3A69UwyyopKUD37vm4fDnPtOTdk0pVjcLQokULDBo0SGNrBILySUpKCpYsWWJ6XHivBnehVNv/YoVBkqQVkiRNlCTpMUmSapZsOKvn9wbwJYDHALQAMECSJGVbEpaA6dOB+HgvREWtxM8//wzAsAT+4sWLqlQfFIdRGD7++GNRiikoV9y5c8cj9mUAgM8//9yibYhSwqBU239HPIavANwB0A/AFkmSfpIkKbBkw1rwIIBzJBNJ5gH4AcCTbjy/2zCuYdiyhUhN7Y3p078HAGzYsAGNGjXyiH5JderUwUMPPYQnnnhCa1MEAlWZO3cuEhMTtTYDWVlZRXaVUzoB7W4cEYYGALYDGE7yAQBrAPzHjTbUA3DF7HHSP89ZIEnSMEmSDkiSdMB88xw1Mcbz2rb1QXDwegCGVW7Z2dno2LEjHnroIU3sMickJATTpk3zmNCWQKAGGRkZmDZtWpF9GrRg4cKFRTwXTxAGZ25cHRGGpgCmADglSdIhAD0AxEiS1N1NoSVrM1iR/wHJhSTbkGxTs6bbI1rFUnjFc9u22wC8DMCQdJ5g/IXGvPDCC+jcubPWZggEqjJ9+nTcvHnTI4QhMDAQCQkJCAw0BFZGjhzpEXtmp6WlOfxaR4ThC5JPkGwCoBuAZQAqARgIYINLFlqSBMC8WXgogGQ3nNetFM7+t2pVC8ASABPQokUL9OnTR0vzTDRr1kxrEwQCVUlOTsbnn38OoOjOblrw+uuvo1atWrh16xYCAwPx+eef47vvvlNsPEfaYQCWG48VhyPNyzdLkhQM4CSA0wDuBbCC5GiHR7HPfgDhkiQ1AvA3gOcBvOCmc7uN/fuB3bsNGX8DxnqwXRg/vhq8vDyiwEsgKHd89NFHyMnJAeAZwgDc3aQnPDwckiShZcuWio1l3g5j1izbrzPfqrg4ip3NSEYCaAxgHIAdAOYBGOvwCMWfXw/gLQCbYBCfVSSPu+v87qJw9n/Hjp0AJNSr9zxeeMHjdEwgUJQTJ05obQIAw4rer7/+2vTYU4TBuNLYuJubUhhD3Fu32t7W04gzHoNDt7kkC0geJ7mW5Pp/JnO3QXIDyaYkG5MsduPWy5cva77toTFkM2bMGE1bdAgEapOYmIj3339fazMAAJMmTbLoGuppwhAeHq7oOI60wzDiVo/BE6lQoYJmoRtjPK+goCYaNmzoEfsKCARqodfr8eKLL2q+tSdg2Od55cqVFs+lpKRoZI0l5qEkpShcEDNhgn2vwe0eg6dRo0YNzcY2xvM++0zCnDlzTJUHAkF5YNq0afjrr7/g7++vtSk4evQoli1bhsjISACG1f6e5jEoGUpytB2GEWc8Bs1baLtyREVF2WlCqxyOtrcVCMoicXFx9Pb2JgAOHDhQa3NIkgUFBaxSpQoB8MqVK5w+fTpzc3M1tUmWZQYGBhIAr127ptg4trYAiI62/vrGjRuX7bbbWuFMPE8gcAcFBQVIT0/X2gxkZ2dj0KBBpni+J3gMAHD+/HlkZWWhdu3aqFevHsaPH69548jr16/j1q1bqFKlCpRcc+VMOwySZT/HoAXOxvMEgpJAEr/99hu6devmEavYx44da9HTX+vJ18iBAwcAAFFRUR5xnQB4ZHPN1NRU6HQ6h18vhMFBnI3neQr0gP5NhZFl2fTl8QRIesTKVHN++OEH9O3bF3379kVwcLCmtuTm5qJfv34YPnw4AKBmzZoe4zEcPHgQgEEYPAVnKpKuXr1q2qNdSZzKLwClM8dQoUIF5ufnuxKWcxl78bwhQ4awXr16jIuLU9Ume8yfP59hYWGcNWsWc3JyePToUU3tyczMZEZGBiMiIti5c2cOGTJEU3vMmT59OoOCghSNBzuLTqfj9OnTeefOHa1NMZGXl8fNmzczKSmJ33//vdbmkDRcp0OHDvHixYtam2JCp9Px1KlTPHXqlN3X3blzh+3atWN8fLziNuXl5fH8+fMO5xg0n+RdOfBPokkrkpPJnj3vJp9jYmIIgMuWLdPMJiNJSUk8c+YM58+fTwDs3r07o6KiuHjxYk3t+vvvv1mzZk3TXtSekrwkydOnT/OZZ57hqFGjtDZFUE6QZZkDBgwgAF6/fl21cR0VBkdaYngkSUlJCA0N1WTswkvQjS6jJ4RHqlatisjISFOd+datWwFY3w9aTerWrYuvvvoK/fr1A2AIT3gKTZs2xapVq3DkyBEUFBSIfSwEijN16lSsWLEC/v7+mpbf26LU5hicWazhTqwtQTfWKhtji9Qwrh8QEIBJkyYhMzPT4nmthQEAYmJi8OqrrwLwLGEw0qpVKyEKAsVZs2YNJk2aBAAIDQ11KUHtaOM8Vym1wuB0MsVNmJesvvCCHp98ojcJw7lz57B37158+OGHmthmZNiwYWjYsKHFc54gDAAwZ84cNG7c2COFQSBQmvj4eLz00kumx/Xr17fzatuYRy2UQAiDExQuWR03TsaXX97G1KnfAjBUSERHR2teoubn54fJkyebHnt5eXmMuxoYGIhly5ZZ9LcRCMoDycnJeOKJJ0ydYAHXhMGZxnmuUmqFQYtQUuGS1bAwX0RHn8fvvxuW5Ofn50OWZY/YE+GFF17A/fffDwCoXbu2R4VI2rdvj7Fj3dagVyDweO7cuYMnn3wSycmWW824IgxqLLQttcKQlJSEffv24eOPP1ZtzP37DfsxSNLdY8eOKHh7d7B4XdOmTVWzyRbe3t6ma+MpYSRz+vbtq7UJgnJGfn6+ZmOTxLp160wb9lSoUAGA88Kg1kLbUisM8fHxeOihh1Ttslp4CXpyMtCzJzBixDaL13mCMACGybdDhw4eKQwCgVqQxAcffICMjAzNbKhcuTJCQkLwzTffAABmzJiBJ554wmlhUGuhbakVhry8PMiyjFatWmlmgzEBlJs7ytQiICQkxGM6rkqShGnTpglhEJRbCgoKMHz4cPz444+oVauWprbEx8dj9+7dCAwMxCuvvILly5c7vWLbWtRizhzDPOROSu06BiNaCYN5AuiRRyrjmWdGYtmyGR6RXzCnU6dOYttRQbkkNzcXAwcOxNq1a/HWW29pbQ7mzp0LAHj11VdNN48BAQFOncNagzwlKNUzRo0aNRBi9KlUpnACyMfnXUiS5HHCAADR0dFamyAQqEpmZiYee+wxrF27FgDQtWtXTe25fv06VqxYAQAYMWKEprY4Qqn2GFq1aqVJaajRWzj+z87UEyYA998fjN69X/WY/IJAUF65evUqHnvsMRw+fBiAIaT68MMPa2rT119/jby8PPTu3Vvx7T7dQan0GCpXrgwAaNmypSbj20oAVakyxSM9BoGgvHD+/HlER0ebRAEwzBPVq1fXzKb8/HzMnz8fADBq1CjN7HCGUikMxiSSVvkFWwmgjRvr4L77umtik0BQ3rl06RL69OmDxMREi+e1DiOtXbsWycnJaNasGR599FFNbXGUUikMwcHBqFOnjmbCYG3npNhYg0B88YVn9KkXCNSGJHbt2qVZr7CwsDCcOnUK48ePt3hea2EwJp3feuutUlMIUjqsLIQkSRg1ahSaN2+utSkA1FmiLhB4Mnv27MHDDz+MHTt2aNoS5tSpU5g9ezYA4OOPP4aXlxc6d+6smT3mJaovv/yyZnY4S6kUBgAYM2aMx2wvKPaCFpRXTp06hZiYGHTo0AHnzp3D6NGjNbOFJEaOHAm9Xo9XX30V77zzDubOnYugoCDNbLJWouooSndQtYsjmzZ42hEVFeWeXSvcQHIyGRxs+Nf4uFq1u5v4CARlkaSkJA4dOpReXl6mzZcWLFigqU2rVq0iAAYFBam6+Y0trl27Rl9fXwLgmTNnnH5/bKxhbhkzxn02wcGNekqtx+ApFK5QAoDAQOCDD7SzSSBQips3b+Kdd95BkyZN8PXXX0OWZQCGNjDGvTa04Pbt2/jXv/4FwBBCqlmzpma2GClJiWrh8PSpUzfVbenhiHp42uFJHoOtvaDr1tXaMoHAveTn5/Pdd9+12KLVeKxZs0ZT2yZOnEgAbN26NfV6vaa2kIY9luvWrUsA/N///uf0+2NjDQdJvvDCNYaErCjx/ysjI6Psb+3pKZgvUU9JAe67z9gmwxAbFG2KBK5w+/Zt5OTkIDc3FzqdDrm5uaZDp9Ohdu3aprbqauHj44OpU6eiSpUqePvtt03PP/jgg4iJiVHVFnNOnTqFmTNnAgC+/PJLj2gxX5ISVfMFtIsWLcKaNZMhScdx44Z3ieaTX375xfEXO6IennZ4ksdgjrnKx8a6NzZYEgoKCrQ2oQhpaWlam2DB77//7lE2rVmzhj4+PkXuzAHwlVdeYVZWliZ2ffbZZyY7mjVrRgD8888/NbGFJGVZ5iOPPEIAfPXVVzWzozDR0dEEwLlz5zr93thY8q238jlkyBDTtX7mmaQSzyd9+vRx2GPQfJJ35TAKw+HDh0t2pdzI33/LDA6WuWDBOpKekYQuKCigTqfjhAkTtDOiEHq9npcuXWKPHj0oy7LW5pAkc3JyOHr0aNatW5dbtmzR2hySZGJiIsPCwiwEoVq1aly9erVmNq1bt84i0bxhwwb27t1bM3tI8rfffvOohDNJHjp0iAAYGBjokoBHReVYDU9HR7tuU0ZGBitUqFC2hcHf35+ffvopH330UdevlBtZs2YNq1X7ng888Af9/PxMd+hDh5JhYdqIw7lz59ihQwd27tyZAHjx4kX1jSiELMscPHgwg4KCCIAbNmzQ2iSS5E8//WQxAY8ZM4Y5OTma2pSdnc3q1aubbHr00UeZlJSkqU35+fl8/vnnTdVHOp2OJ0+e1NQmvV7P+fPn87vvvtPUDnP0ej3XrVvHr776yun3/vrrr6bvh/nnsaQUFBRwx44dZVsYjBesY8eOJb5gJeHEiRP8+OOP2bt3bwI7raq8j4+6ISVZlrl582ZOmzbN4sOl9RdHlmUeOnSIkZGRJpsiIiI8IlG4f/9+U1mhuW0JCQma2nXx4kX6+flxzpw5HhMO9BQvr6whyzKnTJliNXQYFxfntnEcFYZSnXzOzc3VdPxmzZrh4MGD2LBhA4ANpufj4uJQv/6DFonoCRPUSURLkgQ/Pz988sknFs9v27YNgwcPVt4AG8iyjAMHDuDatWum544ePYr/+7//w4svvqiZXQCQmpqKefPmFUn0rly5EjVr1tRsoyOS2L9/PyIiIjQZ3xparmouy0iShLfffhvdu3fHww8/jLy8PABAo0aN0LZtW/UNckQ9PO2A2V2d1mRnZzMqKqpI6Z7WiegjR46wTp06Jpvq16/vEXd72dnZ/OSTT1i1alUCYFhYGHNzc7U2SyDQHFmW2bdvXwJgZGQkvb29OXHiRLeOgfIQSgoPD3fnNXOZpKQkhoSEmCbhDz9cUGQ1dFAQ2aWLuvmGxMRENmnSxGTXuXPn1Bu8GFJTUzl27Fj6+vpy9uzZWpsjEGjOvHnzCIBVq1blpUuXOGzYMB46dMitYzgqDKVy5bNxPwatQ0lG6tWrh3Xr1sHf39BZdd26ZkX2a2jUCNizR90+So0aNcLu3bvRunVrAIZwkqdQvXp1zJgxA2fOnEFSUhJu376ttUmCck5qaiqys7M1Gfv48eMYN24cAGDBggVo0KABPvnkE806SEsGESldRERE8MKFC6hUqRKuX7+utTkmVq1aheeeew7Vq59EWtq9RX7fqhVw5Yph4YqaYeusrCw8/fTTqFOnDpYvX67ewE5AUsSvBZqQnZ2NOXPmIC4uDr/88ovqn8Pc3Fw8+OCDOHr0KF566SV8//33io0lSVI8yTbFva5Uegx+fn6YM2cOdDqd1qZY8Oyzz+I///kPmjQZbFGbFBtrOA4f1qb7apUqVbBhwwbUqlULnnojIERBoDb5+flYsGABmjRpgvfffx/vvvuu4p9Dax1T33nnHRw9ehT33HMP5s2bp+j4DuNIvMnTjqioKMqyzGeffdZdoTe3Icsyx44da3psq/vq4cNkz57q5hz0er3HlD0KBFohyzLXrFnDpk2bmvJvMTExqoxduGPqxo0bCYDe3t7cu3ev4uOjLCefjSufb9y44RGVNoUxr7Ixr04yfy4y0v0tdQUCgX22bdvGBx980KKK0Nvbm6dOnVJ8bONN4sGDhpvDo0dvsHbt2gTAjz76SPHxyXIiDKUBW91XfXzufkDE3g0CgfJ88cUXVvtPDR06VJXxzW8SR4+W2aiRYcV9p06dVFvo6agwlOoFbqUB8+6rRsaMMfxr3PHt3/8GLl8GFi8W3VgFAqUYOXIkWrZsiW7dupn2kahYsSI+UGHzFPOOqQBQq9ZiXLjwBAIDw7Fs2TKP6AhrjhAGlSn8AZkwwVDKWrGiISk9a5a29gkEZZWEhAT0798fsiwjKCgIN2/eRGxsLOrVq6f42OYbeh0/fhwfffQmgJvo1OlXNGjQQPHxnaVUViWVZqzt+AYAffoYBEOT/V0FgjJOQkICunfvjtTUVPTs2RNbt25FtWrVMGHCBFXG378fmDMHkCTg/vvvQ25uDoAxyMxspsr4ziKEQWXMPyCSBNStC+h0wMWLd8NKmm0ALhAoBEmcO3cOp0+fVn3swqLw888/o3Xr1liyZAmCgoJUsWHXLmPp+hgAEu65pzGysm5ZDTV7BI4kIpQ6ADwD4DgAGUAbR99XmpLP9rBWyurnZ2ifIaqVBKWdixcv8rvvvuNLL73E0NBQtm/fnrdv31bVhiNHjrBGjRoEwJ49e2raTl3t0lRroJQkn48BiAGwQGM7NKG4sJJaHVkFAnfw999/Y9u2babjwoULpt81b94c69evN7WzUQNrnoKxbY3aXL9+3dTd+MMPP0S7du00scNhHFEPpQ8Af8IJj6Fly7LhMdgqZY2O9qytQQWC4rhy5Qrbt29vdT+B0NBQXr58WVV7PMlTMO+aqnRpamZmJtetW2fz9yhN6xgcEQYAwwAcAHDA2zuyzNX+e9IKaYHAFc6cOWPR6h3/bEd6/PhxVe3wJFEgi3ZNVYLc3Fx+/vnnrFGjBv/44w+br/MYYQDwOwwho8LHk2avccpjAKI4bFjJLqSnIVZIC0or2dnZnDRpEv38/CxEoWLFivzrr79UtcXTROHYsWP09/cnAP7www9uP39BQQGXL1/ORo0aEQB79epl9/UeIwwOGeGkMFSrFkU/P/X3N1ASR1dIJycLD6I8cubMGV64cIF37tzR2hQTsizz559/ZsOGDU1iMHDgQL788sv08fFRfU9vtUTB0e9gTk4OW7ZsSQB8+eWX3WqDLMvctGkTH3jgAdO1lySJhw8ftvu+Mi0MQBQrVzZU8JTlO2lru8AVbsIlcB83btzQ2gSb7Ny509TOoWrVqmzWrBm7dOnC559/nrGxsZw2bRq///57XrhwQRV7zp07989e54ZJ6f777+f27dtJkp999hmXLl2qih1G1PQUHP0OxsbGEgDvueceZmVluW38/fv3s3v37kVyOYMGDbL7PlmWS4cwAHgaQBIAHYBrADY58r6WLaMYFERWqUJWrVq2PAcj1nIOQUGGw5keSwUFBR7XUfXmzZtcvXq11mYUYcSIERwyZIjqidLiyMjI4NatWxkdHW01uWucfJYvX67437pw2CgwMJCzZ89mXl6e6TXunAQdQU1RKNwIz9Z3UKnS1Fu3bvG9996z2JkRACtUqMDExES77123bl3pEAZXj1q1ojhyZD5jY8maNT3Hczh69KjbzmUt5xAZaTiMvx861L5LW1BQwN27d6t+92YPnU7H3bt309fXl1u3btXaHJKGSo6FC42Fv5cAABcVSURBVBfyP//5DwHQz8+PY8eOZWpqqmY2Xblyhc899xwbN25sUwwAsHbt2vzyyy+p0+kUt+ns2bMWYaNBgwYx2XjnohEXLlxQNafgyF7uaWlpinZNzc3NtfDWAHD06NF235OXl8dmzZqVbWEAokwxeG9vMiDAEIs/csTpa+wWkpOT+fzzz7NRo0a8evWqW85pK+fQtq1xTPuL4fLz8/nss8+yadOmbNiwoUUrcC2ZNm2aKSQSGBjI+Ph4rU3i1q1brU66VapU4ZQpU3jr1i3VbcrMzDTZ4evry6ioKA4cONDCtqlTp6q6YCwvL4/333+/RdhIa/R6PV9++WVVRMFW5WDhG7OCggLOnDmTjzzyiNtLU81FoVq1amzZsiUDAwN5/fp1u++TZZk//PBDWReGUL7yyism9Y6MNAhE69ZOX+cSk5qaymHDhpm+sPPmzVNknMIehFEYBg60/uE8duyY6U4KAOfMmaOIXc4yatQoi8m3Vq1aPHv2rKY27du3j88//zyDgoJs3pXPmzdPlbtyc/7v//6P8fHxpnHXr19Pf39/jh8/XjNv5tKlSxZhI09Ar9erUn1kq3LQVrTC3WG9wqJw6NAhLly40CmvpIwLw12PwXi0aGH4t0MH9fMNGzZsYHBwMAGwY8eOiozhyGI4Y7XE+fPZjI2NZYUKFUyTW/Xq1Xnz5k1FbHOU1atXs2rVqkUm3kaNGmkekkhISGDFihWL2Obl5cWQkBBGRkbyrbfeYnp6umY2/vnnn7xy5Ypm45d37H0HlcaaKJCGsJUzHm2ZFoaIiAgGBS3iG2/kWKh4zZoGz0GLfMOFCxcYFRVFAIp/eW25tEOHWlZLJCYmctCgQZQkiQD4/vvvK2pXcej1eh48eJAzZ85k3759WaVKFdME3KpVK02Fa/78+abKnk2bNvHIkSO8du2aahuoCEoXahZ02BIFVyjTwhAVFcW2bXOtqre3t3aVSjk5ORw2bBhnzZql6DjWXNqhQw2hJWtrHrZsOcpevXqxUqVKmt+Zm5Ofn8+4uDhOmzaNPXv2ZJ8+fTRfkCQQ2OLy5cucMWMGBw4cyMzMTFXGdKcokI4Lg2R4bemiTZs2PHDggGkntNmz7+6KBgDLlwNZWcCbb2qz8c2hQ4cQGRmp2Pk7dgR27y76fEgIkJxsuBaSZJDK778HBg82XIc//vgDly5dwiuvvKKYbSUhPz8fOp0OAQEBWpsiEAAArl69itWrV2PlypXYvXs3KlasiLi4OERERCg+tk6nQ0xMDDZs2IBq1aph69ateOCBB0p0TkmS4km2KfaFjqiHpx3Gttu2Yn7e3mV7jUNh3LXmQSAQGBY6fvXVV+zataspDGs8li1bpooN7vYUjMBBj6FUb9Rzd/MLw2H8eeRI4NVXAV9fYM8eQ3vrskzh9t0hIYbtQhs1uruv9PTphm1FxSZAgvKKI5//s2fPolOnThg+fDi2bdtmiLf/w5tvvomBAwcqbqcSnoLTOKIennYU3qinvHsOjqx5sJacFgjKE462skhKSmLdunUtPIUHH3xQlbVASnkKRlDWk8/WKLwq0Xh40upoNXA0OU2KpnyC8oEzrSyMq5aNR/Xq1VVpk6K0KJDlVBjKu+dgxNZ1CAkx/N58UY5oyicoDxTXyiInJ4ejR482iUHnzp05ffp0SpLEzZs3K26fGqJAllNhMGLPc/D1JcPCyr44mGNvEyBrd1HCixCUJYprZXH06FFGREQQMDS9mzp1KvV6PQ8fPqxIr6PCqCUKZDkXBnueg68vKUkscxv92MPeJkDW7qKEFyEoS9j6/MfGypw7d65pI53GjRszLi7O9Jr8/HzFF7KpKQpkORcGI4U9B2OcvVkzlrmNfuxhbxMgR70IgUBpZFlmamoqs7Oz3XpeW5//4OBjptDR4MGDVW8XrrYokI4LQ6le4FYcthaCtW0LHDwI+PgYSjkvXwYWLwbq1HG/rZ6K+eJA8+e2bwcefvjuokFJMiyOS0kBXnml/F0ngfu4ffs2rly5gitXruDy5cumn82P119/HZ999hm8vb0Vs+N///sfBg8ejGvXrqFq1apYuHAhnn32WcXGs4ZWJanlYoGboxi9BWOc0diZ1NfXfuvqsowzXkRKiggvCUqGLMucPHlykSaFxsPHx4cLFy5U1IbCCeZOnTrx0qVLio5pDS08BSMQoaS72JoEa9Uy5B0GDjSIQ3kJLdnCVizWKKoiSS0oCampqXzkkUeKiEK1atW4bdu2Iq935+fLVoJZbbQUBVIIQxFsiUPt2obJ7v77Dd5DcbuilWXslbmKJLXAVQ4fPswhQ4aYkrzmx7333mtzPw53fL5k2X6CWU20FoW8vDwhDLYw3hWbl7AZk9JVqtz9t7yVtNpClLoKXCE/P59r1qzhww8/bCEEPXr0MD3Xo0cPZmRkWH2/owvS7HHt2jX26dNH0wSzES1F4eTJkxw3bhxr1aolhMEW9u6Khw41hJbuvbf8lbTaQpS6CpwhNTWV06ZNY/369U0TcuXKlTlixAiePHmSJDl48GCOHDmS+fn5Ns/jyN7K9jBfwVy1alWuXLnS1f9SidFCFPLz87lo0SJ26NChsJcmhMEetgSiRg2DKDz9dPkqabWFO0tdhTfhfi5dusRBgwbxww8/5IoVKxgfH6/JHtVHjhzha6+9ZhEuuueeezh79uwiGzAdKWZzdkf3VraGpySYjWjpKfz111989NFHhTC4QuHQ0tChhrtho/dQ3vMO1nDWizB/TXCwYWGRwH1MmDChSOy+Xr167Nq1K4cPH85Zs2Zx9+7dbh83Pz+fP/74I7t06VIkXLR+/XqXF4c5u7eykWPHjrFly5aaJ5iNaJ1TOHnyJJs3by6EwRXsdSYtXNIqBMKAs6WuxsdGb6JKlTzOmfOD6Xye6Els3LiRu3bt0toMC+7cucOjR4/yp59+4vTp0zl06FB27dq1SCfQwgIxY8YMt+44lpaWxk8//ZQNGjSwCBcNHvwOO3a8VeK/o7N7K3tSgtmI1qKwevVqBgQEmBL8QUFBDAoKEsLgLI6UtNpb86DX6z1yf+DFixfbjeW6i+Lu8oy/z8nJ4dNPXyQwk+PHj6der9c8L5GVlcXNmzczMTHR9Dfcv38/ATA6Opq//PKLqnv8kmRGRobF5B8aGmpz8rd2NG/enIsWLaJOp3ObTenp6XzttddYsWJFq+EiLf6OWVlZ7Nu3r0ckmI3odDrNRCE/P59jx441XY/+/fszKyuLPXr0YKdOncq2MDRs2NCd19KEvZLWoCCDMFhb85CXl8exY8dy6dKlitjlKh9++CFDQ0M5fvx4xceyd5dnHjP++uuv6eVVj0Aqgdrs0eNlBgXJdqtPlPYodu7cafoi+fr68t5772Xfvn3p5eWl6ERrj7S0tCKTvbe3Nxs3bsyePXvyrbfe4ueff87ffvuNBw8epK+vr+JClpeXZ/JOCoeL3FFF5Ap6vZ5dunRh1apV+cMPPxT/BhUoKCjgG2+8oboopKSksHPnzqbPysyZMynLhrBtfHw8Z86cWbaFoVKlSkUSWu7EWklrZKRhrYO1NQ8bNhykv78/w8LCVNnMwxFu3brFZs2amSaVH3/8UTNbzL2Ju/HwWQRmEpjFGjWW8OLFizbjyMXdiZZUOHbu3MmOHTuyTp06xd6J16tXj5999pkqm8GPGzfONPmfOXOGeXl5Vl+3atUqPvHEE6qEvjZu3MgTJ04Ueb6kVUQlISkpSdMEszUKCgp48eJF1cbbuXMnQ0JCCIB16tTh9u3brb6uTAtDZGQk//77b5cvYnHYyzsUXvNgzD106nSbTz75OufMmaOYXc6wb98+vvrqq8a4IgMDA3n69GlNbLF1PYG9BNII1GGtWrW4bt3+InebjtyJujOEkZWVxYMHD/LNN9+0KQ6SJLFVq1b8448/Sj6gG7hz547L73WHN1aSKqKyzvXr191+TvO/mSzLnD17Nn18fAiAHTt2ZLLxD2GFMi0MSuQYrOHImgfz3MPQoWTnznc86guh0+n466+/ctCgQXzooYd4+/ZtzWw5deoUZ86cydjYWMbExLB27f9jpUoLLMI4PXuesJjgi7sTdTSE4cwEmJaWxpCQEAYHB7N9+/Z86aWXOHXqVK5evZoJCQklmog9DXeIqqtVRGWNO3fucOfOnfzss8/Yr18/NmzYkOvWrXP7OMa/2YgROj733HOm78+YMWNsepVGhDC4EUdzD57ekO/OnTu8ceOG1maYsHVdH3zQEMd35E7U0RCGMxPgsWNp7NpVx+Rkzy2rdeedfknzAs5WEZUFZFnm2bNnuXTpUo4YMYJRUVGmu3ZjjF+J8K3xb/bjj4n09s4gUJuVK1d2eAGfEAYFsJd7sJecFrhGcXeijoYwnJ0AnRERVyfokk7s7r7TL493+CXhzp07jI2NtRpq9PLy4ooVKxQZNzaW7NPnzD+lqLMYHPwdjx8/7vD7hTAogL3cg73ktBAI1yjuTtTREIYzE6CSIuKO97lio71ziLyA6yQmJrJ169ZF8k9LlixRZLzLl/Pp759NwFAk0afPawwOlp36mwlhUBBXktNCINyPIyEMZydAJUWkpO9zxUZHzmH+nPAaiic9PZ1jx441lQibH998840iY6akpLBevZUEZlmUojr7NxPCoAKuJKeFQKiLMxOgkiLijve5YqMtymNeoKTodDrOmTOH1apVMwnBwIEDOW7cOALg/PnzFRn3binqzhL/zYQwqIizyWkhEOrhzASopIiU9H2u2ChwD7Isc82aNWzcuLFJEDp37sz9+/eTJL/99ltFytSdLUV1BCEMGuBocloIhGeilIi4432u2CgoOXv37mV0dLRJEJo2bcpffvnFtKKYpCLdbG/duuV0KaojCGHQAEeS06WpvFVgG1cnaDGxlw4SExMtJuYaNWpw3rx5bpmci8O8K6ozpaiOIIRBQ5wVCONeBsJ7EAi0pXBi2c/PjxMnTlS0BY85hbuiOlOK6giOCoNkeG3pok2bNjxw4IDWZhRLx47A7t1Fn2/bFtDrgfx8IDkZ6NcPOHAAuHgR6N8fuHwZWLwYqFNHbYsFAm05fvw4Vq1ahdzcXOh0OuTm5poO42O9Xo9x48ahZ8+ebhs3Ly8P//3vfzF58mSkp6cDAAYOHIipU6ciLCzMbePYQq/X4+2338bMmTMBAP3798eiRYsQGBjo1nEkSYon2abYFzqiHp52eLrHUBh7HkRsrMFrkCRy82aRfxCUbwoKCvjaa68VKQM1Ho0bN+aePXvcNl5xiWU1sNcV1d1AhJI8D3vlrcZd46zlHzxxIxuBwN2kp6dz0aJF7Nmzp1VRGDJkiFsTvY4klpVm586dpq6+9rqiugshDB5McesfCucfhg69u0pWiISgLGEUg8cee4wVKlSwKgjVq1fn2rVr3TamlollI0qUojqCEIZSQnF7Pxi9B+MqWaNIiFCToLRiSwy8vLzYtWtXzp8/n++////t3V1oVOkdBvDnycZeaBpjuyDtqu2qi91oS0JKaVEQ2mVjP2xNQGjBUqxuLqrQihe6bil6Z1gsVBsooqVCY9NCG+2ylOwurKwXtrSEYDYkbtKRUokftBamJSYm5OlFZrJzTDJzkjkzZ058fiBkPg7zz4tznpzzvud/fiwAam5ujmyHGfXE8lL/SCvVUtQwHAwJUWj+Idt36e7dD0819fZ6qaslS5gwuHfv3uz7jx07pnPnzkVyWmehK5aLvZHOUvpdlXIpahgOhoRZKCCqq2cC4ciRD4Ohr89LXa2wuO9BvtgwyBXFfUNKObG8lH5XpV6KGoaDIaHyHUFkTyFlJ6qzp5YaGz0HYXNdu3ZNmzdvVmtrq06dOqXu7m6lUqmSTq4WEwZRmm9i+cqVK5H97ovpdzU5OamjR4/O1rJ3716l0+lI6lgsB8MykO8oYnR07lLXJyeqJQfF0yydTmv37t1zJnNra2u1Y8cOHTp0SOfPn9fIyEhRn1MpYSCVZ2J5Mf2uyrkUNYxEBAOA1wEMAbgJoBtAXZjtnpZgyFVoqWvuqabcw9vc86CVEhKXL1/W9evX4y1iEYaGhmI/LfOkdDqtgYEB9fT06MKFCzp58qQOHjyo5uZmbd26VbW1tQteC5D9t337dnV1dS1pp1lJYZCtp1xXLIftd1XupahhJCUYXgZQnfm5HUB7mO0aGxujHq/EyNdrJxsM2UB45RVp9eqpOSua4jyaePz4sbq6ulRVVaUTJ05oYmKifB++gEePHimVSml8fHze1zs6OrRx40adOXNGDx8+LEtNY2NjgZ3+gQMH1NzcrPr6+lA7/ezOcaZdc/C5/fv3q7e3d9E1jY+PV1QYSDOnaUoxsZxPoX5XcS1FLeTixYvJCIZAIUALgM4w762pqYl2xCJw6dIlTU5OlvUzc/9yyR7eZieqR0elFSsmVVPTqeHh4YJHE+XS2dmpVatWzX6Jm5qaNDg4WL4C5nHjxo3ZetauXaumpibt2bNHhw8fVnt7u86ePTv7+sqVK9XW1qb+/v6S1nT//v2CO/1NmzZp586d2rdvn44fP66Ojg5dvXpVvb29evDggaanp9XR0SEA2rBhg06fPl3UPb8nJiZUV1cXexjkmpqaUkNDQ6QTy8Wanp5WS0tL2ZeiFpK5b0SyeiWRfAPAbyX9eoHX2wC0ZR5uA/B+uWqrXC9uAVbWzH1+7H/A31PAts8C//k3cPsfwPOfAtZ8HOi/CXzyE0BVFbB6DTB8C3jhM8DwELBuHZC6DUxOlf93WTaeBfCvuItYRjye0doiqWADppIHA8l3AMzXDu41SVcz73kNwOcBtCpEQST/pjCNoCwUj2d0PJbR8nhGK+x4Vpe6EEkv5Xud5PcAfAPAV8KEgpmZlVbJgyEfkrsAHAOwU9JYnLWYmdmMqpg//+cAPgrgbZJ9JH8RcrvzJazpaeTxjI7HMloez2iFGs+KmXw2M7PKEPcRg5mZVRgHg5mZBSQ2GEi+TnKI5E2S3STr4q4pqUjuJTlAcpqklwYuEcldJG+RHCF5PO56kozkL0k+IOnrlYpEcj3Jd0kOZr7nPyy0TWKDAcDbALZJ+hyADwC8GnM9SfY+gFYA78VdSFKRfAZAB4CvAqgH8B2S9fFWlWi/ArAr7iKWiSkARyW9COCLAA4V+r+Z2GCQ9Jak7BW6fwawLs56kkzSoKRbcdeRcF8AMCIpJekxgC4A34q5psSS9B6Ah3HXsRxIuiupN/PzfwEMAngu3zaJDYYnfB/An+Iuwp5qzwH4Z87jOyjw5TMrN5KfBtAI4C/53hfrBW6FLKKdxhSAznLWljRhxtKKwnme81pwqxgkawD8HsCPJKXzvbeig8HtNKJTaCytaHcArM95vA7AaEy1mAWQXIGZUOiU9IdC70/sqaScdhrfdDsNqwB/BfACyedJfgTAtwH8MeaazECSAC4CGJT00zDbJDYYsPR2GvYEki0k7wD4EoA3SfbEXVPSZBZCHAbQg5nJvd9JGoi3quQi+RsANwBsIXmH5IG4a0qw7QC+C+DLmX1lH8mv5dvALTHMzCwgyUcMZmZWAg4GMzMLcDCYmVmAg8HMzAIcDGZmFuBgMDOzAAeDmZkFOBjMIkDyGZI/y/S77ye5Me6azJbKwWAWjVcBpCRtBXAWwA9irsdsySq6iZ5ZEpBcBaBFUlPmqdsAvh5jSWZFcTCYFe8lAOtJ9mUefwzAOzHWY1YUn0oyK14DgJ9IapDUAOAtAH0FtjGrWA4Gs+KtATAGACSrAbwM4I1YKzIrgoPBrHgfYOYm6wBwBMCbkm7HWI9ZUdx226xIJNdg5p7jz2LmHgJtkh7FW5XZ0jkYzMwswKeSzMwswMFgZmYBDgYzMwtwMJiZWYCDwczMAhwMZmYW4GAwM7OA/wMobpMZKe/I5gAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:08<00:00, 2.04it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXlcVPX3/193FoZNkFAQJDcUUDFFNFPcKitTv5n2KSs19VNoZSa2mVpqftz7pH7M/Jj6ywW37JNZlktq7llCgOKOKbiAIqCyyDYz5/fH9c7GLHfWe4H7fDzeD2bu9j5zZ3if+z7nvM9hiAgSEhISEhIcMqEFkJCQkJAQF5JikJCQkJAwQlIMEhISEhJGSIpBQkJCQsIISTFISEhISBghKQYJCQkJCSMEVwwMwzzMMMwBhmHOMQxzhmGYiULLJCEhIVGfYYRex8AwTBiAMCJKYximAYC/ADxPRGcFFUxCQkKiniL4jIGI8ogo7cHrEgDnADQVVioJCQmJ+otCaAEMYRimBYA4AH+a2TcWwFgAUCgU8R07dvSobNbIyckBESEiIgIKhThu6bVr16DRaBAWFgaVSiWYHFqtFjKZDFqtFufPn4dKpULLli0hk7n3mYSIUFhYiLy8PFRVVQEAVCoVlEolysvLodFodMf6+fkhJibG6T4rKipQUFCAwsJCqNVqAIC3tzdCQkKgVquh0WigVqt1zfC9KTKZDHFxcXb1T0S4e/cubt++jZKSEsTExMDPz6/GcWq1GtXV1Tb/VldXw9SiEBsba/H3pNVqcffuXRQWFqK4uBgA0KFDB3h5een2c5/bUrO2X6vVmu23VatWCAoK0t2D4uJiFBUV4e7du0bnhIeHg2EYaLVaEBG0Wm2NZrrd9D1fQkNDERoairt37+LOnTsoKSmpcYxSqQTDMCAiXeM+g+F7V+Hv74/S0tICImps61jBTUkcDMP4AzgEYA4RbbN2rEKhIHP/TELRqFEjFBYW4ubNmwgNDRVaHADsP0FeXh4uXLiAqKgoQWTQarUYOnQofvjhB4waNQrJyclo1aoVUlNTdf/Irqaqqgrr1q3DnDlzkJOTY/G4gIAAxMbGIjY2Fo8++ihef/11l8mgVquxe/durFmzBrt378alS5cQFhZm8XgiQmlpKYqKinStvLwcgwYNcliGv//+G/n5+ejevbvD1wCA0tJS5Ofn49atW8jPz0f//v15PWjk5uZi06ZNCA0NxciRI52SgaO6uhrFxcW4d+8e7t69q/vbtWtXRERE1Di+oqICe/bswdatW/HTTz9h1qxZmDRpklMyqNVqlJeX12gVFRVG71u3bo1OnTrpzisqKsLPP/+Mbdu2Yc+ePaioqMDkyZMxf/58q/1pNJoaytrR140aNUK/fv3+IqIuNj+ooXYSqgFQAtgD4D0+xysUChILWq2WFAoFAaDy8nKhxSEiotzcXAJA/v7+pNFoBJNj9+7dBIBeeuklAkA+Pj508uRJt/SlVqtp5cqV1Lx5cwJgtjEMQ+vWraOrV6+SVqt1ixym5OfnU05Ojkf6krDM/fv36fjx40KLQUREJSUl9N1339Gbb77p8TEDQCrxGGMFnzEwDMMAWAegiIiS+Jzj5eVFnHlAaO7fvw8/Pz8olUpUVlaC/TjCsnPnTgwcOBC9evXC4cOHBZPjH//4B77//nvd+40bN+LVV191W3/l5eW4evUqcnJydM3w/fXr19G/f3/s2LFDFN+ThISnYRiG14xBDAbxBAAjAWQyDJPxYNtUItpp6QQx/VNzttTAwEDRyJWWlgYA6Ny5s2Ay3Lp1Cz/++KPRtqSkJJw4cQL//ve/3eKL8fHxQXR0NKKjo83uV6vVyM3NRVVVlaB+FwkJsSO4YiCiowDsGlHFMgADwL179wCwikEsiEExrF27toZT9fnnn8fs2bMFc9ArFAo0a9ZMkL4lJGoTgisGRxCjYggICBBYEj2cYrA3qsVVaLVarFq1Sve+cePGWL16NZ577jlB5JGQkLAPwdcx1HYMTUlioLCwEDk5OfD29kbbtm0FkeHAgQP4+++/AQCDBg1CZmampBQkJGoRtVIxiHHGIBbFkJ6eDgB45JFHBDPZrFq1Cr6+vvj666/x008/iSaEV0JCgh+SKclJxGJK2rNnDwICAgT3L9y+fRu5ubnIyMhAmzZtBJFBQkLCOSTF4CRiMSVptVr07t0bDz/8MADAy8sLc+bMwcCBA40W2nhCjt9++000K8AlJCTsRzIlOYlYTElhYWFQq9W4cuUKAGDp0qXYsmULOnTo4FE5QkNDJaUgIVHLkRSDk4jFlBQeHl5j25w5cyCXywWQRkJCojYjKQYnEYspqVGjRkZP6o899hj+7//+T0CJJCQkaiuSYnASsZiSZDIZmjRpons/d+5cUd0nCQmJ2oOkGJxELKYkALoMnv369cPjjz8usDQSEhK1FUkxOIlYTEmAXjHMnTtXYEkkJCRqM5JicBKxmJIA1gE9ZMgQdO3aVWhRJCQkajGSYnCQGzduAKhpShIyjXlERARmz54tWP8SEhJ1g1oZcC4GxfD222+jVatWuHv3LgDg119/xa+//orNmzcLFiL6xhtvSOknJHihVquRk5MDpVIpWMZZIkJ+fj7OnDmDqKgos1XYhICIRDHGCImkGBzksccew9SpU3XvExMT8f777wu6bkBSCrUHjUaDvLw8tw6G1dXVyM7OxqVLl5CVlYVLly7p2pUrVxAYGIhTp065rX8OQwVw9uxZnDlzRve6sLAQnTp1wokTJ9wuhzmqqqqQmZmJlJQUpKamIi0tDWvWrIEYasoXFBTg6NGjaNeuncfL80qKwUF69epVY5urattK1C0qKipw+vRppKenIy0tDenp6Th16hT++9//YtSoUW7pMzU1FePHj7c64Pbp0wdnzpyBWq1GREQEZDLXW5YPHDiAd955B2fPnrV4TFRUFDZs2IAWLVqgZcuWiIiIcMvqeY1Gg3PnzumUQEpKCk6ePAnDapAjR45E+/btXd43H3JycnDkyBFdO3fuHFq3bo0zZ854XBbBS3s6QpMmTejmzZuCylBZWYnAwEBUVlYCADp06OCRpy8J5yAi/PTTT7h9+zbeeOMNt/Rx584dJCcn65TA2bNnaxQtioiIQHJyMpo2bYrw8HD4+fm5XA4iwt69ezF37lwcOnTI6rG+vr5o06aNrgIe16KiopwOxa6oqMCmTZuwaNEiXoOcXC7Hww8/rFMUpn/DwsIcmpmfPXsWS5cuxcaNG1FaWmrxOIZhEBwcjJCQEISGhuqapffe3t52ywIAV65cwZ49e3SK4Nq1azWO6datG/r06YPAwEAEBAQgMDDQ4mulUmmzT76lPWulYggLC6O8vDyhxUDv3r1x5MgRAMDChQvx4YcfCiyRuFGr1YLmUTp8+DA+/vhjHD9+HDt37kSPHj2QlpYGhmHQt29fl/Z19uxZrFixAuvWrdOFNFsjICAA4eHhCAsLQ3h4OMLDwzF37lyX3a/jx49j3rx52LFjh27b8OHDkZ2djQsXLqCgoMDiuU2aNNEpismTJ6NVq1YOyUBE2LdvHxYtWoTdu3frtr///vvIzc1FdnY2srOzYet/W6lUonnz5jpFMWrUKCQkJPCWo7S0FJs3b8bKlSuRmppqtC8gIIDX92V6jqmyeOqppzBkyBCr55WXl2PHjh1ITk7G7t27azw82Iu3t7dVxRETE4O33nqr7iqGgIAAsvfLcwfTpk3TrTCeNm0aPvzwQ1EsdAOAefPmQaVSYcSIEQgJCRFMjtTUVLRv3x5KpRIDBgxAly5dMHv2bLeYLSxx6tQpTJkyBTt36suIN2vWDFevXgUA9O3bFwcOHHBL36Wlpdi0aROWL1+OkydP6rZHRUUhODgYubm5yM3NRXV1tdF5/v7+KCkpcbk8mZmZmD9/PrZs2YKffvoJAwcOBAAUFRXhwoULuHDhAi5evKh7nZWVZWRqOX/+vMWa2vZw9uxZLFmyBOvXr8fWrVuNCjmVl5fj6tWruHLlCrKzs2v8vX37ttG1Nm7ciFdffdUhOdLS0rBq1Sps3LgRJSUlWLlyJUaPHo2CggLcunXLqOXn59d4n5+fD41GU+O67733Hr744gvecty+fRtbtmxBcnIyUlJSdNtfeeUVtG/fHvfu3cO9e/dQXFxc43VxcTGKi4ttRkT26dMHhw4dqruKQSaTkVarFVoM7NmzB/3794dcLodGo0FBQQGCg4OFFgtarRaNGzdGUVERsrKy0Lp1a8FkeeGFF/Dss88iMzMTS5cuRaNGjXDy5EmzSf9czZUrVzB9+nRs3LjR7D+NUqlEx44d0bdvX3z++edulYWI8Mcff2D58uXYunUrevTooVNGWq0WRUVFOiWRm5uL8vJyjB8/3m3yXL58GZcuXcLTTz9t9TiNRoOcnBydohg/fjwvkwVf8vPzkZWVZfcTf05Ojk5RDBw4EC1btnRKjtLSUmzZsgUZGRlYtmwZ7/O4785UccTFxaF3794OyXL+/Hls2LABGzZsQLt27YweaKzJUVpaalZxcK/DwsIwYsQIXooBRFTrmkwmIzFw7949kslkBIAUCgVpNBqhRSIiopMnTxIAatq0KWm1WsHkyMnJIZlMRoGBgQSAlEolHTp0yO393rp1iyZMmEBKpZIAmG1xcXFUXl7udlnMkZ+fTwsWLKC7d+8K0r9E7UCj0dCRI0eoqqrKZdcEkEo8xthaGZXEmSG0Wq1HTRKmBAQEID4+HikpKQgJCRFUFkMOHjwIgDWRCBnB9fXXX0Or1eoWAf7f//0fmjdv7vY48aCgIEyePBmjRo3CrVu3cPPmTdy8ebPG6xUrViApKcltcliicePG+Oijjzzer0TtQiaToWfPnoL0XSsVAxFh9OjRGD16tMudhvYybtw4pKSkiGoNAacY+vTpI5gMFRUVWLlypdG2bdu2IT8/H5s3b3Zr/L5SqUTTpk3RtGlTt/UhIVGXEccjrp1oNBr8+OOPdtkl3UXjxo0BiGdxmVarxeHDhwFAUKX53XffGUW6+Pj4YMmSJTh06JBoVrhKSEiYp1bOGADWLOFKJ5ij3Lp1CwAEjfwx5MyZMygsLER4eLigTucvv/xS97pnz5745ptv0KZNG8HkkZCQ4E+tnDEAwNChQ4UWAYBeMYhlxmBoRhLKv3DixAmkpKTAx8cHixcvxqFDhySlICFRi6i1isFWmJ2nEItiWL16NW7fvq1b4SqkGWnZsmVISEjAyZMnkZSUJBqnvISEBD9q5X+sUqmEr6+v0GIAYOOwAeEVw6lTp9CtWzf89ttvAID27dtjx44dKC8v96gcpaWl6N69uzRLkJCoxdRKxaBSqYQWQYdYfAz+/v64cuUK7ty5A4C163/77bfw8fHxuBxvvfWWoFlmJSQknKNWKgZHk1a5A7GYkvz9/Wu8X7hwoUDSSEhI1GZqpWIQ09OoWBRDgwYNjN5Pnz7dI2knJCQk6h61UjGIxZlZVVWFO3fugGEYNGrUSFBZDGcM0dHRmDhxooDSSEhI1GbEMcLaiVgUA5flsVGjRoKmkwaMFcPSpUvh5eUloDR1h7w8oH9/wFb5D77HSUjUBsQxwtqJWBSDWBzPgN6UNGTIENGE8ooZvgP5woXAiRPsX1ccZ0/fEhJCIY4R1k7EUNoTEI9/AWBnDN7e3li0aJHQotQK+AzkeXnAunXA/v3sX0sDOd/j7Onb9PqSIpHwJLVSMQg9Y7hx4wbKy8tFpximTJmCFi1aCC2K4NgaSPkO5AsXAqNGAXFxwGuvWR7I+R5nT9+m17dHkUhIOA2f3Nxia61atXJZfnJHSE1NpcjISBoyZAgBoFdeeYXmzp1L33//vWAyFRYW0v379wXrX0wkJREFBRFNmmR5f1KS/rW543Jz2Wvk5urfP/QQUV6eY8fZ07e566elWb+u6TnPPMPvWIn6BXjWY6iVFdzatGlDWVlZgvVfVVWFBg0aGJU89PLywo0bNwSPTqoP5OUBY8YAa9cCTZrU3Ne+PftE3q8fcOaM8THc/jNngLAw9n1sbM3jJk1i/y5ebLyNYQBDax3f4+zp2xDD61u6rrlz1q0DRo+2fazQEBGuXbsGrVZrtmk0Gt3rVq1aITAw0OPylZWVobS01KgREXr16uVRWaxRVlYGX19fm2Z2hmHqbmnP6OhounDhgqAyPProo0a1WV9++WVs3rxZQInqD9YGPlsDKd+BvGdP4Nixmn0nJABHj9p/nD19cziiSGwpRgCorq5GcnIyCgoKoNFooNFocOeON7ZvH4yBA7+Dt/ddaDQaqFQqfPrpp25fPb9r1y6MGzcO165ds3hM//798eOPP7o92q6goADvvfce9u7di9LSUpSVldUoC8swDH744QcMHjzYrbIAbF2TnJwc5OXlITc31+iv4et//vOfWLJkic3r8VUMgpuFHGnR0dGumFU5xdtvv21UKvLAgQNCi1QvsGZa4WPWSUggAmq2hAT3y26p727dquiPP/6gjRs30qxZs+jatWtEZGx24rBlfuJrqrpx44bOFMq2RQQUEvAFASC5XE6//PKLCz41P4qLi2n8+PFmy7DKZDJasWIF5efne0QWjUZDa9asoZCQELPytGnThjZs2KD7ntxJRUUFffnllxQaGmqxTG1ISAhlZmbyKi0MnqYkwQd5R1rbtm3turnu4JtvvjH6oQhZW7kuYslObm3gs3cgTUlJocGDB3vsu/vzzz9p1apV9PHHH9OLL75InTt31tXD5tro0aN1x9urxOz1dxARff/99xQS0vGBUuhEQAEBoeTl5UWDBg2i5cuX05UrV8z25Q4/xpEjRyg6OtrsAMgwDHXr1o1mzZpFqampbq+xfvfuXUpKSiK5XG5xUI6MjKR//vOftH79erp69arbZCktLaW5c+dSw4YNLcri7+9PvXr1ookTJ9K6desoMzOTqqurja5TpxVD+/btnb7RzpKZman7Qj7//HOhxRE1jjzpmXMg2xr4+A6khYWF9OabbxLDMNS/f3+6fv26g5/MPm7dukVTpkyhgIAAi//cPXv2pHfffZeWL19OFRUVdl3fkRkGEdFbb5VTbOxeg5nDFzXkiomJoUmTJtGlS5d017Xm4HeG8vJymjp1qm5AfuGFF+jJJ58kpVJpJFOTJk1ozJgxdOzYMdcLYUBmZib17dtX1++HH35I/fv3J39//xr3qWXLljRmzBj66aef3CJLUVERTZkyhXx9fXV9PvLIIxQeHm729+Tt7U3dunWjt956i9atW1e3FUOLFi1cea8dQq1Wk6+vL3l5edGKFSto9+7ddv8ju5O1a9fSrl27RCHTE088QUVFRTRx4kRav369zeMtmYscHfg4NBoNrV69moKDg43+eQYOHGjnJ3KOO3fu0OzZs2vIYdhUKhWp1Wq7ruuImcxQ2R44cIBatuxBQAEtWrSJVq5cSUOGDKEGDRro5EpJSXEoUsoR0tPTKS4ujmbOnElErLlp27Zt9MYbbxgNhF9//bV7BDBAq9XSli1bqGnTprRjxw4iIqqurqY///yTFixYQAMGDDC6T+PGjXOrPHl5efTOO++QUqmkGTNm6Lbt3LmTZs+eTUOHDqUWLVoY/aYeffTRuq0YFAqFq+6vU/Ts2ZNefvll8vb2JgB09+5doUUiIlZpPfTQQwSAzp07J6gsaWlpBIB69OihG/BycnKsnmPJXOSMf+Cvv/6ixx57zOwg7GnFwFFaWkqLFy/WDXIBAQG0bds2mjdvHk2ZMsUjMpgq2/v371PXrkepT5+/dNsqKyvpwIED9Omnn5JGo7E75JbDEfNTdXU1/f777zW2a7VaSk9Ppzlz5nhsxkdEVFJSQpmZmWb3VVdX04kTJ+jzzz+ngwcPekSey5cv05dffmlxf2FhIe3bt48WLlxIq1evrtuKQaVSOXQTXc2kSZPou+++IwAUFBQktDg6jh07RgCoVatWgvs+3nzzTaNBeNGiRUb7TQcLR+zk1igqKqLx48eTTCaz+HQ+ZswYQe9TRUUFrVy5klq1akV//vmnR/u2pGy7dzc/W3Hm+3Gn+UmCH3wVQ60MV/X19aWpU6di2rRpgqbHSElJQXV1NRISEtC5c2f89ddfgsliyLRp0zB37ly88847+PLLLwWTo7S0FOHh4SgpKTHa/txzz2HTpk3w8/OrEXpqb0inLcrKynDnzh3cv38fZWVlFv8OGTIEzZs3d/zDugC1Wo2CggI0sRSLKgIc/X74hNFKuJ9aFa4K4BsA+QBO8zyexo4d61JN6igbN24kADR06FChRdHRqVMnAkC7du0SVI4HU1ejNmHCBCorKyMi874EIcNJJWzj6Pdjt/lpwwaqbtqcNGCoOqI50YYNrhC/3oPaZEoC0BtAZ3sUw/79+118yxxjzpw5BIDee+89oUUhIqLr168TAPLx8RE8RUbXrl11CiE8PJz27NljtN9RW7VE7cJu89OGDUS+vsaax9dXUg4ugK9iEEUSPSI6DKCI7/EMw6B3795ulIg/V65cAQC0bNlSUDmKitjbt2vXLgDAk08+6fF6z4akp6frVoa/+OKL2Lv3NBYtelqXNI5LJvfRR+z7jz7in1ROonbBJRkMC2Pfh4XZSDY4bRpw/77xtvv32e0SHkEUioEPDMOMZRgmlWGYVIVCIXhhHI7s7GwAEDyr6eLFi7FixQrs3LkTADBgwABB5Vm1ahUCAwOxYcMGfPvtt1i1KsgoQ6jdg4VErSUlBViyhPVDcG3JEjZjrFmuXrVvu4TLEcfoygMiWglgJQA0atRINB5zscwYAOCtt97S1cMuLi7Gp59+ismTJxtVd/MEpaWlyMvLw6lTp9CsWTOjVNP9+rGzg5QUNseQaXqXhASPiirhAUxzRtlCHd4Mihs5Nbc3bVZ7BqxaTq2ZMRji6+srtAgAAI1Gg6sPnmKEjmjhalRoNBoAwMcffwyZTOZxpcDx/fffo1mzZgDM1ys4etScC9P+QUSi7rG5wxxUKYz/x6sUvtgSO0cgieoftVIxcE/FQpObm4vq6mo0btxYsAGYw/SetGvXDlOnThVEFn9/f52iknwJEvbydclwjFavRDaaQwsG2WiO0eqVWFEyXGjR6g2iUAwMw2wGcBxANMMw1xmGed3a8WJRDGLxLwDGVe0YhsHq1auhUqk8Lodp9TTJlyBhL0ePAptoOFpQNmSkRQvKxiYaLs0mPYgoTHZE9Io9x4vF8cz5F8SmGN599110795dEDkMy1AuWiT5EiQkaiOimDHYi9hmDGJwPHOKoUWLFpg9e7YgMpirZyz5EiQkah+SYnACMc4Yvv76a8H8HeaczLUZU7MYn33WzpGQqC1IisEBuBKEYpsxjB49Gk8//bQg/ddmJ7OlwdzQLGaKpX3WzpGUhkRtQVIMDjB9+nS89957uHTpEgA2CmflypW4b7pa04OEh4fjiy++EKz/2uxkNjeYmzOL2dpn7RxL/RheU1IaEo5QXV3NpQpyHXzyZoitxcfHuyp1iEPMnz/fKDGcTCajwYMHCyqTu8scmsMwZXZtSH5nrh4An6JA1kqIGu6zdo6t4jbWUlK7q4xmbUDotPHmSE5OprVr11J5ebnQohARW9dj2LBhtHz5cps1YVCbkujZ24RWDDt27KiRNdRThTnEhFjz61urF20qr7nB3FrSN0v7MjKsJ4qTlIZjlJaW0ttvv03bt2+vUb9YKEpLSykyMpKCg4Pp448/puzsbKFFoj///JPkcjn5+vrSmDFj6Pjx42aVqqQY3Mjly5eNlELnzp1F+WTjTjxV3tERrNWLNpTX0iCfmGi5hKil8qJxcZbPsZVd1F1KwxHEUArWlMOHDxPDMBQeHk6ffPKJKAbiQ4cOGVkMnn/+edq/f7+g48DMmTONxqXY2FhaunQpFRUV6Y6RFIMb0Wg0RsW4N9TDdMBiTZltj2nI0iAfHk4WzWKWTGYNGlg+JymJVTaGT/aeUBqOzCYuXrxIffr0oY8++ogOHDhAVVVV/E92I5MnT9b9vzEMQ88++yz98MMPgs4i3n333RqWg7Zt29JXX31FxcXFHpenurqaunXrVkMmb29veu2116igoEBSDO4mPj5eV2egsrJSaHE8iqvLbzori+mAy9c01LWr5cGcw9ITuT3brflfEhOJmjc3vneuUBrWZLTF4cOHycvLiwBQgwYNaMiQIbRq1SqP1lY2paKigjp27Fhj0AsLC6NPPvmEbt265XGZOJOSqUwDBgygo0ePelweIlaxGz60AqDu3bvTmTNniIgkxeBuXnvtNQJA8+bNE1oUj8ENwtZMLZ7GcPDjaxrKzWUHY8MigJbMT4GBRN27EzVsqB+Q09OJFAqiX381HqjNbc/NJerbl72OuSf70NBqs0qjXbsSioiopsTEmp+Xj9Jw1tS3YcOGGgMeAOrUqRNlZGTYdzEXkZmZqVNYXIuJiaFt27YJEnxBZGxS4p7Ot2zZIogsHF9//bWRTAqFgv7zn/+QVquVFIO7mT9/Pvn6+lJhYaHQongMbvC0ZmqxRHp6utP9m84OTAc/cworMZFIpTIvb3i4lj777DPKzq40qwASE1kTUWAg60OYNIkd/OVyIqWSfZ+YSBQRwZ7r50fk5WW8PSKC3RYXp7+H3MDety9RgwZq6tRpDAEFBITq/pmDg9eTXK41K3fXrpbNYHwjpPiYmExt1gzD0I4dO+z/4lzIF198YSSTn58ffffdd4LKxJmUHn74YZ1cn376qWDKSqvV0qBBgwhgSyBzMo0YMaJuK4YOHTq48j46xI4dO+jtt98mIqLjx4/TtWvXROWAPnjwoEuddM48gebk5FCLFi1o+/btdOLECYdlMH2qNx38LCkshUJ/DjcL6Nq1ihSKYpLLm1KvXqkUG8seFxvLDuo9eujPHzqUPUcuJ/LxYbe1bs0qkbAw9r1Mpj+2YUOikBD9+Uole36PHkRdurDXCQvTKwyNRkMJCaeJYbIJ6EDAbwQU0bFj92uYjrjPb808xccExcfEpNVqucFE19avX+/w9+cKNBoNPf744wSA+vXrRwBo9OjRgsrEmZR+++03+ve//00Mw1B8fLygpXVv3rxJ3bp1IyKizZs3k69SNPwCAAAgAElEQVSvL4WEhNRtxSCXyyktLc1lN9ERsrOz6cKFC6TRaMjb25sAGHn/hUSr1VLTpk0JgMum/c44m1esWKF74lQoFA4pLFPFZC48tGFD9incmjklKYkoMrKMgCoCMghYTwBrzvH1ZWcXKpV+oJfJ2PexsUQMw25r0IB93bq1sVJgGFaGmBjjwZo7Xy5nG3cdhYJtXbpwCkZL/v5XCCinpk1v6u51YqJ1c5Q1P4vh92doguJzHSLWtt+7d29q06YNrV69WhQPP9yDhkajEc16giNHjlBpaSkREe3atUtQfwxHLvfPQUSnTp2io0eP1m3FAIBu377tkpvnLNnZ2QSAGjduLLQoOk6dOqWTyRXTWWedzYMHD9Y9ccrlcnrkkUdo7dq1Nvu05lQ2Fx4aF8cOwoYzCi4aKDGR9Sl4e5cToH6gDCoe/NUSoKWYGGOl4O5mqigiI1nl4OVVSXK5hrp0YZUGYN4cxWE6A7A2m7C1cM/cTKKwsJDeeecdfl+2hzh79qzQItRK6rRiUCgUrrxXTrFnzx4CQD179hRaFB0LFiwgADRy5EiXXM+WPdsalZWV5O/vb2SO+OSTT2wqLFtOZYXC/ODXsaPxjGL4cPbYESOIVCotKRTaB4OvbQUQHMwOxsHB+m1BQew2brbAyRETw+5TKo3PN5wpBAcTeXuzioAzSZlTFo0b6xWGXE662Qg3u+DMUd276z+n6QzA2ipvawv3LJkKxbK4TMI56rRi8Pf3d+W9coqlS5cSAHr99deFFoXKysqIiKhv374EgDZt2uTU9bjBhU9YpyX279+vUwgKhYLWrFnDq19bTmXTtQGc8uIijmJjWaXAPY0rlZad0AB7reBgx2YLlpSUpeblRTrFxPUXFMQO9g89ZPk8Q2XB/TWcORmGvtpa5W24zXRNh6HSr+srq+sbdVoxhISEuPJeOcX48eMJAC1cuFBoUeiZZ56hs2fPkkKhIJlMRgUFBU5dzxWraj/44AMCQA0bNqT9+/fz7pePUzksjJVv7Fj9k7ChMrDUVCr2OE+ZjLjm56d3Vps2hmGVhUrFKqjGjdnZBWB5dsF9zoAAon372AgogJ0dmXv6t6Tgu3a1PJMQa9oTCceo04qhadOmrrxXTsFFRvz4449Ci0LNmjXTLW5p06YNbd68mTZu3OjQtVyV8qJdu3bUsmVLOnfunM3+nnnGcs6hjAzzoap79rAD/PDh7PoBcwOfv79nBn5Lq5+daZzC4GYX3t56c5OhwggOZo+Njmb3c+sfTENYLS3KMzeT4BSuGNOeSDhGnVYMLVq0cOW9cgoudtnWwOcJWrZsSaZZX1NSUhy6litSXuTk5FD37t0pPz+fV3+c/d5SLiJzoaqJidYHVi781N4B3p1Ycg4bzizi4izPLrhjrF0jJISNZNq7lzWj7dtneZC3JE94uGReqmvUacXQunVrV94rhyktLSUu0kYMaTFat25tpBjef/99h67jqpQXly9f5hXLbTg7sWSvVyjY/Q0bsusBAgPZxWaGzl6ANafYMiWZNrGkBrelMAyVBueg9vHRm5y4WQN3rEqlj9Rq3Ni+Qd7ab0AyL9Ve6rRiaNu2rSvvlcNkZGQQZ7YRAzExMTql0KpVK50z2l6ciULii+GAZMvxaeh8jovTO12HD685cKans4NgbVII1uCjLDiTk61jvv2WnUUYrvCWzEv1izqtGMSw8pmI6NtvvyUANGjQIKFFISKi9u3b6xTD3r17Hb6OJ4rucAOSoeOYqOaTacOG7BNvbi7bnPUXuNtM5AmSkljlx5ndLJmcFAp9uCvAnsMt4IuLsz7I22tekhAve/bs0b2u04qhc+fOLrlhzjJr1iynTDau5pFHHiFnUgR4ynZsaDry9iazieISE9ljhgxhna4nT+oVheFAFRlpPPjVRUVgCp9ZhLV7wrXQUPOZaC39Bmytg5D8DuKjsrKS2rRpo1uHUqcVg9BJ9P78809Sq9U0fPhwAkArV64UVB6OuLg4CgkJcThM1VO2Y0MzhaWn3bAw60/D9WV2wAfOOc817j23sM4wgolh2FkX937vXn00GLdmxNJvwNY6CMnvQILmRzLHpUuXCIBu/ZCkGNzI9OnTqWfPnhQVFUXcQrKlS5fyir5xJ127dnU45a8nKrIZpqC29tTJhaymp7N/n32WdKYRgOirrywrAz8/18stdvj6Icy12Fj9gM5lorX0G7DUD7cOor77HSorK2nGjBlCi2EEt8A0MjKSqqurJcXgTtavX0+G0T8A6PHHHxdUJiKiOXPmOJzkzBXhqXz64OzbptsNnzpjY9kVvImJ/Bas1cdZgi24yCXue+UWzDGM9YV9jRrpHf62TEscpr+dsWPrp1np2rVr5OfnJ0jRIEt88803ujFqzZo1kmJwJ7///nsNxfDrr78KKhMROVyG0RMV2bg+OnY0PyAZPnVaUwTPPusZ53htx97FdlzIKzeDGDvWtmmJyPxvx9ubnRW606xUXV0tihBxQ1JTUwkATZgwQWhRdMyYMYMMIxX5KgYZJOymdevWRu+7dOmCfv36CSSNHqVS6dB5CxcCo0YBYWHs+7Aw4LXX2O2ugusjIwNISgImTWKHpNxc4JlngE6d2P1NmgBeXkBgoP5cw4+1axdw7Jj+vUymH96OHnWdvLWd4mL9fUlKAhITgYYNgYAA9t4++6zx8RUV7L08cwb49lvgf/9jj1m/Hti/H1i3Drh5s2Y/pr8dgO1z0CDL57jm8xVj6dKl7rm4g9x88GFXrFiBy5cvCywNy9WrV3Wv7ZKJj/YQWxN6xqDVaikwMFCnib///ntB5XEWZ5Lk2cKWX8E0JDUpyfz6BMl05DjWfBA+PtYjmFQq/fdkzkRkK8W3u2YNV69eJT8/P7p27Zp7OnCA1atX68aE4cOHCy0OERE98cQTptYNyZTkTuLj4wlga84KVcLPVbgzosSaX4EzU7z6Kmt+2LuXdTAPHWpdGYSGul7Ouo69DmruOwgI0PsabJmIzJmVgoKMiye5ivPnzxMAeumll1x7YSeYM2eObgBmGEaw2tiGREZG6mR6kEdNUgzuZNiwYTqHTm3GndFItvwKXEiqvYNWeLjrZKyPGC6Qi4urWXGOa1xywqAgDSUnn9JlpbX0OzEXzmpaPMlV/PXXX7oBz5nFnK5kwoQJRk/nAwYMEFQejUZDYWFh9MknnxAAbp2TpBjcybRp06hZs2YOO3zFgjujkaxdOz2dnR1wD1Xp6fwVg+Rkdg5nwlsTEozrPvC5bqdOrn/oOHLkiG4Ajo6OFoUj+sUXXzQ129ChQ4cEk6e8vJyuXr1K9+7dIwCkVCrrtmJo0aKF4HVe16xZQ0uXLhVUBmdxZzSSrWtzT5JcsR1bfoVGjZyXScIYzp/DLXozl7HVy4szK2mpc+cPSK1WU2Iie87Ysbav766Hjt27dxsNwPPnz3fdxR2kd+/eumqFAQEBNG3aNJo4caIo6mQ3a9as7vsYAgICXHnPHOLs2bMOJ6kTC+5MlmfuqdIw7YK9Vc/qy8I1Tw4ifGYOCgW37qGagFSaOHG+zi/EOabNYfpgwGXCPXnSNbJv27bNSDH4+vrS1atXXXNxBxk1ahRduXKFvL29CYDThbJcycCBA+u+YoiMjHTlPauX5ObWzDvkSlONpVQWhgXpc3PZwcXwSdVSkrz6En1UXl5O48ePp9TUVI/050xxofBwyw8Rpg8dXBCCq9KcJScnGymGwMBAeuGFF1xzcQdRq9VERPTYY48RII61TRyTJ0+2SzHUynUMgYZB7iKgpKSE1bIiorCwEBqNxuL+hQsBhtGvJzBszq4HyMtj4+LT0oCHHmLfZ2ScRFnZfSxceB/LlgGjR7My/OMfQFmZ/tzSUv1rb2+9fMXFzslkiZKSEpw9e9Y9F3cAb29v9OnTB126dMGZM2fc3h+33iEuDoiNZdc6+PvXPE4uLwPD5IFhqvHzz2kgAn75BVi2DDh1qubxKSnAkiXsb4xh2NeVleyxrljbcP/+fbRt2xbt2rVDgwYN8Mcff2DevHlQq9XOX9xB5HI5ACA+Ph4KhQLZ2dmCyWJKbGysfSfw0R5ia0ql0oW61HlCQkLI29ub8kSUA6Bv376kUqno4MGDNfa5Oy+SOdvyzJkzH9SLSCOlUk2DBhWRXM4WlxHS0Tx37lxq3LixqKb9Wq2Wjhw54tE+bc0clEo1yWRaksu1ut8L31mAO3wNv//+O925c4euX7+uyxwqFgoKCgT3gZpSVlZGxcXFdduUpFKpXHnPnKKqqooANm5ZDD/QS5cuERFRkyZNCAD9/fffNY5xp1PQNNqIczp/9NEiApoQUMXbVOFu89G9e/do5MiRoijLKgZs+RwMa0yb+iH4+hrckW5Fgj91WjH4icgTefXqVQJATZo0EVoUIiLq1q0b/etf/yIApFKpKD8/n7Zv365zarr7H9Vc3HpSElHXrmkEXCFgBS1Z8q3VAWjECNfIYovaHmrsDhIT2Ugka98PV8eB8xM1b245QsnwIcSwIl99T88tFHVaMYghKonjjz/+IAAUZ7q0VyCGDh2qc8jJZDKSy+U0depU3X53RiJZizby9y8hQENNm/5Mb7yhtVqJzcfHeVkkHCM83LpSUCpZxc+lOElKYl97e5t/uJASHooLvoqhVjqfFQqF0CLoyM3NBQCEh4cLLAlLZGSk7rVWq4WXlxeSkpJ020ydgpxj8MQJ5/teuBB45x32X980UV5FhTfk8q0oKemP9esZIyezKQL6D+s9LVta388wQHU18PDD7Pt164ADB9jvecaMmscfPar/DQQF6QMS/vc/18suYZ3y8nLex0qKwUnEphhMM7+OHTsWjRs31r0/epQdtIOCjCOSXBGJtGYNmz315k3go4/02TUXLgR8fSug0byM4mI5qqqsX+vRR52TRcJxjh5lM7EyjPn9VVWAVgucPg2EhwN37gCdO7MRRz//bPm6XBbWuDjXZ+6V4McPP/zA+1hJMThJXl4eAPEoBsMZg1KpxAcffGC0Py+PHbCtpVJ2hIULgVatgJMn2ddc6u7p01mFERmpwfXrGoSGWr/OiBFS+myh+eUX9mHBHAMHAgoF0KABm747PZ1Nm56RwYYom/s9cb+5UaOA/v3ZUGV3puQWE9XV1UKLoOObb77hfWytVAxcvLCQbNmyBampqUYzhqqqKty5c0dQuQwVw6hRoxAREWG0311PbseOsYPEnTvA4sV6E9XPP7MKIzs7EJ99JkdFhfk4eQ47Hmok3IQ1c9Lu3YBczpr7WrViB/gTJ9i/ln5P3G+Oz7F1ieLiYvy///f/hBYDAJCTk4PffvuN/wl8HBFiay1btnSlP8Yhtm7dSjKZjIKCgghgS3uGh4fTjRs3BJVLrVaTUqkkmUxGWVlZRvvcGZFkKQTWUq0HoUJUJfhhKSOurWbOqVxfHdBfffUVvfLKK0KLQUREn332GReUwsv5zJClOaMHYRimP4D/AJADWE1E860dHxUVRRcvXvSIbJa4dOkS2rRpY7TtxRdfxNatWwWSSE90dDTi4+OxadMmo+2TJrF/Fy823sYwwKJFjveXlwe0b89W/woLY9/HxrLvFyzQ99mkCXDrVs3zvb1ZM8TJk8Ajjzguh4Tr6NwZKCkBLl1ifx+Gw8SIEUCjRsChQ0CfPux3a+t3ZPjbc8VvTuwQETp06AC1Wo3z588LKotWq0Xr1q1x69Yt3L9//y8i6mLzJFuaA8BmAJMBPAugMR9tY08Dqwz+BtAKgBeAkwDaWTsnJibG9SrVTjQaDTVo0EAXGgqADhw4ILRYREQ0YMAAOnXqVI3t7npyM4xp5yp8GRbiSU/nl0G1Qwfn5JBwHbZWQn/7LZthde9e9rvNyLA8+6yPi9wOHTpEALvwtaSkRFBZrl+/Tt999x39+OOPrlvHAKAPgAkAVgPIAPADgAZ8Ls5LAKA7gD0G76cAmGLtnNjYWPfcQTvp3bu3Tim0bdtWFOl1ichq4RJ3VGuzpHC4QjxcrLtKZbkoDBcjLyEOcnOtKwbDQj/c78nSehhLDw51eZEbV8gLAB07dkxocYiIaMOGDS5VDCMBPAJA8eD9cACL+FyclwDAP8Cajwz7W2bmuLEAUgGkRkREuOve2cXEiRN1X/6XX34ptDg28US1NsNr21sQpq7bnGsTfFZAi8nHUFFRIZrUJnl5eaRQKEQ3NvznP//hrRj4RCVFAZgN4DzDMOkAngYwlGGYJxmGaWz9VF6Yi5iu4fggopVE1IWIuoSEhODAgQOcwhCMzp07AwD8/PwwcuRIQWXhgztjyc1dm1szkZQEJCSYP4+Ll5fCVMXFL7/A4noTLy92rUNcHPvdEukXNJr7Do8erbnALS/Ptd/3+vXrcezYMddd0AlWrVpllOU1PT1dQGn0FBUV8T/YluaAgV8BQBCApwDkA/gGQAof7WPj+nabkry8vOi1115zvUq1k1OnThEAGjdunNCi2MQT1do4XwJnb87IMN7euLHlJ00Rpb+SIOvRZAqFvvJb9+7sb8jW78mdiRurq6spMjKSPv74Y9dd1AlZmjZtauR7FEu6nAc1qV1mSkoHkA1gF4AlAHYD+A+fi/MSAFAAuAygJfTO5/Y2zhGFo7e6upq8vb0pg0slKmLcmSOJu7ah/yIpibU/G/oYrJkmpDBVcZGYaN1kFBrKKnrDhImWfk/udj5v3LiRANCLL77omgs6wbZt2yggIIDCw8MJACkUClIqlaKoST18+HDXKQZiB2I5gPYAhgIYhAf+Blc1AAMAXAQbnTTN1vFeXl6k0WjccvPsZVIt8aC5085r6dq2IlsYRv/aVSUfJVyDrToZ9vgYuAg1zvHMbXPFv45Go6H27dsTAOrsqvJwTpCZmUllZWU0ePBgAkBr166lDz/80GyUoKd59tlnXasYxNbCw8Ndeb+c4t69e0KLYBfuiErirmvOVMBtt7XQTQpVFRdyufnvyceHyMtLS15eWkpMZI+1Nci786Fk+/btOpNNYGCgaCIDu3btSgB0BZfEINejjz5atxVDB2kUcQh3RSXZ8jHk5rJPjIYzBNMml7tGFgnnSU+3rsS9ve+QTKaliAh+/gV3/e60Wq1uAOaaWCrxcX4Gc4WyhKJ169YujUoSHV5eXkKLUCtxV1SSpVw4Y8aw2wFg/Xrg+ectX0OpdI0sEs7zyivW91dUNIRWyyAvzzhhoqXfk7t+d/v370dKSorRtr///ts1F3cCjUaDmw8yBIaFhQksjR6XRiWJscXHx7tSkdYL3OkAdNTHYNokP4M4kMksfUda8vH5HwF5vE1D7vzd9e3b12i2AIA2bdrk/IWd5ObNmwSAgoKChBZFh0ajIYZh6vaMQcJ+uKc2LpfRmDHACy+45unNcL0CkT6mvbhYH7+emwt07Wr9OsOGOS9LXYP7R/UUGRlsvQVzKBRVKC9vAyAQ//hHkdF3TWR+XcKMGUBAgH69iq3ZBV9u3bqF559/HmvXrgUAREVFoUuXLrh06ZJzF3YBYqvRAgD37t2z73fER3uIrUkzBvtxpwPQ9KkwPZ1Nb3HypLFT2lYIJFC38+fYy+nTp2nOnDkedVy2bm3rOyohQE0DBxYRke0ZgKVSoa5a9bx8+XICQKNGjaKqqipRpJ/4+eefCQA99dRTQouiIysri5tVSTMGT8LdUDFBRFCr1bh+/Tp27LgDIveUWDScjQCsj0EmY2clhqVEV60ykk73ytBl9OGHzstjL0SE69eve75jK+zbtw8dO3ZEjx49wFgqp+Zi8vLYbKrW8Qcgx4kTfgCszwDy8oDycuPVzpxqcNWqZy5zaUxMDJRKJXr06OGaCzuBGGcMdvkXgNo5Y5DL5VRWVuYqZeo07777LjVu3JgOHToktChUXl5OWq2WNm7cSA8//DAlJiYa1YlwxwpUS7MRhUL/JDlhgppCQ9U2ZwwymednDUuWLKFmzZoJngXTkMrKSlq/fr3H+svNJYqIsP7dvPJKNcnlWt4zAHeudua4f/8+ZWRk0LVr11x/cQcpKyuj8+fPiyoiqaKignbu3Fm3w1UBUEpKiivvm1O8/vrrBIAWLVoktCiUk5NDzZs3p6ioKCOn3N27dz2S/tjUdNS8ORe2qqUnnhhOQBMCygkwP8AAbFZWTyqHoqIi+vTTT+nzzz/3XKciY8gQ60ohNJQNKea7dqE+ptoWO0lJSXVfMaxZs8aFt8w5/vvf/xIAevXVV+ncuXP09ddfCyrPvHnzakRrVFVV1UiLkZvLDtxjx7qmX9PBgFu7EBvL9ltYWEj+/psIKKegoJu6dQ0KBfvX318/ELlKJnsQ0yzUk+TmGq8xadTIsoIYMUJ/jrWBnnsoMNxf11NtW+Ly5ctCi0Dl5eVctcm6rRjef/99V943h7h9+zZ98MEHtGDBAgJAwcHB1KBBA5o3b56gclVWVlJ0dLROKSgfFDqwZPJx1UJyQ8XDKYlXX7W+sM1S8/KSni49QW4uO0Pj+70Y/lasDfTudjrXJoYNG0bFxcWCyvDnn3/SsmXL6r5ieOaZZ4iI6M6dOy67eY4wcuTIGk/nYpjN/Prrrzp5AgMDa+x3x2pUawV7Jk3S9/nFF5semJWsD0JhYUR9+0oKwl3wUQq+vmyiPEtrG6ytXXBH3Y/aRlZWFslkMkpPTxdaFCIi3oqh1kYlZWZmIjk5GePHjxdUjlmzZtVYiR0aGiqQNHqeeuopvPjiiwDYehGmuGM16tGj7HBhuHaBCPjrL2DNGuDRR4F//AN4771XwDCTkZQENG6sj3EHjFdA5+UBx4+7tm6EhJ4PP2TvsTXu3wcUCqBjR/a7NFy3QGQ+usiddT9qGwsXLoRWqxXF+gq74KM9xNZg8HT+zjvvuFKhOoRhJTcAlJaWJrRIRER07do18vPzo9atWxttd7dj0FyK77g4x0xKnA9CWhXtOnJz2ZmY5RXONVvXrvpzrdV27tuXqGFDyelMxNZa9vLyIgCCm5c5UNdnDBzNmzcXWgRMnToV/v7+uvdNmjQRUBo9ERERmDFjRo0Zg+m6g7AwdhX0Y48BD1K8OIXh2gWupacDjzxiHM/OrZY2uHVmUauBHj2Axx93jXz1mbw8duZ28KDlFc4Auw4lLg5Qqdi/J06w262tW1i4kJ3htWxp/Nuqr7OGRYsWoepBGbysrCyBpbETPtpDbA0GT+dbt251pUJ1mJkzZxIAYhiGqqurhRZHR2VlJb3++utG26ytO3BH1IhpPHtiovGTZVISG7nEPcEqlebl8/Kqn1EtrmT4cH4zhMaN2Rle+/bm95v6FrhZaKdO/I6v6xQUFJCfn59unOrdu7fQIhER/xkDwx5bu3iQDAoA8Mcff6Bbt25CigMAKCkpQWRkJAAgPz9fYGmMKSwsRHBwsMX9eXlA+/bA/v1Av37AmTOAqyY93LXPnNHnaWrZkt3Xrh27KrZnT4BPuV6GAeRy1t7t5cU+zW7e7DpZ6yp5ecCrr7I1nP/4w/pMgSM8HAgNBfr2ZYd2hgEWLbJ8/KRJ7N/Fi9nXto53J0TksdXilvjss88wc+ZM3fvw8HDcuHFDOIEewDDMX0TUxeaBfLSH2Jq/v79OE+eJyHi5dOlSqo21Ity5QtXc2gmVynr9Z1uNYdjFVoZlJSUsw60nccTHk5DAv96CGPwKZWVl9O2333q+YwNKSkrooYceMvI7AqDS0lLB5UJd9jFwOUhUKhVCQkIElkbPuHHj0L17d6HFsIu8PDa30Ucfse8/+oh9f/Ik0L+/8zZ9U39DeDhQWQlERekjXNLT2ciXjAx2W2wsOzPw8gJ8fdnrRETor0kEaDTsMV9+CXTpIvkgTMnLY7+/kyeBtWv1Qz0ANGxo/hyGYe+5lxeQmKiPOrKVD6l7dzbaTAx+hRkzZuDixYue79iAo0ePYtKkSXjlQWGL+Ph4eHl54fLly4LKZZclg4/2EFuLj4+nnj17Ups2bVypUF2CWCpI8cVcBFFSEhtF5OoSoJaeLGNj9U//lvwfpjMGgC0zyT0JSzMIPenpRN7eRAEB7L21Z4YQHk7k52d59mBKUpLlMqCe9iukpqaSTCajmTNnerZjC7zwwgsEgJKTk+nUqVOUkZEhqDy///477xmD4IO8Iy0+Pp727dtH/fr1c+V9q5dYc0S7eoGSOSVkreSnr69t5WDY5HK2xccTde9efxfHRUez96NFC+N7w1c5dO3K73sX00K2qqoq6tSpEwGgTz/9VDhBDIiNjSUAdOLECaFFISJdfWxeikHhljmLB3jiiSdElyq5NmJugRLnSDRcoOQKR2JKCutkXrLEeHtYGLsYjnNaEgFlZcCvvwJPPw34+QHJyUBREWvmqKpiHdrnzrHnc2YlrZY9Ny2NDbdUKFwnu5jJyACeeAJo2xb47DPgwgV2e3Y2+5e7N5bw8mLvZ1qaftukSbbvnbmFbELd60WLFiEjIwMAoFarhRHCAI1GowtRjYqKElgallu3bvE/mI/2EFvjCvV4soBJfcGaIzE3l+iZZ1z3ZGipr65d+T/dWmv+/uzMh5tB1KVZhOF3wZmL5HL2fgL8F68xjOVAAEvpLp55hsuYKw6H88WLF8nb21vn5P3oo488L4QJly9fJgAUGhoqtCg6/vWvf9Vt5zOH0CFpdRFzi9+4p8GFC9mFTq5yKlrqq1Mn42JCGRns+8RE1jmdmMg+BcfEsDOMoCD2r7c3u51h2BmDSsXOJtLSWLlPnNCn2OCcs7XRWZ2RAbRqxX6W8eOB06fZ7RoNcOcO+9pMFhSzEBkHAhiqBkvpLk6cYIswjRoFeHvfQVVVlWAOZyLC2LFjUVFRodum0Wg8K4QZLjyYtkVHRwssiZ56M2OQcD2WfA5du3o26Z5h+GxcHPvXFTMJbhYRFsY6Z5s2Ff8sIj2dKDiYTQuSm6t3DsfE6H0tlhzGllpiov1P/IY+BS5VutAO59WrV+tmClxLMjDtgywAACAASURBVHVkCcCSJUsIACVyBSxEwEsvvVQ/ZgwSrodLhGfaEhIsJ0Zz9OnbXF+5uUBFhXH4bGYm65dISTE+X6FgZw9xcfoQ15gY9m9QEHsMN4uQy9kEfSoVm2IjL48Nnb1xA/j9d6BrVzbklWtChb5mZACNGgGnTrEyPv440KsX618ZMwZ45x3W//Lww8D58+w9A9htllAo9PdWpQKGDwfWr7c/xNTQpzB0aC68vf+LCRPetTnLcBeVlZU4deoUZsyYYbRdDD4GacYgzRjqPLYWMCUluS601VL4LPeEy81YEhPZ7XzCW601pVJvj5fJ9JFNXOgrlxguPp7tn0vmx23n67cw9c/k5rLnctfkrufvz84COndmPyMn57PPGkdieXkZRxrZqsBm+lTPt16COZ/C5s2bycurOQEFtGHDPue/dCf5/vvvCQB1796dvvrqKxo/frzQItETTzxBAGjHjh1Ci6KjZcuWvGcMgg/yjjRJMXgWS4O1YY0FV5mY+JqXLA1sCgU7oMbFsU5ZuZw1uRg6ZhmGjfOXy/UmGNPw1wYNiAID2TrIKpV+f4cO7ADObTdUIunpbB9duuiVBTfgh4Wxso0dq6+cxw3slpSAobkmKIg1fQF65cVXETCM485iTunHxRFNnKil2bNn60w2cvlSmjBB+Lxgb7zxBgGgWbNmERFRLvchBSQiIoIA0MWLF4UWRccDB72kGCRcg6XBOiHB8XQa9kSU2YqU4hSTSsUOsPbOIlQqY4URHMwqBk6RcAM0t66Ce88l++OUiKGSUalYJdC8Oft0zx3v7U00dKi+bz8/80qA65s7LybGvs9k2MLD9X4aQ/jWbWZ9CuZrdAudHE+r1VLTpk0JEE8d+NLSUgJACoVCNAk1y8rKOIUuKQYJloqKCrdUurNlYrIU3lpZWUlz5szh3Y+1GYvhPj6ziNBQSwOolhhGazTgc+YlgFUWhoMzZ3aKjWUbN7Ab1q/mFAI322jQwPjaDMPK5e1tTgloHzQ1+ftfJkD94L11JeDnxyok0+/FEWcxd2+rqqooJmYnAYt0swUAtHTpUt7fobs4efIkAaCQkBDSaDRCi0NERGlpaQSAoqOjhRZFx5o1a+q+YoiJiSG1Wk1E7BODGIq4nzlzRlfX9dy5c1RVVSWwROyU+vLly3TixAkawVVxdyHWBmzutanvobi4mH766ScCQJs2beLVj61IKVPFxJlNHJlFeHlVk1yupcBA40F96FDjtQEKBasYhg/XKwBOYQQHs83wutHRrGIyPFapNJ49MIxh+nFOMfCT27CFhto/O+DuH6fIzSl9P79yAkJ1iiErK4vX9+dO5s+fTwDotddeE1oUHZs3byYA9NxzzxERiaKs56efflr3FQPDMPTUU09RQUEBZWVl0VtvveXKe2g3169fp7CwMOrQoQNduXKFpk6dqrN3CkVlZSV1796dHnroIXr11VcJgMuzTlozMVnyPbz77ru6gUWlUtHRo0cd7t9anidbswh77PS+vqRTFFxTqdgWGGjsn5DJjAd7rg0dys4YDJXA8OH2+QqsKQE+/hdbZh9DRW7u3o4fX0Xx8YdowYIFNaoCCkV+fj6tX7+ejh07JrQoOm7evEk//PADHThwgLRaLXXv3l3w2czdu3dpx44ddVsxyOVyAkDNmzenyZMnEwD65ZdfXHkf7SIrK4vatGlDAKhRo0bUunVrUiqVdFLAepT37t2j/v37G039g4KC6Pr16x7p35LvYfz48Q/kaULALgoKauvwk6e1PE/WIqg4xcHJdfr0aZLLlxKQQYCGgJPEMDccGqh9fdkCRNzgb0/5TEcVgytWIJsqcktrRhIS2Fn6zz//7NB3Vt/Yv38/AaC///5baFGIiOq2YujQoQPFx8cbDXqhoaGUn5/vyntoF0VFRdSvXz8jmeLi4gQzKWk0Gtq+fbtRFSkA9PTTT7s9lYgl38PnnycTp9RZe3UhAV9QVFQUFRYWuqRvPhFUlhfKaSkhIZtkMo1bB3O+A/716xojk9iIETXvK2cqM/d5Hb1vrq7JUZ8ZOHAgAaCffvpJaFGIqI4rhvj4eMrIyKDAwECjQe/5558XJH+SVqulgwcP0qBBg4zkMQyh8zQHDx6kLl261JAHAC1btsytfVsbnAsKCuirr7aRl1cJNWz4OAEFBIRSnz59qLKykoicy8nEN4LKVC5rJhiGIXr11Zozj9hY+4rfWJo9cE/93NO6JQe5n19N+R01G9nyJwidLbUucO7cOd3/3Lx584QWhzQaTd1WDDExMbo4YdP2zTffuPJe8kKr1dLu3btp0KBB9KDsqK4JbVL666+/6M0336QGDRroZPLx8aFz5865rU9rgzORfoDWaDT08st51L37cerWrRuNGTOGtFqtSxfM8ZHLkhM7L8+6wjB0JBs2f3/+ysLQ72BLJlemobDlT5BmDc7z5ptv6v7nRo4cKbQ4dO/evbqtGOLj46m6upq2b99OAwcOJJlMpvsC/P39BbXn/f333/TBBx9QUFCQTiYhTUocJSUltHr1auratSsBoC5duggik7Wn09u3b9OlS2Uez/Fva7W1tfUTlpSJObOMue2WrsOt7DaVyZHB2tyqa77+BAnHKCgoIB8fH90Y0LlzZ6FFopycnLqvGAy5evUqzZw5UzeLSEhI0IWzCkVZWRmtWrWKOnbsKKhJyRxpaWn05ptv0ueff+7xvvmEuNqydbs6/Tef1damstqrTCytPLakABw1EZnDdAYm+RPcz5w5c4wsBz4+PoJHJp06dap+KQYOtVpNv/zyCw0ePJgWLFjg8A10JVqtlo4cOUIjR46ks2fPCi2OEeXl5R7vk0+Iqy1bt7tMTfbIaq8ysbTy2JUKwBymswMx1VGoq1RUVFCTJk1qmLkvXbokqFyHDx+un4rBkPz8fNEV8hF6FiN2+Ni6+eRmcvWMwh4sKQxLvgRXmmvMfW7T2YEjqTFqG2lpaXTlyhXB+j9+/DgtXLiQ3n//fQJAvXr1ohYtWggemVTn1zFIKTHqJrac1kT8zCB8ZhRCKg93Yfq5zc3AxFJHwV1wtZ8vXLggtCg0ceJEAkALFiygkpISOn36tKDyJCcn81YMUj0GCdFgqRYEl+M/Lw9Yt864VsO6dcZ1E7hj9u+vuc8QV1ej8xSWal+Y+9zmKuS9807NSm2G97i288UXXyAjIwNaa0WuPcSVK1cAAC1atIC/vz/at28vqDz37t3jfaykGCRqDdbKjpoeY66gEAcf5WGr+JA7S4Nau7YlhWbuc6eksAWOGEbflixhz6+LXLhwATNnzgQAUSiG7OxsAEDLli2FFeQB9igGwc1CjjTJlFQ/sWVqssd57aw5ytZ+W6Yqa/stXduSf0VaoMauienVq5fO0ZuZmSmoPFqtVrd2SMiMDIZ8+OGHko9Bov5hj/Pa2iBqy8HNxwHuqGKxdm0+6yMsfe66zvLly40igDIyMgSVp7CwkACQn5+faIJgxo4dKykGifqHvc5rw22Gg6itGYWt/c4oFkvXtqbQ+HzuukxOTg75+/sbKYa0tDRBZUpNTSUA1L59e0HlMOSll16qHYoBwIsAzgDQAujC9zxJMUg4irPmKD4zDkcVC9/V1IbXEcusoLq6WrA8ZQMGDKixZiA1NdXjshjyv//9jwDQwIEDBZXDkJ49e9aaqKTTAIYCOCywHBL1BFuRT7Yc3Lb224qcsrbf2rXF7Ei+ePEipk2bBoZhPN73iRMnEBwcjP79+xttF9r5zEUkicXxDOhl4oOgioGIzhHRBSFlkJAwxNYAbGu/M4rF2rVtKTQhICL897//RadOndCpUydBZOjWrRvWr18Pf39/AMD06dPRpUsXwRUDF5HUokULQeUw5Pbt2/wP5jOtcHcDcBA2TEkAxgJIBZDarFkz186xJCRchC1TVV3xB+Tm5tKzzz5LACg4OJgqKioEk6WqqooCAgJ0aSeKi4spT+CQLM689f333wsqB0dmZiZnZuNlSlK4VCWZgWGYfQCamNk1jYh+5HsdIloJYCUAPKgzICEhOmw9wdeFhWTbtm3D2LFjUVhYCAAYPXo0VCqVYPIcO3YMxcXFiI6ORmRkJACgQYMGgskDiG/GsHXrVruOd7tiIKJ+7u5DQkLC/dy7dw8TJ07EunXrjLYnJiYKJBHLzp07AQADBgwQVA4OIhLV4jYiwpYtW+w6x+2KQUKiNlFRUQFvb2+hxUBGRgYKCgrg6+sLX19f+Pn5Gf318vLyqDxnz57FwIEDdQMeR58+fRAdHe1RWUz55ZdfAAADBw4UVA6O27dv4/79+wgICEBZWRm8vb3h4+MjmDxZWVno2bMnsrKyeJ8jqPOZYZghDMNcB9AdwC8Mw+wRUh4J4SASh3Vw5syZmDBhAq5evSqoHP7+/nj55ZeRkJCAuLg4REVFISIiAkFBQVCpVPDx8cGsWbNQVVXlEXnatWuH1NRUPP7440bbx40b55H+LZGdnY2zZ8/C398fvXr1ElQWDsPZwpo1a3Dy5ElB5YmKisLUqVPtOkfoqKQfiCiCiFREFEpEz/A5r6CgAIcPH0ZxcbHFY8rKyrB9+3aPDTg7d+7E8ePHUV1dbfGY69eve0QWjrS0NBw9ehRqtdrsfnvC11zFtWvX8PPPP6OsrMxo+9tvv4309HSPywMARUVFWLZsGfbt24dHHnkEy5YtQ2RkJF5//XVcvHhREJm8vLwsmiF69+6NlJQUTJ8+3aMzh3379uHAgQNQKBQICwtDcHAwhgwZ4rH+zcGZkZ566imPz6Iswf1fNW/eHKtWrUJKSorAEgF379617wQ+HmqxNRgsZGnTpg0NGzaMFixYQHv37qWCggKdJz46OpoeffRR2rdvn8PefL5ERkbqlsA/9dRTNGfOHDp27JiuwD0R0ahRo2jcuHFGMrqTYcOGEQAKCgqil19+mZKTk43ytnTp0oUWLFhA1dXVHpGHiGjhwoUEgFQqFT399NO0ePFiunDhAr3xxhskl8tp8uTJdP/+fY/JQ0T022+/1VggxTWZTEbDhg3zeIqFO3fuGJWsBUChoaGUnJwsWIqFW7duUd++fWnZsmW0atUqeu+99wSRw5DMzEyaMmUKbd++XWhRdJw5c4bmzp1LH3/8MQHiqPd8/fp1eu6552rHymdHW6NGjSguLo6USqXZf+bmzZvTkCFDqG3btrptTz75JP3xxx+uvNc6qqqqaOzYsRQVFVVDFh8fH+rXrx/Nnj2by1VCQUFBtHz5crcX7vnkk0+oVatWRvIwDEOPPfYYzZo1ixISEghg69Gmp6e7VRaOtWvXUnx8fI37pFKpdK8jIyPpt99+84g8RETp6en0z3/+k3r06KELezTXBg0aRL///rvH5Nq1axd5eXmRTCajiRMn0t27dz3WtyXUajVptVqqqKgQtBhObWDw4MEEgNq2bSu0KESkeyiru4qBS4lRWVlJaWlptHr1anr77bfpscceMyrAba49//zzbs28eOPGDdq8eTONGzeOoqOjrcrSqVMnOnr0qNtkIWJTBpw/f54WLVpETz75pEVlKpfLaerUqR4r93nz5k1at24dDRs2jIKCgszK9Prrr1NRUZFH5CFiFfyDUGij1qhRI+rWrRsNHz6cpk+fTllZWR6RJzMzkxISEgRPCCdhP9evXye5XK57GCsuLhZaJPrss8/qh2IwR3V1NZ0+fZr+/e9/WxyQGYahkSNH0t9//+3QDbaH3Nxc2rJlC7355pukUCjMyjNy5EjK5RLkuJni4mLatm0bN62s0aKjo+nIkSMekYVj8eLFFr+rJk2a0P/+9z+PmE9+/PFHSkxMpPnz59N3331HaWlpdO/ePbf3a4ni4mLBC8hLOMasWbOMfscHDx4UWiSaMmWKeBa4eRqFQoGYmBhMnDgRAOvE+//t3XlQVVeewPHv4YGKQlgUEBTUSBRhUNnGZSRaMY64MSGLOtqEGDsYd7NOUpJYVsdKj7EsQyXldNKhJx3tTNJZeuwkY0i6h6iJmXaNG2ARRaDZNCCiyH7mD+SFhyDvAY/7nv4+Vbfevffdy/1x4d3fPeeed05gYCBBQUEEBgZazF+4cIGRI0fi4mK/Z/CBgYEsWrSI/Pz8Th8Cv/fee/zpT39i8+bNrF27FldX+/1ZPD09mT59Oi+//HKH7+fm5hIfH8/q1at59dVX7f5FodOnT5OZmcm8efMwmUy4urpiMpks5r/44gsGDhzInDlz7BpLYmIiiYmJdj2GLYz+kpbonqamJn77299arDt06BDTp083KKIW169ft3rb2y4xQEuLpB07dhAYGIivr68hnXu1dfXqVQYNGkRGRgYeHh54enri4eFhnlqX3d3d7ZqkWhUWFrJx40ZcXFxumkwmk3m+sLCQ8PBwu8YSERFhblkixO0gMzPzpubOhw8fNiian9mSGJTWjtF+3BaxsbHaEU60EMLxVFdXG1raWrNmDT4+PrzzzjuUlJQwe/Zs8vLyyMvLMywmgJSUFH7/+98f0VrHdrWt0d1uCyFEr3rxxRcNPX56ejq/+tWvqKmpAVqqin/3u9/d8jtOfcGWEoMkBiHEbeOzzz7j/fffNzQGFxcX6urqqKqqwsXFBV9fX+Lj43FzczM0LkkMQog7Tm1tLRs2bODq1atGh0J5eTkAfn5+mEwmg6NpIYlBCHHH2b59Oz/++CP19fV91odUZ8rKygAICAgwNI62JDEIIe4oBQUFvPLKK+bl9n1x9TVHTAy1tbVWbyuJQQjh9J599lmLO+Lq6moDo/m5KsmREkPrw3BrSGIQQji1v/zlL/zxj3+0WGf0c4bWEoO/v7+hcbRVWVlp9baSGIQQTquhoYF169bdtN5REoMjlRhuNUxBe5IYhBA91tDQwJ49e/r8uDk5OWzYsIENGzYALV3QgCSG9pqamuQZgxCi75w8eZLJkyebL4Z9KTIykieeeIK///3vALz88su8++670iqpnQMHDmBLLxe3ZV9JQgj7a2hoYOvWrWzevJlBgwaxZMkSQ+LQWvPNN98ALWNQjxs3zqaLoD20Pnx2lGcMH3/8sU3bS2IQQtjs5MmTPPbYYxw9ehSAxx9/nEGDBhkSS05ODuXl5fj7+xMWFgZgeMeZjlRi0FrzySef2LSPVCUJIazW2NjIli1biImJMScFpRQrV640LKasrCwAZsyYYXhCgJZzdOnSJcAxSgxHjhwxV7VZSxKDEMIqp06dYvLkyaSlpVl0CDdnzhxCQ0MNi6s1MRg93kGrS5cuobXG19eXwsJCo8Nhz549JCUl2bSPVCUJ4cAaGhpYsWIF165dIyAggKFDhzJ06FCLeX9//z7poM3b25tnnnmG559/nqKiIvP6NWvW2P3YnWn7fGHGjBmGxdFW6/MFT09PPvroI55//nlD43nuuecoKSnh008/tXqfOzoxXLx40TxAjhCdOXr0KC4uLkycOLHPj+3m5sb69euZNGkSdXV1HW7Tv39/0tLSeO655+jfv7/dYhk+fDjXrl2jqKgIk8lEU1MTo0ePZvbs2XY7Zldyc3MpKyvDz8+PcePGGRZHW63PF+rq6ti/f7/hicHT05Nz587ZtI9TViVVVlayd+9eDh48yOnTpykqKqK6uprm5mabfk59fT3BwcEsX76crKwsm/dv669//StZWVlkZ2fz008/datVRHl5OS+99BIXLlzodhxtnThxgu+++47i4uJu/W5nzpzplTjaKioq4sCBA1y8eNHqc2RrUztbXb58mc8++4yjR49SWlpKU1OTxft+fn5ER0czdepUdu3aZVN78O66ePEimzdvZsGCBSQkJHSYFJRSJCcnk5OTQ1paml2TAsD+/ftZtWoVADt37mTatGmsXr26T0Yd7Ezb1kiO8HwBfk4Mly5d4ttvv+3RdaW32NKBHjjpCG5KqQ6DVkpx11134eXlZX7tan7Lli0cOnQIgJCQEJYuXUpycrLNdx/jxo0jJyfHvOzq6oq/vz8BAQEEBARYzLdfHjJkiHmc5/j4eL799lsSEhJITU1l3rx53a4mSE5OZteuXUDLXeWIESMYOXIko0aNuunVz8/vpg/WwoULKSsr46mnnmLBggW90n3w66+/bv4yko+PD2PHjjVPY8aMYezYsYSGhjJgwADzPkuWLOHMmTO88MILPPLII73ejfH+/fu59957zcsmk4mhQ4cSFBRkHh/8o48+Mj9QHDJkCMuXL2fFihWMGjWqV2NpVV5ebtGixcXFxeICM3/+fLZs2cL48ePtcvyOnDlzhsTERObOnUt6ejp79+5l0qRJ+Pj49FkM7X355Ze89dZbJCYmkpKSYlgcbX3zzTekpaVx4MABoOUGLTIy0tCYcnNzmTJlCpWVlVaN4IbW2ukmb29vPXPmTB0bG6vHjBmjAwIC9IABAzTQa1NMTIzesWOHLisr09ZISUnRU6dO1aGhodrT09OmYymltJ+fn46IiNDBwcEW7wUGBuqNGzfq8+fPWxVHW2lpaTomJkb7+vp2GcPAgQN1eHi4njt3rl69erV+7bXX9MqVK83vjx49Wqenp+vq6mqb42grIyNDR0dHaw8Pj1uej1GjRumEhAS9fv16vWjRIos4fvOb3+ja2toexdHW999/r2fNmqUjIiKsOldt45w3b57+/PPPdWNjY6/F02rTpk169+7dOjc3Vz/99NMa0FOnTtX79u3r9WNZq6KiQjc0NBh2fGcxb9488//Jm2++aXQ4WmutIyIiNHBYW3GNdcoSQ2djPtfX13PlyhWqqqrMr7ear6qq4uDBg1y+fPmmnzVo0CCmTp3Kfffdx6pVq7jrrrtsirGmpoby8nLKysrMr22ntusqKiq6/HlKKWbPnk1qairz58+3uRRx5coV8vPzyc/P5/z58ze9WtuPire3N6mpqaxZs4bg4GCbYmhLa01xcTFnz54lNzfXYsrPz++y+B0UFMTTTz/NihUr8PDw6HYcHbl+/TqlpaUUFxdTXFxMbm4uL730Uofb+vn5ERUVxUMPPcTy5cvtNijL0qVLWbRoEQsWLHCYKhPRsfLycoKCgsxVkosXLzZ8VDmAsWPHcvbsWatKDLdVYrBVfn4+YWFh1NXVMWTIEKZNm0Z8fDz33nsvEydONFfv2FtDQwMXL16kpKSEBx54wKLFB0BwcDBxcXHExsYSFxfHpEmTenWwc601ly9fvilZfPHFF50+tDKZTCxevJhXX321RwmiI3V1deTl5ZmTxs6dOykoKOhwWx8fH9auXcu6desYPHhwr8bRau3atbzxxhuEhIQQFRVFdHQ0UVFRREVFMWzYsD65UDc3Nxtaly+sl56ezvr1683Lw4YNo7Cw0PCEfvfdd3P+/HlJDF358MMPuXz5MvHx8YSFhRn+h3v77bdJS0uzSAKxsbGGfHuypKSEiIgIKisrUUoxatQoIiIizFN4eDhhYWEMHDjQrnF89913xMfH09zczIABAwgNDTVP99xzj3l+2LBhdrlbb2xsZN++fUyYMMFuiUfcXuLi4mh/fTp37pzdnkdZKzg4mKKiIkkMzqaiogIfHx/DExTAV199RWlpKREREX2SADrz9ddf4+rqSmhoKEFBQXLXLG6pqamJ+vp6w5qg5+Tk8Itf/IKxY8fyhz/8gYiICK5fv86mTZt49NFHDYmpVWBgIKWlpVYlBvmUORBfX1+HSAoAs2bNIjk5mejoaMOSAsD999/PjBkzGD58uCQF0aVdu3aRl5dn2PFHjBjBoUOHmDZtGgBTpkzhzJkzTJgwwbCYWrX9tnpX5JMmhLgt1NXVsWnTJkpKSgyLwd3dHaUUVVVVAHh5edG/f39JDEIIYYS3336bCxcuUFxcbHQo5sRga2tGe2psbLR6W0kMQgind+3aNV555RUAQ0sMrVqbf3t5eRkcyc+kxCCEuKOkp6ebu6JwhMTQtirJEWitJTEIIe4clZWVbN261bwsVUk3s7W/JkkMQgintnXrVoveCxyhxOBoVUm2lBZAEoMQwomVlpby+uuvW6xzpBKDJAYhxB2ttrbWppYvveHjjz/mySefNDcH9fb2pqSkxK7dtFvD0aqSJDEIIfrciRMneOKJJ+zWiWBnVq9ezfbt26murgZg7969LFu2rMOOMfuSo1Ul2ZqwJTEIIbqtubmZbdu2ERcXx+TJkw355n5lZSXnzp2jX79+REVFsXPnTry9vfs8jlZaa6evSrqjh/YUQnRfQUEBKSkpZGVl4e7uztKlSw2J4/jx4wBERkbSr18/AEO7lqmpqaGpqQk3Nze7j6pnLalKEkLYldaa3bt3M378eLKysoCW0f6Muks/evQoANHR0YYcv7221UiO0veZrVVJUmIQQlitoqKClStX8uGHH1qsT01NNSgiOHbsGOA4icHRqpFAqpKEuG0ZPVhPcXExc+fO5YcffrBYHx4ezpQpUwyKyvFKDI7WIgkkMQhx28rJySEhIQE/Pz9CQkIYMWLETdPgwYPtVn0RFBTEsWPH+OUvf0lGRoZ5fWpqqmFVJteuXSMnJweTyURkZKQhMbTnaC2SwMmqkpRSrwELgHrgR2CZ1trYdmbtHDt2jCNHjpCYmIi/v7/R4VBXV0d1dTVDhgwxOpQ73k8//dSno7qNHj2aRYsWsW3bNvNdcnvjxo1j586dTJ8+3S4xfPrpp2RkZODi4sL48ePJzs4mOTnZLseyxg8//IDWmvDwcMMG52lPqpJ67ivgRa11o1Lq34EXgX/raqeamhpOnDiBm5sbbm5uuLq6djpvMpl6dDcTHh7OggULWLFiBdOmTePBBx8kKSmJkJAQi+1ycnLQWuPu7s6AAQNwd3fH3d0dNze3Xr2b6tevHwkJCQwePJiFCxeSlJSEr69vh9sWFhZSV1eHl5cXXl5e5hYbvWnHjh3MmDGDCRMmWPV7VlRUcOXKFfz9/XttAKDjx49bffyO1NTUUFBQgK+vLz4+Pri5W3NGnAAABV1JREFUuVm137vvvssHH3zAsmXLWLx4ca8+fL169SqZmZmcOnXKPJ09e9Y8wHx7ISEhbNy4kccee8wuf2eA7OxsUlJSAPj1r3/NzJkz2b59e6f/f33B0aqRQKqSekxrndlm8XvgYWv2y87Otmngi66ShzXzzc3N7Nu3j3379rFhwwZiY2PNSSIsLIykpCRycnJuOraLi4s5SbRPGtas7+i9KVOm8MYbb5CZmcmTTz7JrFmzWLhwIQ888IDFxWnjxo2899575mV3d3e8vb3x8vIyv7adv9U6b29vPDw8bqrjrq2tJSoqisjISB599FGWLFlCUFBQp3+L3bt3s27dOgA8PDzw9/cnICAAf39/i/n2rz4+Pp3Wr2dkZLB3715SU1NJSUnBz8/P6v8NaCkVto64BS0faF9fX/M0ePDgDufHjBnD4cOH+dvf/sZTTz1FUlISy5YtY+bMmT1+FlBVVcVDDz1ksU4pRWhoKAUFBdTX1wN9kxBaFRcXYzKZePjhh3n22WdRSrFt2za7HrMr/fv3JyIigri4OEPjaMvLy4uYmBjuueceo0MxGzhwIDExMRw5csSq7R1mzGel1J+BD7TWuzp5PxVobfrwD8CpvortDjAEuGR0ELcJOZe9S85n7xqrtfbsaiO7Jwal1NfA0A7e2qi1/u8b22wEYoEHtRUBKaUOWzOgtbCOnM/eI+eyd8n57F3Wnk+7VyVpre+/1ftKqRRgPjDTmqQghBDCvoxulZRAy8Pm6VrrGiNjEUII0cLoLjHeADyBr5RSx5VS/2Hlfm/ZMaY7kZzP3iPnsnfJ+exdVp1Ph3n4LIQQwjEYXWIQQgjhYCQxCCGEsOC0iUEp9ZpSKkcpdUIp9alSyriROZycUuoRpdRppVSzUkqaBnaTUipBKZWrlMpTSr1gdDzOTCmVoZQqV0rJ95V6SCkVrJT6X6VU9o3P+fqu9nHaxEBLdxr/oLUeD5ylpTsN0T2ngAeBfUYH4qyUUibgTWAOEA78q1Iq3NionNp/AglGB3GbaASe0VqPAyYDq7v633TaxKC1ztRat3YZ+D0w3Mh4nJnWOltrnWt0HE7uH4E8rfU5rXU98F/Avxgck9PSWu8DKoyO43agtS7RWh+9MV8NZAPDbrWP0yaGdh4H/sfoIMQdbRhQ2Ga5iC4+fEL0NaXUSCAK+L9bbWd076q3ZEN3Go3A7r6MzdlYcy5Fj3TUtau0BRcOQynlAXwMbNBaX7nVtg6dGKQ7jd7T1bkUPVYEBLdZHg4UGxSLEBaUUm60JIXdWutPutreaauS2nSnkSjdaQgHcAi4Ryk1SinVD1gM7DE4JiFQLQOVvANka623W7OP0yYGut+dhmhHKZWklCoCpgCfK6W+NDomZ3OjIcQa4EtaHu59qLU+bWxUzksp9T5wEBirlCpSSi03OiYn9k9AMnDfjWvlcaXU3FvtIF1iCCGEsODMJQYhhBB2IIlBCCGEBUkMQgghLEhiEEIIYUESgxBCCAuSGIQQQliQxCCEEMKCJAYheoFSyqSUev1Gf/cnlVJ3Gx2TEN0liUGI3vEicE5rHQGkA6sMjkeIbnPoTvSEcAZKqUFAktY65saq88A8A0MSokckMQjRc/cDwUqp4zeWfYGvDYxHiB6RqiQhem4i8LLWeqLWeiKQCRzvYh8hHJYkBiF6zgeoAVBKuQL/DPzZ0IiE6AFJDEL03FlaBlkHeAr4XGt93sB4hOgR6XZbiB5SSvnQMub4EFrGEEjVWl83Niohuk8SgxBCCAtSlSSEEMKCJAYhhBAWJDEIIYSwIIlBCCGEBUkMQgghLEhiEEIIYUESgxBCCAv/D5xVY1kt+ufYAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:12<00:00, 2.44it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXd8E0f6/z+r5t5xNxgwNaYYTDAYQif0XlJooYQUUi+X5FIu+eaXduEO7o7kUoCEQCAhFNM7piQ2xmCwDcZgMMU2tnDvTdJqfn8ICcmSbMm2NGuY9+u1L1ur3dnPrqR55pl55hmOEAIGg8FgMLSIaAtgMBgMhrBghoHBYDAYBjDDwGAwGAwDmGFgMBgMhgHMMDAYDAbDAGYYGAwGg2EAdcPAcVx7juNOchx3leO4KxzHvU5bE4PBYDzKcLTnMXAcFwggkBBykeM4NwAXAEwnhKRTFcZgMBiPKNQ9BkKInBBy8f7/lQCuAgimq4rBYDAeXSS0BejDcVxHAP0AJJp4bzmA5QAglUojAwMD7arNFIQQlJeXo7a2Ft7e3nBwcKAtCUqlEhUVFVAoFHB3d4eLiws1LYQQ1NXV6TYAcHZ2hoeHR6tdQ6lUorq6GrW1tQAAsVgMDw8P8DxvtKnVapjykKVSKdq1a9dqmgBAoVCgqqoK9fX1AAB/f38AMKlLq43ned35HMchICCgVTU1B6VSibq6OtTW1oLnefj5+UEsFtOWBUIIqqurUVVVBS8vL0H89gDN51taWgonJyeqv72GVFZWQq1Wo7y8vIgQ4tvU8dS7krRwHOcK4DSAzwkhMY0dGxAQQD755BP7CDNDSUkJtm3bhvz8fEilUkybNg3h4eHU9JSVlSE2NhZpaWkANBXw2LFjERERYZPrKZVKAJpKVR+FQoGMjAykp6cjMzMTKpVK91779u3Rr18/9OvXr0XX5nke6enpSExMRG5urlXnSqVSeHh4wN3dXbf5+vqiV69eLdJkjrKyMpw/fx6+vr5Nfhbayq68vBz19fXo3LmzTTQ1l8LCQvj6Nlmn2JXa2lo4OTnRlmEAz/OCMJ4NIYTgpZdeukAIGdDUsYLwGDiOkwLYCWBLU0YBAPXWQUZGBnbv3o26ujp4e3tj7ty5uhahvamrq8Off/6JxMRE8DwPiUSCqKgoDB06FI6Ojja5Zl5eHmJiYrB8+XIATRuD8PBw9OzZE+7u7i26rlqtxvnz5xEXF4eqqiqTx3Ach44dOxpV/trXtnom5vD09MTYsWMtOpbjOLi6usLV1dXGqpqH0IwCAMEZBQA2MQq1tbWQSqWQSJpfZXMcZ/Gx1A0Dp1H7I4CrhJDVtPU0BiEEJ06cQFxcHACge/fumDFjBhVDxfM8kpKScPr0aV03Su/evTFq1Ch4enra5JqEEMTFxeHUqVNwcHCwizHQRyQSISoqCj179kR+fj7u3buH/Px85Ofno7i4GIQQEEIQGRlJ1XtjMFobqVSKzZs3Y+LEifDz87P59agbBgBDACwAcJnjuJT7+94nhBykqMmImpoa7NixA7dv3wbHcRg1ahSGDBlilRVuLa5evYrjx4+jpKQEANChQweMGzcOQUFBNrtmWVkZYmJikJOTA0DTgomJeeDc2coYmELrBXTt2lW3T6lUorCwEPfu3dMZCRqfDYNhCyQSCfz8/LBu3TqMHTsWAwcOtO31bFq6BRBC4gAI+hecm5uLbdu2oaKiAi4uLpg1axY6depk8+vyPI/z589j0KBBOh1HjhzRVc4+Pj4YM2YMevToYVMdqampOHTokG4gVYuXl5euBW9rY9AUUqkUQUFBNjWODAZN+vfvj/Pnz+PQoUO4ceMGpk2bZrNuR+qGQeicP38eR44cAc/zCA4Oxty5c+1SCarVamzfvh3V1dXo0aOH0cDy8OHDMWDAAIhEtos4rq2txf79+5GebnpKSVVVFfz9/akbBQbjUSAgIACBgYGQy+XIzMzE999/j6lTp6Jbt26tfi1mGMygVCqxf/9+XLp0CQDw+OOPY9y4cXaJNlCr1di5cycyMjIgk8nwzTff2G1gWUt9fT3i4uIgk8kwYMAASCQSiMViSCQSg626utqmOhgMe1NaWgpHR0dBDmz369cPcrkcAFBdXY3ffvsNjz/+OMaOHWsUIdgSmGG4j36fdMNQ1MmTJ6NPnz5207Fr1y5dK12hUACw/cByQxwcHCyOpmEwHiZcXFywdu1aREREICoqqlUr3JbSu3dvHD161CDYIzk5GUqlEpMnT261hiszDADu3buHgoIC9OnTh2ooKiEEe/bs0XUZaRGLxfD392/ViWEMBsM0MpkMAwcOxKFDh3Du3DmMGDECERERNu22tRRHR0f07NkTly9f1u2bMmVKqzdc6d8pZZRKJXbu3ImsrCzExsZi69atqKurQ/fu3bF8+XK7GoX9+/cjNTXVYL9YLEZAQAAqKytRWFhoFy0MxqNOZGQkvLy8UFlZiX379uG7777DtWvXaMsCoBmEBqCLyjtw4ECr1w2PvMdw9OhRFBUVoaioCACohaIeOnQIFy9ehKenJ4KDgxESEoKQkBAEBAS0aFILg8GwHrFYjFGjRmHnzp0AgKKiIvz+++8ICQnB2LFj0aFDB2raQkND0aVLFzzzzDOIiYlBWloatm3bhmXLlrXanKpHusa5fv06kpKSDPbNmDEDvXv3tquO4uJidO7cGcOGDRPsrFcGwxbk5ORApVIhNDRUEF01+oSHh+PMmTO6wV4AuHv3Lg4ePIjJkycjJCSEii6O4zBnzhxwHIcpU6YgPz8fhYWF2LNnD+bOndsq1xDWJ2FHqqqqsGfPHqP9e/fuNTIWtsbHxwc9evRgRoHxyBEUFITjx49j9erVOHjwILKzs00mOqQBx3EYM2aMwT4PDw/MmzePmlHQIpPJdH+feuopODg44OrVq0hISGiV8h9Jw0AIwe7du1FTU6PbJ5PJ0L9/fyxatAgDBjSZY4rBYLQCYrEYc+fO1eXB2rBhA/7zn//gyJEjVidItAWdO3fWJTP08vJCeXk5Nm7ciMrKSsrKHuDj44Np06YBAI4fP46srKwWl/lIGoZz587h5s2bADSpHKZNm4a33noLU6ZMod4SYDAeNTw8PDBr1izdmF5FRQXOnj2L9evX47///S9OnToFtVpNTd+YMWPg6+uLZcuWwd/fH8XFxYIzDj179kR0dDTUajV27NjRYm2PnGHIz89HQkICoqOjsWLFCixZsgQRERE614zBYNifsLAwDB8+3Gh/QEAA+vfvT3X8ITAwENOnT4ezszMWLlwoWOMwevRohIaGoqqqCtu3b2+RMX3kDINYLMZrr72GsWPHtvriLAyGkLl27RpiYmIQGxuL8+fP4/r167h3754uOy9thg0bhi5duhjsy8rKEkSXkjYHl5CNg0gkwuzZs+Hm5oacnBwcPXq02WUJZqEeawgNDSXvv/8+bRkMRpvjwoULOHjwoFFrUruAkZeXFyZNmkRtMmVtbS3Wrl2L8vJydOrUCbdu3QKgSQUxfvx4wXj2NTU12LRpE/Lz8+Hj44NFixbBzc2NtiwAmkivn3/+GWq1GrNmzTJYhOrFF1+0aKGeR85jYDAeZSIjI7FgwQKjPEBKpRJlZWWIjo6mOsPeyckJc+fOhY+PD+bPn6/LT5acnIy1a9ciLy+PmjZ9hOw5tG/fHk8++SQAYN++fc2a/MYMA4NhZ2pra3H37l2kpqbqlki1Jx07dsSyZcuMulJVKhX279+Pc+fOGaVYtyeBgYG6OP1Bgwbh+eefh6+vL4qLi/Hjjz8iPj5eECGtQjYOUVFR6NWrFxQKBbZt22b158m6khgMG8DzPEpKSlBcXIyioiIUFxfrNm2YdFRUFMaPH09NY11dHbZv367rrnF3d0dFRQUATRLFiIgIDBw4EN7e3tQ0alGpVDh69CjOnz8PQGPcZsyYIYiU70LtVlIoFFi/fj0KCwvRs2dPzJ071+KuJGYYGA89JSUlcHNzs1uWTEIILl++jLi4uEbd+MjISPj5+cHHxwfe3t7w8PCwe/SNWq3GkSNHcO7cObz33nvIzMxEYmIisrOzdcd06dIFUVFRCAsLo74q3vXr17F3715UV1fDyckJU6ZMQc+ePalqAoRrHIqLi7Fu3TrU19fjySefxMaNG5lhsBdKpVJQqXkBzcxuoc2kLi0thVQqtZuuvLw8xMfH4969e3j11VcN3lMqlSgtLUVJSQkkEolRNExrQAjBjRs3EB8fb1DRmkMsFsPT0xPe3t7w9vbGmDFj7JYnKykpCY899hicnZ0BaDIOJyYmIi0tTZfi2cfHB5MnT0bHjh3toskc2qwFmZmZAIBBgwZh3LhxVDUBxsZh2bJlNl83xRKuXr2Kbdu2QSQSITc31yLD0CZzJfE8T1uCjszMTOzZswfPPvssAgMDacsBoIk8OXLkCKZNm4bw8HDacnDr1i0kJibixo0bGDx4sM3Xebh58ybi4uJw584dAJpuh/j4eJSUlOg2bZeJ9n1bGAaO49CtWzd069YNOTk5OHPmjC5Dp6enJyIjIw00VVZW6rqbZDKZXbuZGs72DwgIwLRp0zB27FhcuHABSUlJKC4uhouLi900mcPV1RXPPvsszp07h2PHjgnmd6cdc9i0aRNCQ0MFYRSAB5PfCgsLLQ79bZOGoa6ujrYEABqj8Pvvv0OlUiEtLY36F7S2thZ79+7VVT537tyxm2EoKyuDXC7XufUKhQKXLl3CuXPndN0pYrHYZkZdrVbjypUrOHPmDO7du2fw3p07d3RGQotIJNK1zu0x2719+/Z46qmnUFRUhDNnziAtLQ39+/fXtdABzTMrLS1FcXGxYL7jzs7OeOKJJzBkyBBkZ2fD19eXtiQAGqMbFRWFHj16CGqdEmdnZyxZskQwYbVaRo8eDY7j8Mcff1h0fJs0DEJotegbhQEDBhgl27I3t2/fxq5du1BZWQkHBwdMnDjRbqvOZWdn4/fff8ewYcNQWlqKc+fOISUlRVe5ubm5YcCAAYiMjGz1z06lUuHixYtISEhAWVmZyWOkUin69eun68v39vaGp6cnldm07dq1w9SpUzFy5EijiCSZTAZ/f3+7rQFiDSKRiHoXkimEZBS02MsoqFQqi7sarf2ut0nDQJuGRmHixInUBuV4nseJEyeQkJAAQghCQkIwc+ZMeHl52eX6qamp2LdvH3ieR2JiIo4cOaILJQwJCUFUVBR69uxps7WyJRIJwsPDERAQYBQBVFpaCp7noVQq0aFDB0F0q2kRwsAko22TnZ2NqqoqmzQAmWGwEtpGobi4GD4+PgA0i4fExMRALpeD4zgMHz4cw4YNs0tLmBCC2NhYxMfH6/aVlpZCLBYjPDwcUVFRujQCtsbFxQUuLi5Gi6eo1WqUlZUZhIgyGA8LgYGB+Oc//wme59GvX79WLZsZBiugbRTy8/Oxa9cuvPjii7oBZqVSCU9PT8ycORPt27e3iw6FQoGYmBhkZGQYvRcREYFJkyZRD2sENO6ztuuIwXjYcHJygo+PD/bu3Que51t1uQBmGCyEtlGor6/Htm3bUFpaiq1bt+oq5d69e2PSpEmttqRfU5SXl2Pr1q1GA7yA5ouam5uL1NRURERE2EUPg/EoExwcjKKiIhw4cAA8zyMqKqpVymWGwQJoGwUA2L17N0pKSgAAGRkZdh9gBoDKykqcPHkSgYGBumgQd3d33V+hzeVgMFqLmpoagwgyodC+fXukpqYCAA4fPgyVSoUhQ4a0uFxmGExQXV0NQghcXV0FYRTi4+N1IahaOnfujLCwMLvqcHNzw/Tp0+16TQZDCNy+fRsFBQUYMWKEILpJtTQMtT5+/Dh4nsewYcNaVC5LomeCP/74A+np6YIwCnfu3EFsbKzR/pycHCQmJlJd2YrBeFTo2rUrEhISsHnzZkEFMvj6+hqFx548eRInT55sUbnMY2hAaWkpLly4AHd3d1RWVlI1CpWVldixY4cu/NPZ2Rk9e/ZEr169EBoaKqiWC4PxMCOTydC1a1ekp6dj7dq1mDNnDoKDg2nLgkgkQlBQkG4Cp1gsxvPPP9/i+R3MMDTgxIkT4HkepaWlAID+/ftTMQpqtRrbt28Hz/OIiIhAr1690KlTJ6pLHDIYjzK9evVCeno6ysvLsWHDBowfP75VI4GaS0hICJRKJRwcHHDr1i1cvHgREyZMaFGZzDDoIZfLkZaWZrDvypUrAIDx48fbdXD17t27GDp0KMLCwmw2OYzBECIFBQXw8/OjLcOIrl27QiaTQaFQgOd5HDhwADk5OZg8eTLVwItOnTohIiICKpUKP/zwA5KSkjBw4EDdfKfmwJqfehw/ftzgtUgkQq9evTBixAi7f/AdOnRAt27dmFFgPHKUlZVh3bp1uH37Nm0pBkgkEnTv3t1g36VLl/Djjz/qIgZp0LlzZ/j4+MDf3x8RERFQq9U4duxYi8pkhuE+t27d0i1YAmgyEr788suYPHkyS1/AYNiRbt26QSKRYNOmTdi8ebPJOTO00F8/GQBCQ0MxdepUwaS4HzlyJKRSKTIyMpCVldXscphhwIP0DoDmg162bJlu3VkGg2F/tEkpb968iR9++AExMTFmkyTak7CwMDg6OsLDwwMcxyE7OxsqlUow2VTd3NwQHR0NADh69Gizl0BlhgFAeno6eJ7HvHnz8Nxzzwki2oDBeJRp3769QbfN5cuX8c033+Dw4cNUw0XFYjF69OiByZMnIzo6GoQQxMTECCZNOgBER0fD1dUVeXl5RmOmlsIMAzRr3b7wwgs2WayFwRAyaWlpuHPnjm6VNiGhXUNAC8/zOHfuHPbu3Uu1Ih4xYgS6dOmCkSNHIigoCOXl5di/fz81PQ2RyWQYOXIkACA2NrZZny0zDNC0TticAMajSPv27bFr1y589dVX2LhxI/744w/k5OQIYpVEX19fo5xbvXr1wlNPPUV1dTTtHAGxWIyZM2dCKpXiypUrutQUQqBfv37w8/NDeXk5EhMTrT6fGQYG4xHGw8MD8+bNg0QiwZ07d3Dy5En89NNP+Oqrr7B582bExcUhNze32X3VLWXEiBGQSCRwdnaGRCLB5cuXcfDgQWp6GuLj46ObM3Dw4EHd/CfacBynW0L3zz//tLr7jRkGBuMRx8/PD88++6zBamBKpRI3b95EYmIiysrKqHnU7u7uiIqKQv/+/fHUU09BIpEgKSlJUMahX79+6NmzJxQKBXbu3CmYNDVdunRB586dUV9fj9OnT1t1LjMMDIad4XkeFRUVyM3NRUZGBi5cuIDTp0/jwIEDuvTJ9qZ9+/aYM2eO0cx6f39/u6yJ3RhDhw5F37590aVLF8EahylTpsDd3R25ublWV8K25MknnwTHcUhKSkJxcbHF53FCebDWEBoaSt5//33aMhhtlNLSUty+fRv9+/e32zV5nkdCQgISEhLMuvUikQiLFi0yWonOnqSmpmL37t0ANN0RhBBIpVI88cQTiI6OFsSESyEktzTFnTt3sGnTJgDAc889R/Vz1Gfv3r1ITk5G9+7dcerUqQuEkCbzeDCPgWE3eJ6n6mZXVVXh4MGD+Oabb3RRLVVVVVa1pJqLWCzG0KFDsXDhQnTt2tXkMYQQ7Nu3D7t27cLZs2ehVCptrqshffv21fVNL1q0COHh4VAqlThx4gS+/fbbFk2aai1MeQ5CoGPHjoIMYdWf9GYpbdIwCKUPDwBqa2uxfft2QUy+0VJTU4MNGzYgJyeHmgalUmlQidy6dQvff/89zp07Z3ct9fX1OHHiBNasWYPz589DrVbjypUrWL16NVatWoXDhw/bTYu/vz+effZZLF682GgpVkIIioqKcOnSJcTGxlJrnUdHR2Pw4MHw9/fH7NmzsWDBArRr1w4lJSWC+e3pGweaEUoN0Yaw+vr6CuZZaSe9BQQEWHxOm+xK8vDwICtXrqQtAwCwbds2XL16FZ07d8aCBQtoy0FNTQ02bdqE/Px8BAUF4fnnn7e7BrVajd9++w1BQUGIjIzEkSNHkJ6eDkCzgPnzzz9vF9dfpVLh3LlziIuLQ21trcljZDIZwsLCMHfuXJvrMcX169cRGxuLgoICDBgwABEREcjLy0NtbW2LF1tpCYQQozkEN27cQI8ePahpMkVxcbHgMhTU1tbC0dFREN1bWnieh0gkwksvvWRRV1KbzK4qlNxFycnJuHr1KmQyGSZPnkxbjoFR8PHxwdNPP213DYQQ7NmzB5mZmSgrK8PZs2ehUCh0/dSDBw+2+Q9GrVYjNTUVp06dQkVFhclj3N3dMX/+fLRr147qD7hbt27o2rUrLl++jCtXriA4OFgQM+8bPhPtjF+hITSjAGjWPqdFQ4OuxVrvs00aBiEMgBUXF+PQoUMAgIkTJ8LLy8vuGgghUCqVkMlkRkZh0aJFVAzo0aNHcenSJQBAUVERAKBHjx4YP358ixcPsRSVSgV/f39MnDgRVVVVRlt1dTUqKytx+fJljBo1yi6aGoPjOPTp0wfh4eG0pTDaOCkpKejdu7dB6HFzEIRh4DjuJwCTARQQQno1dTxteJ5HTEwMlEolwsPD0bdvXyo60tPTUVtbi8cee0wQRiE+Ph5nz5412Ofi4oLBgwfbzSgAmu6hoKAgs++Xlzvjf/8bh+3bfbBrlwpKpRRSqRJKpQQdOhRhxYoj8PAw3fWkJSfHB6tWTUFd3YN07FKpEiqVBK+/fgA9esib1JmeHoxvvpkIbVe0RoMUDg71ePvtfQgJaXyylPY+cnLagZAH58tkSohEavz1r02XoX8f2vOtfRba+xCLNec351k0JCwxEY/v2gu3shJUenrj/IypuBkVZXU5jxolJSU4fvw4xo8f36JyhDL4/DOAlt2JHTl58iTy8vLg4eFBrQuJ53mcOHECKSkpgjAKKSkpRutZABqvJjExEeXl5XbXZI4jR/oiO9sXhIigVMoAcPf/ipCd7YejRyOaKgKbNg1HXZ3mXO2mVMpAiAjr14+xSMdPP42CWm14PsChvt4RGzeOtOI+DM9XKGSoq7OsDP37aO6z0N6H9vzmPAt9whITMXzLFniUFUMEAo+yYgzfsgVhzUjt8KghkUiQmJiImzdvtqgcwQw+cxzXEcB+SzwGR0dHQitGuK6uDvn5+QCAgIAAODg4UNFRWVlpsDiIRCJBQEAAlW622tpaFBQUANDE4js4OMDJyQmOjo42X+Counow8vLWA6gHoEL79vPh6Hjd7PEqlS/u3DkCQlwaKbUSnTqNh0RSZPLduroeyMnZ06iuoKAFcHExH4Gl0f1zIyUQtG8/1ey9WHYfjZdhyX009Syavo+mn0VDTt6+jWATid9yJRKM7NTJ4nIeRSoqKlBaWgqxWIygoCCjCYs3btx4uAafOY5bDmA5ADg4ODTaVdDaaAd0lEolkpKSoFAo0KFDB3Si9CXleR537twxiHN3cHCARCKBn5+fXY1DdXU1SktLERISAk9PT7i6utp8MLeyMgypqf8FzzsC0N6r5qtcUrIKAwa8YPbczMwV94/loXGY9bUSAGpwnAwKxRvo0OFbk2UkJf3LzPm4vx8oKFiDIUNmmtURH/+f+9eD2TIau5cH92G+DI5TNVrGg/sAHjxHLZY9C819mCvDsmfRkMAbN0zvV6ns+rtvCnMDvTQhhOgaruXl5UbjVjfMPFuTBQlhA9ARQJolx0ZGRhJ7wfM8WbFiBVGr1WTmzJkEAImKiiIKhcJuGhryySefEGh+ubotJCSE/PTTT0SlUlHTZS/69SMEML+lppo+Ly+PEDe3xs/Vbq6uhMjlxmUkJ1t2PkBIbKxpHUePWl6GqXux5j7MlWHNfZh7Ftbch7lnYQplcKjJQpQhoZYXYgc++eQTUlVVRVuGAd9//71BvfDjjz8avA8giVhSH1tykD02oRqGP//8kwAgL774IgFAXF1dSWZmpt2u35D8/Hzi6uqq++A9PT3JypUrSU1NDTVN9qSxCk0sJsTJiZD+/U2f+8YbmvfF4gcbx2nO5TjD/U5OhLz5pnEZ/fo9OE97jvb6+vvEYkL8/Ezr8PU1Pla/DH0dpu5Fex/6x2rvQ/sc9O/DVBna+9DfzGkw9yx8fQ2vr1+G/r7GnoUpNo3fTOolzgYfbr3EmfwyfrPlhdiBV155hcycOZPwPE9bio6ff/7ZwDC4uLgY1FfMMLQSK1asMHjQP//8s92ubYpXX32VACCOjo7knXfeISUlJVT1tAZ5eYRERxPi5WW+ta9FW6GZatU21UoeMsS8UTG1DRliXIY1LXWx2PQ9mNJvbnNza/l9mCrDmvsw9yysuQ9zz8IUQ4YQ8gw2k9sIJTw4chuh5BlsNqmBJl999RUBQD744APaUnRs3bqVNOxNGDRoEFEqlYSQNmYYAPwGQA5ACeAugKWNHW8vw6BSqYi/v7/BQ3Z3dyfz588ndXV1dtGgz82bN4mjoyNZunQpycnJsfv1W5vkZEI8PQmRSh9UIOZa+9rjG6t8PDya9hoYwsGaBoEQ+fXXX3X1wubNwvBmdu/eTQAQBwcHAoB8+OGHZOfOneT27duEkDZmGKzd7GUYYmNjjazv9OnTSVlZmV2u35DffvuNXLlyhcq1W5O8PEL69DGu2EUiYra1T4hhN05zWskMYfHGGw8+c5GoceNQXl5uP2EWou1m1lbEZ86coS2JHD58mCxdupT85z//IQDIlClTDN5nhqEVWL58ue6DF4lEZOXKlUStVtvl2g8zb7xhvkL38jLf2m+q+8Oa7goGXfLyCHF3N/4MzQ1SP//887pWr1DIysoyaDT6+fmRO3fuUNVUWlpKeJ4nubm5hOM4IpPJDBqylhoGoUxwExxKpRI7duwAoFnhKjY2Fm+//bbgwtPaGnI5sG6d8X6ZDHB0BMrLgYsXgftZNQyoqGjcTxDgevYMM6xcCZiKqh492vRnHxQUhOjoaFy+fNn24iyk4TyBgoICTJ06FVVVVdQ0eXp6QiQSISgoCEOHDoVCocDevXutLocZBjPExsaipKQEQ4YMQXJyMkaMGEFb0kPBypWAqTT1CoVmv1oNeHkBixfbXxvDPsjlwE8/AaWlmgZBw7bWtGnG54wcORJyuRzDhg1DXFycfYQVWSJBAAAgAElEQVQ2gUQiQWBgoO61p6cnAgIC8PXXX1NU9YA5c+YAALZv3271uYKZ+WwNAwYMIElJSTa9xuLFi+Hp6YmVK1fafPbuo4JcDnTtClRXN32sm5vGQ2A8fLz5JrBxo8YwABrjoFAYHpOaCvTp8+B1fX09PD09UVdXB0dHR/z++++YOnWq/USbYfDgwaioqMDVq1chkUiQnZ1t1boHtiQvLw8hISGQSqUoKCiAh4cHOI5jK7g1F0IInn32Wfz73/9mRsFCUlIADw9AIgFOnDB9jDlvoSHMKNBDqVS2OM9OU5w//8AoAMZGATD2GhwcHBAdHQ1Ak5Zm5syZ2LBhgw1VWsbgwYNx7NgxTJkyBUqlEj/88ANtSTpa1J1kyUCE0DZ7zmNgNE5eHiEDBhj29pubzNRU/L3Q4tQfVRYtWkRefvllIjc13bmVsGQeRcMopU8//dQoSvAf//gH1YAQ7fyA48ePEwAkICCA1NfXU9PTkDVr1hhEJ4FFJTFsTXIyITKZ6R+1NSkQGMLi5s2bRCqVEhcXF/LRRx/ZLFS0qYZC796Gx8fFxRnNKerfvz/Zu3evTfRZg1qtJo899hgBQLZs2UJbjo6G0UnMMDBsTq9epn/QIpF1KRAYwuO1117TVcC+vr5kzZo1NmkJN2YcZDLDY+vr64mzs7NOV4cOHUh1dXWra2ou3333HQE0udSExBNPPEEAkE2bNrFwVYZtSUkB0tIM94nFgIODJrKooMD8WAND+Hz44Ye6dT0KCwvx2muvoUePHvj1119bdZH7uDhgyBDT7z3+uOFrmUyGoUOHYuXKlejTpw+ys7PxxRdftJqWlrJgwQJ4eHggMTER585Znmbc1jQnOolFJTGaRe/exoZBH5EIaNcOuJ8BGIQIL0UxoKn0aK37XFVVhVWrVqGyshKOjo66zcHBAY6Ojnj88ccREdH0Qjm24v/9v/+Hjz/+2GCfo6MjPvjgA3zwwQd2fWZyOfDss0BJSTEOHPDAnTtn8cQTT0AmkyEtLQ1du3a1m5bGeOutt7B69WrMnz8fv/zyC205AAyjkxQKhUVRSdS7hZqzsa4kuliaslk7EzkzM5N68kFT7N+/n/SnnFRJLpeTCRMmGA2q9u3bl3oaiMrKSuLn52egKyYmhoqWN954kFNr1izNvoULFxIAZNy4cYLJSHDz5k3CcRyRSqU2Hby3Fm13Eh7mrqTWdGVbCiEEGzduRFlZGW0pBnz//ffIzs62SdlLljR9zJAhD2Yi//3vf8fmzZvx0Ucf4eTJkzbRZA01NTV4+eWXMXnyZNy8eRNvv/02NS0BAQE4cOAAvvnmGzg6Our2p6Wlgef5Rs60Pa6urjqPwd/fHwBw7do1u+uQy4Gffwa061Lt3Ans2AGsXLkS7u7uqKurozrbWJ/OnTtjypQpCA0NxZ07d2jL0TFnzhz4+vpafoIl1kNom6urayva0pYRHx+vGwgTSl52rSZPT09SUVHRrDKOHtW00ExFFzUWatgwX9HFixeNIkmKi4ubpak1SEpKIt27dzfQNGbMGGp69ElPTyf9+vUjAMi6detoyyGEEKJQKEiXLl1IfHw82bdvHxUNb7xBSFiY8XdNLifk+vXrgvEWtBQXFwumLtBSW1tLVCrVwx2VFBIS0prPrEU89dRTBAB59913qerQfhGVSiWJiIggAMh7773XrLL0V+by8WmZrieffNKgEn7yySepLHSkUqnIF198QSQSiVG3Tbdu3Uhubq7dNZmivr6e/O1vfyO3bt2iLUXHqVOnqFW+eXma1OymGiEDB1KR1KZ5qA1D74YBzpS4e/cuEYvFRCQSkaysLKpaPv/8c5Kfn0++/vprAoC0b9++WcsO/vab8Q+wuXMSjh07ZlQJAyCTJk2ye/9rbm4uOXXqFDl79ixJTk4mV69eJbdv3yZyuZyUlpZSXarVFEJrBdNC31uQSEx7DYzGOXTokO7/h9owCGXw+cMPPyQAyCztaBhF+vXrRyZNmkQ8PDwIALJjxw6ryzA3qNwcr4HneRIZGWlgEKKiosipU6esL4zxyNLUJLihQ2krFDY8z5OwsDDdHBRmGGxMbW0t8fX1JQCoV3bFxcWE4zhdBdy7d29y69Ytqz2Gjh2Nf3jaSBBrvQb9JQa7detGdu7cyVrBjGbR1MJMzGswz/Xr1wnwYIU5Sw1Dm4xKEgK///47CgsL0adPHwwbNoyqlj/++ENj5e9z+fJl9OnTB4mJiRaXkZICNAyi4LgHkSBz51quR6FQ4IMPPkBgYCDWrl2LK1euYObMmYKcx8AQPvdz55nllVfso6Mtcun+4hbWpgJnhsEK1Go1srOzQQjBmjVrAACvvfYa9QqvYQior68vTp06hVGjRllcxowZxvv0bA1KSizXs337dixduhSZmZl4/vnnIZFILD+ZwWhAXJwm4645mrEOjc3Qb6AJgdTUVABAYmIizp8/b/F5zDBYQX5+PqZMmYKjR4/i4sWL8Pb2xrPPPktbloFh6NixI+Lj4xEZGWnx+aa8hYY01WrTZ+7cuXjvvffg7Oxs+UkMRiNUVJhe8Q3QpGARAjzPY+vWrbRlGKA1DADwzTffWHweMwxWkJOTg0uXLukWCFm8eDFqa2tRXl5OTVNhYaFuucM+ffrgzJkzVqcHaGrC2pAhmlabpbA1LBi2QKUyPcoglCVds7Ky8OmnnwpqAq6+YbDGaDHDYAU5OTkANH3oALBq1Sr07NmT6qzn06dPAwCGDRuG06dPGyw1aCmZmebfs9YoMBg0kMuB8eOBe/foabh+/TquXr2KAwcO0BOhR3l5ObKysnSvFaZWRDIDMwxW0DDFhEwmw65duxAaGkpJkaYbafr06Th8+DA8PT2bPP7YMc1SivqZTysqzMd8MKPAaAusWAEcOUJ3IDojIwMA8NVXX9EToYd24FmLNWOhzDBYgdZj0LJ+/XrdcoO06NKlC7Zv3w4nJ6cmj5XLgYkTNZFGs2fbQRyDYSNUKpVuoFcuB3bt0uyPiaHnNVy/fh0AEB8fj/j4eDoi9EhNTcXcuXMxduxYAGyMwWboG4b33nsPCxYsoKhGwxtvvGFx1M/UqQ/6Y0tL2XoJjLZLZmYmjhw5AkDjLWghxLrQ6tZE6zEAwD//+U86IvSYM2cOfv/9d/Tt2xcAUGJFaCEzDFagNQzTp0/HZ599RlmNBkvdw61bgYZLWDCvgdFWkcvleO+995Cbq9Z5C9qYhz//pOM1aD0GANizZw+uXr1qfxF6aDPitm/fHgBw9+5di89lhsEKcnJyEBERgV9++QUiUdt6dPPmGb52dGReA6Ptcu/ePaSkpGDGDE1lJxY/mIwJ2N9rqK6uNupq/te//mVfEWYICQkBwAyDTdCO6O/duxeurq6U1VjH1q3Gsd51dZq/zGtgtEXu3XcJzp8PAgA0XLrizz/tq+fGjRsGrwMCArBlyxbk5ubaV4gJtIahoeFqDGYYLKSkpAQxMTE6t6wtsXCh+fdKS+2ng9E2qa2tpS3BiHu6viIzs95gX2/4+vXrWLBgAZYvXw4AeOmll5CZmYk6bQuMIqwryYYEBAQgKiqKtgyrOXbM0MVuSGOpBhgMQBNlc/DgQdoyDLhnwSDCzJl2EHKfcePGYdOmTRgwQLOccmZmJkJCQhAWFmY/EWbw8/ODRCJhg8+MBzz9dOPvV1TYRwej7eLg4IDFixejoKCAthQdDwyDCJokvsbYMyGBh4cHAE34OGDctUQTsViM4OBgq85hhuEhp7GuoiFD7KeD0XZxdHREQUEBli1bJpgkcYYeg2lNNHJbatPRZDaWToAC2nEGS2GG4SHH3Pw7luqCYSmOjo4AgH379mHdunWU1WiQy+W6yEAHh4smj6Ex9zQoKAiOjo4oKiqimiqnIdaOjTLD8BCinzcmLo6lumhL5OXlCWLAUh8HBwfd/2+++aZBvD4NlEolunXrhv379wMAAgJmgxCA59XUv+MikUiQ3UnMY2Bg6VJN3phly2grYViLs7MzoqOjsXHjRvANYzApofUYAKCmpgbz58+HsrGIBhvDcRxOnDiBsWPHwtHREVlZWSguLtZ5ECkpQLt2QINUQXZDaxiE1J3EPAYKFBcXC6bvNSUFOHQIAAgOHCBUs03qc/ToUVRUVKCyspK2FANu3bqF9PR02jJ0eHp6Yv78+XjuueeQkJBAWw4AjWFwcXFBcHAwxo0bh82bN6O6upqaHolEAplMBolEgoiICDg7OxtUwrNnA8XFwKxZdPR17doVIpFIUIP11noMnFAqNGtwdHQkQnG3CSHw8vKCSqVCVlYWfHx8qOpp107zo9AOyA0eXIIzZ+hqAoAZM2bg6tWruHPnDk6ePAk/Pz9BhPLNmzcPhw4dQlpaGoKCgmjLAQDU1dUhLi4OY8aMoS0FgGZWb3JyMsLCwhAQEEB9xUJ98vPz0a5dO4jvr+KTkgL06/fg/dRUoE8f+2qqrKyEg4MDZDKZfS/cCPX19SCEwMnJ6QIhZEBTx7dJj0FsbiknChQVFaG8vBwcx8Hb25uqlqQkFYqLCfSjNBISvAXhNdTV1SEjIwP19fV44oknUFhYSFsSLl68iBs3bmD79u2CMQqApoUuFKMAAC4uLhg6dCgCAwMFZRQATT4g/fqg4Ux+Gl6Dm5uboIwCoBkn0u8SbIo2aRiE9NC1LmyXLl2o/2jGjWv4cdYC4LB0KX2vUN/D+/DDDzFo0CCKajR4e3vj7NmzGD16NG0pjFYgJQW4edNwX2YmvbGGtgwzDC1EG3lg7XKarY1cDpSUiABweptmzeWDB4VjGKKiovDBBx9QVqOhY8eObS4ZIsM85vJ+0RpraMu0yV+FkNYU1noMtA3D0qWNvUvf/a+rq4OLiws2b94sqM+P8fDQ0FvQIqDgoDZDmzQMQvQYtCFqtNBEIpnGzY2+Yaivr8d///tf6s+JwWA0DTMMzaT8fiIWoXgM5iGCyIc0YcIELFmyhLYMBoNhAcwwNJOlS5di8+bNOo+hc+fOiI+Ph0q7dqadMReoJRbT9xYA4LPPPqM+OM9g2Jvz58+jQggtM1iWkVZLmzQMQuij9vPzw4IFC3Sew4ABA7Bq1SqL119ubVQqTRqA1av/DYBDWFgXKBRKULJTRjg5OdGWwHjIMd84sq8Ofb766ivBpMZYu3atxccKwjBwHDee47gMjuMyOY77mwXH20NWo3Tv3t3gtVwux7vvvktJzQMCAgIAaFroQjCgDIa90DaOGm60Gkc3btxATEwMMjIy6AjQQ6FQ4Pvvv7f4+CYNA8dxv3Ec9y7HcRM4jvNtkTrT5YsB/A/ABACPAXiG47jHWvs6rU1DwzBs2DBqC/ls3QqIRMCOHRrDEBERgbn2XvSWwWAY8K9//QuEEEEYhpiYGMjlcouPt8Rj+B5ADYBZAI5xHLeL47jWXPdrIIBMQsgtQogCwFYA01qxfJvQrVs3g9c0vYVFizQto3nzgMDAQHz55ZcsPp/xyEEIgVyuSbft7U13Ytu9e/ewceNGAKCejRYAbt++jW3btll8vCW1RwcApwG8SAiJALADwCfNk2eSYAD6q1Tfvb/PAI7jlnMcl8RxXFJOTg5OnjzZihKsJzQ0VDcI3qtXL0yYMIGKjq1bAYVC879CAaSkdMG4ceOoaGEwaLJt2zYsXQokJGgWqFq8mJ6Wr7/+GvX19QAgCI/hvffew2xzMwBNYIlh6AbgMwDXOI5LBvAkgJkcx41upa4lUwMGRlN1CSFrCSEDCCEDCgoK0Llz51a4dPMRi8W6mPy3336b2rjHokUNX0sEMQbDYNiTgoIC/OUv/zSYz5OcTMdrqKysxLfffqt7ff36dUFkXy7WZNe0CEsMwxpCyFRCSBcAowBshibXwjwArbFC+F0A+snCQwDkNXaCp6cnQkNDW+HSLaN79+5o3749nnnmGSrX1/cWtCgUmrEGBuNR4osvvkBe3v9Bv03p5kbHa1i3bp3B6m3V1dXIy2u0SrMLOTk5TR90H0sMw1GO4+5wHHcIwMcA3gLwGyFkCSHk8WZq1Oc8gK4cx3XiOE4G4GkAexs7wc/PrxUu23K6deuGN998k1r0j763oB8NOm+e/bUwGLS4c+cOvv12F4BJBvsrKuzvNSgUCqxevdooA7QQxhnu3r1r8bFNBt0TQvrdjxzqAaA7gOMADjdbnXH5Ko7jXgFwBIAYwE+EkCuNnePm1ppj381n8ODBVDNz6nsLtbWm9zMYtoDnecGkv//444+hVP5P9zowUJNUEnjgNVy4YB8tOTk5+OGHH5Cbm4sXXngBo0aNgkQiQUZGBkaOHGkfEY1osxSLQlcIITwh5AohJIYQsp8Q0qqRwYSQg4SQboSQMELI561Zti2ZOnUqXF1dactgMOxKTU2NVZOlbElaWhp++eUXABOhzSqsH5VZUQHYc35ZWFgYJk2ahOzsbACaxuPhw4cFERDSqh4DwzxskJfxKPL222/DxcWFtgwAwAcffHB/YNf8b5FGRgr9HGocx6FTp072F9GAVvcYGMLEnF1i9ophKw4ePIhvv/3WqtXAbMWZM2ewd+9eAHZeu9MChJJ1WR9rPAZmGNow0dHW7WcwWkJBQQEW3w/zoW0YCCF6KwFuMHscjWEQQohgFvDSxxqPgXUltWHi4mgrYNgatVqN6upq6gEXhBA8//zzKCgoAKBZQ5gmPM8jJiYGBQUF6N7dH6a6ktzc6HQjFRYWorKyEm5ubvD1bfUsQs2CEMI8hkcRuRwYPx6wIrMuQ+AcP34ckyZNEsTkqPXr19/vttFA22OQSCTw9PTEhQsXAHhi4sRJIATIy5PrkufRynat7y0IZRyyqKhINxPbEphheEhYuhQ4cgRYtsxwvxAqlYbwPI8rVxqNSLYrarVaMKmRtWzfvh1jx47FhAkT4O7uTlULIQT+/v544YUXAABeXl7UDYOWnTsrANTD21uT7iEwMJCuIAhnHXh9rPEWAGg+9La2SaVSolQqiVBYunQpCQ4OJomJiVSun5dnmGhYLifk22+/JaGhoeTf//43FU0Nqa6uJmVlZSQ8PJyMHj2aDBkyhLYkHStXriTu7u4kLy+PthQd9fX1ZNWqVaSuro62FB0KhYKcOHGCXLt2jRw/fpy2HJKXR4hYrCaAmri5qWjL0VFfX0+uXbtGrl27RluKDoVCQW7evEkAJBEL6tg26TEolUqrViOyNaWlpcjNzaXW6ly61PD1nDmav1lZWUhKSgKgaRXT5OLFi+jYsSOuXLmC2NhYVFdXU9Wjz6RJkzBy5Eh88klr5oZsGTKZDH/5y1+o9+XrI5VKMXLkSHTv3p3qxE4ts2cDPK+Zu1BZKcaJE7QVaZDJZOjevbtRan6aSKVSq/LLtUnDADTDNbIhWpdRG7tsT+RyGCQOAzSD0h07DgIAXLhwARkZGXjnnXfsrk2foUOHYsWKFbrX1vR32prHHnsMu3fvxuLFiwWli2GeY8eAM2cM982cSUfLw0ibNQzWhF7ZGm2sMg2PoaG3oEkiRvDii54ANCl/H3/8casyK9qKjz/+GAMGDAAA1NXVUVZjTFRUlKBa6AzzTJ1q+FosBsrLIRivoa3TZg0D8xg0NPQWtGkBsrM7AtCMIVVWVuqW/KSJVCrF5s2b4eTkJEjDwGgbHDsGNPz68LzmL/MaWoc2axiYx2AJvXT/CcEwAJpU5atXr2ZdNoxmM2uW+ffKy+2n42GmzRoGIXkMQUFBcHJyQklJCUpKSkAIAa9twlDlwcIMQjEMAPDCCy9gzJgxtGUw2iApKUBlpfn3BZLwtc3TZg2DUDwG7QIcWq/hzJkzmDlzJqqqquxyffMTYjkAD+KohWQYOI7D//73v6YPZDAasGBB4++rWjXvs204d+4cbQlN0mYNg1A8hi1btqBnz566wd3p06cjISEBHh4edrl+RYX5VpJI9GDWpZAMAwC0a9eOtgRGG6Sx9W4EskxLoyQkJODzz4W/skCbNQx5eXlQCaB58MILL0Aul+s8B57n7R6/rFLpT297sPE8p4s3F5phYDCaw+Nm1owcMoReCgxLycrKwvTp0wWTP6kx2qRhkEgkUKvVgpjk5u7ujpdeeslgX7du3SipMebLL7+Es7Mz9bQKDEZzkMs12YK9vTVLdMbFmW4ECT2hZFVVFaZOnYqCggK0b9++6RMo0yYNg3aN5bt374IQQj3C5fXXX4dMJtO9FsKMx5QUoF07wMHhcaxYsUIwybwYDEuRy4GICCAhASgt1SzR2RZRq9WYN28eLt1ffJoZBhuhrYQTEhIwdepU3TJ6tAgMDMTChQt1r4XgMcyeDRQXA4MHAy+++H+05TAYViGXA717A/ezfAMAkpM1XoOlVFdX4+DBg60vzkref/99g8y0zDDYCG3Ez1/+8hecOHECYWFhlBUBf/3rX3WtctoeQ0oKcPOm5v+aGmD5cmeqehgMa9AahYaT9d3dLfcaiouLMWbMGOq9CRs3bsRXX31lsI8ZBhuhP0egd+/eEIno30b37t0xffp0iMViq5JV2YLZsw1fx8ayVAGMtsPHHxsbBalUM3nNEq8hJycHTzzxBBITEzF8+HDbCW2C+Ph4LF++3Gg/Mwx2oG/fvrQl6HjnnXfQuXNn3RgIDbTegqTB2nyTJ9PRw2BYg1wO/PST4T6pFFAqNf835TVcvXoV0dHRuHr1Kvr27Qtvb2/biW0CZ2dnxMXF4bHHHtPt8/LygouLCzVNltImDYO+hyAkwzBo0CCTLQR7ovUWGkby1tYyr4EhfD7++EHeIy1aowBovAZzmWfOnj2LoUOH6uY4jRw50kYqLaNfv34Qi8VIT0+Hm5sbNm3ahNDQUKqaLKVNGgYfHx/d/3369KGoxJjXX3+d6vW1YwumaJiRksFoDaqrq/HFF1/gemOzzyxALgc2bGj8GLHY9HyFQ4cOYfTo0SgpKdHto20YAODrr78GACxZsgQLFizADz/8QFmRZbRJw+Dn56f7X2iGgWY3EtB4rpjqauuiOhiMxlAqlfjhhx/QpUsXpKamtjgab+VKoLH1pMRi0ykvtmzZgqlTp6Kmpka3TyQSYdiwYS3S01IKCgrw66+/guM4vPLKKwCAgQMHUtVkKW3SMDg6OmLs2LHo1KkTm7jVgKYmgz/1lH10MB5eCCHYsWMHwsPD8eKLL6KoqAifffZZi8s9f968YTBnFAgh6Ny5MzZt2gSJ3sBa//797ZaWxhzr1q2DQqHAhAkTdLnU2gpt0jAAwKuvviqo8QUh0VjOmBZ6+4xHnFOnTmHQoEGYM2eOLs388uXLrVr4PiVFM4gslRqOe5mb1UyI+QYPx3EYPHgwUlNToVKpEB4eDjc3N+rdSEqlEt999x0A4LXXXqOqRUtZWZnFx0qaPkSYTJw4EaWlpbRlCJKKCs0Pz1R64jYQEMEwAc/zqK+vR11dHerq6tCuXTuD2fa25tKlS/jb3/6GQw1WhnJxccHf//53i8qQy4EpU4ALFx7se+YZID+/ZdquXbuGVatWAQDWr1+PCxcuUA8Z37VrF3Jzc9G9e3eMHTuWqhYte/bssfjYNusxiMVizJ8/n7YMwVJRYbrlJZREYzk5OXZLTW4Je/bsQUpKCm0ZOnbt2gU/Pz+4u7tDJpNBIpHAxcUFwcHB2LVrl93HsoKCgjBjxgyjBHBvvfWWRQkajx0DgoMNjQKgmdnckmg5QgheffVVqFQqLFmyBIMGDcJLL71E3WNYs2YNAOCVV14RxDwrANi+fbvlBxNC2twWGRlJhIZarSY8z9OWYQDP86Sqqsrke8nJhPj4EJKaal9NKpWKXL9+nXz55Zfk008/te/FzVBbW0veeecdIpVKycqVKwXxOebk5JAOHTpoFvC+v/Xr14+kp6dT07R3714DPe3atSPl5eUWnevtbdxMEYkIEYsJ8fNrvqYDBw4QAMTT05MUFBQ0v6BWJDk5mQAgbm5upKKigrYcQgghpaWlRCqVEgBJxII6lnol35zNwcGB5Ofnt+ZzaxHbtm0j4eHhZOfOnbSl6Lh69SqJjo4mCxcuNPl+9+6aT18stp9xUKlU5LnnniPu7u6kY8eOxM3NTRA/5l27dhlUeCNGjCDZ2dlUNVVXV5OAgAACgHAcR959911SX19PVZNSqSRPP/00+eyzzwjHceS///2vRecdPWpsFCQSQhwcHryOjW2eJpVKRb799luyYcOG5hVgA1QqFdm7dy/5/vvvaUvRwfM8+eOPPx5uwwBAUA999erVugpFKFy/fp3IZDICgPz5558G7yUnG/9Qm/vDtAaFQkFmzJhhUAm//vrrtr9wE1y6dIk4Ojoa6PLw8CC//vorVV2pqamkQ4cO5NSpU1R16KNWqwkhhCxevJjU1dVZdI4pb6E1vQaG5VhqGDjNsW0LjuPI6NGjcfz4cdpSAGhG+0NCQlBdXY3U1FTBzK348MMP8fnnn6NPnz64cOECSkpKoFKpMGpUEDIyjI+PjQVGjbKNlvLycrz11lvYuXOnQXSEVCpFRkYGOnXqZJsLW8CPP/6ItLQ01NXVGQzw1tXVYfbs2Vi8eDGVtOV3796Fq6srPD097X7tpqivr4eDg0OTxx07Bjz5ZNPlmQtHZbQuHMddIIQMaPJAS6yH0DYARCQSCaIbQsvLL79MAJBly5bRlqKjurpa10+9Zs0a8swzz5D/+7/dBCBEJjNuvbm52VbPtWvXyKxZswxa5gDI/PnzbXthBjV8fc17C9ptyBDaKh8d8DB3Jbm7uxMIrDspPT2dACBOTk6kqKiIthwdMTExBICuq8Td/a7uB2nKONijSykhIYEMHz5cZxg4jiPJycm2vzCjVcnLIyQyUtMd5O5ueqxKLDZvEGzdEGEYY6lhEEYclZV4eXkBsDL8ysb07NkTY8eORW1tLX788UfackAIwZdffolff/0VEokEdXV1AICKigehhQqF8XnTp9te26BBg3Dy5EkcPOKqJsgAACAASURBVHgQvXv3BiEE7733nu0vzGgVtBPUgoI04adqtSYM2lTWU3PrkRMBhU4zjGmThsHT0xMSiQQnT55EYWEhbTk6tDMc//e//0F1v8NUY6TtD8dxWLBgAdLT03VaNDQ+d6Cy0j5ZWDmOw4QJE5CcnIxNmzYhPT0dJ0+etP2FGS0iJQUYMMD05MmLF1kuroeFNmkYJBIJRo8eDbVajZiYGNpydEycOBFhYWHIzs7G3r17kZSUhP3791PTExISgj///BODBw/W2+uJsLB7jZ43d65tdekjFouxYMECZGRkQNxYBkCGIHj6aeO02ADg4KAZQG6r6zLThBCCtLQ02jIMaJOGAQDmzJkDQFjdSSKRCCtWrAAAfPHFF5g6dSoyTIX/2BFvb28cP34cEydO1O0bOPAvGDLE/Dl6mYvthqOjI/VsmIzGSUkBMjIAUwFa9fUag8G8BuuoqanBokWLkJSURFuKAW3WMEyfPl1Q3Uk1NTV48803kZ6eDgC4cOEC5HI5cnJyKCvTrCS1e/duLFy4EABw8uRJ/PknMWscoqPtKI7RZnj6ac1fc72jzGuwjhs3bmDQoEH4/fffMd0eg3tW0GYNg4+Pj6C6k5ydnTF8+HCjgefs7GxKigyRSqXYsGED/vrXv+LevXvIyMgwm80yLs7wXLkcGDlSs91rvBeK0YaQyzWNAFdXTYXu4WG+ta/1Fhrr7dN6DeZWWGM8YPfu3RgwYAAuX76M8ePHC26uSps1DIBxd5LCVJiNHZk+fTq+/PJLg31C8Bi0iEQi/POf/8TKlStx6tQpi89buRKIjwdOnQI6dmRdBW2dY8c0a4J36AAkJGgWcGossggAliwBRCLT4wta3NxYtFFTqFQqvPvuu5gxYwYq7j+op4S4SIolMa1C27RJ9IqKiohEIiEikYhkZWWRKVOmtEqsb0tQq9Vk4cKFuhh9P4HO9c/KyrLouLw8Qjw8NLHq+n7F448TIpfbWCTDJjQ16czUfAQ3t4djLsLly5fJpUuXqFxbLpeTESNGGEzudHR0tGuiPTzM8xgATQ72qqoqjBw5Emq1GlFRUdi3bx/Uja0NaAc4jsPatWsx5H4HfkFBAerr66lqMkWHDh0sOm7lSiAgwHhlrfPnmffQFjl2DDA1JCcWP9hMeQ1CT+PeFDk5OViyZAlmzJiB7t272/36mZmZGDx4sJGnPnnyZLg1trIWLSyxHkLbIiMjyZkzZ4hIJDJKr1BTU9OaBrbZ5Ofnk9DQUAKAZGZm0pbTLLTeglhsmAlTf+vdm7bKRwv92cbOzpqN4zSvLfHifH2NvT9LvYa2SHFxMXn77beJg4MDAUC2bNlCTYs2O61+fbV9+3a7akBbSIkBYA6AKwDUAAZYep62K+mjjz4yMgylpaWt+iBbwqVLl4irqys5ceIEbSnN4o03HqTnBjTGgeOsr0SOHtUYFycnTaWk/WsujUJDTFWG2v89PS0rIzlZY+RcXR+c7+Sk0WVpt5j2PvQ1ODlpUkhbmkqkpc/ijTdMfwaAZv+bbzZ+7YaZTfVfe3lptInFhPTvb9n9CJWamhryj3/8g3h6eurqhoiICKprbRw6dIgAIGKxmAwfPpy4uLiQ6upqu2poK4ahJ4DuAE41xzAoFAoycOBAA8MgF1jH9759+8jmzZtpy2gWQ4Y03bK0xGtorE/bkgqoscrQ0jL69TN/flMVqiX3YelQUkueRV4eIS4ujX8Wbm7mjZyvr6bSt8RjaGtjB1qUSiVZv349CQ4ONmo0Hj58mJqu/Px84u/vTwCQTz/9lOTk5JAlS5bYXYelhkEQabc5jjsF4K+EEItmebi5uZHIyEgAQG1tLZKSknRjC1FRUXB0dLSV1GahUqkgkbTN5bXj4g6A580tFP3guxMZuRSurreMjigp6Y/Ll1c1eg1z5wJAfb03EhN/ASHOzS6jsjIMFy+ub/R8sbgGAwcugExmenafJffRp8+b8PIyvzxoS59FZuYK5OVNASHa75J+7Kjms+A4BYKC9qJLl2+Nzj99OrbBOYaIxdUYOnRSo/osoa6uDmVlZaipqUFoaKhdZ7RXVVUhJycHRUVFBuONnp6e6Nu3r910NOTy5csoKSmBh4cH+vbtC47jwPO83Wf7nz592qK0223GMHActxzAcgCQSCSR+vn7q6qqUFxcDAAIDg5us5WwUMnJ+Q11dZGNHMHDweEqOnSYafTOrVsJ4HmP+68a/gg0sY8ODtdMngsAhYXvobz8aRCiXePYuAyOU0Imu2m2jOzsXVAoNIvDE9Kw0UAAqMFxSnh4bIWv75dG5+vfB8cpTZShuQ+xuAydO5ufHdiSZ6FS+eL27cMAXM2UTgBopiRzXBU6dhwHiaTIrJbWhOd5gzUsVCoVOI5DQEAAZDKZXTToo1Qqce/ePQPDEBgYSEULAFRWVqKkpAQikQhBQUFUU7/cuHHDIsNg8xqU47jjAEytFv4BIWSPpeUQQtYCWAsAoaGh5K233jJ4f+vWrcjIyMBzzz0Hf3//lkhmGJEEIAlvvLEYdXWmflxicFw3NPxM0tODsWaNdyPlan4g9fXheOqpzxASUmrwbnm5Mz76aA4IaWxBGDEIEZstIyfHB59//lgj53O6Murq5mHZMjE8PGrN3gchpn7Umn0874NJk/6FHj3kRke09Fls2zYYd+86gufVEIvV4HkR1GptUCGBVMrf38dBInFE587fY86chEau1zKysrKQlpaG27dv6xplDg4OcHBwgEQiwfz58xEaGmqz65ujoKAAGzduhJeXFzp06IDs7GyEh4dj9uzZdtcCAIWFhVi7di18fHwwe/ZshIeHU9Gh5cUXX7ToOJsbBkLIGFtfAwCmTp2K7777rkEmUUZr8p//bLDq+J9+GgWRyDDOVVuZNdy/ceNIfPCB4Qz2I0f6Qq0WQyTSrww5aFvGUqkKPK8pTyxWmyxj06bhkEo13wntseY08DyHo0cjjCpU7X1oNeiXoa8BANavH4N//euXVn8WWVm+UCql989raJw4KJUPNCiVIty542ukoTUJCAjAlStXdEZBp4TjMGvWLKpGoaamBmFhYXj66aexZcsWjLLVsoRNoFKpsHPnTqhUKvTt25e6UbCGh6bPxdnZGdOmTWOGQUBUVzuCENNTZRpWboWFHkbHNF4ZQvee9n1TZRQWehgc15gGtVpsskLV3kdTGrTHmqK5z6K+vh5bt26Ft/eP6NDBFa6u5jd7dlHU1NQYLNGqZfLkyejRo4fddGgxZRQkEgmmT58ODw/j74U9iI2NRX5+Pry8vAySWLYFqI4xcBw3A8DXAHwBlAFIIYSMa+q80NBQ8v7775t8j8aADuPhobi4GOfOncOwYcPg4mJu0N2+3L59G5s2bTL7vru7O0aMGIGIiAibr02tVCoRFxeHM2fOQKVSwcHBATzPQ6VSYeTIkVQy5JozCjTJzMzEli1bIBKJsGTJEgQHB1PVAwDXr1/H6tWrhTHG0BiEkF0AdrVmmbSMAiGEyoLxjaFWq8HzPKTS/9/evQdFdaYPHv++jd1cRK4tICIQL1FR0XhBLnIxEW+5aPAy46jRRGOczdbsbm3VzM78qvb/rV/VTm3qN1XWZLLR0WTHu5hERDAKqShKRhG5eCEi0CIIIgLKrbvP/tF2jy2oROk+p9v3U0Ul0I391AH6Oec57/s8g58xq8FisXD//n3Cwp5Vb3ev3t5eKioqiI6OJiIigurqasrKykhOTiY1NXVIQ++HW0dHBydOnOD27du0PaUPur+/P+np6cybN88tb4RtbW3s3r3bcaWQmJhIdnY2u3fvJj4+XpWk0N7errmk0N3dTW6u7fZpZmamJpKC1WqloKBgyM/3yFJSa2sr9+7dc4z4VFt7ezuHDx8mMTER+zJatdm7znZ1dbF+/XrNJIeSkhJOnTpFSkoKGRkZ6PV6ampqCAoKIiIiQpWYGhsbHQOVfHx8EEJgNpspLi6mtLTUrW++dr6+vlRWVjpi0uv1jvGser2elJQUtyetkJAQDAYDERERLF++3HEfYd68ear93gcHBzNp0iS6uro0kRTANlskNTWVmpoa0tPT1Q4HsDXQzMrK4vLly0N6viaWq/5SBoNBycjIcHRXVdvly5c5dOgQer2ebdu2YTQa1Q6J+/fv87e//Y2uri7i4uI0kxzy8vI4f/48YPujXrJkCR0dHfz4449s2bJFlXpwY2MjZ8+epbGx8aln5/ZyzcyZM9Hp3NNirKKiAqPRyOjRo/nHP/5BbW0tc+bMUbXMdf/+fUaNGuW2YzAUiqJgsVg0kRQep8Uqwvbt2z1nH8MvZTAYFKPRyJYtW4iJiVE7HAAOHTrE5cuXGTNmDFu2bNHEfY67d++yc+dOzSWHhoYGjh07RtOj4Q7+/v50d3djNBr58MMPCQh49mY2Vzpz5swzL7mNRiNLlixh4sSJbovJarVy7Ngx0tLSNHOVLHkmr04MYWFhip+fHzExMWzZskXtcABbnXrHjh20t7eTmppKdna22iEBT08OapfiFEXhp59+4vvvv3eUSACio6PZtGmTKpuR7t69y+HDh/H393/m6h817jlI0nDw6sQQGxur+Pr68uDBA9asWUNCwrM2MLlPQ0MDX375JYqisHHjRsaPH692SMDgyWHPnj28++67qpa9Ll26RH5+Pt3dzhvKJkyYwLp16zRx1SVJ3mSoiUE7hcJfQAhBZmYmAIWFhVieNVbKjcaNG+dYmXHkyJEBb3hqCQ8PZ/PmzQQGBlJXV8euXbuor6/n5MmTqsXU3d3Nw4cPiYmJGXAG/vPPP3PkyBE88aRFkryBRyYGgDlz5mA0Grl37x6lpaVqh+OQkZFBTEwMnZ2dHD16VO1wHB5PDrdu3QJsw45MJpMq8fj7+5OSksJvfvMbfv/737N161YWLVrEhAkTMBgMVFRUkJ+fr0pskvSq89jEoNPpHHX84uJizZyd63Q6Vq1aha+vL1euXOGf//wnYJtHreYZcGNjIwUFBU71fOAXrW12FZ1Ox9ixY0lLS2PDhg384Q9/4KOPPiIgIID6+nq1w5Mkt1MUhfv376v2+h6bGABef/114uPj6e7upri4WO1wHEJCQhxb4PPz82ltbeXMmTPcvHlTtZjGjBnD9OnTB4wRrK+v59q1aypFNTidTucoyw11BKkkeYvr16/z+eefq1oi9+jEALB48WIASktLuXfv3nOe7T6JiYnMmDGD/v5+Dhw4wNmzZx0bltQghGD69Ol8+umnLFu2zGkd/MmTJ2U9X5JUZjKZ2LlzJ19//TUxMTGqdgfw+MQwZswYEhMTsVgsFBYWqh2Ok8zMTHx9fWlubqavr4/q6mqnHvFq8PHxISkpid/97ndkZmZiMBi4c+cO5eXlqsYlSa+q1tZW9u7dyxdffEFdXR16vV6V9iKP09ZWwRf05ptvUlVVRVVVFSaTSROb3kpLS8nLy3M6E3/48CE3btxw6+aopzEYDGRlZTFv3jyKioooLi5m2rRpmts9KkneqrOzk9OnT3Px4kWn94mUlBQCA582kMk9PP6KAWytFZKTkwEcK1lqampUPTufN28eGzZsGLCLV81y0mBGjhzJ8uXLWb9+vaZKcZLkDoqiUFdXx4MHD9z6uq2trezcuZMLFy44JYWAgABSU58+BdBdvCIxACxYsICRI0diMpkoLS3lyJEj3LlzR9WYxo8fzyeffOLUXfHKlSua2XfxuLCwMEaPdu1wF0nSCpPJxPHjx/nzn//MpUuX3N57ymg08tvf/nbAtMmMjAxN7Kz3mrqBr68vmZmZHDt2jGPHjgG2H35U1GBTRd0nKCiIDz/8kPz8fEpLS+np6aGmpobJkyerGpckvWpu375NRUUFVVVVjtbhY8aMUWWIjsViYd++fTQ3N+Pn50dPTw+hoaHMnfvcTclu4RWJobu7m6+++orm5manr5tMJk0caB8fH5YvX864ceP45ptvqKyslIlBktygs7OT0tJSKisrB3TO9fPzY+3atW6/r2axWNi7dy/Xr1/H39+fDz74gO+++46kpCTNtIHxilKSv78/v/rVrwa0bFZrV+/TzJgxg61bt9La2kp/f7/a4UiS1wsMDGT06NGDjvzNyckhJCTErfEMlhSioqJYuHAh06dPd2ssz+IViQFg1KhRbN682alOfvfuXc3siLaLiIhg06ZN9Pb2qh2KJLmU2Wymra2N2tpaLl26RHFxMWfOnHHrohAhhKMv1+MyMjKYNGmS2+KApycFsN2P1NLsBq8oJdkFBgayefNm/v73vzvKSrdu3dLE8tDH+fr6auIGkyQNF6vVSlFREc3NzXR0dHD//v0Bb8bx8fGsXbvWbUN+Hjx4QG5uLtevXwcgMjKS5uZmxo8fT1ZWlltisHtWUtAir7lisAsICGDTpk2MGTMG0F45SZK8kU6nY8aMGdy5c4fbt28PSAqzZ89m48aN+Pv7uyWempoaduzYwfXr1/Hz82P16tWsXLmS4OBgVq1a5dazc09LCuBlVwx29oO/Z88emRgkr9Pd3U1LSwvh4eGqjfh8UnNzM+fPn6ezs9Pp60IIlixZwvz5890Sh9lsprCwkHPnzgEQGxtLTk4OwcHB9Pf3s2bNGrdOCPTEpABemhjAtuJg48aNHDp0SJOzVyXpRfn5+XH69Glqa2vx8/MjLCwMo9FIeHg44eHhGI1GwsLCXD7G1Wq1cvXqVc6dO0ddXZ3j63q9nv7+fnx9fVm9erXbSrktLS0cPHiQ5uZmdDodWVlZLFiwwPG3r9frnfYUuZqnJgXw4sQAtlr+qlWrNDkoXPIcXV1dqrcogH/dzG1rayMiIoLa2lp6enpobGyksbHR6bnBwcEsWbKEqVOnDnsc3d3dXLhwgdLSUkdraIPBwMyZM0lKSiIvL4979+6xbt06t22aPH/+PAUFBZjNZsLCwsjJyXFrEniSFpPCL1kJ6fXvlu6aHazFqxKLxYJOp9NUXGazmb6+Prdezj9PX18fJpOJsLAwgoODBxyv6upqysvLSUtLY/LkyW45nj09PVy4cIG7d+86kkFHR8dzvy8iIoLU1FSmT58+7Gvie3p6KCgooLy83LH8MzQ0lKSkJN544w3HgorIyEhWrVrllp9xX18fBw8edLSOnzVrFsuWLVNlZridFpMCwDfffDPk53pkYmhra6OlpUUzLRwsFgv79+/ntddec1stdSgKCwtpbGx01Fi1oLy8nLy8PKZPn878+fM18QfT1NTE7t27AdtmxNDQUMLCwhwfvr6+mEwm9u7di9FoJCUlhZkzZ7p0M5KiKAOGKOl0OkJCQggNDSU8PJzy8nLH4KXY2FgWLFjAxIkTXZa4DAYD169fx2w2M2HCBJKSkpg0adKA17O3wncHvV5PX18ffn5+vPPOO0ybNs1tr/00Op2O4OBgTSUFwLEgZyiEJ/bhNxgMypQpU/j4449VPTOwu379Ol9//TUAS5cu1URy6O3t5S9/+QudnZ34+fnx9ttva2IDzfHjxx03BsH2hjZ//nymTJniWMZYX19PaGjogKFCrmKff93W1kZXV9eQvicwMJDk5GTmzp3rsqXHBQUFBAUFERYWRnh4OMHBwY5k1N7ezmeffcbkyZNJS0tzW0fhmpoaQkJCMBqNbnm9oejs7MRqtWrm5Adsib2jo0NTMQFs3779n4qiPLcdhEcmhoCAACUkJISEhATWrFmjdjiArc22vUeTVpLDw4cPyc3NdVxmJyYmsnz5ctX3UNy9e5fS0lLKysocG/2CgoKYN28es2fP5saNG5w4cYJf//rXREdHuzW2vr4+R+nGXsZpbGx8akNGX19f5syZQ3JystsSGdhWAfn4+GjqDVrSPq9ODGPHjlXsl5CLFy8mJSVF7ZAAbSYHgJ9++on8/HzMZjOhoaHk5ORoYmZFb28vly5d4vz589y9exeAESNGEBUVhclkQq/Xs3LlShISElSLUVEUdu3a5bTqJjg42LECyL4KaPTo0QQFBakWpyQNhVcnhri4OGXlypXs378fnU7HBx98QFxcnNphAdpNDi0tLRw6dIimpiZ0Oh2ZmZmkp6cjhMBqtdLd3a3amnhFUfj55585d+4cNTU1Ax7PysoiMzNThchs9x+uXbvmWA7qjmWgkuQqQ00MHrvzOSEhgZSUFKxWKwcOHBhybdjV5s2b52jj+2Q9XU2jR49m69atJCcnY7VaOXXqFDt37qS9vZ329nYOHjyo2txnIQQTJ05k/fr1vPXWWwMeP336NAcPHhy0EZqrRUVFkZGRQUJCApGRkTIpSK8Ej00MAIsWLSIuLo6uri727dun+jxlO60mBx8fH5YsWcKGDRsIDAykvr6eHTt28OOPP1JbW8upU6dUje/atWuUlJQM+lhFRQVffvmlZk4AJMmbeWwp6U9/+hNg23z017/+lc7OTpKTk1myZInK0f2LVstKMPDGtN26det4/fXXVYrKpr+/n46ODkczNvt/7Zupli9fTlhYmKoxSpK7KYpCb28vfn5+L/xvDLWU5JH7GB4XGBjI6tWr2bVrFyUlJcTExGhiLTPYrhwAjh07xvHjxwEcyeH+/fuqLmULCAjg7bffprW11WmAyeHDh9m2bRuhoaGqxabX6x03diXpVdfe3k5ZWRk3btxg3bp1bnlNjy4l2cXGxpKdnQ3A0aNHaWlpUTmifxmsrGQvfal5tdbR0cHBgwcHTLXq6elh3759qtTzJUmysVgsVFZWsnv3bj777DOKi4t588033dad1uOvGOySk5MxmUxUVlayb98+zWx+g4FXDtXV1TQ2NlJVVaXa1Y19FvW9e/eoqKigsrLSMcOiqamJ7777jhUrVqgSmyS9qpqbm7l48SLl5eVOQ8bS0tKIj493WxxekxgA3nvvPe7cuUNLSwu5ubma2fwGzsnBvib++++/Z8qUKarOeQ0NDSU9PZ309HRaW1sdSaKsrIxx48Yxe/Zs1WKTpFeF2WwmNzeXioqKAY9FR0ezcOFCt8bjFaUkO4PBwNq1azEYDFRVVXH27FnHY2qvWLp06dKAH3pbWxsXLlxQKaKBjEYjWVlZfPrpp2zfvp3Ozk4ePHigdliS5FZmsxmTyeTWuewjRozg/fffH9C2Rq/Xk5OT4/aTR6+6YgDbm9uKFSvYv38/hYWFREdHExISQnl5Oenp6arFNWnSJJqamrh16xYWi8Xx9aKiImbOnKmZspddZGQkkZGRaochSS7X3t6OyWRyfDQ1NZGdne3W7gBWq5XCwsIBJ49Lly5VZRGG1yUG+Nfmt7Nnz3LgwAHi4+NpaGhwGtrhbgEBAY5JVqdOneLy5csoisKDBw84e/asajt7JelV09DQQF1dnSMRPHlVnJ2d7dal5V1dXezfv5/6+np0Oh2LFi3ihx9+IC4uTrVSrlcmBrBtfmtsbKSurs6RhW/cuMGECRNUjSskJIT333+f1NRUCgsLqamp4cyZM8ydO1czYxolyZv5+vpSWVlJU1PTgMcWLlxIamqq22Kpr69n//79jmFQq1evJi4ujubmZre2L3+SV91jsGtvb2f//v2Oxmx2WqrnR0ZGsn79ejZt2oTRaKS4uFjtkCTplWAwGAbdp5ORkUFGRobb4igpKWHXrl10dXURGxvLJ5984uj59s4776g6zMorrxhCQkKYP3/+gHGHV69e5eHDh5qaHhYfH8/HH3/M1atXMZvNcgSp5DV6e3u5c+cOZrN50A+LxYLZbCYoKIgZM2a4vMzb09NDcXEx58+fx2KxIIRw7CVKS0tz28qfvr4+jh49SmVlJWBbap+dne2YRwKo/j7gte9C8fHxbN++nW+//ZaqqirAtmmkvLyc5ORklaMbaPLkyWqHIEnDSq/Xc+7cOccb4GDeeOMNkpKSXJoULBYLpaWlFBcXO/YGzJgxg+TkZD7//HPmz5/PokWLXPb6j2ttbWXfvn20tLRgMBh47733NNOp4XFemxgA/P39WbNmDWVlZeTl5dHX18fFixc1mRgkydv09fUxfvx4rly54rQSD2yLMd59912mTJni0hiqq6spLCx07PCPi4tj8eLFREdH09/fz9y5c1m6dKlLY7CrqqoiNzeXvr4+jEYja9eu1cx44id5dWKwmzVrFrGxsRw6dIhbt25x69Ytxo4dq3ZYkjRsOjo6uHnzJpGRkRiNRtU2Tfb09HDlyhUqKyupra0dkBAAJkyYwMqVKwkMDHRZHLdu3SI/P5+GhgYAwsPDyc7Odroy1+v1jnY1rmRfimrfV5WQkMCKFSs0t0T9ca9EYgAICwvjo48+oqioiLKyMpkYJK8SFBTExYsXuXnzJj4+PowePdqxFyUyMpKoqCiX3Vt7WjIQQhAfH09UVBQlJSWMGDGC7OxskpKSXBIH2BaeFBYWOspXAQEBZGVlMWfOHKcavp2r72sMthRVKxMnn0XVxCCE+HfgXaAP+Bn4UFGUdle9nk6nY+HChY6eQJLkqXp7ex2tye0f9huWFouFpqamAcsxIyIiWLZs2bD03HleMpg2bRpTp05l5MiRVFVVcfPmTXJyclxWOnnyxvKIESOYP38+6enpqs04f9pSVE+g9hVDAfBHRVHMQoj/BfwR+IOrX/RV2dGrKIpqG/qexr4aZLCzN7WYzWa6uroYNWrUkEswRUVFxMXFuayxmdlspq6ubsBcCvtHb2/vkP+tqKgokpKSmDFjxkutdrFYLFy+fHlIyeBxkZGRbN261SXlLavVSmlpKUVFRU43lt966y1V29qXlJRQUFCA1WolNjaWNWvWuLR0NhQXL14c8nNVTQyKopx47NMSYPVQvq+9vZ2WlhZN3bj59ttviYiIcOll8i/1ww8/0NDQQHZ2NhEREWqHA9huwOXl5TFlyhSmTZvGa6+9pnqSaGpq4osvvgBs8z2CgoIYNWoUwcHBBAUFOT6Cg4MdycPX15ddu3Y5fuaJiYnDOvazt7eXluD8ZwAABB1JREFUPXv2PPXxESNGDIjT19eXkydPArar46lTp5KUlERsbOywxZWfn09PT89zk8HjXNnSQQhBWVkZ3d3dTjeW1VZXV4fVah10KapaWltbh/xczUxwE0J8A+xVFGXQvwYhxDZg26NPpwMD2xBKL8oIDP23RnoWeSyHlzyew2uyoiijnvcklycGIUQhEDXIQ/+mKEruo+f8GzAXyFGGEJAQ4qehjKeThkYez+Ejj+XwksdzeA31eLq8lKQoyjN3jgghNgHvAG8NJSlIkiRJrqX2qqSl2G42ZyqK8lDNWCRJkiQbte+I/AcwCigQQpQJIXYM8fv+6sKYXkXyeA4feSyHlzyew2tIx1MzN58lSZIkbVD7ikGSJEnSGJkYJEmSJCcemxiEEP8uhLgihCgXQhwWQoSoHZOnEkKsEUJUCiGsQgi5NPAFCSGWCiGuCiFqhBD/Q+14PJkQ4v8KIe4IIeR+pZckhBgnhDglhKh+9Hf+X573PR6bGLC105iuKEoicA1bOw3pxVQAOYAcI/eChBA+wF+AZUACsE4IkaBuVB5tJ+Ceftjezwz8d0VRpgLJwKfP+9302MSgKMoJRVHMjz4tAWLUjMeTKYpSrSjKVbXj8HBJQI2iKDcURekD/gGsUDkmj6UoSjHQpnYc3kBRlNuKolx49P+dQDXwzPbSHpsYnvARkKd2ENIrbSzQ8NjnJp7zxydJ7iaEiAfeAM4963lqd1d9pl/QTsMMfOXO2DzNUI6l9FIGa2Mr14JLmiGECAQOAv9VUZSOZz1X04lBttMYPs87ltJLMwHjHvs8BmhUKRZJciKE0GNLCl8pinLoec/32FLSY+003pPtNCQNKAUmCSFeE0IYgF8DR1WOSZIQtqEsXwDViqL876F8j8cmBl68nYb0BCHE+0IIE5ACfCeEyFc7Jk/zaCHEfwbysd3c26coSqW6UXkuIcT/A84Ck4UQJiHEFrVj8mBpwEbgzUfvlWVCiGcOu5YtMSRJkiQnnnzFIEmSJLmATAySJEmSE5kYJEmSJCcyMUiSJElOZGKQJEmSnMjEIEmSJDmRiUGSJElyIhODJA0DIYSPEOL/POp3f1kIMV7tmCTpRcnEIEnD44/ADUVRpgGfAf9J5Xgk6YVpuomeJHkCIcRI4H1FUeY8+lIt8LaKIUnSS5GJQZJe3iJgnBCi7NHnYUChivFI0kuRpSRJenmzgP+pKMosRVFmASeAsud8jyRplkwMkvTyQoGHAEKIEcBi4BtVI5KklyATgyS9vGvYhqwD/DfgO0VRalWMR5Jeimy7LUkvSQgRim3muBHbDIFtiqJ0qxuVJL04mRgkSZIkJ7KUJEmSJDmRiUGSJElyIhODJEmS5EQmBkmSJMmJTAySJEmSE5kYJEmSJCcyMUiSJElO/j9eub6nrx5pnQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:18<00:00, 2.15it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXd4FNX3xt9JIwkhEHooAYKK0kOo0ntAUJBmEEFEiuCPqiCKWBC+Si8C0lQEAUEEpYOACKH30EFqOiW97877+2OZYTeN3WR3Z5LM53nmSWZ2Z+6bycw999xyjkASGhoaGhoaEg5KC9DQ0NDQUBeaYdDQ0NDQMEEzDBoaGhoaJmiGQUNDQ0PDBM0waGhoaGiYoBkGDQ0NDQ0TFDcMgiBUFgThoCAIVwVBuCwIwhilNWloaGgUZgSl1zEIguANwJvkWUEQigE4A6AHySuKCtPQ0NAopCjuMZAMJ3n26e/xAK4CqKisKg0NDY3Ci5PSAowRBKEqAD8AJ7L4bBiAYQDg6urqX6tWLbtqy47o6GjcuXMH1apVg5eXl9JyADzT5O3tDW9vb6XlAAAiIiIQFhYGLy8vVKtWTWk5iI+PR0REBOLi4uDm5oaaNWvarKykpCTodDp4enpm+iw1NRUJCQmIj49HQkICUlNTAQCCIMDPzw+CIOSqTFEUERkZiUePHiEtLS1P+o2pVasWXF1drXY9Y9LT0xEREYFKlSpl+rtJIiUlBYmJiUhMTERSUhKSkpIAAL6+vqp491JSUhAVFYXHjx+jfPnyqnn3UlNTcffuXTg7OyM6OvoRyTLPO0c1hkEQBA8AmwGMJRmX8XOSywEsBwBfX1+ePn3azgozc/jwYXTs2BEkMXjwYEyZMkVpSfj+++8xevRokETPnj2xaNGiXFcu1uDWrVt49913ERoaCgDo2bMnfvjhBzg52f/R0+v12LJlC2bOnIkbN24AAFxdXTF48GDMmjUL7u7uVi3v4cOH+Pzzz7FixQr8888/aN68OS5duoTDhw/j33//xeHDhxEeHm5yjru7O5o2bYqWLVti/PjxWRoTc9HpdDh+/Dh2796N3bt348yZMyafe3l54d1334WTk5O8OTs7Z7vv7OyMN954AyVKlMi1JmuSkpKCixcv4qWXXlKNJgCIjY0FABQvXlxhJc8QRRHJycnw8PC4Z9YJJBXfADgD2ANgvDnf9/f3p9JcvnyZJUqUIAAOGzaMoigqqkcURU6ZMoUACIDTpk1TVJMoilyyZAnd3d0JgOXLl+f27dsV0ZKUlMSlS5eyevXq8v0pWbIkv/jiC0ZFRVm9vLS0NM6fP19+PgCwffv2JvvS5uXlxddff52zZs3i8ePHmZaWZnU9EpGRkVyzZg3ffvttli5dmgB4/Phxm5WnoT4AnKY5dbI5X7LlBkAA8AuA+eaeo7RhCA0NpY+PDwGwe/fuTE9PV1RPeno633//fQKgg4MDV6xYoaieBw8esFOnTnLl17dvXz569Mjm5V64cMGknMePH3PatGksU6aMrKVq1apctGgRExISbKJhz549fOWVVzIZAGmrVKkSAwMDuWTJEgYHB1Ov19tEx/PQ6/U8efIk9+3bp0j5GsqQnwxDi6cvzUUA559uXXM6R0nDEBsby7p16xIAGzdubLMKxlySkpL4+uuvEwBdXV25detWxbSIosg1a9awePHicqt8w4YNdin777//ZrFixRgREcG7d+9yzJgxLFq0qFwh+/n5cf369TYz4rdu3ZL/D1ltderU4e3btxX3LDUKN/nGMORmU8owpKamsn379gTAF154wSbdEJbw5MkTtmjRggBYokQJ/vvvv4ppiYqK4ptvvilXhF27dmVYWJhdyv7ll1/o5OREAOzZsycdHR1lHR07duS+fftsWiFHRERw8uTJfP/999mnTx926tSJTZs25SuvvMIKFSrQw8ODADhnzhybadDQMAfNMFgZURQ5YMAAAmCZMmV469Ytu2swJiQkhLVr1yYAVqhQgcHBwXYrO2P3x9atW1m2bFkCoIeHB1esWGGXlrEoipwxY0am1rmDgwMDAwN59uxZm2swF51Ox5iYGKVlaBRyNMNgZT755BMCoLu7O0+ePGn38o25evWqPMZRo0YN3r17125lJyYmcvz48STJmJgYDho0SK6QW7Vqxdu3b9tFR3p6OkeMGJFlt81ff/1lFw0aGvbkt99+Y2xsbJ6uoRkGK7J48WICoKOjo2IzaySOHz/OUqVKEQCbNGnChw8f2q1sURQZGBjISpUq8e+//2blypUJgEWKFOHcuXPtNpCakJDA7t27Z9ufX7ZsWZ46dcouWgoCnTsbaoLXXlNaiUZObNu2jWXKlOHSpUtzPVamGQYrsWXLFgqCQACKz/bZuXOnPP2zS5cudh/4njlzZqZKuGHDhrxy5YrdNERGRrJx48b08PBg/fr12adPH06ePJmrVq3ioUOHGBYWli8HeJs1M7yNLVrYt9xz5wzlSpuGehFFkU2aNCEA1qxZk7t27bL4GpphsAJBQUF0dXUlAH7xxRd2KdMY41bB6tWr5UHVd955x6bz3bNi9+7ddHBwMDEKY8aMsbuOe/fuMSIiIl9W/jmhVOXs7m4o08FB8xryA/v27TN5Bzt16sSLFy+afb5mGPLItWvXWLJkSQLgkCFD7F4R3bx5k7NnzyZJzpo1S34QPv74Y7vPfb9582aWi7OKFy/O+fPnF7hK2t5I3kLRovb1Goy9BUHQvAYJNT/PoiiydevWmSZbDB06lOHh4c89XzMMeSA8PJzVqlWTu2zs3SoWRZEBAQFs3rw5J0yYID8ASkx3jIuLY82aNU0eRHd3d/bq1Ytr165ldHS03TUVNIwrZHtWzpK30Lkz6ef3zDAVdq8hPT2dH3/8MZcuXconT54oLScT//77b6ZGmo+PD6dMmfLcsQfNMOSS+Ph4+vv7EwD9/f0ZHx9vs7KyY/PmzSb/dCcnJ65Zs8buOvR6PXv06EEpdMPAgQO5detWJiYm2l2LvbB3X7+/v6E86ZG2R/lhYc/KkYzQuXP28xqUGk+xhHv37tHLy4suLi7s3bs3//rrL7s3EHOic+fOJnXE559/btZ5mmHIBWlpaQwICCAA+vr6MiIiwibl5ERCQoI820fa+vXrp0jLfMWKFRw5ciT37dunqpfClti7r18qa9y4zMdsxdixpKOj6d+acbMl+WWwe+vWrSbvYenSpTl69GiePn1a8e6mU6dOyZM/pLG/GTNmPPc8zTCYya1bt3jo0CGKosjBgwcTAEuVKsXr169brQxLkNZLZNz69u3LuLg4u2pR+uG3N/bu6w8Ls3/lHBZGenk9+xszbsWK2aZcCaXGU3LL//3f/2X5PtasWVPx9Uw9evTgsWPHuHr1annm5Lx583I8RzMMZvLBBx/wrbfe4tSpUwmAbm5uPHbsmNWubwlXr16ls7OzyaBSYGAgL1y4oIiewoZUOUrz+m3doh071rBJvxt7DQWpTGMyj6eIvHfvnmLBBJ9HSkoK/fz8Mk26UKqOMObOnTty423ZsmWyvqVLl2Z7jmYYzCAyMpKurq6yK+bg4MA///zTKte2FFEU5ThMzs7OHDp0KG/evKmIlsKI1JItW9bQoi5b1rYtWqnlLoWTCgsjS5YkzZhYkq/KlMrp3PnZeEqzZobjhnsuskKF63R1dWWtWrXYo0cPfvzxx1y+fDkPHjzIkJAQxT3XGzduyPGupK1FixZ88OCBoroysnDhQlnfjz/+mOV3NMNgBsb5CwCwadOmDAoKUqQ/fcOGDXR3d+fYsWNV98AVBqSWrJcXefasocK0pddg3HI3PmbLFrwSZUpleHllfT+lY4sXL5a7QzJu7u7u/PrrrxU1EGvXriUADhgwgOXLl5fHHHKzyMyWfPfddwRAQRC4bt26TJ9rhuE5xMfH08vLK9ND2K5dO7u31HU6HZcuXap4tNbCjL37+ps3z7qs5s1tU55SZUpeytmzz7/HW7ZskReUZhxfU9prIMnBgwfz33//ZUREBDt06CDr++STTxTPyWLMl19+SSmEz+bNm00+0wzDc5g3b57Jw1emTBmuWbNGFQ+gxjPatDE8pe3b27YcpbpZlCYuLo6XL1/mrl27uHz5ck6ZMoWrV6+22vUtHdMICgqSF5Yab6+++ir//PNPRcciEhIS5DA0Op2OX3/9tdwNraauJVEUOWnSJLlbeseOHfJnmmHIgbS0NJMpocOHD1flQhaNzK1KW6FUN4s9CQsL47hx4/jaa6+xTp06Wa5mL1eunNWmaefW2F67do1Vq1YlYAgUaayzZs2a/Omnn5iamvrc8u3RqDhw4IAqu5ZEUeTo0aMJGIJcSpn6NMOQA7/88gsBQ1ato0eP5ulaGrZDerGlzZYvuL27WYKDg7lkyRLbXDwHQkJC+OGHH9LFxSXL/vxSpUrx9ddf55QpU7hx40ZevXqVOp0uV2XlxdiGh4fTz8+Pc+bMYVxcHOfMmcOKFSvKOitWrMjZs2dnO4U741RgW6LWriVRFDls2DBKsy2frpjWDEN2N6tJkyacNWuW1QaZ1fAQZETplKNZ8fDhQyYnJ5v9femlzrhK15pERETw8uXL1r9wFqSlpXHTpk1s06YNAXDu3LnyZ6mpqbxz5w6PHDnCDRs2cNWqVTbVcv/+fX7wwQcm06Oz21xdXenv78/Bgwfzxo0bZpeRV2MbFxfHQ4cOyfupqan86aefTHJqlyhRIsvpmd7ehrKcnGzfqCCz7lpKSUmxbaFmoNfrOXDgQAKQZlYVXMNQq1atXN+oqKgo3rt3L9fnZyQ4OJgvvPACg4KCrHbNvHLx4kV6e3tz/fr1SkuR2bJlC8uWLcuJEyea9X3JW3BzM3RHuLnl7gVPS0vLlLNCp9Nx586d7NmzJ52cnNi2bVvLLmohERERnDZtmkmLV6o8/Pz85Ox3xpuHh4dNNUncvXuXQ4cOlVOjzps3j7/++is/+eQTdu3alZUqVTLRde3aNbvoygm9Xs8///yTr776KgFkChdj7C3YenZZRqSupdGjR9unQDNIT09n3759Ja+m4BoGb29va963XPPkyRNWr16dADhw4ECl5ZAkz5w5Iw/ede7cWfHB9OjoaL7zzjtyxdKmTRuzPCzpZS5e3DCjpUQJy1/wsLAwtmjRgidOnCBpiH/zxRdfmIwvOTg48PXXXzerz9oSRFHk0aNH2b9/f7Na5YIg0Nvbmw0bNmSPHj04atQou3qit2/f5nvvvcdxWfTzPHnyhIcOHeKiRYty3a1kK6Tp5dJaifDwZ95CmzaGritp39Zeg0RkZKQqvAVj0tLSmJycXLANQ4MGDax5z3KFTqeT4yrVq1dPFYHljh07xuLFixMAu3btyqSkJEX17N69W24lFylShHPmzDG7YsmqC8ISw3DkyBF6e3sTABcsWMCAgACTefLVqlXjN998w5CQkDz8hdlz8eJFfvTRR+zQoQNLly6dpTHo2bMnjx07xvv376smFlV+jZYrrZUYOtT0OZEGvO3pNaiZAm0YlMj5nJHJkycTAEuWLGm3PMc5cejQIXl1Zs+ePe3eYjE2jHFxcRw+fLhcATZq1MjiLG+NGmVtFBo1yvk8URS5cOFCuWvEeHN2dmbfvn25b98+u057FEWRoaGh3LFjB6dPn84+ffrwxRdfpIeHB+/cuWM3HQUV47USRYrkvVFRkNEMgw3ZtGmT3A0hTQNTkr1799LNzY0A+NZbb9m99XnixAlOmjSJJPnPP//IuSycnZ05ffr0XHWJ5GZGS2JiIgcMGJDJIDg5OXHWrFl2zY9tDvHx8YyMjFRaRr7H+FmpUCFrg2DLRXxKERMTw40bN1p0jmYYbERwcDCLFi1KAJw1a5ZiOiS2bdsmTz1899137d4HHBYWxgoVKrBDhw4cO3as3F1Tt25dnj9/PtfXtXRGy61bt1i3bt1s+/B79epl0YwojfxBYV2YKFGrVi2uXLnS7O9rhsEGGA82BwYGKj6wu2nTJrnL5IMPPrBb94g0Y6hNmxQ2bdrUpAJ2cHDgZ599ZvXB3JzYsWMHK1SoQB8fHzZs2JBdunThwIEDOWHCBH733Xf88ccfuW3bNrvl1zAeCM1P186PFIaFiTkxdOhQZpz6nBOaYbAyahhsNp5mu3btWnnO9Lhx4+xqpAytd/HpVs5kZo0S0WmVHmTPiDQQaovKyZbXzo8oEf9JTaxevVp+/7744ovn1gOaYbAySg826/V6NmnShCEhIVy5cqXcZfPpp5/a1ShI3oKDQ9pTw3DTxGMoWrQo//jjD7vpURvGA6HW7tKw5bU1ckYts8Yycvv2bZP3b+zYsTnWB5phsCJqGGz+9ddfCRiiv0oPwbRp0+yu45m3EG3kNZRnixYtOHv2bN66dcvumizFlt0xtkyEo3SSncLM7du3+fHHH9u1i9QcRFHMtHDyvffey3asUTMMVkINg81JSUmZ8kDPnj3b7joM3oJI4C6BswQSCYj09lZ+DYcl2Ko7xpYDobYeZNXGLp5PixYt2LhxY/73339KSzGhX79+mSZb9OnTJ0sjZq5hcIBGJhISEgAA0dHR6NGjBxITExEYGIgJEyYoomfevHl48OCBvO/g4IBDhw7hr7/+squOf/4hAMDd3RuenvVx9qw7AAHh4e6IiLCrlFwTHg6sXg3s32/4aU3dM2cCgwYB3t6GfW9vYOBAw3E1X1u6/smT1rteQWTgwIE4efI+qlf3gCAQHToorchAy5YtTfaHDx+O9957D7Gxsbm/qDnWQ22bLT2GxMRE9uzZUxWDzaQhymTGtILOzs4cNWoUQ0ND7aolp4VD+aVbw5bdMbYcCLXltbWxC/OIiYmho+MCoy5UURURDy5cuEAAbN26NQHwpZdeyrbLC1pXUu746aefCIBvvvmmooPNElLYXMCQkWnIkCG8e/euYnpyuyJZDRT2Oe/ZobaxCzWFCDHGEJwv8alRMEy+cHU9ZLfovNmh0+nYr18/pqSk8MUXXyQAzpkzJ8vvaoYhlxjPy1d6ZfPFixfp4OBAQRD49ttvWxTy2FbYc964tfu9C/uc96xQo7EMDQ1l3bp1uXz5ckUHezM+f2PH0shbmCv/7ubmxpUrVyq6rkkKgbNt2zYCoKenZ5ar6jXDkAskl8x4q1ChAr/88ku7/9NFUWTnzp3Zq1cvXrp0ya5l54Q9541be5C4sM95zwq1GkspqX3lypW5ZMkSRaKVGj9/z0J5i3R0PECgvOw9vPzyfd6+fVvxBa/ks3oDAIcOHZrpc80w5IKRI0eaGAUHBwdOnjxZkYcyKiqKZ86csXu5akHr97YPajWWxt0igCFj26JFi+wW1iTj82cctXX8+PEEQFfXpbLXoAajIHHlyhU6OjpSEASePXvW5DPNMFhIfHw8ixUrJj+Ivr6+PHLkiNXL0TAPtfV7a1iGNboBd+zYkcmD9/b25rx582w+6Jvx+csuOJ/kRWSVRU5JxowZQwBs2bKlidHSDIOFrFixQn74hg0bxvj4eKuXYU/skQjdVqix37ugcvjwYS5fvpxnzpyxan++tboBX3vttUxefNeuXbl//37rCM0Cc54/KUDk2rVrCRjyjWRsnSvJkydPWKpUKQLgb7/9Jh/XDIOFNGzYkOXKleP27dutfm0lMG7R5DfU2u9dENHpdBw8eDAB0MXFhf7+/hw2bBiXLVvGU6dO5aob1ZrdgDdu3DDJgOfq6mrzd9TS5+/9998nAL7wwguMjY21qTZLWLp0KQHQx8dH9rA0w2ABZ86cYa9evVQXrz+3SN6CtOU3r0Gt/d4FFb1eL1duGTdnZ2e2aNHCojzp1u4GnDRpEqX1RIAhv8a6devydtEcsPT5S0pKYp06dQiAffv2Vc14g06nk0PRf/XVVyQ1w2ARkZGRqvlnWgPpQT579tnvWjeMehFFkWFhYfz777+5cOFCu4UHN0av15tk3ZO24sWLMzg42Ozr2KIbMC4ujpUrV+bjx4/50UcfETBE8l28eHHuL2plrl27JofOUZOuAwcOEADd3Nx4//59zTAUViRvwdvbsO/mZtivWNG25eanWDspKSk8cOCA3csVRZH37t3jrl27OGfOHA4ZMoTNmjWT83QDhjwfSqHX6zPNzJNW0m7cuNGsfB+26ga8ePEiScM9nDFjhqxt2rRpqmnUSYEuXVxcVDWjsFevXvKzpRmGQorkIYSGigwLI4sXt4/XYM5gY1paml1zLWfFwYMHWaNGDX755ZckDa1Re60k3759Oxs2bJhll420BQQEcPLkyVy+fLkiq39FUeT//d//yX3Tvr6+srYGDRrw6NGjOZ5vr27ApUuXyqHn7Z2PJCekSAXVq1dnTEyM0nJIGiLDFilSRPo/FlzDUK9ePWvetzwRHR3Nfv36qSbiYvZT6mw3eJvVYKMoioyKipK/c/78edavX58LFiywjYjnEBUVxYEDB8qV3Ouvv86WLVvSycmJ3bp1s5sOURT577//8o033pArtqy2IkWKKGZERVHk2LFj2bVrV6ampnLx4sUsX748AfDQoUOKaMqK9evX08nJiZ999pnSUmSSkpJYr149BgQE8NGjR3YvP7tn5tNPP5XGGwquYShVqlSub5y1GTRoEAGwbdu2SkshSTZrpsvSKDRqZLspn1kNNk6fPp3Lli1jWloav/76azkFac2aNZmenm59Edmg1+u5cuVKlixZMssKWBAEtmvXTpEW540bNzhy5Ei6ubnJXRArV67k1KlT+fHHH9tdjzGiKHLv3r3yfkJCgk0HfHNLcHCwarwFiaioKMWM+oYNG7Ico0pOTqZOpyvYhqF27dp5unnWYuvWrXLr7sqVK0rLYWpqKrt27UoALFp0OQcPNnVlbTHlM6vBxmLFUgmUY69evdigQQO5Eh4xYgTj4uKsKyAHLl26xBYtWmQ722bNmjV8/Pix3fRkx6NHjzh9+nSWL1+ee/bsUVqORj5m8eLF7NWrV7afF2jDoIYxhocPH7Js2bLMKZKhPZEiLEoRYf38EuzS15txsPHixYt0dl5EYI5cCfv4+Ng1GKFOp+OcOXNYsmRJkznwGbc333wz20xXSpCSkpIvMuBpqJfvv/+eALhp06YsP89XhgHAjwCiAFwy5/tKGwZRFNm7d29KS86VqlyuXLnCI0eOUBRFedDLw8ODJ0+etJuG7AYbgcOUojwq7U3p9XomJyczJiaGkZGRvH//Pm/evMlLly4xISFBUW0a2bB2LdMrVqEeAtMrVSHXrlVaUb5AMgxly5bNcl1WfjMMrQA0yC+GYf369U+7a4oq2sLr378/hwwZIi8AKlKkiCLTMElDN5aUKCTj5uPjwwsXLiiiSyMfsnYt6e5u2tJwd1edcchLt6itQtZIhgEA+/fvn+nzfGUYDHpRNT8YhrCwMHp5eRGAooGzrl27RgcHBzo6OhIwJPH5888/FdEiimKmxVG+vr4cN24c//nnH7sONmsUAKpUydoNrVJFaWUmTJs2zeKpztJ6H+M/y5osWrTI5D3MWCeYaxjyTc5nQRCGCYJwWhCE0w8fPlREA0kMHToU0dHR6NSpE4YPH66IDgD45ptvIIoi9Ho9AKBz586oW7euRdcIDwcCAvKe93jJkiVYtmwZGjdujOnTp+PSpUu4desW5s6di9atW8PJySlvBWgULu7ft+y4QoiiiL59+yItLc3sc2bOBPbsMfzu6Wn4acvc0SNGjEBMTIzlJ5pjPeyxQcUegzRwumrVKgKGMAEPHjywahmSa1mixPOnlF6/fp0ODg6Zumzat29vUR5oa0TAfPz4MVetWmX3/NMaBZf0ilWy9BjSK1VRWpoJCxcuJACOGTMm02dZRQKQZvBJf1J4uPW9BkmT8TZ48GD5cxQ0j0EpYmNj0atXLxw6dAhjx44FACxatAiVKlWyajn//GP4GRMDfPFFzi356dOnQxRFeb9q1ar4448/sG/fPlSoUMGs8sLDgdWrgf37DT9z6zWULFkS7733ntnlamg8j/V1piPNyd3kWJqTOzbUnq6Qoqzx8vICACxYsACbN282+WzmTODkScNP42Ourobfvb0N+23aGPat7TU4OzsDAL7++mvUqFEDUVFRll3AHOthjw0q9RjWrVtHAPICrR49elh9QU3GaKiAIZRFVi35mzdvyuMK7u7unDZtGpOSkiwuU0uEo6FWmjcnA7GWd2CYlXQHVRiItaqLrrt9+3a5Ve7p6cmbN2+SzDoSQEZvwTi4oDW9hoULF/J///ufHPMq46pw5KfBZwDrAYQDSAcQAmBITt+3p2Ho06ePiVsWEBDAqVOnMjo62mplSA+GIdm4YXv77axXKr/77rsEwLfeeov379/PVXlaIhyN/MaIESMUm3GXHUeOHDGpG+rXr8/k5OQsG13SsayndlvPMEj10q5duwgYQpUbk68Mg6WbvQxDcnIyPTw8TP75RYsW5R9//GG1Moy9hbAwQ1RUgBQEQ55Z45b8rVu32KhRI/777795KlNLhKOR35g1a5bd1+g8j8uXL2fqzx8w4OMsG12NGmVtDGzlBSUnJ8thwI1zaZhrGLQxhhzYv38/EhIS5H1fX18cP34cPXv2tFoZ0tjC0+ELpKQYfpKAIJj2/zs7O+PYsWNo2bJlnso8dQqYP99wfWmbP9/QJ6qhoUZq1aqFhIQEBAQE4MqVK0rLAfBsjEHC29sb27a9gubNb8HbWzoGDBwItGiRtZ9w5IhttLm6uqJjx44AgB07dlh8vmYYcmDLli3y7x06dMCpU6dQu3Ztm5Q1fz5QoQIQHf3s2OXLhodKGsDy8fGBo6Njnss6csS+D6mGRl6R3rsnT56gY8eOuHPnjsKKnhkGPz8/AEC1atVQu/ZgbN/+gioaXd26dQMAbNu2zfKTzXEr1LbZoytJp9OxTJkyBAzx3u2xSEtLaamhNKIocuPGjaqLWCqKIj09PU0WUIZJ/TUK8sEHHzA2Npbu7u4EwBs3bigtSSYsLIx4GhFBCv0CrSspbwQFBSEuLg4///wz5s6da5dFWlpLXkNpBEHA6dOn8cYbb+DJkydKy5ERBAG1atWS92/fvo1OnToprvH777+Hp6cnevXqBQBYvXq1onqM8fb2RqPwZlWtAAAgAElEQVRGjZCamor9+/dbdK5mGLLh5MmTOHToEAYNGqS0FA0NuzJgwABs27YNfn5+OHbsmNJyZDJ24166dAldu3Y1GQe0Nw4OhipUqifWrFljssZIaXLbnaQZhmwYPXo0mjRporSM52KtsBYaGhJ16tRB3bp1cf/+fbRq1QqzZs1SRWWX0TD8+OOP2LNnD4oUKaKQome0bdsWlStXxv379/GPNKNEBXTv3h2AYQDakv+hZhiywcXFRWkJZpHVCkuN/IGhy1edvPPOOwAAnU6HiRMn4vXXX8ejR48U1VSrVi28/PLLmDFjBgBg3rx5KFasmLzKV0kcHBwwcOBAAMDPP/+srBgj6tevj4oVKyI8PBxnz541+zzNMORjrBXWQkMZdDodPvzwQ0ydOhXnzp1TlaEIDAyEIAjy/o4dO+Dn54egoCDFNNWtWxebNm3CuHHj4O3tjeDgYPz555+K6cmI1J20efNmxMfHK6zGgCAIcnfS9u3bzT5PMwz5mJkzgUGDAD8/02mtGvkDZ2dnfPHFF1i9ejUaNGgAX19fjBs3DocPH5aj5ipFxYoV0a5dO5NjXl5eWLNmjWIDvmXKlEHt2rXh6uqKSZMmATDEAlKLQX3xxRfx6quvIikpCb///rvScmSk9QwWjTOYM3VJbZvSiXqyo1kzwzyiFi1sX1Z+C2uh1+uZmJiotIxMpKen87///lNUw9mzZ+nm5maygrZs2bIcOnRollm47MXPP/9soql3796qmcaalJTE8uXLEwC3bt2qtByZZcuWEQBbt26ttBSZyZMn09XVVfo/aiEx7I3xJNOswu5ak/wW1mLixIk8dOiQ0jJIkg8ePODKlSvZu3dvFi9enL/88ovSkuRgjdJWtGhRHjlyRFFNcXFxdHNz44wZM+TQMEomp8rI3LlzCYB+fn6qMVjR0dFyJXz79m2l5TAxMZFFihRhhw4dCr5haNCggTXvXZ4QRZGLFy9mw4aJBMiiRQ13tXz5vOc6yInsFsO9+qqeoijyq6++sji7lK1YuXIlAbBdu3b8/fffFdEQFxfHqVOnsk6dOpni27z55puKaMrIxIkTZU1OTk48f/680pL47bffUq/Xc+3atQTA8ePHKy1JJjExkeXKlWPz5s0V9awy8tZbb7F69eqqaAgFBQURALt3786yZcsWbMPg6elpzXuXJ7Zs2fL0ZRYJGFotUiVtHHbXHkyaNImrVq3i4sWLCRhyLaemptqn8Gw4cOCAHLIcAFu0aKFY6y4+Pp6bNm1i//79TVbR/u9//1NET0Z0Oh0DAgLYsWNH7tixQ2k5JGnyvzp16pSCSrImNDRUNd6CRGxsrGo0zZ8/X64L0tLSCrZh8PHxsea9yzV6vZ716tUjcJCAyGbNDMfLlqU81mCv7h2dTscKFSrQ29ubLi4uBMBff/3V9gXnwPXr1+X82NJWo0YN7t69W1FdJJmSksJdu3Zx6NChXLFihdJyZJ48ecJly5YpLUMjl4SrbJDv7bfflt+9p6G4C65hqF+/vjXvXa7ZvHlzJm8hp4QctmT37t0mFXCTJk14+/ZtxVoujx494gsvvCDrcXV15WuvvcYlS5aopotLQ8OaxMfHc9iwYVa73htvGOqQXr1yf42XXnpJfgd79uxptmEQSHVM9bKEhg0b8vTp04qUnZSUBDc3N8lAITg4GIAIQMjy+yQwbpwhyuLcubbTFRgYiA0bNpgcq1KlCjZv3gx/f3/bFZwFaWlp6NSpE+7evYvXXnsNr732Gtq2bQs3Nze76tDQsCdHjx5Fhw4dEBoamikkt6WEhxuiLUvkppqOiYkx0eHo6Ai9Xn+GZMPnnautY7CQ3bt3Y9myZfjjjz8QHByMChUqIDk5FZKP0Ly56fctCbub2/AWMTExJiHCAaB37944f/683Y0CANy7dw+LFy/GnTt3sHjxYnTt2lUzChoFnvPnzyM5Odnslc85ve+vvmq637u35XrOnDljsm/J2hjNMFjIxYsXMXbsWEycOBEAMHnyZLhKGb6RtwipuQ1v8dtvvyE1NRUA4ObmhuXLl2Pjxo0oUaKEZReyEi+++CJq1aplsnJWQ6Ogc/78eQDA4sWLzYpLlN37Hh4O3L1r+L1oUcPPzZst13Pq1Ck4OjrK4X2kvBHmoBkGCwkODkZqaqqcKOT8+fOYMmUK0tLS8nTdvIS3kFooderUwenTpzF06FCtUtYo0Dx69AgPHjxQWoYJkmH477//sHfv3hy/m9P7LnkLHh7A0KGAFPHfUq/ByckJZ8+eRb169QAAixYtMvtczTBYyMWLF032169fjy5duuQ56F5uw1tcv34dx48fx8iRI3HixAnUrFkzTzo0NPIDV65cwcKFC5WWIaPT6Z6ONxpYvHhxjt/P7n039hYOHwYmTgTc3Q37lnoNH330EerWrYuyZcsCAKKiosw/2ZwRarVtSq18TkhIoCAI8ii/i4sL9+7dm+fr5iW8xaxZs7hly5Y8a9DQyE/88MMP9PT0ZGxsrNJSSJKXLl0ymRUoCEK2K59zet/Hjs2qI/rZlhvee+89edU6tAxu1ufy5cuGOb4wjPBv3LhRDlCVF6TWQ8YE4uZ4DSNHjkSPHj3yrEFDIz9x9epVxMXFYeXKlUpLAfCsG0mCJH744Ycsv5vT+37qVPZlFCuWO2258Rg0w2ABkqsoCAJ++eUXvPHGG1a57qlThplLuUkg7i75mRoaNkJqDKmJq1evAgDmz5+P9PR0hdUYDEOlSpXg6ekJABg1ahQOHz6M5OTkTN/N6X3PbvIKCcTF5U6bZhhswKuvGv5xLVs+Mww//PAD+vfvb7UytFzPGmrm33//VTxJT0Ykw/DgwQNs2rRJYTVAw4YNceXKFbz88ssAgH79+iEoKCjLJEL2ft/LlSsHAIiMjDT7HM0wPAcp5e2RI8CpUyGoUeMOXn99mLKiNDTsyNWrVzFr1iylZcgkJCSYzEiaPXu24l5Nv379UKxYMVSsWBEAEBoaCkEQ4CRNKVIQzWOwMtK0McNcYiI4eAWioqpqCXE0ChUhISH4/vvvLWpx2pLr16+b7J87d041eZaNDYNa0AyDlZG8hYQEw8/4+BJaGk2NQseDBw+QlJSEb7/9VmkpAJ51Ixkze/ZsBZRkRo2GQepK0gyDFZC8hWbNDD/LlhUACBg9OndpNHMb7kKjcKGGgdSMhISEAACWLl2qigrv6tWraNmyJXx9fQEAP/74Ixo1aqSKcRA1GoZSpUpBEASLUrJqhiEbJG/h6FFDpS69r0eOGBadWOo15DbchUbhYs2aNQgLC1NahgmSYUhNTcWMGTMUVgO88cYbOHjwoBziwcXFBV9++SVKly6tsDJ1GgYnJyeL741mGJ6DIBiiHEZHPztmyToDIG/hLjQKF48fP8aoUaMUH0yVICkbBgBYsWIF7t27p6AioHHjxnB0dJQ9htu3byuqxxg1Ggbg2TiDuWiGIRuMp5HlJWIqkPtwFxqFD1EUsXXrVmzOTdQ0GxATE4OkpCR5Pz09Hd98842Cip5RvXp1AOo0DGFhYaox7oBmGGxCXuYdS97C02CsueqG0ig8SFE5R40aZVGfsK3IGKjOx8cH69atw3///aeQomdIHoMatEh4eHjA09MTaWlpqhjzkJAGoM1FMww2Ji/hLjRsi9r68oFnMfOjoqIwYcIEhdUYxhfatWuH999/HwDQv39/hIeHo0iRIgorU6fHAKizO0nzGFRGXsJdaNiWo0ePYsKECdDpdEpLkTGO4//zzz9j3759CqoxxPDfu3evHBPswoUL8PT0RKVKlRTVBQCVK1eGo6MjQkNDkZKSorQcGeneaIZBI1u0cBfqJSAgAEuWLEFAQIBq3H5jwyAIAoYNG4YEaSGNAnh7e8PR0VGO6X/hwgXFtGTE2dkZPj4+ACDnR1EDavQYtK4kBXjw4IGqBpoOHz6MR48eyVnd1MK1a9dw+fJlpWXIeHh4ICAgAMeOHcONGzeUlgPA0JX06tNFNMOGDcOhQ4dU0Rp+4YUX4ObmhqSkJMTlNpqbDahevTpcXFwQHh6utBSZihUrQhAExMTEKC1FxlKPQfHcCrnZ3NzccheY3IqIosiTJ08yJSWFRYoUYenSpZmQkKC0LJLkyJEjWaZMGdauXZtBQUFMS0tTWhJv3LjBypUrc9y4cUpLMeH48eN89OiR0jJk/vnnHyYnJ/PBgwdKS8lEREQERVFUWoYJMTEx1Ov1SsswITExkenp6UrLMCEtLY2pqakFOx+DtQNTtW1r6Pv38jLMFjJnlbIgCOjWrRs+/fRTpKamomTJkihSpAhu3rxpVW254eHDh3j48CEuXbqETZs2ZRnh0d4IgoCrV69i7ty5SksxoUmTJihVqpTSMmRat24NV1dXVfThZ6RcuXKqSxlbvHhxODioqxpzd3dXRfA8Y5ydnS3KMqmuO2omrq6uVr2eFH8rJsYwW8jcVcru7u5yRRcREQEvLy/s27dP8fAXDx8+BAC0bNkSM1Uy/emFF15AUSmzuYaGhqop9IahbVvT/XnzgJ9+Mm+VsvEy87i4OFSsWBFDhw5VPPzFw4cP4e3tjY0bN6rCW9DQ0MhfFHrDIHkLY8c+O+bra94q5YxdELNmzcKjR86Kh7+IjY3F77//jvLly9u/cA0NjXxPoTYMxt7CxInPIqmeO2eo0J+3StnYMLRp0wbdunVTPPyFKIr47LPP5JktGhoa+ZPwcKBECcP4Z4cO9i07XxqGhIQETJw4Mc9TRI29BW9voEmTZ5/NnPn8VcrGhmHOnDmIiBAUD38hCAKGDx9uvwI1NDRyTU7jkTNnArGxht/377evrnxpGO7cuQMfHx+rzZCQVibPn//s2Lx5z1+lLI0xvPPOO2jQoIEqwl8IgqC6mSMaGhpZk914ZHi4aX0E2NdryJeGwcnJCUOGDMnzdbJakWzJKuVSpUrB1dUV06dPB6CFv9DQ0DCfnMLxGxsKafzTnl6DKgyDIAgBgiBcFwThliAInzzv++XKlYObm5s9pOVIqVKlMGHCBFSuXBmAFv5CQ0PDfLIbjzT2Ftq0MXRJS50A9vIahOf10wuCsB7AeQAXYVg199CqAgTBEcANAB0BhAA4BSCQ5JXszvHz8+O5c+esKSNXXLhwAdWqVYOnp6fSUjQ0NPIR4eFArVrA5cuGLufwcKB2bcP+d989MwxS9TxuXOZjuUEQhDMkGz7ve+Z4DD8ASALQC8A+QRC2CIJQLPfSMtEYwC2St0mmAdgA4I2cTnB0dLRi8bmnXr16slFQelGbhoZG/iGn8chTp559z7hL2p6YYxh8ABwCMIJkfQC/A/jKihoqAjDOBhLy9JgJgiAMEwThtCAIp6WVvWpC6UVtGhoa+YecxiOz65KWNntgjmF4CcA3AK4JgnAOQCcAbwqC0F4QhDJW0JDVFJpMfz7J5SQbkmxYpkzei81NfKTs0HI6a2hoZMW1a9eyPK7EeOTRo0fN/q45hmEhyddJvgCgHYC1ANwBvA1gZ64UmhICoLLRfiUANk+tldv4SFmh9KI2DQ0N9UESH374oWrC3//vf/8z+7vmDD6fA+AF4CqA6wBeBnCd5Jg8aDS+vhMMg8/tAYTCMPjcn2S2gfsbNmzI06dP57rMtm2fGQaJ4sWBgwcNo/6XLwPmRpPIaRBJi0ihoVF42blzJ1577TWEhoaiQoUKimq5ePGilGzJOoPPJP0AVAfwEYB/AXwPwGrJaEnqAHwIYA8MxmdjTkbBGuQlPlJG1LCoTUNDQ13odDp89NFHAIDHjx8rrAb49ttvLfq+WesYSOpJXib5B8ntTytzq0FyJ8mXSFYnOd2a185IXuMjZURb1KahoZGRVatW4erVqwCQKW2sOeOZAQGGuqRbt7xruX//PmJiYjBs2DCzz1HFAjd7ktf4SBnRFrVpaKiDbdu2KS0BgCEE/9SpU+X9jB5DTuOZktHYs8ewv2NH3vX4+Phg586daNCggdnnFDrDIJHb+EgaGhrq48cff8Qff/yhtAwAwMyZMxEVFSXvGxuG581gnDkT2LvX9Jg1vAYg+xlSWVHoDENe4yNpaGioi9OnT2PkyJGwxjT2vPLgwQPMmTPH5JixYchpBqNkNKT5QJKBsIbXAADXr183+7uFzjBoaGgUHB49eoRevXohNTUVZcuWVVoOpkyZgrS0NJNjkmGQKv7swvLPnAlI2W/d3YFduwAp9bc1vAbNMGhoaNgMkkhMTFRaBvR6PQIDA3H//n0AUNxjSEtLQ79+/XDhwgUAQPHixdG6dWt58DmnGYyS0QgJMXwWFGTY377dsJ9XryE1NRV37941+/uaYdCwO3lNsGQL9Ho9njx5gvDwcKWlyISFhamiApZITU1Fr1690K5dO6SkpCgtBw8ePEDnzp0BAC4uLoobBhcXF3Tt2lXuy2/SpAn27duHHj16AMh5BqNkNCT8/IAnT4D69a2j7datWxBF0fwTSOa7zcXFhXq9nmphwIAB9PHx4blz55SWIjNr1iz6+vpyxYoVSkuR2bt3L2vWrMnBgwcrLYUkmZiYSJ1Ox1atWrFx48asXbs2T548qbQsiqLItWvXslixYty0aZPSckxYsGABo6KilJYhI4oijx07xqCgIF66dElpOSQNmq5fv87z58+bfU7z5jmPejZvnjdNer2ed+/eJQwRsp9bxzpZxx7Zl7S0NERHR5uk1lSSqKgo3L9/Hw8ePEB9a5n4PJKSkoLbt2/jxo0bSkuRcXd3x5UrV+DkpI7Hbvfu3Rg1ahQeP36M9PR0AICDg/JOtJSFT6fTYfPmzejdu7fSkmRGjx6ttAQTBEFA06ZNlZZhgiAIeOmllyw6x9aTXRwcHFClShXzv29DLTbFeDqY0lSsaAgGGxoaqrCSZ/j6+gIA/vvvP4WVPKNu3boAgKtXryItLQ2pqanQ6ay6VtIi3nzzTTRv3lw2CoA6DAMA9O/fH0FBQbh8+bIqum00ChfqeAtygZoMQ6WnUwfUaBhu376tsBIDiYmJKFasGHx9fZGeno6dO3eidevWSsvC999/jxIlSsj7asn1AQB+fn44cOAAnjx5orQUjUJGvjUMkZGRSkuQkTyGEGlKgQqoXr06AIPHQBUM9s6ZMwdNmzaVI0327NkTISEhincrlS9f3mTeuVo8BonSpUsrHoBNo/ChrrfAAtTkMaixK6l06dLw8PBAfHy8KoJ4jRkzBjdu3DC5R5KnpTSDBw9G+/btAajLY9DQUArNMFgBNRoGQRBMvAalKV68uBxtUkIthkEQBCxfvhzu7u6q8xg08i/5Od1vvn0L1NiVpCbDAJiOM6Snpys+R3/06NEoXbq0vF+5cuUcvm1ffH19MW3aNM0waFiN5wXLK1HCsJahQwf7a3se+fYtUJPHULp0aTg7OyM2NlYVC5KOHz+OQ4cOoWrVqgAM0zKbNWuGmzdvKqrLw8MDkyZNkvfV4jFIjBkzRuvP17AK5gTLi401/L5/v/31PY/nZnBTI4IgsFmzZhblMLU1VatWxb1793D9+nWL5zBbm5CQEFSrVg0kodfr5eNRUVGKrw5NSkqCr68vIiMjsWHDBvTr109RPRoatmDcOMPPefMMvwsCMHeu4Vh4OJCx/dG+PfD337bXJQiCdTK4qRU1eQyAurqTKlWqhMDAQBOjUKpUKcWNAmBY5DZ58mQA6vMYNDSsQU7B8vR6PT744NkUcimLpNq8Bs0wWAmDYSiPMWNqqGKwacIE0+yrr7zyikJKMjN8+HBUrFhRMwwaBZLsguV99x0xaNAn+PNPwwdt2hiMhiAYvqemsYZ8axji4+ORnJystAwZg2GYiFu3vPD11ym4ePGionrq1auHjh07yvsvv/yygmpMcXV1xdSpU7X+fI0CSXbB8jZuvItff60AwBUAcPCgwWiMGWM4T01eQ740DM7OzgDU4TUcPHgQo0aNQlgYAQxC9erD8cMPSbh6NVppaSbTQ9XkMQDAkCFD5P+jhkZBIqt0v19++RXCwnwBNAJgcBGMjYbayJeGQVotq4Ypqy1atMDWrVuxcWMVAKtx6dIakKtx8GAjpaWhY8eOqFOnDgD1GQZtIZmGPbAo1LSNmDt3Lr788ksAQIkS3SGKzDaOqlrIl4bBmh6D8SKU3CxIcXZ2xttvfwRgEADDhOVy5X7Bpk3uio81CIIgew1qMwwaGraEJH7++WcEBQUpqmP58uUm431169aFIA0qqJh8aRgkj8EahsHfH9izB2jYMOcFKTkREzMMDg5rABgsQcOGFTPlc1WKt956Cy+88AJ8fHyUlqKhYRfi4uIwYMAAfPrpp2jWrJliOtatW4cRI0aYHJM8eLWTLw2D5DFERkbi9OnTOJLLYObh4YYNAEJDgZ9+yn5BSk5cuVIUojgGAAEQO3ZslzMzKY2LiwsWL16srejVKBScPHkSfn5+WLduHd555x3FgjT+999/WLNmDWrVqmVyXDMMNkRaXfzDDz+gcePGcHNzy9V1/P0NPz09DT/T0gwp9Sxt7R85Ahw+fASGQSUBmzb9DtL2yTfMpVOnTkpL0NCwKaIoYubMmWjevLkcan6Qca5MO1O9enXs2rVLzkEiJRWT9lWPOWne1LZBapoDdHFxYWpqqsWp7sLCng35GP8eHm7YL1nS8Lu5iKLIunXrEgBv3rxpsR4NjfxMaGgoExISFCk7PDycnTp1onG90LhxY5uVFxZGdu78/PrhypUrFASBTk5OvHbtGv39/RkXF2czXeYAM1N75kuPwZj69evDxcXF4vMkb6FNG4N3IC1Gadjw2YIUS7wGQRDw4YcfysloNDQKMnq9HseOHcOUKVPg5+eHr776Cu7u7nbXsWfPHtSrVw979+41Of7uu+/arExzxyK//vprkMTgwYNRo0YNbN++HcWKFbOZrudh0Qwtc6yH2jZBEOSWwahRo3JpOZ+/WZqAOyEhgd26dcuVHg0NtfPkyROuX7+eAwYMYOnSpeV3sF27dkxLS1NE07Vr17hmzRq6u7ub9CI8fvzYJuWFhZFeXuTZs6a9CpIX0ayZoe5o2jSagiDQ2dmZd+/etYkWS/n777/N9hgUr+Rzs5UsWVJ+CH7++edc3aScDEJeuHr1at4uoKEYv//+u9ISZERR5GeffcZ169YxJiZGaTlMSUnhiBEjaNwoA8AaNWrwyZMnimqbNGkSAbBYsWIEwD59+tisrLFjDZv0+7hxz3738jKuR0QC4IgRI2ymxVLefvvtgm0YXnrpJfnBvHz5sjXvXZ4QRVFpCSaIopir8RdbIooio6KilJZhgiiKDA4OZtGiRfnXX38pLYckmZaWxp49exIAnZ2d2aVLFy5fvpyRkZGKaXrw4AHLli0rv3slS5ZUfDztxIkTBEAHBwcePHiQzZs3544dO2xSluQthIU92y9Zkjx/3nC8QQNDjermlvbUMOzk/fv3baLFUmJjY+nq6lqwDYOrqyt9fX3p4eFBnU5nzfuXK9asWcN69epx586dSkuROXv2LFu2bMmxUvNGBcTHx7N///6sWrUqo6OjGRERwQMHDigtiz/99JNc2RUrVoxXrlxRWhJjY2NNWubS5uPjw9WrVyvSCBFFkd27d2elSpXo7OzMQ4cO2V1DVprmz5/PmTNnkjQYivT0dJuUZewtGB/z8zP8lLyFsWPFp4ZBPQ1FURQZFBRUsA0DAAYGBrJNmzbWvHe55uuvvyYA9u3bV2kpMmfOnCEAurq6MtyS6VU2JCUlhQ0aNCAA9urVi+PHj2dgYKDSsrhgwQKTyvfFF19kdHS0oppEUeR7771HZ2dntmvXjrNmzWJwcLDiXqkoihwzZgxXr16tqA4laN78WeVvvDk5PRtbaNbM4EVI++3bK63alAJvGHr27MnPPvvMmvcs19y9e5cAWKRIEcX7W43p3r07AXD8+PFKS5G5efOm3BcsCALd3NwUncIXFBTEF198MVPLvEuXLop6o3q9nrt372Z8fLxiGrIjJCREaQmqQfIijMcnpbEHa4xZWpsCbxhKlCihmpYwSbZt25YAuHTpUqWlyJw+fZoA6ObmxoiICKXl8Ny5c5w6dSqNx4jyMoHAWoiiyIsXL/Krr75i/fr1ZV2ffPKJoro01E92XoS1JrNYG3MNQ75cx1CkSBHExMTg+vXrSkuRkVZZrl69WmElz/D398drr72G5ORkzJ49GwBw7do1xfTUqFEDERERuHHjhsnxtWvXKqTIgCAIqFOnDqZOnYpz587h9u3bmDNnDoKCgvD7778rqk1D3WQVYjvjli8xx3qobZNmRkyYMMGaxjRPxMfHs2jRogTAa9euKS1H5uTJkwRAd3d3Hj9+nNWqVVO8n3rdunX08PCQW+aCIDA0NFRRTdkRGxurtAQNDauBguwxlChRAgCwfft2hZU8w8PDA7179wagLq+hUaNG6NKlC5KSktCqVSvcuXMH4VLkQIUIDAzEmTNnUK9ePQCGxsm6desU1ZQdnlIgLQ0NG0KVuRb50jB4eHjA09MT169fx82bN5WWIyMtw1+zZg30er2yYgAEBQXBx8dHjj6blpYGALh8+bKSsgAAL730Eo4fP44PPvgAgPLdSRqFi9zkXrEVu3fvznWEaFuRLw2DIAgICAgAoC6voVWrVqhSpQpCQkJw4MCBTJ/b+2Fs3rw5vv32WyQkJJgcv3Tpkn0EPAdXV1csWbIEv/32G27fvo3g4GClJWkUEnKbe8WakMSsWbPQt29fNGzYUDkhWZAvDQMAdO/eHYC6DIODg4PJIHRycjKWLVsmf67Ew9i/f38sXrzY5JhaDINE3759cfbsWVy5ckVpKRqFgPBwQ86V3OResRbJyckYMGAAJk6ciI4dO+Y6dYDNMGcgQm2bv78/Hz16RAcHBzo5OakilozErVu35CmiXbp0YefOnUlmH3zLXsyYMUMe7G3SpIl9C9fQUBHZxTuyF/fv36e/v7/8Phv2SCUAACAASURBVK5Zs8ZuZaMgr2Pw9/cnSbZo0YIA+Ntvv1ntxuUWURQ5adIk9unTx2TGjRQXXumHURRFfvzxxwRADw8P6vV6+wrQ0FAB9++n08tLzBTvSMrDUrw4bbpi+fDhwybxppycnOy6KLZQGIZvv/2WADhgwACr3bi8EBISwjJlypgs3nrppZeyDb5lb69BFEUOHTqUAHjnzh37Fq6hoTD79+9ntWpbOXq06Yp2qaFmvILZFgvTli9fTmdnZ5P6oWPHjtYvKAfMNQz5dowBeDbOsHPnTuj1epCETqezaZk5DSBXrFgRv/76KwRBkI9FR0dj5kxg0KBnyYBykwjIGgiCgKVLl6Jfv36qG2fQ0LAVd+/eRe/evdG+fXs4ODTBwoWOEATI2/z5hoVq8+ebntehg/U0nDp1Cn/++aec4lOiZ8+e1ivEmphjPdS2SR6DKIqsVq0aAfDQoUMcPny4TZJitGljaEGUKEEOHWpo/efUFTR16lQTV7F5czHLNZGWJgKyFqmpqTx9+rQyhWto2InExER+/vnnUrhp+vj4ZBuG3jQ6qm28hsTExEzhYOy9sBP5oSsJQB8AlwGIABqae56/vz/PnDnD/fv3c8CAAQQgd+HYwjAYV+ZFijx/AFmn07Fdu3byP1+pXLgaGoURURS5YcMGVq5c2aQS/uGHH7L8vnHO9zZtDPuCQKuPNYwdO5YA+PLLL3PKlCls2rSp9S5uJvnFMLwCoAaAfyw1DOHh4fTy8soUFdPahkHyFoy38PDnDyBHRESwfPnyBMAHDx5YVZOGhtqJjY3l3r177R5+5dy5c2zVqlWmeqFy5cpmeQs5HcsLBw8eJAA6OjryxIkTTExM5Lp166xzcQsw1zAoOsZA8irJXEXCK1++PBYsWJDpuHH/vjX45x/Dz6FDnx2bOROYODHnOdDlypXDhg0b4ODggOjoaKtq0tBQIw8ePMDixYvRuXNnlC9fHg4ODlZ/H59HhQoVMGTIEJQrV87k+OTJk+Hi4pLlOadOPfvdeNzBWsTHx2Pw4MGyjsaNG8Pd3R2BgYHWK8TamGM9bL3BDI8BwDAApwGc9vHxIWlwGbt27WrSMrh3757VrKuxtzB0KOntbfhdEMzzGkjD+gE1ZLrS0LA2oijy/Pnz/Oqrr+QETNK2aNEixXTNnTvXREvFihWZkpKimB5pJmC9evUUT7ULtXQlAfgbwKUstjeMvvNcw2C8SYPPpCEPraenp00Mg/FgVHZx1583gKzX61WVN0JDwxr8+OOPrFKlSqYuGwAcNmyYzbqQwsLIzp2zH99btWqVrGPx4sX09PRU1Ejt3LmTgCFv94ULFxTTIaEaw2CWiDwYBtIwP1h6GKyZfDvr6OrmGQQNDWuQnp6uysWIOp2O3333XSaj0KpVK5u2iseOzX5W4O+//04HBwcC4Ny5c0mSX3zxBZOTk22mJyceP35Mb29vAuCMGTMU0ZCRQmUYRFFk+/btrW4YNAofSud6zsj58+fp6elJZ2dnenh4sFSpUqxQoQKrVavGl19+mfXq1WOrVq144MABu+raunUry5UrZ2IUqlatyqioKJuVmVNYmb1799LFxYUA+Pnnn8vHlTSqb7/9NgGwadOmTE9PV0yHhCiK+cMwAOgJIARAKoBIAHvMOS+jYSDJ27dvs2jRotoMII088f777/Odd97huXPnlJZCkkxJSTFZF5Nxa9++PW/cuGE3PY8fP5aniANg8+bNWaFCBRYtWtTmXSXZhZU5evQo3d3dCYD/93//p3giKtLgvQCGmGnXr19XWg5JcuPGjfnDMOR2y8owkOSiRYsUMwzp6emqeCCNSU1NVd0aisTERF6+fNnkWMZ9exMVFcV58+Zx69atnDNnjlzptWvXjjt27FCk1Xnr1i126dJFrvAybmXLluXatWvt+sxdvnxZnoLt6urKOXPmUKfTMSAggFu2bLFp2dmFlTl27A5LlChBABw4cKAqut0ePnzI0qVLEwAXLFigtBySZFpaGl988cWCbRiys8J6vV6R2Qf3799ns2bNFB3kyohOp2OfPn3YtGlTPn78WGk5Mt9++y0dHBw4aNAg3r17lzqdjqVLl1Z0YG7//v3ZtsgB8JVXXuHy5cuZlJRkN03R0dFyf3nNmjVZtWpVWc/w4cPtGnhNIjU1lXXr1mWzZs1M0tdeuXLF5mUbewvGx95/X8+KFS+yc+dBquiuIQ3v3uzZs9mlSxdVGCrSUDeuW7euYBsGAOzWrZs171ue+O233wiALi4uPHXqlE3KeN5sjIyEhITIKz9r167NMKmppTCffPIJnZyc5Ps1cuRIAmDJkiUV6765ePEiR4wYwc6dO2fqNzfeypQpwy+++IKRkZF20fXXX38xJCSEJPnqq6+yTp06PHr0qF3Kzo6wsDDqdLrnf9HKZDcr0DCFXCQg2iwiam5RWw8CyYJtGKSW1K5du6x5z/LEiBEjCIDVqlWzyQBmTrMxsuP+/fusUaMGAdDX15f//fcfSTIhIUHRHBY3b95kYGBgporXy8uLZ86cUUxXSkoK69SpY6KpSpUqDAgI4Pjx47ly5UoePXrU7vdOFEUuXryYaWlpdi1X7UjdS8aGQiNnCrRhqFixIgFDzBG1vCzJycmsX78+AfDNN9+0amshL0l+oqKi5MVH3t7eDA4O5tatWzlhwgSr6cstxnPOpa1EiRI8efKkInr27t3LSZMmcfXq1Tx16hTj4+MV0aFhHmPHPlt06uRk+Kk2ryG3iKJok2m2BdowNGjQgL6+vgTA+fPnW/O+5YkbN26wWLFiVh90ymuSn9jYWLZu3Vpulbdu3ZpOTk68evWq1TRayvbt2+nm5pZll03x4sV5/PhxxbRpqJ+M3oJxILz8TkhICPv3768ZBks3f39/btmyRa5EbDl32lKk8QZnZ2ertHytleQnKSmJ3bt3N6mAO3XqpGg/aGJiIo8dO8bvv/+egwcPZt26deno6EgA9PT0VLw/XUO9GHsLbdoYjkn7+dlr2LBhA728vDjORikeC7xhMF7UNmLECGveuzwjDahWrVpVHm+QBhEtJbvZGJY8N3q9njt27GCPHj0ytc7//PPPXOmyFcnJyTxx4gSXLFnCcePGaeFE8jGWTpiwhOwGo/Or1/D48WOTcTdbefMF3jCQZHBwMB0cHOjg4MDz589b7eblleTkZPr5+REAe/bsycjISDZt2pSiKFr8suQ2RpMxoijywIEDbNOmTSbD4Ovrq1jIAI2CTW4mTFhCQTEMe/bsYYUKFeR3so3kAtmAQmEYSHLUqFHyzVTT9LBbt27Jwf1cXY8QEFmsWKJZGeBsyaFDh9ihQwcT4zB9+nRlxGgUWPIyYcLeXLt2TZG6IzExUa6/jLf169fbrMxCYxgePXokJ+z5/fffrXLzrEFiYiI//fTTp/9sUd7MyQBnD4KCghgQEEAAdHd310KJaFiVvE6YsAeXLl1ir169OHXqVLuXHR0dnWVCodKlS9t0kW6hMQykIRSG1KcvrU5V0nuIjo5m27Ztn/6z9zw1CmmycTA3l4M9OHHiBLt168bAwEClpWgUEKw1YcJW3Lhxg2+//TYFQWD58uUVm5YsiiInT55sYhg+/vhjm5ZZqAxDeno6a9WqRQD85ptvGB8fr3iY2/T09KfBzyRvYZn8+7hx6ntZzpw5w7i4OKVlaBQArDFhwhbcvXuXQ4YMkWe+AeCqVasU03Pw4EFZizQmefPmTZuWWagMA0nu27dP7hbp168fX3755TzdQGtgyAAnEkh8ahhuExAtygCnoZHfyG7CRKNGyugJDQ3lqFGj6OzsbNI6r1u3riLhPUjy3r17LFOmDAFwwoQJ/O+//xgQEGDzcguVYXjy5Alv3rzJRo0amfzjlV7fIL0Qw4cn0svrUp5nF1kLW04j1NDIiBTPqFSpOO7cudOuZScnJ3P06NFyBFbjbd++fXbVIpGUlER/f38ChrDpUvC/0NBQm5ddqAzD0aNHs/zH2zoU8PPIaTqdkhngbD2NUEODJOPj47l8+TaTyRc3bti/u1Kv13P48OEmdYNSQThFUeTAgQMpxeF6+PChXcsvVIaBNGS6Klu2rMk/f/z48Xm6ibbgxIkTfOeddxQrPz9NI9SwLbbwHCMjI7ly5Up269aNRYoUkbtPgScERFasaL2yzEGn0/G9996jFM3Xx8eHjo6OioWDWbBgAQFDAh8logkXOsNAktevX5dDTQNg48aNc30DbUlsbKxicdrzwzRCDftgTc9Rp9NxzJgxcg4Jw1Ze9hT27t0re8v2aoykp6ezf//+T9cSuXL37t2cNWsWP/zwQ/sIyIDxYPO6desU0VAoDQNpGNR5mqmITk5OqstgpiRqn0aoYT9s4Tnq9XoOGzbMyDAYvIWqVW+TlCZj0C5eQ2pqKt98800CYNGiRXnw4EGShplJ9u6+ITMPNiuFuYZBMHw3f9GwYUOePn06288jIyPRqVMnXLx4EX///Tfat29vR3XqZdw4w89580yPCQIwd64ymjQs58mTJ4iIiEBUVBQePnwob8b7Li4uWLhwIWrUqJHlNYyfBWs8A0lJSZg8eTIWLlxodFQEIGT5fVtWOykpKejduzd27NgBT09P7Nq1C6+++qrtCnwOycnJaNmyJc6cOYP27dtj9+7dcHJyUkSLIAhnSDZ87hfNsR5q23LyGCSe/H97Zx5VZfXu8e8WHAABJXMI6GdOwM8hLS1cLrMilcop4LYqc1kYZE5NVhqrsp9jmLeuFuXQrRxWpXLzSqY/LcnMvJqJRpQNzuJsGoYMHt7v/ePwvp0DRzhyznlfhuez1l6eA+85+1lb3v1997Of/Tx//MHY2FhOmzbtKvS0fuONvEuC9WzZsoWhoaGVgi30dtttt1WZfNDbK8dvv/3WWKX7+flxypQp5bZoVwy+8BV//fWXkfIlLCyMu3bt8l1nbmD1ZnNF0FBdSY5cvHiRs2fPdnvQ6jISguobaksdYUcuXLjACRMmuBSFp59+utriVd46gFZcXMwXXnjB2FeIiYkxUs336dPHlPBLRwoKCti/f38C9jKsVtYR17F6s7kiIgzl1JZi3L6mNoWg1ieRmj17Nrt168aHH36Yr7/+Or/44gtLnvo0TeM333zD0aNHuyxwFBgY6HbyNW+sHL///nt269aNAKiU4uTJk52y9JqdLv38+fO89dZbCYDXXXedpUWodGrDZnNFRBgaAPpmXkgIGRpae0JQaypSZWVltSpDrs1m46FDh5xSIustPDyc9957L9PS0rhq1Sqv1vl2FNYzZ85w3rx5jImJcep/wIABvO+++wiAnTt3Zm5urkf9uEtpaSlfffVV+vv7EwA7duzIrVu3XnXf3uTMmTNGSonrr7+ev//+u6X2kLVns9mRI0eOiDCYjRU1DRyf9nr1sv/M0SVw7tw50+2qLtolPz+fO3bscBktZrPZOHjwYK5du9ZUgThw4ADnzp3LJ598kklJSYyNjWVkZKRTTh1Xzc/Pj4mJiczOzvaqvU89RYaG2tily2ds0qSJ0V/r1q35/PPP85dffiFJvvLKKxw2bBgvXLhQo370imfuRgkdOHDAOLELgOPHj7c86u/UqVNGnrSOHTvy0KFDltpDXvlks5Vomsa77767fgtDYGCgEX5WG7DZbLzzzjv52GOPGdldfY2+WnBsJ044bySOHTuWbdq04axZs7z6RFsV1Z2TmD9/vuF+6NSpExMSEjht2jRmZmbyt99+48MPP0wA7N27N9etW2eKQNhj7F1P/mFhYWzVqpXTz1q3bs20tDQeOXLE67bowvrZZ/kEzhJoy/j4eGZmZrKkpMTp2r1799bYVepYI9ndswXnz59neHg4IyMjLUsnUZHCwkIOGDCA0dHRpu9pXIni4mKmpKR4fbP52LFjNb4fbDYbZ8yYUb+FAeWxydu2bavRIHmbnTt3Gk923bt3N8W/6bhS0F/rk7B9ctYMnysABgcHc/LkyZVKjHpzg86daJdFixaxa9eu1T6N6+3WW2/lhg0bXN4Q3trLOHz4MCdOnMg5c+Zw+fLlzM7O5m+//cbCwkKSLC+J2pahodv51lurfZov31FYBw3K45gxf/qkH321EBJydauGPXv21HiF4isKCgp46tQpq82oxNmzZ73yPcXFxZw+fTonTZrk8XfVa2EICwsjYC8Y/91333k8WN5g9+7d7NixI3XRWr58uc/6clwt9OlTeeWgbyRqmsb169c7lfRs3Lgxk5OTDfEaMGAA58+f7xW7ribapbi4mDk5OVy6dCknT57MQYMGsW3btlcUiL59+3LTpk1OAmHGhntBQQFTU1P54IMnfd6XWQcQHVcL5NWtGgRzyc7OZnR0NJVShgvRE+q1MNx0001MTEwkALZs2bLW1Hv+888/ef/99xuTma9cS/qN7DgJV1w1VGTHjh1MSEigUsqwb/jw4cam5nPPPedxBJen0S47d+6slBpZbyEhIezatStnzZrFkpISU3M+mdWXWXUM9NWCXlrYzBPJgnucPn3aOP8AgAkJCV753notDDfffDNLSko4ZMgQ6jHLeXl5Xhk4T9E0jRkZGVd0LXlDKFxNvu5Owvv27WNKSorTpqbeHnrooUp+bLMoLS1lcnIyR40axbS0NL777rv8/PPPmZub69J1YWbOJ7P6MusAYlV/P4K1lJWVcfHixUa5Yr3t2LHDK99f74WBtEcCDRw4kADYrl07n1c/uhp2797NTp06VXItTZs2jdu3b7fYOnvommPCQb3FxcVd0YdcW84nmJnzyey+zBhfEYaqOXv2rCXBLbm5uezXr1+le/J2fWnnBRqEMJB/RyUAYGRkJA8ePOiN8fMKrlxLd911F9u3b29alJArCgoKGBcXd0V/fo8ePSptUh8/Tv7jH/bzElYfojOzdKRZfTnuG1k9vg2V/Px8Pvvss2zZsqUlB+T27t3L1157jcHBwU73ozeLGzUYYSDtE13fvn0JgB06dODRo0c9HkBvUdG1pLfExERLD3MVFRUxLy+Pa9as4dy5c5mamso77riDERERhsjq7jnHSWvkSOsP0ZmZ88kK947V49vQ2L9/Px9//HHjHp0yZYpltqSnp1d6SPPmPNGghIG0x1jfdNNNBMAuXboYR/LPnz9fK07TLlmypNKTeUZGhtVmuaSwsJC5ubn86quvqGlapUkrJUWear2JLrz+/jQ2gWV8fU9ubi5HjhzpVEMiMjLSskN7K1ascJobAgICvB7d2OCEgbT7Brt3704A7Nq1K8+cOcM5c+YwKyurxgPpDebPn1+hgIm9NW3atNZEVF2JigfpwsPJ1FTznmqt2Ncwu099bB3DSGXV4Dvy8vI4fPhwl27UzMxMS2z68ssvjYi89PR0kvb9yOoSIl4tDVIYSPLkyZOMjo4mAPbq1YsxMTHs2bOn5cn0jh49yjlz5lTKeRMVFcWLFy9aaltV6BNVSoq5qwZ9ck5JMTc5YE4O2awZGRxsTp+68LZr5/y+vq8aNE3jzp07+eKLL5r+cHT58mVmZWWxffv2TvdifHy8Jd6FvXv3MiQkhAA4ceJEwwZf2NJghYG0byLph830tmrVqqseRF+gaRp37drFSZMmGakWRo8ebbVZLtEnKT8/51WDL336OnqsPWBucsCAAHufzZqZ02dVEUL1rU7G5cuXmZ2dzYkTJxoRcWlpaabboWkaZ8+e7TQ/NGnShL/++qvpthw5coTh4eHUzyrYbDaf9tdghSE/P58vv/yyESqqt5iYGJ8P+tVSWlrKtWvXMikpiZ988onV5lTCqknLVR4fM+pT5+Q49ztypO/7rGqM6wNFRUXMyspicnIyr7nmGqd7csiQIaav5MvKyjhp0iTDhqlTpxIAX3rpJVPtIO37n3oCwH79+pmSZ63BCkNZWRmXLl1qqLBjW7p0aY0G0wysyM5aHVZNWo6rBd2tYkZ9an210KKF/d+AAPH1e8KFCxeMamoVW1RUlOk5l0pKSvjAAw9QTw2j10gYOnSoackvdYqLi40w++joaJ47d86UfhusMOgUFhZy+vTpDAoKMv4YO3To4PXNHMG7OK4Wnnrq79e+XjU4rhbIv1+bsWowi7KyMp8mAHTFpUuXnJI56ulN9u3bZ6odBQUFhkgFBQVx48aNxu/M3uMrKyszzje1bdvW1LNXDV4YdI4fP84xY8YYOYIWLVrk9mcF89FXC82bO68afO3CCgx03V9d8/XbbDYeOHCAGzduZEZGBp955hkOHTqUMTExTEpKMjUU8/vvvzdcJXpTSnHdunWm2UDaazbo9RGuvfZayxNvPvPMMwTA5s2bm17uU4ShAnv27GFcXBwjIiJqpdtGsGOV+6qu+/oXLFjAqKioKyYhTE1NNa1gTMUqb506dTJqH8+aNcsUG3T2799v7DfecMMNlmwwO/LGG28QAP39/Z1WLWYhwuACTdP42WefWfIfIriHCEPNsNlsfPTRR12KwsyZM00Lw/zpp5/Yu3dvo+8JEybwr7/+4tmzZ3n//febGg6ak5PDNm3aEABvvPFG0+tQV2TlypWG5+LDDz+0xAYRBkFoIPzwww8cNWqU8YSuN39/f9MmoLKyMs6bN49NmzYlAEZERDhVedM0zSh8ZAabN282cg7dfvvtlhcX2rJli5FyY+bMmZbZ4a4w+EMQBLcpKipCQkICjhw5gpCQEISGhhr/Or5u06YNEhMT0bhxY5/YQRJbtmxBeno61q9fDwBo1KgRoqOjsW/fPgQHByMzMxMDBw70Sf+OHDx4EI888gi+/vprAMDo0aPx5ptvokWLFsY1SikEBgb63BYAWL16NUaOHInS0lIkJSVh2bJlaNasmSl9uyIvLw/Dhw9HaWkpxo4di6lTp1pmi9u4ox61rcmKQbCSvXv3uqxnobfExESfRZrYbDauWrWKffr0MfoLCAjg+PHjuX//fi5evJjt2rUzZVNT0zQuWrSIzZs3J2Cvhf3pp5/6vN+qePvttw13zbhx4yw/u3Ts2DHjMN+wYcMstwfiShLqOpqmcdu2bZaHGJ88eZKrVq3ipEmT2KtXL5d5rwB7UabNmzf7xIZLly7xnXfecTrRf8011/CVV17h6dOnjes2btzIw4cP+8QGR/Lz83nPPfcYtiQkJDjZYTaapvGll14y7PnXv/5lefLMCxcusEePHgTA2NhYU11pV6JOCAOAuQD2AfgBwKcAWrjzORGGhsPjjz/O4OBgjhgxggsXLuShQ4d82p+mady/fz8/+OADjhkzhl26dKkkAH5+fk4HKMPCwpiRkeGTqJ9z585x+vTpvPbaa43+2rdvzwULFliWBfSjjz4yKoyFhoZy2bJllk7Cly9fZkpKCgGwUaNGXLhwoWW26JSUlBg1Tzp37swzZ85YbRJLS0vrzB7DJgBTSdqUUq8BmArgBYttqhGlpaVo0qSJ1WY4cf78eQQFBdUqu06cOIFDhw7BZrPBZrPh8uXLxmtX71u3bo2LFy9izZo1WLNmDQAgJiYG8fHxiI+Px2233eax//jo0aPIysrC1q1bsXXrVuTn5zv9PiAgALGxsejfvz/69++P2NhYpKenY9asWXjiiSfw6quvIiwszCMbKnL8+HGkp6djyZIlKCwsBAD06tULzz//PJKSkuDvb/6te+7cOYwbNw4rV64EAAwaNAjvvfceIiIiTLdFp6ioCA899BDWrFmDpk2b4uOPP8aIESMsswcANE1DcnIyvvzyS7Ru3RobNmxAq1atLLUJANLS0ty/2B31MKMBuA/ACneuDQoK4uLFiy1fKjoyePBgDh48mOvWrbM8k6vO2LFj2bRpU95yyy0cN24c33//ff74449X9HPm5ORww4YNPh3XioVIPG3XX389MzMzPbJ59erVTt/ZokULDh06lOnp6dy+fbvLOtgzZsxgbm6uJ0NRJbt37zbsGThwIDdt2mT53/vhw4cZEhLCwMBAZmRkWG4PaU+1HxUVxdDQUG7ZssVqc0jasy7ExcUxMDDQ8sN0OpqmMTk52e0Vg6J9UrYcpVQWgE9ILr/C71MBpJa/7QbgR7NsawC0AnDWaiPqCTKW3kXG07tEkQyu7iKfC4NS6gsAbV38Ko3k/5ZfkwagN4AEumGQUmoXyd7etbThIuPpPWQsvYuMp3dxdzx97qgkeVdVv1dKjQYwBECcO6IgCIIg+BZLN5+VUvGwbzYPIHnJSlsEQRAEO40s7v8tAMEANiml9iil3nXzc4t8aFNDRMbTe8hYehcZT+/i1njWms1nQRAEoXZg9YpBEARBqGWIMAiCIAhO1FlhUErNVUrtU0r9oJT6VCnVovpPCa5QSv2HUipPKaUppSQ0sIYopeKVUr8opX5XSk2x2p66jFLqv5VSp5VScl7JQ5RSkUqpbKXUz+X3+ZPVfabOCgPs6TS6kewB4FfY02kINeNHAAkAvrbakLqKUsoPwNsA7gbwTwAPKqX+aa1VdZoPAMRbbUQ9wQbgWZIxAGIBjK/ub7POCgPJjSRt5W//D4B1CVvqOCR/JvmL1XbUcW4B8DvJAyRLAXwMYLjFNtVZSH4N4A+r7agPkDxBcnf564sAfgYQXtVn6qwwVCAZwHqrjRAaNOEAjjq8P4Zqbj5BMBulVHsAvQDsqOo6q7OrVslVpNOwAVhhpm11DXfGUvAI5eJnEgsu1BqUUs0BZAJ4imRBVdfWamGQdBreo7qxFDzmGIBIh/cRAI5bZIsgOKGUagy7KKwg+T/VXV9nXUkO6TSGSToNoRbwHYDOSqkblFJNADwAYK3FNgkClFIKwHsAfib5n+58ps4KA2qeTkOogFLqPqXUMQB9AaxTSv3bapvqGuWBEBMA/Bv2zb2VJPOstaruopT6CMB2AFFKqWNKqTFW21SH6QdgFIA7y+fKPUqpe6r6gKTEEARBEJyoyysGQRAEwQeIMAiCIAhOiDAIgiAITogwCIIgCE6IPqUnBQAAAQ5JREFUMAiCIAhOiDAIgiAITogwCIIgCE6IMAiCF1BK+Sml/qs8332uUqqD1TYJQk0RYRAE7zAVwAGSXQHMBzDOYnsEocbU6iR6glAXUEoFAbiP5M3lPzoI4F4LTRIEjxBhEATPuQtApFJqT/n7MABfWGiPIHiEuJIEwXN6AniZZE+SPQFsBLCnms8IQq1FhEEQPKclgEsAoJTyBzAIQJalFgmCB4gwCILn/Ap7kXUAeBrAOpIHLbRHEDxC0m4LgocopVrCXnO8Few1BFJJFllrlSDUHBEGQRAEwQlxJQmCIAhOiDAIgiAITogwCIIgCE6IMAiCIAhOiDAIgiAITogwCIIgCE6IMAiCIAhO/D/pUQOeUzwyfgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:12<00:00, 2.51it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXdYFFcXxt+hSBEpSlHwE8SODURNFDUmaowYC8ZeEk0Eo7GRYtQkamwxqBFjSTSJvZuoib1Fjb2iETuIWECkd5bdnfP9MdlxF0EW2J274PyeZx52Z2fmvgzsfee2czgigoyMjIyMjAYz1gJkZGRkZEwL2RhkZGRkZHSQjUFGRkZGRgfZGGRkZGRkdJCNQUZGRkZGB9kYZGRkZGR0YG4MHMf9j+O4YxzH3eI47gbHcRNYa5KRkZF5leFYr2PgOK4GgBpEdIXjuCoALgPoTUQ3mQqTkZGReUVh3mIgongiuvLf60wAtwB4sFUlIyMj8+piwVqANhzHeQHwA3C+kM9CAIQAgI2Njb+Pj4+k2ooiPj4ecXFxqFu3LhwcHFjLAc/zePz4MRITE1GzZk24ubmxloT8/Hw8efIEKSkpqFatGry8vFhLQlpaGhISEpCVlQUbGxtI9f+kVCqRnJyM6tWri/uICBkZGUhLS0NaWhpUKhU4joOvry/MzKR9dlOpVHjy5AmSkpIK/bxRo0awtbWVVJM2RISnT58iPj4emt4OT09PODs7M9OkTXZ2Nu7evQtXV1d4eJjO8216ejqSkpKQlpaWREQuxZ5ARCaxAbCD0I3Up7hj69atS6xRq9U0fvx4AkAcx9GKFStYS6LTp09TnTp1CABZWlrSggULmOrJysqi6dOnk42Njahp0qRJxPM8Ez0ZGRm0ePFi8R4BIDs7Oxo/fjzl5uYatWye52njxo3k5OREwcHBlJaWRps2baJ+/fqRnZ2dqAcA1a5dmz799FNKSkoyqiZtVCoVrVixgqpWraqjRbM1b96cJk6cSPfu3ZNMU0EiIiLI19dXRxfHcXTkyBFmmrSJiYkhV1dXcnV1pQkTJpBCoWAtSWTUqFHUsmVLAnCJ9KmP9TnI2BsASwAHAXyqz/H+/v4Gvm0lIz8/n4YOHSpWdlu3bmWqR6FQ0JQpU8jMzIwAUJMmTSgiIoKZHrVaTevWrSMPDw/xCxwUFMSsUomJiaFPP/2U7O3tRT2enp60cOFCSktLM3r5z549o/fee08su0aNGmRpaflCxTtjxgy6evWq5MZ54cIFTaVR6GZlZUWnTp2SVFNBcnJyaMOGDbR69WpavXo1rVmzhtauXUvr1q2jffv2MdWmYefOnXT58mVSq9WspejA8zyFhoZSdna23sZgCoPPHIC1AFKIaKI+57Rs2ZIuXbpkXGFFkJubi/79+2PPnj2wtbXFjh070LVrVyZaAOD69esYNmwYrl27Bo7j8Pnnn2PWrFmwsrJiouf06dMIDQ3FxYsXAQC+vr5YtGgROnbsKKkOIsKZM2cQHh6OHTt2gOd5AEBAQABCQ0PRq1cvWFgYvyd1165dCAkJQWJios5+juPQrl07BAUFoVevXvD29ja6lsJQKpU4duwYMjMzkZ2dLW5ZWVk6721tbbFo0SJYW1sz0SlTejT/+2ZmZuA47jIRtSz2JH3cw5gbgHYQnkz+BXD1vy3wZeewajGkpqZS+/btCQA5OTnR2bNnmeggEpr+33//PVWqVEnsfvjnn3+Y6YmJiaH+/fuLT5nVq1en3377jVQqlVHLLfiEnZ+fT5s2baJWrVqJWiwsLGjw4MF04cIFo2rRJiUlhYYNG1bkU/j8+fMl0yIjowHlqSuppBsLY4iPj6fmzZsTAHJ3d6fIyEjJNWiIjo6mdu3aiZVMcHAwZWRkMNGSkZFBU6ZMISsrK7HbYerUqZLo2bNnD7m6uhIRUXJyMn333Xc63VdOTk40efJkevTokdG1aHPixAlq1KgROTk5kbOzM1WvXp08PDzI09OTvL29qX79+tSkSRM6d+6cpLpkZGRjMCD3798XByzr1q1LMTExkpavged5WrlyJVWuXJkAkJubG+3evZuJFpVKRb/++iu5ubmJFfGAAQMkuzeLFy8mMzMzsrOzo9GjR5Otra2oo0GDBvTTTz9RVlaWJFpkZMoLsjEYiOvXr1ONGjUIAPn6+tLTp08lK1ubuLg4CgwMFCu/9957jxITE5loOXbsmM7skNatW9Pp06clKVupVNLYsWML7Z7p0qUL7du3z+QG/2RkTAXZGAzAmTNnyMnJiQBQ+/btJZnBUhjbt2+natWqEQBycHCgDRs2MJnyGRUVRUFBQWJF7OHhQevXr5esIk5PT6du3bq9YAh2dnaSjh/IyJRXZGMoIwcOHBC7J959913KyckxepkFSUlJoSFDhogVYOfOnenhw4eS60hLS6PPP/9cnGJpa2tLM2bMkLSrJjY2lpo2bVrkYG7Lli0pPj5eMj0yMuURfY3BpFY+mwpbt27FsGHDoFQqMWzYMPz222+wtLSUVMPhw4cxYsQIPHnyBDY2NggLC8OYMWOMvhL24sWLcHFxgZeXF1QqFX755RdMmzZNXAk7bNgwzJ07FzVr1jSqjoKaevbsCYVCAV9fX3h5eYmbp6en+NrR0VEyTTIyFRp93MPUNmO2GJYvX04cxxEAmjhxouT91dnZ2Tp96K1bt6bbt29LUva1a9fIycmJzp07RwcPHqTGjRuLOtq2bcusu+bevXvMuvFkZCoSkLuSSgbP8zRr1iyxIpw1a5bk/fjnzp2j+vXri3PvZ86cSUqlUpKyb926Ra6urgSAfHx8dFYIb926lVkYCxkZGcMhG0MJUKvVNHHiRDH2yvLlyw16/eJQKBT09ddfiyEtGjVqRJcuXZKs/Pv37+vM/8d/A7pz5841egwhGRkZ6dDXGF75MQalUomPPvoI69evh4WFBdavX4+BAwdKVv6NGzfw/vvv48qVK+A4Dp9++ilmz54NGxsbScp//Pgx3nrrLTx58kRnf/v27REcHCyHQJCReQVhno+BJbm5uXjvvfewfv162NraYvfu3ZKZAs/z+OGHH+Dv748rV66gVq1a+Pvvv7Fw4ULJTCEhIQGdOnXCgwcPdPabm5sjISEBP//8sxhnRUZG5tXhlW0xpKeno0ePHjh58iScnJywd+9etGnTxmjlPX78WJzJ8+DBAwwfPhwnTpwAAIwYMQLh4eGwt7c3WvkFSUlJQZcuXXD37l04ODigTZs2aNu2LQICAtC6dWvY2dlJpkVGRsa0eCWNISEhAe+88w6uXr2KGjVq4NChQ2jSpInRyjt+/DgWL16MHTt2YM2aNZgwYQIyMzPh4uKCX375Bb169TJa2YXB8zw2bdqETz75BAEBAfDx8ZE8IYyMjIzpwjzsdmkoS9jtBw8eoEuXLoiKikKdOnVw+PBh1K5d28AKn/Pw4UP4+/ujcuXKaN68Of766y8AQO/evbFixQq4uroarWwZGRkZbfQNu/1KtRgiIyPRtWtXxMXFoXnz5jhw4IBOikVDk5ubi6CgICQlJSEpKQmxsbGoUqUKlixZgvfffx9CKgoZGRkZ0+KV6T84d+4cOnTogLi4OLRr1w7Hjx83qikQEUJCQnDlyhWd/dOmTZNNQUZGxqR5JYzh0KFD6NSpE1JTU9G9e3ccPHjQ6OETwsPDsWHDhhf2z549G8uXLzdq2TIyhiY/Px+PHj1iLUNGIiq8MWzbtg3vvvsucnJyMHToUOzcuRO2trZGLfPo0aP44osvxPcuLi4IDg7G/v378ezZM3zyySdGLV+mfKFSqVhLKBIiwh9//AEfHx+TNIarV69CqVSyllHx0GcVnKlt+q58/umnn8S4R+PHjzda3COFQiG+vn//PlWrVo1q1qxJ48ePp+PHjxs9vWVhsMro9jKePXvGJErty0hNTaWoqChm5f/99980fPhwnX0PHz6kw4cPM1L0nPPnz4uZAs3MzGjVqlUmERpFqVTS9u3bqX379uTr62ty/1O3b9+m5ORk1jJeQKlUVuyQGE2aNHnpDeB5nmbPni2Gd5g5c6bR/qHPnTtHnp6edO7cOeJ5njZv3kznz59n+gU6f/48ubq60pYtW5hp0IbnedqwYQNVq1aNJk2axFoOEQkmNXXqVLK3t6e33npL8vLT0tIoJCSEAFBISAidPHmSJk+eTM2aNRPTkkoVJ6sgDx48oEGDBhUa3vzu3btMNBERJSYm0nfffUc1a9bU0bRp0yZmmrTheZ5WrFhBNjY2JpfTe9u2bfTRRx9VbGNwd3cv8gao1WoKDQ0V4x4tW7asVDdSH+7du0fOzs4EgEaNGmW0ckrCgQMHxNSfPXr0YP6E9/DhQ53Mc506dWLSgtLw6NEjmjBhAtnY2Iia3njjDUlzS/z555/k7u5eZG4JW1tb6tGjByUkJEimiUgwqy+//FLM311w8/Pzo+vXr0uqSYNSqaS1a9fSmDFjqF27dmRvby/eK5YtPg1qtZrCw8OpW7duFBQURCtWrGAtSSQ+Pp6WL19OR44cqdjG0KJFi0JvgFKppA8++ECMTmrMJ4nExESqW7eumEBHuzuJFRs2bCALCwsCQEOGDGGqSa1W07Jly8jOzo4AkL29Pa1cuVKyMOYFgxDeu3ePRo4cKSYbAkDdunWjU6dOSaKHiCghIYEGDBhQaKXr7e1N48aNowMHDjAJXHjr1i3q3r07eXt7k4ODQ6Eaa9asySy1bUF4nqfY2FjavXs3/fvvv6zllBsqtDFojzHExcUREVFOTg717NmTAJCNjQ3t37+/7HexCHJycqhNmzYEgJo1a0bp6elGK0tffvjhB/EL/OmnnzLNe3z79m1q3769qKdnz570+PFjycr/9ddfydfXl4iI/v33Xxo0aJAYuZbjOOrbty9duXJFMj08z9P69eupatWqRbYSvvnmG8n06INSqaRnz57RrVu36NSpU/TXX3/R6tWr6fjx46ylyZQBfY2hXC9w27t3L44cOYIZM2agZ8+e+Oeff+Do6Ii9e/eibdu2RilTrVZjyJAhOHv2LGrWrIl9+/ZJGuOoIESEyZMnIywsDAAQFhamMyNKSpRKJRYuXIgZM2ZAoVDAxcUFS5cuRb9+/SRZt0FEmDdvHqZOnYqaNWuiV69e4kpzc3NzfPDBB5g8eTIaNmxodC3aHDp0CBcuXMCgQYPA83yh24MHD3D9+nU0bdpUUm1FYWFhARcXF7i4uLCWIsMCfdzD1DZ/f3/Kzc2lOnXqkJeXF/n5+REAqlGjhlGblTzP0/jx48WuEdZN2Pz8fLHrzNzcnNauXctMy5UrV8jX11d8Ah42bBglJSVJVr5arRb/NtqblZUVjRkzhmJiYiTTIiNjqqCidyXNmTNHpwKoU6cORUdHG/IevsDChQsJAFlaWtLRo0eNWlZxZGVliYO6NjY2tHfvXiY6cnJyaPLkyWRubk4AqFatWkbtxisMhUJR6CwaR0dHunPnjqRaZGRMmQptDE2bNiVbW1udSqBly5a0Zs0ays7ONuR9FNm2bZtY1rp164xShr4kJSXR66+/TgCoatWqdPbsWcnK3rZtm/j6n3/+EVORchxHY8eOlXz9RGZmJr399ttF9t03a9aM4uPjJdUkI2OqVGhjcHJyKnRWx6+//mqUmTgnT54Up/DNnj3b4NcvCbGxsdSwYUMCQP/73//o5s2bkpX9008/kZeXF6Wnp9Po0aPFe9+wYUNJZ/doePbsGbVq1YoAkLOzM7Vr145GjhxJCxYsoD179lBUVBTTqbEyMqZGhTYGbUNo0KABrVu3zmiLgW7fvi3OJgkODma6LiAyMlLMzezj40OPHj2SrOyDBw+Subk5WVhYiAuMLCws6KuvvmKWF/qff/6hU6dOUWJiIpPyZWTKGxXeGJo2bUpbt2416hPh06dPqXbt2gSAAgMDma1EJSI6deoUOTo6EgAKCAiQdMl9ZGSkuKBIs7Vo0YIiIiIk0yAjI1N29DWGcjldtU6dOrh69apRs45lZ2fj3XffRUxMDPz9/bF161ZYWLC5Xbt370b//v2Rl5eHHj16YMuWLUYPBKghISEB3bt3R0ZGhs7+OnXqwNnZWRINMjIy0lIuo6s6Ojoa1RRUKhUGDBiAS5cuwcvLC3v27GGWA3nVqlUICgpCXl4ePvzwQ+zYsUMyU8jNzUXv3r0RGxurs9/e3h5EhDNnzkiiQ0ZGRlrKZYvBmBARxo4di71798LJyQn79u0zakKfl+nQLNYCgKlTp2L27NmSJfjheR4jRozAuXPnAAA+Pj7o3r07AgMDERAQAEtLS0l0yMjISI9sDAX4/vvvsWLFClSqVAl//vknGjVqJLkGnucRGhqKH3/8EQCwePFijB8/XlINYWFhyMrKwrJlyxAYGAgvLy9Jy5eRkWEHJ4xHlC9atmxJly5dMvh1N23ahCFDhgAAtmzZggEDBhi8jMIgIqSnp8PR0REKhQIffPABtm7dCktLS6xbtw4DBw6URIe2nry8PNjY2EharoyMjHHhOO4yEbUs7ji5xfAfx44dw/DhwwEA8+fPl8wUAOCPP/7Ao0ePMHLkSPTp0wdHjhyBnZ0ddu7cic6dO0umQwPHcbIpyMi8wsgtBgCRkZFo164d0tPTMXbsWPz444+S9eVnZWWhYcOGqFWrFhQKBa5cuQIXFxfs378f/v7+kmiQkZF5NZBbDHoSFxeHwMBApKeno3fv3ggPD5fMFABg1qxZePLkCZ48eQIAqF27Ng4ePIh69epJpkFGRkZGm3I5XdVQZGZmIjAwEI8ePcLrr7+OjRs3wtzcXLLyb968iR9++EFnX4sWLZCRkYHy2JKTkZGpGLyyxqBUKtG3b19cu3YNderUwV9//SXZ+gDg+bRYlUqls//MmTM4fvw48vPzJdMiIyMjo80r2ZVERBg1ahQOHToEZ2dn7N+/X/KEJFu2bMGxY8fE997e3vjyyy/x/vvvw9raWlItMjIyMtq8ki2GmTNnYvXq1bC2tsbu3bsl78/PyMjAZ599BgBo3LgxNmzYgDt37iAkJEQ2hVeYvLw8fP3113j69ClrKTpkZ2fjwIED+Oqrr5Cdnc1MR1paGu7fv48HDx7g4cOHePz4MeLi4pCYmMhMk4aMjIyK1crXJ6CSqW3aOZ9LyqpVq8T8ATt27Cj1dcpCaGgotW7dmnbt2sU0N7PUmOLvyvO80XJ4lIRjx45RvXr1qFq1apSfn093795lpkWpVNKZM2do1qxZ9MYbb5ClpSUBoAEDBhglrL2+ZGVlFZqlb+PGjcw0aUhKSqI333yTPDw8qF27djR9+nST+H/neZ5WrVpFy5Yto8OHD1fs6KrNmzcv0c1Zs2YNEQmhoy0sLAgA/fjjjyW6RlFkZGTQ0KFDKSoqSq/jc3Nz6fjx40YN352bm0s9e/ak06dPG62MkpKZmUnvvPMOrVy5kpmGgqlGr127Rm+88QYNGTKEkSKi5ORk+uijj8RKzsbGhuzt7alGjRqShHiPiyPq2pVIk8voxIkT1LRp0//0VCdgPwFuor7bt2+/cI7UHD9+nLy9vUVNv/zyCxshBcjLy6Nhw4YRAPr8889ZyxFJS0ujjh07ahJaVVxjqFq1qt435cKFC2RtbU3Hjh0jOzs7AkCfffaZ3ucXx4QJEwgAtW3b1mDXLAs8z9OQIUMIANWtW5dpqHAN8fHx1KJFCwJAbm5ukmd5IxIqYD8/P+J5nlJSUmjs2LFkZmZGAKhatWr07NkzSfXwPE+bN28mV1fXQjPP1a9fv0SZ515WWb/ss4kTiZyciEJDdbWdPXuW/PyOE8elErBQDD2fkpJS6DlFlWEsE8nMzKRPPvmEAgMDKT093bAXLwM8z9N3331nEt87bfLy8uj+/fsV2xh8fHz0viH9+vUjAGJO4v79+xusiXf+/HniOI7MzMzo4sWLBrlmWfnuu+8IANna2ppEvoTbt2+Tl5cXAaDatWszycGcmZlJr732GgGgxYsXk7OzMwEgMzMzGj169AstCWPz4MEDMV93YVvv3r0LbS2UtIIv7rO4OGH/lStEVavqXlfz2aVLarK3z6eRI7+mnj170pMnfKHnFFVGSUykNOjbUpcRqNDGoO8YQ3R0tPhUCIAsLS1p3bp1Bsn4lZ+fT82aNSMAFFrYt5EBu3btIo7jCACz8RNtzpw5Q9WqVSMA5O/vT0+fPpVcQ15eHnXp0uWFyrddu3ZMjPPevXs0bNgw6tGjB73zzjvUuXNneuONNyggIIBat25NTZu+TXZ2pyg8fMsL55algi/ss4kThU3zWvu6hX2mVqtpwgT+hf1FlVHUfmObhUzRlCtjALAKwDMAkfocr68xfPLJJy9UCK6urrR58+aS3MtCmTdvHgEgT09PyszMLPP1ysq1a9eocuXKJpGXmkgwKWtrawJA3bp1Y3KPVCqV2GLU3r766iumKVpfRmkq/5JW8NrXi4t7/l5z3aI+u3q18P3BwYWXUVjZepvFhg2k9PAkNThS1vQk2rChtLdURovyZgwdALQwpDEkJiaSjY2NToUQHBxMKSkpJb2XLxAVFSVWenv37i3z9cpKQkIC1apViwDQoEGDmFR60dHR4uvly5eLLbURI0ZQfn6+5Hp4nqeQkJBCu2osLS1pyZIlkmsiKn4soKSVf2kq+Ph43etplxEaWvRnfn4v7g8OJrKyKpuJFPy9U5dtILK1FaonzWZrK5uDAShXxiDohZchjeHbb78VKwIfHx86efJkCW9h4fA8T507dyYANHDgQINcsyzk5eVRQEAAAaBWrVpRTk6O5BoSEhKoQYMGpFKpaOrUqeJ9nzZtGrMn8ylTpuiYgYuLC/Xt25eWLFlC//77L7OphMWNBZS08i9NBR8aShQQoFvvaraAgKI/q1Kl8P3u7i+WURITKWgWyVU8Cy/I07Mkt1qmECqcMQAIAXAJwKVatWq99JfPyckhZ2dnsra2pjlz5hh07vW6desIADk5OTHpM9eG53kaPnw4ASAPDw+K03zjJOb9998nANSpUydxUJfltNQFCxZQjRo1aODAgfTTTz/RzZs3JTOo0rYISlv5l6aCDwgw3O9bVhMpzCzU4Ao/meMMJ/wVpcIZg/ZWXIth+fLl1KVLF7p3714pbl3RPHv2TBxM/e233wx67dIwf/580sx9v3TpEhMNf//9t86TuY2NDe3evZuJFiJhUsC9e/eYtVRK0yIo+Jn2vuIq//JEUb9HQbNIsvMs9EBlTU8WsisUr7QxnDt3zigVg2bxSseOHZkPXu7evVucgbRt2zYmGvLy8qhBgwYvdNnMmDGDHj9+zESTsTFGi4Co4lT+JaWw33sQNlA2pzvGoLCwpfXvyGMMZUVfY6iQsZJee+01g+dUOHz4MNavXw8rKyusWLFC0pwNBYmMjMSgQYNARJgxYwb69evHRMf8+fNx584dnX1EBDMzswqbAS4sDLhwQfhZ2GcffAD4+QHvv697jOazGjWE9zVq6B5z6lRhtiDsr8gU9ns/DBiCkbQSD+AJHhwewBPDVSvxc+YQ1nJfHfRxD2NvADYDiAegBPAYwEcvO74ssZJKQ3Z2trgEf9asWZKWXZDExESqXbs2AaB+/foxG0S9d+8eWVlZiS2F2rVr07Jly0wi7pCxkFsEMuUdlLeupJJsUhvDl19+SQCocePGTIKInTlzhu7fv08KhYI6dOhAgLBgjFUlzPO8Ju4K+fr60ubNm00uBEBpKW51cWnGCGRkTAXZGAxEREQEmZubE8dxdObMGcnK1WbgwIE0ceJEMdhajRo1mPbhb926lTp16kSHDh1iPtZiaIpbYCa3CGTKM/oaAyccW75o2bIlXbp0yejlqNVqvP7667h06RLGjBmDZcuWGb3MgsTFxcHT0xNEBLVaDWtra5w4cQKtW7eWXIuGx48fo2bNmszKNxbx8UDjxsDRo0DnzsCNG0D16sJnoaHCz0WLnh8fGgpwHFAgO6uMjMnCcdxlImpZ3HEVcvDZUCxduhSXLl2Cu7s75s6dy0TDihUroFKpoFarAQg5oZ89e4bU1FQmegCUe1OIjwfeeQcomA/nZYPHFy8C4eGCEWi28HBhIFpGpsKhT7PC1DYpupJiY2PF2EOsAtIpFApyc3seC1+zvffee8wX15Vnigri9rKuIhmZigBe5emqZYWIMGbMGGRnZ6N3794ICgpiouP3339HQkKC+N7Z2Rnbtm3D77//Djc3Nyaayjvx8cDatUJ30dq1z1sNxU0nlZF5lZCNoRC2b9+OvXv3okqVKli6dCkzHUuWLBFf9+vXDzdu3GC2ZqGiUFR3kdxVJFMWNF29psatW7cQGxtb8hP1aVaY2mbMrqSUlBSx+2bZsmVGK6c4Ll68KK4kZrWyubzysmxicneRjDG4desWhYeHm9wsvdjYWPLx8aHU1FQikruSSs2XX36JhIQEtGnTBh9//DEzHUuXLsWAAQPkVkIpKGp1stxdVP7JyMjA9u3bwfM8ayk6NGjQAIsWLcKYMWOgVCpZyxHx8PBAVFQUgoKCoFAo9D9RH/cwtc3QLYbdu3eTWq2mEydOECDE679+/bpByygJCoWC9uzZw6z88szLVifLaw0qBsHBweTn50cHDhwwqSf0MWPGEADq0qWL+IRuCmjimf2XC15e4KYvr7/+Oi1ZskS8gV9//bVBry8jHS9bnVyQtLQ0ysrKkkZYCWGR3Eib5ORkOnHiBN24cYOePn3KXI82T548EZNwdezYkc6dO8daEhER7du3T5w52KhRI53kVSzp1q2b9qxG2Rj0ITk5WScvdL169Sg3N9dg15cxHgXHEkoyhsDzPPXt25fOnj0rnWA9SExMpDFjxtDvv//OVAfP87RkyRKytLQUvxuOjo60c+dOpro0fPXVV6IuT09PgyXiKgs5OTmiYVlZWVHv3r1NouUwduzYV8MY/Pz8DHbTtm7dqrNGoHr16tS1a1c6deqU3tfYvHmzSfwDaLNx40Z6+PAhaxk6rFq1yqAVccH1CCWJV7R06VICQF27dqU5c+YYTFNpUSgUtHDhQnJwcBB1mQJnzpwhDw8PAkDm5uYUERHBWhIREaWnp5OzszOZm5vTp59+ylqOyLvvvkv/I6UdAAAgAElEQVTOzs7UuHFjysvLYy2HiIgWLVpETZo0IWdn54ptDJUrVzbYTRsxYoSOMXAcR+Hh4Xqff+3aNQJAbm5uJhNILiYmhiwsLMja2poSExNZyyEiokuXLpGlpSVZWFgYJIFSYWMJ+o4hXL58mSpVqiT+zStVqsQs9hTP87Rr1y6qW7euzv9h06ZNmQRsLIxnz55Rp06daNSoUaRSqVjLEVm8eDHt37/fpLq5Nm7cSPfv3zepXofLly9TUlIS5ebm6m0MFqUZ6WaNg4ODQa5DRDhw4ID43sbGBps3b0avXr30vsbq1asBAL1794aFhWnczu+++w4qlQr9+vWDs7MzMx15eXmwtrZGZmYmBg4cCKVSiTFjxqBu3bplvnZh6xH0yV2Qnp6O/v37Iz8/X9zn7OyMf/75BwMGDICZmbQT9aKjoxETE4MhQ4YgNTVV3PLz85GcnIwamilUDHFxccHBgwcRFRUFc3Nz1nJEPv74Y1haWjLNjVKQQYMGmZQeQAijU2L0cQ9T2xo1amQQJ9U87QMgV1dXunDhQonOVygUmuaZyQyAxcbGkqWlJXEcRzdv3mSqZcCAAaRSqcSc0E2aNKGcnJwSXaOwNQmlXY/A8zz169fvhRAjDRo0oNmzZ9OzZ89K+BvKyJQvUJG7kgw1+BwWFibOILh//36Jz//jjz8IAPn4+JjMtLnRo0cTABowYABTHf/++68Y1wkQckFHRkaW+DqFxTUqbe6DZcuWiWbg5uZGEydOpEuXLpnM305GxtjIxqAHb731FnXs2JFSUlJKdf67775LAGj+/PkG0VNWHj16JPads1yHQUQ0ZcoUnafyxYsXl/gaRa1JKM16hCtXrlDVqlVp6NChdODAAZMZD5KRkRLZGIohMzOTRo4cWeoBvri4ODI3Nydzc3OKN5GYCpppaX379mWqg+d58vT0fGFQv1u3bpSRkaH3dUqyJqE4zp49S5mZmaW/gIxMBUA2hmLIzc0tUxfC999/TwCoZ8+eZdZiCJ48eSLmYP7333+Zajl9+vQL/fj9+/en9PR0va8hxzWSkTE8+hrDKxsrydrautSzB4hInI00YsQIQ8oqNd9//z0UCgX69OmDpk2bMtWyadMm8bWlpSWWLFmCLVu2wN7e/qXnaSfQkeMayciwQ07tWQrOnj2Ltm3bwtXVFY8fP4alpSUTHVlZWbCzs0N8fDy8vb2Rl5eHiIgI+Pr6MtEDACqVCu7u7khMTEStWrWwfft2vdOQhoYKORKGDxeC4J0+/eIxAQH6TUuVkZER4HlenIatb2pP05h4X87QtBaGDh3KzBQAYN68eXj77bexa9cu5OXloVevXkxNAQCOHj2KxMREdO/eHevWrUPVqlX1Ok87gU7BfMsyMjKl58KFC7CxsUHz5s31PueV7UoqLTk5OdiyZQsA9t1IV69excCBA/Hzzz8DAKZNm8ZUDwBs3boV3333Hf766y+9TQF4eb5lGRmZ0hMZGYnFixeX6BzZGErIH3/8gczMTLRq1QpNmjRhquXGjRuIj49Hbm4u7OzssGjRIixYsACsugeJCOPGjcPkyZNLtIJY01qYNEl4P2mSbtpNGZnyQlZWFmsJLxAZGYmNGzfi2bNnep8jG0MJMZVB56ysLDx48EDn/fnz5zFs2DBmS/I5joOfn59ex8oDzTIVkSVLliAlJYW1DB0iIyORn5+Pn376Se9zZGMoATExMTh27BisrKwwcOBAplpu3ryp875mzZo4fPgw3NzcGCkqGdpZ1uR8yzIVhYiICJ1c7abAjRs3AADLly/X+xzZGErAmjVrAAB9+vSBk5MTUy2RkZHia2dnZxw+fBienp4MFemP9kDz2rXA778Xto5Znn0k83JMKYWmhvv372Px4sXIzMxkLQUAkJSUhKf/9cnKXUlGgOd5rF27FgD7biTg+VNAlSpVcODAATRs2JCxIv2RB5plDMHChQtZS3iB6OhopKamihNCWKOpJ0qKbAzFEBUVBZ7ncezYMcTGxuJ///sf3nrrLdayEBkZCWtra+zZswf+/v6s5ehFfDzw5pvA6tXyQLNM2Vm9ejX+/vtv1jJEUlJSkJaWBkAwrdzcXMaKdHsWSoJsDMWwfft2fPbZZ1i1ahUAYPjw4SYRk/7u3bv4/fff0aFDB9ZS9CYsDDh7FvD2fvUGmjWD7deuPR901x6Alyk5KSkp+Oyzz6BWq1lLASB0I2lISEgQ6wyWyMZgJFJSUhAeHo7NmzcDABo0aIAdO3YwfRrIyMjA3Llz0b17d2YaSopmXKFhQyAiomIPNGtX+JrX06cLv+OIEc8H3TUD8NOnm7Zp8DyP2NhY1jJ04HkeKSkpuHr1KtavX89aDgChG0mbsLAw5uMgmZmZOHjwYMmTm+kTUMnUNkOF3daHgqk/ATDPMVse8wcYMlKqqaJJKhQc/DyHxMSJRI6ORFZWRAcPEnEc0aFDwucODkJIcWtr4bWfn+55Tk5EISHCNa9efTFhkZS89dZbJpWuMjU1Vfw+1qhRg7KyslhLojlz5rxQV6xatYqpJk306GbNmmk0ydFVDUGvXr10/tABAQEmlWO2PFDRI6VqG4LGBK5ceV75Dx4sVP7BwULlHxoq/PTzE861siLq00c/09AYhdT3ztvbm0aOHCltoS8hOjpa53s5ffp01pLoo48+oipVqhDHcQSAxowZQ127djWJPNk9e/aUjcGQtGvXTif9J6uk8eWZ0mZcM1U0RqB5itc2BI0JxMcLlXmTJkKFPmSI8HlEhPC+ShXhZ3CwsFlbC8cWZxoao5DaIFq3bk0A6JdffpGmwGK4ePGijjHY2Ngw/25OnTqVoqOjqXbt2mKyLJ7nSa1WM9VFRDRu3DjZGAyJj48PASAzMzM6cuSIZOVWFOLihEqzpBnXTJGCXUV+frqGYGUlVNrBwULF7eAg7NOu/DWG4ecn7NOYhZWVYB6OjjzZ2akLNY2QkOfHWVsT2dsTeXpKYw7du3cnAGRlZUWXLl0yfoHFcPDgQR1jsLKyog8++ICpJk0Xb2BgIAGg7du3M9WjzYIFC0pkDPLgczEkJycDAGbOnIlOnToVekxKSorgsibEs2fPTGK2RlgYQKTGkCEJSEh4hqysbNEaTGEB27lz58S/cXGEhQHnzwPr1gFbtgBXrwrTbwFg716gXj1hxtW33wrH9O8PVK0K/PKLsOXlCbOwIiKE7ZdfAIVCWM+hUAAPHgBeXoCV1UPw/DasW0cYM0a4V82bC9fs2xfYtw/geeFaDx8Kg9fGxtnZGVWrVkWPHj1M4v8qJSUFTZo0ga+vLypXroyLFy/i448/ZqpNE4qmUaNGMDc3R3x8PDMtBfHy8irZCfq4h6ltVlZWBvTSouF5niwtLal79+4vbQ46OjpS5cqVKSkpSRJd+tCmTRuysbGhM2fOMNOgGVv4/fdoApLptdd6UaVKlWj37t309OlTkxgw7NWrF9na2hZ7nyIiiCwsiIKCno8XNGkiPME3aSK0AFq1KrxlVFQrqajc1YVtrVoJZYWECGU1bCh0LwUFCfs7djRuy+H8+fOUnJxsEt0iRET//vsvZWZmUkJCgsnl705LS6O8vDzWMnTIy8ujnJycit2VZGtra8h7ViSZmZnk6elJycnJRR6TnJxMAKhy5comM1tIpVKRra0tAaCEhARmOjRjC3fv3iXgBwIWEgBycHAgPz8/5l/o9PR0srKyonfeeafIv7Gm+0hjApquHO0uHV/f4k2gpBRnGm5ugkGEhBCZmxNVqiRdt5JM+aVCG4ODg4Mh71WRxMfH08WLF196zPnz5wkANW3aVBJN+nDr1i0CQO7u7sw0aJ6wr14liomJIaA6AUkEuJGZmVmx91UKNm7cSN98802Rs0bi4oTK1s5O+KZoWgsaQyiqhWCMsZOijKJVK8EUzMyE9yEhhi9bpuKgrzGUyzGGSpUqSVJO9erV0bLly7PgaRa11KlTRwpJL+XmzZt4+vQpIiIiAEDvENjG4MMPAXNzYVGb8Pd6CmAdgEkYP358sfdVCjp37oyZM2cWupI9Ph5o3RqIjQUsLYXf5fFjYZxg40bh58WLuucEBBhv7OTUKeHaAQG6+y9eBPLzhc/q1AF+/RX491/Dly9TekxhTAaATpj+4iiXxsAynWZBNMZQt25dxkqESIq+vr5iFNhmzZrh7Nmz+FfimiI+Hrh+XRhQXbQI8PBwhzAhIhSVKrXHrFmzJNVTFK6uroXu15jC48dCZZuaCqjVRRuBZpNiMP3UqRfNARDKz8oSBqWHDjW+Dhn9SEtLE6MmsKYkgf1kYygjptRicHd3R0JCAg4dOgQA+P777/H222+jhiYwkUSEhQFjxwqV1cSJwJgxeQA4ABx+//0p7OzsJNVTErRNwcxM+NmkCRASIswwio8XfqfQUF0j0AQIbNUKcHAA7O0BX1/A0VH4WbWq4Z7kNa2HiROB4GDAyUmY5aRQAK6uginLrQbTYOXKlbhgAvFe8vLy8Ouvv+p/gj79Taa21atXz5DdbmWiffv2BIAOHTrEWgplZ2e/sCT/m2++kVRD4auceQLcqG/fvpJqKQ3Bwc/bAFZWRK6uxY8jxMUR1axZ+HHam7m5sLbh2jXDaC1q3MHCgqhFC8OUIVN6FAoFubu7U5cuXVhLoZs3b9Kff/5ZsQefGzdubMh7Vibc3d0JAEVHR7OWQkTC1FmNKTg5OVFaWpqk5U+cKFSu2qtyx49XUaVKSylO4xYmSlycMJCr73RTzTlFmUdRmyHnKRRlDubm8gwl1qxdu5YAUM2aNVlLEanQxuDr62vIe1VqNE/oFhYWzKdeatCs1AZA8+bNk7z8oiqqOnVM2xSIhNlGJTEFIiFcRUlMQbMZclHsxInC1FXN9GBNS6e8hhypCPA8T02bNhW/ixkZGawlEVE5MwYA7wC4AyAKwOTijpcyJEZhZGRkUF5eHl2/fp0AUJ06dZjq0aZLly4EgNzc3JgsINN0JV25ohsoz1QWRhVFXJywYKwkphAXVzpTAISWiaEoatqsiTw/SUZsbKwYTZQ1BUN2mEIYESL9jaHYwWeO4zZzHPclx3HdOI5z0X/0Qj84jjMHsAxANwA+AAZxHOdj6HIMSU5ODlq2bIkdO3YAEAaeHz9+jJMnTzJWJgxAA8DXX3+NypUrS15+UWk7zcxMe57D9OlCdVoYAQGFzzgaO7ZkZVhYPH+dny/kujYEAQHCQLSfH2BlJQyM+/kJg+evEnPmzMGTJ09YywAALFiwQOf9rVu3GCkpJcU5B4A3AIwD8CuAqwB2Aqiij+voswFoA+Cg1vspAKa87BzWLQae53X68itXrkwAaN++fUx1ERFNmTKFatWqxWRJvqa1EBHxPPpoeQmv7exc+FN3q1aFH1+W1oKhWw0vG4QuD/feEMTExJCFhQUdP36ctRS6evWqTmsBAH311VesZRGRAVsMAGoBOAHgYyLyBfA7gG8NZUwAPAA80nr/+L99OnAcF8Jx3CWO4y4lJiYasPiSw3EcGjZsKL7Pzs5G48aN8c477zBUJeDh4YEZM2bAyspK8rI1rYW1a4XMZGvXlo+0nfHxQEqK8NrcXHjSrlRJmArarl3h53zxRdnLzc83zLTSU6eEFoKLizB11c9PaDWMHWv6995QzJ49GyqVCo8ePSr+YCOzcOFC1K9fX2davSm0GPLy8vQ/uDjnADALwF8Q+v8jAKwF8ABAJwAu+rhPMdfvB+BXrffDACx52TmsWwxERMOHD9d5Ili9ejVrSUQkBBdjNRBe1JOrqYfX1p6iqq/2l41HlGRr2LDs+uPihFlI5fHeG4Lo6GgyNzcnADRnzhymWniep8jISMrNzSWO48jMzIxOnjxJffr0YaqLiCgqKkrvFoMFiudHIkoEAI7jnAC0hDAeMATAPACt9LehQnkM4H9a72sCiCvjNY2OdovB3d0dgwcPZqjmOU2bNmVW9qlTwpMqIKx4Dg0Vcjr/8AMzSXrx55+F73d2Lno1MxUxHlFS7t4t+zXCwoBGjYDMTODcOeD774ETJ4COHU3/3huC2bNni2EnHj58yFQLx3Fo3Lgxbt++DSKCp6cn2rVrh9atWzPVBaBE4y/6GMOh/wzhFoSZQw0BbCaiCaWT9wIXAdTjOK42gCcABgIwjVr2JWgbw4QJEySL32TKxMcL3Ud//y0ksv/+e+Ctt4BJk4Dq1VmrKznJycJq5s2bjaffQp9vYDGcPg1ERgqvtRe5G+LaRREdHW0Sq/2joqKwbt068b0pdCUBL0ZEMIX6oSTGUOwYAxH5AagD4HMA/wBYCuCz0oor5PoqAGMBHIRgPtuI6Iahrm8sNMZgZ2eHkJAQxmpMg/I6xlAURMCZM0DLlkDbtoJJPH1q2DJalbW9DaB+faFlduiQbtiOosZHysrjx48xXYrsQHowa9YsnSB1rFsMGjTG4O3tzVjJcwzdYgARqQHc+G8zOES0D8A+fY9PS0uDUqlkGjPJ29sblpaWCAkJgaOjIzMdpsTFi8LTq4ZFi4SfhQV9MyUKCa4qolIBT54IhmBuLphErVrC67IGzaxUyTCB93btEkzs7beF95pWgzHuOxFh9OjR4Hne8BcvIXfu3MGGDRt09plKi+H+/fsATCOGmgaDthhMkeTkZOaB9CwtLdGoUSNMnDiRqQ5T4tQp4Ul14kShoios2Jwp8rKHOp4XnsbVauF3evJEaA1pxhiqVSt9uYZoLRw+DGRnC91dVasK6UY1rQZj3Pdt27Zhz549JhFK+vbt29i2bZs4G/CNN95AZmYmMjIyGCszreCaGkpiDBwZahRNQurXr093DTFqV0Z27NiBPn36sJZhMsTHA40bAzf+a1cOHixUVLdumf4Yg7u7oL8g/6XxFX9q5vsAQp4GMzPAzu75YrLMTCFXg/bxhVHUormS4uoqTLUdP14oi+Oe/zT0wHNycjIaNWqExMREdO7cGYcPHzZsAaWkYcOGuHPnDi5evIjs7GzUq1dPXOjJCh8fH9y6dQuXL19GixYtmGrR0LZtW5w9e/YyERWbDMWIw1PGw97enrUEAEBQUBBrCSaFZoyhRg2hpXDtGlC7trDf1GfHeHsXbgyaStbBAUhL0614vb2Be/eAjAxAqQQqVxZMwcxM10AKUlJTUKvVhSYTunoV0Czp0XTbaZdhaD799FNo1hCZQlcSAOTm5uLevXswMzODj48PbG1tWUsCz/PlviupXBqDqcBpHgtlADwfYwgPf74vNdW4s2MMhaaibtdOd5wEECr41FThtXYLIiZGeM3zQpeSptWQnV14GaUxhJkzZ+LDDz+Ep6enzmfx8UCHDkKuiOvXn08NNlZr4dChQzqzf0yhKwkQshbyPI8GDRqYhCkAQHx8PBQKBapWrQoHB4eXHktEktQjPM8jLk7/VQDl4CsrU17QVHqatQyTJgFt2ggrccsLLzMIQDABzc/8/Of7k5OLvmZpuo2ePXuGwYMHIycnB99++2KggenThW6ryMjnZqVdniHJysrCqFGjdPaZijFoshOyXL9TkJKML/z8888YPXq0sSUhMTERKpVK7+PL5eCzjP7wPI+UlBSkp6dLUp5mLcOkSUIXUnq68F4zzZOIkJGRgRRNDAoTgOd53L59W2efJksakX4VbcE0n9pbSU2BiLBw4UIcPXoUgwYN0vlMkylu3TphDEcz0GzMwf6kpCRs2bIFQ//LGVqvXj2TM4ZmzZoxVvIcfY1h9erV+OOPP6SQVPLggvosjza1zdLSkvLz88u2PtyAjBw5ktzd3encuXOspVBqaiopFApau3YteXp60vjx46lOnToUL1E0NU1OAO3w29bWRMHBPN27d486dOhAderUoZMnT0qiRx/27dtHDg4OdPToUdZSRPLy8uiXX36hp0+f6uzX5FuoXFn6EBgKhYKOHj1KaWlpFB4ebryCSkBeXh5FRERQbGwsaykieXl5dPv2bbpz506Rx1y+fJmsrKxo4MCBkmjKz8+n6OhovUNiMK/kS7MBoAcPHhjyvpWJvn37EgBat24dayn0+PFjcnFxIS8vL51YTlIZaVHxkqysiL78cpGoZ+vWrZLo0ZecnBy6efMm8TzPWsoLxMU9j1br4EBkb0/k6ChEThVSp746UVQrAklJSeL3c+zYsZKWra8xlNuuJFNZ4QgA9evXBwDcu3cPADTmxQQPDw98/PHHePDggbjP3t5esnUfp04BcXFClM+4OMEWgoOF/vjU1Ano168fAJRoIEwKbGxs0KhRI5OcUBAWJqydGDFCmAn14YfA8OHC/ho1yvfq8lcNtVqNIUOGiN9PFxeDp7gxCOXWGGJjY1lLgEKhABGhXr16AIC7d+/i6NGjWLZsGVNdkyZNQnWthQPVyrIKqxRoT1uNjxcS0gwaBKxdy+Hp081o3LiTyRmDqREfL8SbunZNGKPZskWYnkokzPoKDxemqHKc8PrCBdaKZfTh22+/xcGDB8X3sjEYGFNoMaSlpaFJkybYuXMnAGD37t3o3LkzrK2tmeqys7PDrFmzxPdSG8PFi0JlxXHCwrHUVGDTJmHa6oUL5nj99R0lmiHxKqLdSvjgA2D/fsDXVxh41nTQaQabSzPALSM9e/bs0fleAqZrDMzHC0qzAaBRo0ZRcnIy8wHDMWPGvJCt6cSJE0w1ERGpVCpq0qQJAaCuXbsy0aAZgI6LEzZHR6F/3MmJ6MaNZCaaTBntsQQnJ6KDB4W8D1evlt9cF6YC68kq9+7dIwcHhxfqCqkzzqGijzEcOXIEPj4+iNGsMmLE559//sKqVE3XEkvMzc3FvLNStxg0aHcphYUJ/eIffgh4eQHh4VXxzjuGj1ZanimqlbB27fPps9qtBLmloB/Jyckv5GCWGkdHR0RHR2Psf4nCq1SpAgBwdnZmKato9HEPU9ug5bimMEV08ODBoh47OzuTmtnStWtXGjduHJOyi3rKbdVKmKXk6EgUGspEmskgtxKMS1paGvn7+9O8efNYS6Hc3FxycnIiAHTq1Cnq2LEjJSQkSKoBFb3FoKFx48asJeDLL78UX9erV8+kZrbMnz8frq6uTMrWfsrVRFwlep4xrXt3YPVq4+Q5KC/IrQTjkZ2djcDAQFy+fBnNmzdnLQc7d+5EamoqfH190bZtW+zatYtZa75Y9HEPU9vw39O5t7e3Ic20TAQGBhIA6t+/P2spLyDV4raieNmTr5+f0Hp4VVoOmhaCZg2C3EowDrm5udSpUyexJf/kyRPWkuitt94iALR06VJmGvAqtBhMKT7K5MmTATxf02BKVGcc81o7vIT2Goft24VAdFZWwJo1wtTMijbuoJl2qvmdNC2EsLDnYzByK8GwKJVK9OvXD0ePHgUgjLHV0M55yoDo6Gj8/fffsLa2Npn88C+jXBqD2X9hLE3JGNq1a4e2bduaxMCzKfOyAekRI55XmsCLlWp5RNsINHGkjh4VutDWrBFiSl28CEREPF+XIK9NKD1qtRpDhw7Fnj17xH3NmjVj3r3722+/AQD69u0LJycnplr0Qp9mhaltLi4uJhlW4a+//qIzZ86wlmHSFNVV0ry50J1y6NDzEA8TJwpdLaGhul0wpkxhXUVXrgi/U3Cw8DsRCV1ofn66506cWL671BQKBZ06dYpZ+Wq1moYPH/7ClNCJmpvOCKVSSdWrV2cyPbUgqMhdSZrB1CZNmjBWokv37t3h6+vLWoZJU9SA9JtvCt0p+/cLIR6mTXv+dL12rRBm2hRbE/p0Ffn5Ae+9J0REnTRJOM7CQmglaFoI5b2V8OTJE7z55puSRfEtjLi4OLRr1w7Dhw/X2c868uq+ffvw9OlT1KtXDx06dGCqRW/0cQ9T2/z9/alPnz7MF63IlJ6XDbLGxQkD0sHBwrHBwcJ7zZN3wdYEkXFaFAWvWVgZBVs1mhaCo6OwxcXp/g4Fzy3PLQQNx44dI1dXV3JyciKFQsFUC8/z9NprrxEAcULIpUuXmGrq0aMHAaDvv/+eqQ4i/VsMzCv50mz+/v4UExNjwNslwxJNqG4NRRmDxhCCg3W7aPQxCn0q+YL7Cl6zsDL07SqqiLONeJ6nsLAwMjc3JwD04YcfspZEe/bsIQDk7OxMmZmZ9MUXX1Bubi4zPY8fPyYzMzOysLBgPjuQ6BUwBpmKQ3GtBycnodLVPJVrm4a+RlHc+4L7Clb6mgVoBcvQGIHGvDQthFatKp4RaJOenk59+vTR6cs/ePAgU008z1OLFi0IAM2fP5+IhHEHlsyZM4cAUFBQEFMdGmRjkCm3lKSbSR+jKFipF1bJv+zpf+JE4elf+72mjFehq6ggkZGR1KBBAx1TqFatGvOu3V27dhEAcnNzo+zsbKZaiART8vb2JgC0d+/eUl9HpVIZTJNsDDIVguK6YPQxioKVesH3oaEvf/qPiHi+AK2wMvTRaSgePHhAU6ZMoevXrxv2wnpy+/Ztatiw4Qszf0JCQpjo0aBWq6lZs2YEgBYtWsRUi4ajR48SAPLw8Ch15f7o0SODhvOQjUGmQlJSoyhYqRdWyRc3UKwxE+2nf3d3aYyASOgiOXLkCPXu3ZvMzMxozJgxhi+khHqCgoJ0jIF1lOPt27cTAHJ3d6ecnBymWjQMGjSIANA333xTqvOvXbtGHh4etGbNGoNpko1B5pWgOKMoWKkXVsnrO1As9XhBRkYGLV26lBo1aiRWwLVr16bMzEzjFlwMa9asIQBUuXJlCgoKIldXV1Iqlcz0qFQq8vHxYR5uQpukpCSqVKkScRxXqokyBw8epCpVqhAAitM8sZSRqKgo2RhkXk30rdRNoeIvilu3btHYsWPFikF7O3bsGBtR/xEVFUV2dnYEgH777TdKSEigSZMmMdW0adMmAkA1a9akvLw8plo0LF68mABQly5dSnzuqlWryMLCggBQs2bNDKbphx9+kI1BRsCUQoBrSExMZC1Bhzt37tDcuXNp3331pXIAACAASURBVL59FBcXx/yenT59mt57770XTOGTTz5hqkupVNLrr79OAOi9994T7xPLQWelUkn169cnAPTzzz8z06ENz/NikqySRGfgeZ6++eYbnb/5F198YTBdHTt2rPjGEBERYbAbZgh4nqezZ8+aVKWnUChowYIFlJSUxFqKSHp6OvXr1482bdrEWorIo0ePyM3NTfwyurq60ttvv01hYWHM5sAvW7ZMp4IwhS4kzVOwu7u7yfxPbd68mQCQp6cn88V1Gs6fPy/O1NK3BaNQKGjYsGEvPAwcOXLEIJqSk5M1600qrjHY2dmRm5sb04Ur2ly7do18fHyofv36JhO/Sa1WU0BAANnZ2dGoUaNYyxH5+uuvxX/6mTNnMn86JxKe0CtVqiTq8vf3p9WrVzMdxExNTaUWLVpQ48aNTaILiYgoJyeHxo0bZ7DKyhAoFApauXIlbdu2jbUUEaVSSbt376ZVq1bpdTzP8/Tll1+Su7u7jinY2toarGtMqVTSiRMnKrYxaG7c5cuXDXLTysKpU6eoW7du4h8zWHsOI0M2bNhAmmCDHMfRxYsXWUsipVJJISEhOv/877//vkn0C3ft2pWGDh1K586dMwmzIhLMfcmSJTR27FjWUl4JWP/dL1++TGZmZuJ3IzAw0OBl6GsM5TKInoarV6+yloC2bduiZcuW4vsjR44wVPOc3r17Y+rUqahRowaICGPHjgXP80w1mZmZYcaMGThz5gw2bdqEuXPnwtraGgsXLoRKpWKmi4iwfv16rF+/Hq+99hrzEM0azMzM8O6772LevHmspVRoMjIy8NVXX0GtVjPToFKpEBISAp7nMXr0aDRq1Ahdu3Zlpof5039pNnt7ewLALJdxYaxYsUJ0+6ioKNZyRHJzc+mnn34iT09PvZu2MjKvCidPniQvLy/66quvmOpYtGiROLMqIyODjh07Rrdv3zZ4OajIXUl+fn7UsWNHat++vSHvWZn566+/yMbGxmRmR2iTn59Pe/fuZd5clpExBRQKBU2dOlV8mLt//z4zLbGxsVS5cmUCQLt27TJqWfoaQ7nsSjIzM8Pu3bthZ2fHvHtEmx49euDYsWMm0cVVEEtLSwQGBppMN4mMDCtu376NNm3aYO7cueB5Hl26dEHt2rWZaKH/unmzs7MRFBSEXr16MdFREAvWAkqLnZ0dNm/eDIVCARsbG9ZyRF577TV4e3uzliEjI1MAIsLy5cvxxRdfIDc3V9wfHBzMTNOOHTuwe/duVKlSBUuWLGGmoyDl1hgAwMHBgbWEQnFxcWEtQUZGRouEhASMGDEC+/fv19nv4uLC7Ck9PT0d48aNAwDMnTsXHh4eTHQURrnsSpKRkZEpCS4uLggPD8fQoUN19g8fPhyVKlViomnKlCmIj4/Ha6+9htGjRzPRUBSyMcjIyFR4zMzMoFKpsHPnTgBA1apVAQAjR45koufs2bP4+eefYW5ujpUrV8Lc3JyJjqKQjUFGRqbCk56ejqCgIGRnZ2PAgAHYuHEj3njjDdSvX19yLUqlEiEhISAifPbZZ2jWrJnkGoqjXI8xyMjImD4KhQKbNm1C165d4e7uLnn5PM/jgw8+wN27d9GkSRP89ttvsLW1hbOzs+RaAGDBggWIjIxE7dq1MX36dCYaikNuMcjIyBiF5ORkzJkzB15eXjhz5gwTUwCA7777Dn/++SccHBywY8cOVK5cGRzH6UQskIro6GjMnDkTAPDzzz/D1tZWcg36ILcYZGRkDEp0dDTCw8OxatUq5OTkwM3NDWFhYUy0HDhwAN988w0AYMOGDahXrx4THYAwXfbjjz9GXl4eBg8ejLfffpuZluKQjUFGRsYgnD17FgsXLsSOHTs0wS4BAIsXL4aTk5Pkeu7fv4/BgweDiDB9+nS8++67kmvQZuPGjThy5AicnJywaNEiplqKg2lXEsdx/TiOu8FxHM9xnPTtOhkZmTLD8zw+++wztG3bFn/88YeOKQQGBqJ///6Sa8rJyUGfPn2QmpqKwMBATJs2TXIN2iQnJyM0NBQAMH/+fLi6uhr0+lFRUTh//rzBrsd6jCESQB8A/zDWISNTrlGr1bhx44ZOpSwVZmZmWLhwIebPn6+z39bWFsuXL5c8DAsRISQkBNeuXUOdOnWwYcMGmJmxreq++OILJCUloUOHDvjwww8Ndl2lUol58+YhICAADRo0MNh1md4tIrpFRHdYapCRKY+o1WpERERg0aJF6NWrF1xdXXHz5k1msbDWrFmDKVOmAICoYfbs2fD09JRcy9KlS7Fx40bY2tpix44dTLqxtDl27BhWr16NSpUqYcWKFQb7G50/fx7+/v6YMmUKhgwZAkdHR4NcF4BpRFcFcBxAy2KOCQFwCcClWrVqGSbUoIxMOUGlUtGVK1fohx9+oJ49e5Kjo6NOwqOffvqJiS6e52natGmijk8//ZRGjRpF/v7+pFQqJddz8uRJsrCwIAAmkT42NzeX6tWrRwBo+vTpBrlmRkYGjRs3jjiOIwBkbm5ODx480OtcmErYbQBHIHQZFdx6aR1TrDFob/7+/iW/mzIy5RRNknhNRVBwmzlzJhNd2nmKzczMaMmSJUREtHPnTrpy5Yrkep48eULVq1cnABQaGip5+YXxzTffEABq0KCBQTIV/vnnn1SzZk2dv//AgQP1Pt9kjEEvEbIxyMi8FJVKRcHBwS+Ywrhx45jk2EhJSaE333xTzE38119/iZ+x0KNQKKht27YEgN544w3Kz8+XXENBbty4QZaWlgSAjh8/XqZr5eTk0KBBgwp9MChJ2l7ZGGRk9EStVtOECROoffv21KZNG2rZsiX5+vpS48aNqUGDBuTt7U21atWiMWPGUGZmpuT6zp49S/7+/i9UCIMHDya1Wi25npiYGGrUqBEBIDc3N5PIJ/7JJ58QAPLw8KCnT5+ylkNqtZratWtHAOijjz4yyDWzsrJ0uu00Jqgv+fn55cMYAAQBeAxAASABwEF9zpONQT8yMjJM4slJm8uXL9PQoUNpw4YNlJiYyFqOSEJCAtWuXbvQJzJ7e3tau3at5E/CCQkJ9OGHH4o63N3dad68eQSAunXrRgqFQlI9REQXL14kNzc3AkCNGjWimJgYyTUUZM2aNQSAKlWqROfOnWMth4iIVq5cSQDI1dWVkpOTDXLN27dvU9WqVcX/SQA6LbXi+O2338qHMZR28/X11ftmSEVERATduHGDtQwdHj16RA0bNqQdO3aYTErPO3fukIeHBwEgjuOodevWNG3aNDp79iypVCommvbv30/NmjUr1BQ6depEsbGxkms6dOiQOMBsaWlJkyZNooyMDEpNTaU2bdpQVlaW5JrOnDlDtra2BIA6duxIKSkpkmsoyPXr18na2poA0IoVK4xWTl5eHu3bt0+vY58+fSr+7TZu3GiQ8p89e0be3t4EgAIDA+nw4cPUoEEDvVuM+fn5mgefimsMVlZWdOTIEb1vqrHheZ5at25N9vb2tH//ftZyRPr37y9WcG3btqXTp0+zlkTz588vtAK2sbGhkSNHUkJCguSajh8/TgDIzs5OHOC1sbGhH3/8kUlXDRFRXFwcValShbp06UK3bt0S96vVaoM9gZaUrKwsatmyJQ0bNoxJa6Uw8vLyKCQkhD766COjPPwoFAr6+eef6X//+x9t375dr3OUSiUtWLCAgoKCDKIpJyeHXn/9dQJAfn5+lJmZSTzP099//633NVQqFW3YsKFiG4O7uzsNGTLEZJ7Qk5KSqEOHDmRra0tmZmb0448/msQT+uTJk3Uq3lq1atHcuXOZdi89ePCAvLy8CAA5OjrSsGHDaMeOHUyegDWoVCrau/f/7d17VFVl/j/w94MKKqCZmjKilo4ZZHjJMpez8DqKlpVoRgpq2WDmJczV5PVXjuJkVKSjMwmCyQR+0wnzUngtERUCxRRFFPBaggaJmAgHOO/fH8heHIEk4ex90M9rrbOWwD48b5912J+9n73383zDK1euEAD79OnDU6dOGZanXGZmpk18jiq6du2azWUiWednmyaTiSEhIezYsSMB0NPT8w//v+uin0pLS+nt7U0AbN++PX/++eda/b57ujDY6jUGs9nM3NxcHjlyxNAdXXmWI0eO8OzZs4ZnqSgtLY1Tp07lzp07be76x9GjRxkYGGjI/ffCNphMJoaFhVlcb1JKGXL7LUm+/fbb2jWFY8eO1fr31bQwqLJt65fevXvz0KFDRscQ9xiShj05LIxVUlKCyMhILF68GJmZmRY/mzx5MtasWaN7ppUrV2LGjBlo2LAhYmJiMGTIkFr/TqXUYZJ3nJfO6LmShLAZUhTuX4WFhSgtLa00fYaTkxOWLFmie56tW7firbfeAgCEhITUSVH4I6QwCCHue05OTvjrX/+K/Px8i+/Pnz8fbdu21TXLoUOH4OPjA7PZjIULF+LVV1/VtX1A1mMQQghkZmZi8ODBOH/+PJ544gmYTCaYTCYEBATomuP8+fN47rnnUFBQAF9fXyxatEjX9stJYRBC3NdSU1MxZMgQZGVl4emnn0ZMTAyWL18ODw8PNG7cWLcceXl5GDFiBC5fvowBAwYgLCzMsOFNKQxCiPtWcnIyhg4ditzcXHh6emLbtm1wdnbGtGnT0Lp1a91ymEwmeHt7IzU1FW5uboiOjoa9vb1u7d9OrjEIIQx1/vx57N27V/d2Dxw4gIEDByI3NxdeXl6IiYmBs7MzAOChhx7S7WidJP72t7/h+++/x0MPPYRvv/3W8DUk5IxBCKErkjh8+DC2bNmCLVu24NKlS0hMTNQ1w+7du/HCCy9oS4BGRUXBwcFB1wzlFi1ahIiICDRp0gTbtm3Dww8/bEiOiqQwCCGsrqioCN9//z02b96MrVu34ueffwYANGrUCHv27NF1Z7h582aMHTsWJpMJfn5+CA8PR8OGxuwK161bh0WLFkEphfXr1+Opp54yJEclNXkKztZetvrksxDCUmlpKefOnUsnJ6cq58has2aNrnmioqLYoEEDAuDUqVMNmwuLJHfv3q2tNrdixQpd2oRMiSGEsAVFRUVVLjIUEBCga47Q0FBtksS///3vhs75lJKSok2drVc/mM1mKQxCCOMVFxdzyZIl2kpm5a9hw4bpOifVJ598orW9ePFiQ4vCpUuX2KFDBwLgqFGjrD7dfGlpKTdt2sTevXtLYRDifldcXMxTp07x9OnThrSfkpJisfLcpEmTCICPPvoor169qksGs9nMf/zjH1qG4OBgXdqtzvXr19mrVy9tFt8bN25Yra3i4mJGRkby8ccfJ4DyITQpDELcD/Ly8piQkMB169Zx7ty5HDVqFN3c3NioUSP279+feXl5uuYpLi5mYGAg7e3tCYCurq7cvn07SfKxxx7TbUpzs9nMd955R5shNTQ0VJd2q1NcXMxnn32WAPjII49Ybe2RoqIihoaGsnPnzhZnabNnz5bCIMS9Ljk5WVvboqqXt7c3b968qWum48ePlw9ZEABff/11i8KUnp6uS47S0lK+8cYb2pFyVFSULu1Wx2w288033yQAtmjRwmLxpboUERHB9u3bV/osuLi4MD8/XwqDEPeD7du3087OrtKOYMqUKboulVpcXMylS5dWeZagt+LiYvr5+WnrQG/evNmQHBV99NFHWp7Y2FirtXPjxg2uXr260meifIlRKQxC3MMuXLjAmTNnskmTJpWKwnvvvafrxdXbzxImT56s+/BVucLCQm3Fs6ZNm3LXrl2G5Kho48aNlXbQ1pKbm6stA1r+6t+/v/Z5qGlhkAfchLjNmTNnsHTpUgBlazRU9xo8eDC8vb11zZaRkYEPPvgAERERKC4uBgAMHz4cMTExUEph1apVmDp1qi5ZSkpKEBQUhPfffx8mkwmurq4IDQ2Fl5eXLu3frqCgAKNHj8b27dvRrFkzfPvtt+jXr58hWcrFx8fDz88PABAYGIhx48ZZra2ffvoJw4YNQ2pqKtq3b4+XX34ZwcHBWLly5R+f3qMm1cPWXnLGUH8lJSXxzJkzNres5+0+/PDDasfunZ2duXr1al0fjjp69Ch9fHy0IQKlFF966SUmJyfTZDLR3t6+xovV14Xjx4/zqaeesomzBLJsLWpPT08CYMuWLXn48GHDspRLT09nq1attGst1jyLO3nypHZtwc3NjRcvXuSFCxc4a9Ysi+0gQ0kiNTWV+fn5RsewsG7dOgKgnZ0dXV1d+Ze//IXjx4/nvHnzGBISwh07djAtLY1FRUW6ZyspKeHBgwc5b948enh4VFkURowYwQsXLuiWKT4+niNHjtTab9iwISdNmsS0tDRtm6KiIn733Xe65KnqWkJMTIwubVcnNzdXK1IuLi48ceKEoXlIMicnh126dNGe2bDmgdAPP/zAli1bEgCfeeYZ5uTkaD+rePNBTk7OvV0YHn30Ua5evdpmFm2/efMm33nnHU6ePJkTJkxgUFCQTWT74osvqJSim5sbJ0yYwH/9619MSEjQ/U6ViuLi4ti2bdtqj8Y7derEsLAwXc8okpKS6Ofnpx3dVfVq0aIFIyIidBu7T0lJ4aBBg7T2HRwcOG3aNJ47d06X9qty9uxZi7OE1157zdCzBJK8cuUKn3jiCQJgx44dmZGRYVgWk8nE7Oxs3rx5k/369SMAenh48Nq1a1Zrc8eOHXR0dCQADh8+nL/99luV25nNZo4aNereLgz29vY8duzYXXemNXTv3p0NGjTgwoULDTnarcpLL71ksXNzdHTk66+/zuTkZMMyBQYGVrnj7dy5M9euXWvIENO2bdu0HA8//DCnT5/O7du3c968eQTA0aNHMysrS9dMGRkZtLOzo7OzM999913d269KXl4eXV1dbeIsoVxBQQH79+/Prl278uLFi7q3X1JSwj179tDf35/du3dndnY2i4uL6e/vzz/96U9WzRQVFaU9Ue7r6/u7fzulpaVctmzZvV0YevbseVcdaU07d+7kDz/8YHQMC/v27SMA9uzZk5999plVj1xqKikpiSNGjNB2xH/+85/5+eefG3qGVVBQwGXLlvH48eMWZwTTp0/n//73P8NyffXVV/z1118Na78qR44cMfws4Xb5+flWe1isKqWlpdy3bx+nTZvGNm3aaEN8Bw4c0LYxm83Mzs62Wobly5drf0OzZs2q8fWue7owyDWGmklJSWFSUpLRMSqZNGkSu3TpwoiICJsYcquOrV8gF/oxm82Mj49nQEAA27VrV+mMd/ny5brlWLBggdbuBx988IeGN2taGOR21XtYt27djI5QJR8fH4SGhho2B35NNWrUyOgIwkYUFBRgx44dWLNmDX777TeLn73yyiuYMWOG1TOUlpbizTffREhICOzs7BASEoLJkydbpS1Z2lPobtiwYTZfFISoyNHRERMnToS7u7vF993d3RESEmL1ZUALCwsxduxYhISEwMHBAdHR0VYrCoAUBiGEuKP169eje/fuSExMhKOjIwDA2dkZ0dHRcHJysmrb+fn5GD58OKKjo9G8eXPs3LkTL7zwglXblMIghBDVuHbtGvz8/DBu3Djk5+dj5MiROHr0KABg7dq16Nq1q1Xbv3z5MgYMGIC9e/eibdu2iI2Nhaenp1XbBGTNZyGEjSOJ69evo1mzZrq2e+DAAfj6+uLcuXNo3LgxPvnkE7zxxhtQSiE4OBijR4+2avtnzpzB0KFDkZmZic6dO2Pnzp3o1KmTVdssJ4VBCGFT8vPzkZSUhISEBMTHxyM7OxtfffWVboWhpKQES5YsweLFi2E2m9GjRw9ERUXBzc1N2yYgIMCqGY4ePQovLy9kZ2ejZ8+eiImJQZs2bazaZkVSGIQQhjGbzUhLS0NCQoJWCE6cOFF2Lz2Adu3aITY2Fh07dtQlz5kzZ+Dr64v4+HgAwOzZsxEYGAgHBwdd2geA2NhYPP/888jPz8fAgQPx9ddf6362JIVBCGGY9PR0+Pr64siRI5V+1qZNG+zZswedO3e2eg6S+OKLLzBt2jRcv34dLi4uiIiIwJAhQ6zedkVff/01fHx8UFRUBG9vb0RGRqJx48a6ZgDk4rMQwkBdu3bFxx9/jKZNm1p8v1WrVtizZ4/VL+4CQF5eHsaNG4cJEybg+vXrePHFF5GSkqJ7UQgLC8Po0aNRVFSEKVOmYMOGDYYUBQDy5LMQwhinT5/WFtWp+GrRogV//PFHXTLExsayQ4cO2sI+ISEhui5yRJY9zbx06VLt/79w4UKrZYBMiSGEsEU5OTmcOXMmGzZsSABs0qQJFyxYwD59+rB58+Y8dOiQ1TOYTCbOnz9fW9/iySeftJjKXC+lpaUMCAjQ1thYsWKFVduTwiCEqMRkMvHixYtMTEzk6dOndW27sLCQQUFBbN68ubYjnDhxojYD6bhx4xgfH2/1HOnp6dr04Uopzpkzx5AZkYuKijh+/HgCYKNGjbh+/Xqrt1nTwiAXn4W4xyQnJ2P//v3IysrSXtnZ2cjKykJOTg5IYuzYsQgPD9clD0ls2LABc+bMwblz5wAAgwYNwkcffYSePXtq261atQoPPPCAVXN8/vnnmDFjBm7cuIF27drhv//9LwYOHGi1Nqtz48YNjBkzBtu3b4ejoyOio6MxdOhQ3XNUqybVw9ZecsYgRPWuXr1qschPxZdSiv/85z91G0ffv38/+/Tpo7Xv5ubGbdu26T6On5ubyzFjxmg5xowZw9zcXF0zlMvJydH6pGXLlrpO1w8ZShLi/mM2mxkXF1dpkSYAbN68Ob/55htdcmRkZHD06NFa261bt+Z//vMfQ6ZZ/+677+jq6qotVhUeHq57YSp34cIFurm5EQA7dOjAkydP6tq+FAYh7iPXrl3jypUr2a1btyrPFB577DGeOnXK6jlyc3MZEBCgrSzWuHFjzps3z5BFooqKivjuu+9SKUUAfPrpp5menq57jnKpqalagXJ3dzdkxTkpDELUkQ0bNrBfv37s06cPe/XqRQ8PD7q7u7NLly585JFH6OrqSk9PT6ampuqeLTk5mf7+/tq6v+VH53PmzGFwcDABcOTIkVZfda2wsJAff/wxH3jgAS2Hn58fL1y4YNV2q5OWlsZevXppw2fz5883dOGlhIQEPvjggwTAvn37GjaMJYVBiDpiNps5ceLEKo/EAXD69OnVLsJuDQUFBVy7dq3F2D0Aenp6MioqioWFhSTJ8PBwLliwoMbLPt4Ns9nMDRs2sFOnTlqOAQMG8PDhw1Zr8055QkJC2LRpU224JjY21pAs5WJiYrQ8w4cP1/WzcjspDAYy4ta3+mTv3r0MDQ3lxo0btbWyT506xezsbN68edPoeJpLly7x3//+N4cMGcIGDRpUKgiurq7ctWuXbnnS0tI4a9YstmjRQsvQrFkzTp8+ncePH6+0vbV3QAcPHmTfvn21LF27duWWLVsMG7//5Zdf+OKLL2p5fHx8ePXqVUOylIuMjNSe1/D19TV8udh6URgABAFIA3AMwCYAD9TkfT169GBcXFydd1ptlK8JO27cOMOPUMiyo8r4+HgePHiQBw4c4P79+xkXF8d9+/YxMTHRsD9ekrx8+TI7duxY7RG4vb29YUMzGRkZDAoKstjhAWCDBg3o7OysfT1hwgRddjomk4kbN26sdJdRr169GBoaasjRZ2ZmJseOHatladWqFVetWmXoTm/Xrl10cXEhADo7OzMiIsLQzzhJfvrpp1ofvf3221Y9c6up+lIYhgJoeOvfywAsq8n7mjRpwoSEhLrus7sWFxfH3r17EwD9/f2NjkOyrFD5+/tX2uk+88wzut8JUVFKSgo//PBDPvnkk1UWhebNmzM4OFjXnUxGRgbff/99enh4WGRxcHDgc889x/DwcP7yyy8cPHgwW7duzU2bNlk9U1ZWFhcsWMC2bdtqeZo0acJXX32ViYmJVm+/Knl5eZw9ezbt7e21/pkzZ47Vr1/8nsLCQs6ePVvro759+zIzM9OwPGTZ3968efO0TMuWLTO8SJHkihUr6kdhsAgCjAIQWZNtHRwcWFJSUre9VguFhYV0cXFh+/btDbn7ojpeXl4WO7mgoCDD+23u3LlVFgQ7OztOmTKFV65c0T1TVFSUlsPJyYkvv/wyv/zyS+bn51tsN2PGDF6+fFmXTMeOHbO4o+jTTz/lr7/+qkvb1bly5QqbNWtGABw/fjzPnTtnaB6y7MzY3d2ddnZ2fO+99wy5HfZ2xcXFHDFiBO3s7BgWFmZ0HM3MmTNrXBgUy3bKhlNKbQXwJckvqvm5PwD/W192A3Bcr2z3gVYAcowOcY+Qvqxb0p91qytJ5zttZPXCoJTaDaBtFT+aT3LzrW3mA+gNwJs1CKSUOkSyd90mvX9Jf9Yd6cu6Jf1Zt2ran1afK4nk705qrpSaCOA5AINrUhSEEEJYl6GT6CmlvAC8C6A/yQIjswghhChj9ApuKwE4A9illPpRKfVZDd8XYsVM9yPpz7ojfVm3pD/rVo3602YuPgshhLANRp8xCCGEsDFSGIQQQliot4VBKRWklEpTSh1TSm1SSllv6ad7nFLqJaXUCaWUWSkltwbeJaWUl1LqlFIqQyk1x+g89ZlSKlwpdUUpJc8r1ZJSqr1S6nul1Mlbf+dv3ek99bYwANgFoBtJDwCnAcw1OE99dhyAN4B9Rgepr5RSDQCsAjAcgDuAV5RS7samqtc+B+BldIh7RAmA2STdADwDYNqdPpv1tjCQ3Emy5NaXCQBcjcxTn5E8SfKU0TnquacBZJA8Q9IE4P8AvGBwpnqL5D4Avxqd415AMotk8q1/XwdwEkC733tPvS0Mt3kNQIzRIcR9rR2AixW+/gl3+OMTQm9KqYcB9ATww+9tZ+gDbnfyB6bTKAEQqWe2+qYmfSlqRVXxPbkXXNgMpZQTgK8ABJDM/71tbbowyHQadedOfSlq7ScA7St87QrgkkFZhLCglGqEsqIQSTL6TtvX26GkohIkzAAAAZ5JREFUCtNpPC/TaQgbkASgi1LqEaWUPQAfAFsMziQElFIKQBiAkyQ/qcl76m1hwN1PpyFuo5QapZT6CUBfAN8opXYYnam+uXUjxHQAO1B2cW8DyRPGpqq/lFLrAcQD6KqU+kkpNdnoTPVYPwB+AAbd2lf+qJQa8XtvkCkxhBBCWKjPZwxCCCGsQAqDEEIIC1IYhBBCWJDCIIQQwoIUBiGEEBakMAghhLAghUEIIYQFKQxC1AGlVAOl1PJb892nKKU6GZ1JiLslhUGIujEXwBmSjwNYAeBNg/MIcddsehI9IeoDpZQjgFEkn7z1rbMAnjUwkhC1IoVBiNobAqC9UurHW18/CGC3gXmEqBUZShKi9noA+H8ke5DsAWAngB/v8B4hbJYUBiFqrwWAAgBQSjUEMBTAVkMTCVELUhiEqL3TKFtkHQBmAfiG5FkD8whRKzLtthC1pJRqgbI1x1uhbA0Bf5I3jU0lxN2TwiCEEMKCDCUJIYSwIIVBCCGEBSkMQgghLEhhEEIIYUEKgxBCCAtSGIQQQliQwiCEEMLC/wfLSOF5MXhgNQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:06<00:00, 2.15it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXdYFFfbxu+hY6GpIBbEFsGuiK81ookaNfbYu0ZN1CSS5NNojCbGWFDRaGJeS2LsvLFrFHswYhfsItiVKkjvuzvP98e4466A7sKyZ4Hzu665YGdnztzMLuee055HICJwOBwOh6PGjLUADofD4ZgW3Bg4HA6HowU3Bg6Hw+FowY2Bw+FwOFpwY+BwOByOFtwYOBwOh6MFc2MQBKGmIAj/CIIQJgjCbUEQvmCticPhcMoyAut1DIIguAJwJaJQQRAqAggB0I+I7jAVxuFwOGUU5i0GIoohotCXv6cBCANQna0qDofDKbtYsBagiSAI7gBaALiYz3uTAEwCABsbG69GjRoZVVtBJCYm4vHjx6hduzYcHR1ZywHwSpOrqytcXV1ZywEAxMfH49mzZ3BwcECdOnVYywERIS4uDjExMbC2toanpycEQWAtC+np6Xj8+DEUCgUaN24MS0tLpnoePnwINzc3pKammtT3/NmzZ1AoFFAqlbCxsUG1atVgYcG2OktJSYGFhQWysrKQlpaGSpUqwc7OjqkmIoIgCMjMzERsbCySkpISiKiKTieawgagAqRupAFvO7Z27dpkChw+fJgsLCwIAC1atIi1HBJFkfz8/AgAAaAvvviCRFFkqikuLo569eolaxo9ejTl5uYy1XTq1Cny9PSUNfXv358SExOZakpNTaWpU6fKmho1akS3bt1iqun27dsEgAYMGECWlpYEgBYuXMhUk5phw4bJ90oQBFq9ejWtWrWKFAoFM01Hjhwhc3NzqlGjBgGgkSNH0siRI+nChQvMNIWFhdGAAQNoyZIl6vt1hXSpj3U5qLg3AJYAjgL4Upfjvby8DHz79OfcuXNka2tLAOjLL79kXgErlUr67LPP5H+WpUuXMtd0+PBhcnZ2JgBkb29PO3bsYKonKipKq0KpW7cuHT58mImWX3/9Vf792LFjVKtWLQJA5ubmNGfOHMrOzmaiS5PRo0fL9woAff7558y/U2q6dOmipQ0ABQQEMNV07969PJpatWrF9J6JokiVKlXS1FQyjAGAAGAzgJW6nsPaGG7dukWOjo7yE7BKpWKqJzMzkwYOHEgAyNLSkrZt28ZUT1ZWlpZJdezYkZ48ecJMT25uLvn7+1PFihUJANnY2NAPP/xAWVlZTPRs3bqVBEGguLg4mjBhgnyfmjdvTqGhoUw0vc6jR4/I3Nxcq5Lz9vamn376iXmLj4iocePGWtq++uor1pIoJyeHzMzMtHTt27ePtSzq06dPiTSGDi8F3wBw7eXW803nsDSGx48fU/Xq1QkA9erVi/k/yYsXL6hDhw4EgOzs7OjkyZNM9dy4cUP+pzU3N6effvqJlEolMz3//vsvNWnSRP7H6NWrFz148ICZnnPnzpG1tTUBICcnJwJAVlZWtGDBAubfJU2mTJmS5+m3e/fuFBERwVoaEZHcEgVAXbp0YdqFpIm65QeAmjRpwvyhkYg0u5FKjjEUZmNlDM+fP6d33nmHAFD79u0pIyODiQ41jx8/lvvKq1WrRtevX2emRRRFWrlypVzp1a1bly5evMhMT2xsrFZXiLu7Ox04cICZHiLp89Ks0ABQ69atmY8lvE5MTIz8OQKgmjVr0u7du02mG0mpVMpP5m5ubvT8+XPWkmQ6d+4s3zfWXadqgoODuTEUF6mpqdSqVSv5SYD1YOW1a9fI1dWVAFDDhg2ZdtXExMTQBx98IH/5xo8fT2lpaUa7fnR0tPy7QqGgVatWkZ2dnfw0/t133zE38dTU1DzdH+rP7tixY0y1vc6MGTMIAFlYWNDMmTMpPT2dtSQt4uLiCABZW1vTlStXWMvR4uOPPyYAVL9+faYtZU2ys7M1jZ4bg6HIzs6WB7vc3d0pKirKqNd/nePHj8v95R07dmRqUgcPHqQqVaoQAHJ0dKSdO3ca9fpBQUHUr18/IpK6aZo3b25yXR9KpZI+/PDDPKZQtWpV+vjjj2nfvn0mU4kkJiZShQoVqEuXLnTnzh3WcvLlxo0bBIA2btzIWkoeFi5caJLa2rdvz43BkCiVSvroo48IADk7OzOvaLZs2SJPkR00aBCzAdSMjAytfmgfHx96+vSpUTVcu3aN7OzsyMPDg8aPH2+yXR9fffWVrM3Ly4vmzZtHly9fNon+59f5/fffaceOHSZz7/LjxIkTNGXKFNYy8iUgIIBq1aplUuNFRFIr0MbGhhuDIRBFkSZPnkwAqGLFikxnjIiiSIsXL5YrmOnTpzOrWK5evSqPbVhYWNDixYuN/sT78OFDqlq1qtYTuKWlJX3zzTcm1fWxfft26tOnD61bt455S1MXTKXl8ibu3r1LOTk5rGXky6VLl2jNmjWsZeThwIEDNHToUG4MhuC7776T+zL/+ecfo1wzP5RKJU2bNk2uAJcvX85Eh0qlouXLl5OVlRUBoHfeeYdJH+/z58+pfv36WqZgZmZGgYGBRtfyNkxltgzHOKSlpTFrxb+JhIQEOnLkCDeGovLzzz/LFc6ePXuK/XoFkZmZSf3795efiFnNdIiKiqKuXbvKFfHEiROZPJmnpaXJkwBe30xhui6HY6qIosiNoShs27ZNrmzWr19frNd6EwkJCdSuXTu50jt16hQTHXv37pVXTzo5OTEzypycHOrWrZuWGTRr1ox8fX3p4MGDlJyczEQXh1NS4MZQSAIDA00i/tGjR4+oQYMGBICqV69ON27cMMp1Hz9+LP+enp5OkyZNkivh9957j1k/uUqlouHDh5OHhwdNmTKFdu3aRfHx8Uy0cDglFW4MheDcuXNUrlw5AkC+vr7MZmaEhobKA6uNGjUy2myf9PR0atSoESUkJFBISIhsTJaWlrRs2TKms2iSkpK01itwOBz94cagJ5rxj0aNGsWsEjx27BhVqFCBAFCnTp0oKSnJKNcVRZGGDx9OgBT/SR1N08PDw2Ti93A4nKLBjUEPTCX+0ebNm+VurMGDBxs1wubq1avzDOZ++umnzFcMczgcw6GrMTDP4Maa+Ph4dOvWDVFRUWjfvj3++usvoydHISIsWrQIo0ePhlKphK+vL3bs2AFra2ujXP/8+fP48ssvtfa1bNkSs2bNQrly5YyigcPhmA5l2hjS0tLQs2dPREREoEmTJjh48KDRK0KVSoWpU6di9uzZAAB/f3/4+/vDzMw4H83z588xaNAgKBQKrf03btzA559/joSEBKPo4HA4poNJpfY0Jjk5Oejfvz+uXLkCd3d3HDlyxOgpC7OysjB8+HDs27cPVlZW2Lx5M4YMGWK06yuVSgwbNgxRUVEAADMzM3Tu3BlDhgzBgAEDUKlSJaNp4XA4pkOZNAaVSoWRI0fi5MmTcHZ2xrFjx1CtWjWjanjx4gV69+6N8+fPw97eHvv27YOPj49RNcydOxf//PMP3n33XQwZMgQDBw6Ei4uLUTVwOBzTo8wZAxFh6tSp2LVrFypWrIjAwEDUr1+/2K8riqLcPfTo0SP06NED4eHhqF69Oo4cOYLGjRsXuwZNHj16BBcXFzx79gzVq1c36rU5HI5pU+bGGObNm4e1a9fCysoK+/fvR8uWLYv9miqVCjNnzgQAhIaGom3btggPD0fjxo1x4cIFo5sCANSuXRtffPEFNwXOW1GpVDh8+DBrGRwjUqaMYdWqVfjxxx9hZmaGgIAAdO7c2SDliqL4xvd/++03/Pzzz9i7dy86deqEuLg4+Pj44MyZM6hRo4ZBNLxOdnZ2sZRbFFJSUqBSqVjL0CI7OxvPnz9nqkGaRfgKURTx4MEDRmryMnfuXKxduxaJiYmspWhx+PDhPPeONbm5uawlGAZd5rSa2taoUSO95+8WV/yju3fvkoeHB505cybf96OiouSkOuptyJAhxbpG4dGjR+Tu7k7bt28vtmvoS3h4OL3zzjs0Y8YM1lJkzp07Rx4eHvTee+8xW+UuiiJ9++238uuzZ8+Sl5cXVatWzahZ8AriwIEDBIDKly9PFStWpJs3b7KWRERSiJTatWtTz549adOmTazlyPzyyy+0dOlSmjdvnkl8fkREp06donPnztGsWbNK9wK3qlWr6nVjNOMfLVy4UK9z30RmZiY1bdpUruzzY8iQIVqm4OHhQXFxcQbT8DoxMTFUt25dObubKSSDOXHiBDk4OMhpUVkvmsvIyCBfX18SBEFOw8gi3IYoivTll1+StbU1RUZG0ogRI+TvSbVq1ZivOH/w4IH8uak3U6mEjx8/Lmtq2bIl/fPPPyaRXGju3LmyrkGDBjFP7EUk/f+pv+ul2hhatGih8005f/58scU/Uud3rVu3br6RPV/GP8+zNWjQgMLDww2mQ01iYiI1adKEAFDz5s2NFk7jTaxZs4bMzc0JAPXu3ZtSU1OZ6jl16hTVqVNHDqk+Y8YMyszMZKLlxx9/lL8T6u+olZUVzZ49m/nTZlZWFrVo0SLf7+7Ro0eZaiPSfuCqUaMGs8jDr/PZZ5/Jur755hvWcoiIKCIiQvMzLL3GoGtIjNu3b5OTkxMBoJEjRxr06XnLli3yP3JISEie9zMzM+Und/XWrFkz2r59e7Ekb0lLS6M2bdrICXSKs1WiCwqFgqZOnSr/7TNmzDB6djDN+5ySkkKffPKJrKdRo0Z06dIlo+rRZNWqVXkq3b59+9KDBw+YadJE/dCj3ipWrEijRo2iQ4cOMc+eFh8fLyeLGjJkCNOc568zcuRIubVuKkmasrKyuDGoKc74R3fu3JGf8ApK46fO/gaAOnfuTIGBgcXW1M3KyqL33nuPACnf8ZMnT4rlOrqSlJQkJ/WxtLRkkhh948aN8pNtYGAg1axZkwApFencuXONGofqdTZt2pRvS7Jr165aYc9ZsXHjRgJANjY2NGjQINq9ezezVlV++Pv7U8WKFWnz5s0m0X2kSa9evahKlSoml8bVxcVF3XIvu8bw/PlzeueddwgAtWvXzqB92urQ1Oqnlfy+mGFhYWRjY0MDBw6kixcvGuza+aFQKKhfv34EgKpUqVIsXVT6EBERIYfrrly5coGD8sXJv//+S5aWlrRkyRIaM2aMVl/0tWvXjK5Hkz179pCZmZmWIVhaWlK7du1o5syZFBQUxFTfnTt3aPDgwbRt2zbm3X75oc7D/ujRI9ZS8qVjx450/Phx1jLy0Lp1axo7dmzZM4YXL14QEVFqaqqc+rFx48YGb2a+vLlUv359SklJyfeYHTt2GKWCVqlUNHr0aAJA9vb2dPXq1WK/5ps4efKkHLq8cePG9PDhQ6NruH//vpxtTr1ZW1vTokWLmDftjx8/TlZWVlS+fHnq2rUrzZ8/n/755x+Teho3hckKb0KpVBq9S1Ifdu7cyVpCvgwbNozu3btXtozhyZMncphqdZeKu7u7wZtzmk1s1k+eoijKA122trYUHBzMVM9///tfeeZXr169CjTN4iQ5OZk8PT21TMHNzY3CwsKMruV1MjIyaO3atXTp0iXmBsUpe6jrqzJlDNOmTSMLCwvq1auX3KVi6GliN2/eJFtbWwJA69atM2jZhUE9Lc7S0pKOHDnCTIdCoaDPP/9croi/+uorJk90CoUiTz5o9dajRw+jZcHjcEyZMmMMMTExZG1trTV7Ir9ZQkUhLS2NPDw8CACNGDGC+YDX8uXL5emWxm66av7tSUlJ1L17d9mgfv/9d6Nq0URzBpT63nTs2JGWLFlCt2/fZv6ZcTimQJkxhq+//lqrQrC1taU+ffrQyZMnDXIjRVGUp6B5eHgwn1++YcMG+W81dkWck5NDy5cvJyKie/fuyWZZqVIlOn36tFG1aPLLL78QAHJwcKBhw4bRtm3bKCEhgZkeDsdUKRPGkJCQQOXLl88z39rf399g01PXr18vGw7rcAA7d+6UZ7SsWLHC6Nf/4YcfyN3dnf755x95fUjDhg2Zzr2/d+8ezZo1i06fPs377jmct1AmjEFzrQAAGjVqFMXExBjsJl6/fp1sbGwIAP3xxx8GK7cwHDlyhCwtLQkAzZs3z+jXv3Hjhnx99SBzjx49mAwyczicwlHqjSE5OZns7e0JADVt2tTg8+VTU1PltRBjxowxaNn6cubMGXng+/PPPzd6f7lCoSAvLy8tE+7Vq5dJTxvkcDh50dUYSmzY7V9//RUAsHr1aoSEhKBDhw4GK5uIMGnSJERERKBhw4bytVhw9epV9OrVC1lZWRgzZgxWrFgBQRCMqmHp0qUICQnR2nfo0CF8+OGHSE5ONqoWDodT/JTIDG6iKCIlJQURERFwdnY2ePlr165FQEAAypUrh507d6J8+fIGv4YuhIeHo3v37khNTUX//v2xYcMGOQucsbhz5w6+//57rX2enp747LPPMGrUKFSoUMGoejgcjhHQpVlhapuuQfQKQ2hoqDz9dfPmzcV2nbfx5MkTOb5P165dmcT2USqV9J///IcAkCAI1KdPHzp+/Dif+snhlFCgY1dSiWwxFBcpKSkYNGgQcnJyMGHCBIwaNcpo1yYiuYsoLi4OXbt2xbNnz9C2bVvs3bsX1tbWRtOiZsWKFbh79y6+/PJLTJ06FXXq1DG6Bg6HY3y4MbyEiPDxxx/jwYMHaNKkCVavXm3U62/duhVt2rRBlSpV0L17d0RERKBp06Y4dOgQk66szMxMVKlSBZGRkby7iMMpYwhS66Jk0apVK7py5YpBy/zll1/w2WefoUKFCrhy5QoaNGhg0PLfhFKpRMOGDdG7d29cuHAB586dQ7169XDmzBlUrVrVaDo4HE7pRhCEECJq9bbjeIsBwJUrV/Dll18CANatW2dUUwCAgIAA3Lt3D/7+/gCAGjVq4MSJE9wUOBwOE0rsdFVDkZycjMGDB0OhUGDy5MkYNmyYUa+vUqnw448/au3r1KkTnj9/DlEUjaqFw+FwgDJuDESE8ePH49GjR2jevDlWrlxpdA0BAQGIiIjQ2rdr1y7s378fWVlZRtfDYUtYWBgOHDjAWkYeiAjPnz9nLYNjJMq0MaxatQp79+5FxYoVsXPnTtjY2Bj1+vm1FgYMGICwsDAsWLCA2fqJ4sIUx7OICAqFgrUMAMDFixfRoUMHxMTEICkpibUcmfj4eAwYMAAnTpxgLUULpVKJHTt2sJaRh8zMTJP8ruuFLnNaTW1r2rRpkefzXrx4UY7989dffxW6nMzMTPr4448Llf9h+/btWsnpT5w4UWgdmiiVSho1ahTz5D2aKBQKGjZsGJP8zwWRkpJCw4YNo3HjxrGWQkeOHJHziLu6ulL9+vVNIuTI33//TS4uLnIUXVPJZXz//n1q27YtVapUiU6dOsVajkxOTg716NHD5DK5Xbp0iX777bfSHSvJ0dGxSDfpxYsXVKtWLQJAU6dOLVJZP/30k5xPWJ+FX0qlkjw8PMjR0ZFWr15t0MigCxYsIABUrVo1ysrKMli5heX1FKTx8fFMdISEhMj5eC9fvkx16tQhAFSuXDmmOYR37NghP6Sot4oVK9L169eZaUpPT6dPPvlES5O9vb3BE2DpiyiKtGHDBqpQoYKsy1QeNpRKJQ0dOpTMzc1p0qRJJpUm9eOPP6aqVauWbmPw8PDQ+8akp6cTkfTF6tOnDwEgLy+vIq0ojo6OlsN+Hzt2TK9z//rrL/r0008NXkmeO3eOzM3NCQAFBgYatOzCIIqiXMHY2trSv//+y0RHcnIy1alThxYuXEjLly+XK+JmzZrR3bt3mWgiknJJCIKQJ+tc9+7dDZ6vXFfCw8Opc+fOVKdOHfL09KRmzZpR69atqWPHjrRjxw4mmtQkJyfT2bNn6cqVK3Tz5k26d+8excbGMtWk5s6dO3TkyBFKTU1lLUWL1NRUGjhwIEVFRZVuYyhMSIzx48dTTEwMLVu2TH76KWoegXHjxhEA6t27t97nJicnF+naBZXp7u5OAMjX19fg5euLKIr05ZdfEgCytraWn9ZZ6Bg4cKCcr1td+U6bNo1Zi0oURZo3b16+qUhdXFzIx8eHli1bxsOPcIpMenq63HopUcYA4A8AzwHc0uV4fY0hOTmZbGxsqHv37nIugT179uhVxutcuXKFBEEgCwsLCg8PL1JZhkAURRo+fDgBoObNmzOJrfQ66nwZFhYWdPDgQWY6Vq9erVXxWllZFfnzLwpKpZKmTZtG7u7u1LNnT/rqq69ow4YNdPbsWWatBGMTHU3UvTuRZvoUrX1bt5Kiei1SQSBFjVpEW7eyklqqKGnG8C6AlsVlDOosbOrtk08+0ev81xFFkTp27GgyT+ZERJs3b5b7y8PCwljLoUWLFsm5l4syuF9ULl++nKf/HgB5e3sz69bKysqijIwMJtcubt5a4b9k+nQiR0cizX8f9b4tH2wlKldOqp7UW7ly3BwMQIkyBkkv3IvLGDp06JCnYmjdunWhZ1js3LlTnqVhCk949+7dkwfj1q9fz0TD48eP5QHcn3/+Wb7PmzZtYqKHiCgpKYlq166dp7XQv39/2rVrl0kMzJcE8qvYC9r/pgpfvS86WnodGkrk5CSdr7nvqVktbVNQb7VqFfefWuopdcYAYBKAKwCuuLm56Xwj7t+/n8cUfHx8KDIyUve7qUFWVpbcj//rr78WqgxDkpubS97e3gSABg4cyKxPesKECbRgwQLasGGDfJ9/++03JlqIpFZd//795ZDhPj4+tH79epMwclNG18o+v/1vq/DV+6ZPlzZ1Gb6+2vtECPkbgyAU/w0o5ZQ6Y9Dc9GkxaA7wmZmZ0fz584s0P1zdRdKwYUOTSD7/zTffEACqWbMms0rv3r17ZG5uTpUqVZJn2Pj7+zPRombFihXUrFkz8vPzo2fPnjHVYooU1ArQpbIvaP/bKvzp04kmTZLOi47WLsfe/tW+HNda+RqDokat4rwlZQJuDCTNn1d3JdSoUaPIfcoxMTFyl83Ro0eLVJYhOHnyJAmCQGZmZnT69GlmOkaNGqXVIpswYQLT2TQqlcokJgSYAroagPpYXSp79e/6VvjR0UQ2NkQTJ2pradFC2tRs/mArZQraYww5FuWksQdOkeDGQESnT58mANSnTx9KSEjQ4/blz4QJEwgA9erVq8hlFZX4+HiqVq0aAaDvvvuOmY6wsDAyMzPL013XpUsX3m1jRIpqAOpj31bZOzkRXbuWd78uFT4Rkatrvo2BPNswbKVHkGYlPUItGoat1L69Ye5VWaZEGQOAHQBiACgARAKY8KbjdTWGKVOm0KpVqwzy9BoaGipPT2U960cURerbty8BoLZt2zLt0hoyZIiWIZQrV47mz59famfdsKY4DMDX99Wxb6vsp0+XKnv1+Wp0rfAB4hU8Q0qUMei76WoM9+/f1/mGvQlRFKlTp04EgL744guDlFkU1qxZQwDIzs6OHj58yEzHjRs3ZEMQBIHGjRtnMrF0SjIFVf5ExWMATk6SAeha2VesyCv8kgo3BgOye/duAkBOTk704sULo15bjXqV9s2bN+XVu9u3b2eiRY161k+nTp0oJCSEqZbSREGzgIrLAKZPJ6pWjVf2ZQFuDAYiOztbHsBevXq10a6rSW5uLjVo0IDi4uKocePGBIDGjBnDRIuakJAQqlevHu3Zs4eHbSgkBS0Gy6/yJ+IGwCk63BgMxJIlSwgAeXp6Um5urtGuq0lgYCABIDc3NwJA9erVYx6oKzQ01CTCbpRkCloMlt8sIG4AHEPAjcEAxMbGUsWKFQlgG6lUHbJavc2ePZvu3LnDzKg4uvOmVcMFLQZ7vfJ/fdqoGm4AHH3R1RgE6diSRatWrejKlSvFfp1JkyZh/fr16NGjBw4fPlzs18uP7OxsODs7Iy0tTWv/xIkTsWrVKqNnnePoh68vsGkTMHYs4O+vvR8AVqyQfhcEqUpX79M8ThCAS5eAs2fzlt++PRAcXGzyOaUMQRBCiKjVWw/UxT1MbTNGi+Hq1askCAKZm5vTnTt3iv16BaEe+FZvtra29OeffzLTw8kffcYLCmoZeHvzp39O8QIdWwxlOudzQRARfH19QUSYMmUKPD09mWnRzGlbv359XLhwAWPGjGGmh5M/fn7SU72fn/a+MWOAFi2A0aNfvafe7+oqvXZ1ld7v0CH/mf+8RcAxOrq4h6ltxd1i2Lt3LwEgR0dHg6yYLiypqany1NSBAwcWS3IfTtHRd7ygfXveMiiNmFIqT000F5uCtxj0QxRFAEBOTg6+/vprAMD333+PSpUqMdO0f/9+KJVK+Pv7Y+fOnbC3t2emhSMREwN88AEQG/tqX34tg4JaBX5+UguAtwwKT1ZWFmsJ+fLnn3/i+PHjrGXk4YcffkBYWJh+J+niHqa2FUeLYeHChfT8+XNaunQpAaAGDRown/UzadIkCg4OZqqhNFOYz7eg6KN8vMB4/Pvvv9StWzfauHEjpaSksJYjExUVRZaWljRu3DiTihO2YcMGcnBwoFOnTvHpqvri7e1NPXr0IDs7OwJAhw4dMvg19MWUvlylkblz59Ljx4/zfU/XweSCppEWJbHf3r17KSgoqPAFGIhr167RunXryM/Pj2bPnk1Tpkyhe/fusZZFREQ//vgjAVIO78mTJ5tM0iV1el1XV1emEY81iYyMJADqtMal1xhavB6ysYikp6fLuaABkIeHB12+fJmePHmi0/n/+9//TK4SDwgIoKdPn7KWocXWrVvp0qVLrGUQEVF4eDhZWVnRiBEjaNWqVXne13XxmSHHCxITE2nkyJEEgD766KNC/mWGIzc3l1auXEkODg5yJawOzcIalUpFXbt2JQC0YsUK1nJkLl68SNbW1tS1a1eTigjQokULdQSH0msM5cuXN+Q9UzextDZ7e3s6e/bsW8+9ffs2AaAqVaqYROIeIukJwdLSkqysrCguLo61HCIiioiIIFtbWzIzM2M6/ZdICor4/vvvy5+1hYWFVjBCfQeTDUFgYKAcRh0A1a5d22SeguPj42nq1KnUrVs3k1rtHhcXR4sWLaLMzEzWUrQ4cOC/0EU5AAAgAElEQVSAyXx2aq5fv04KhUJnY7Ao4rgGE+zs7Axa3tnXVg5VqlQJx44dQ8uWLd967pYtWwAAvXv3hoWFadxOf39/KBQKDBgwAM7Ozsx0PH36FLa2tnBycsK4ceOQlZWF4cOHM53+CwABAQE4ceLEy1dVQbQZS5ZswqxZ41CrVq18B5OJCh5M1ly4VhiOHj2KjRs34t1334WFhQXMzc1hYWGB6Oho1KlTp2iFG4DKlSvjl19+QXx8PKytrVnLkXF2dsbMmTMhCAJrKVr07t2btYQ8NG3aVL8TdHEPU9s8PDwMaab0wQcfyE9qrq6udPv2bZ3OU6lUVKNGDQJgEn3CREQJCQlUvnx5AkCXL19mqsXf35+mTJlCy5cvJwDk4uLCdPovEVFycjJVrVpVo3XoT2ZmSdSt2y3Kycnhg8mcUg1Kc4uhfPnyBitLFEWcP38eAFCrVi2cPHkSdevW1encoKAgREZGws3NDR07djSYpqKwevVqZGRkoGvXrmjV6u0r34uT/fv348yZM7C0tAQArF27lun0XwCYM2cOYl/ONW3Roifu3ZuKoCALdOvmgMTEgqeZqsNScDhlgTK/juH27dtISUlB/fr1cebMGZ1NAXjVjTRy5EiYmbG/lWlpaVi1ahUAYNasWUy1vHjxAmfOnIEoisjJyYGjoyOuXbvGLOYUAFy5cgVr1qxBjx49EBQUhHff/Rsff2wFLy8zuVvo8mVg5UrJCNTbypXcFDhlixLZYjAkZ8+eRePGjXH8+HFUrVpV5/MyMzOxa9cuAMCoUaOKS55erFu3DklJSWjTpg18fHyYajl06JC8aBAAkpKSsGfPHmbhPIgIhw6Fok2bJPzxhx2IgM2bgdu3pfdnzAAaN5Ze6/E14HBKJewfcxmjUCgQFBSklykAwL59+5Ceng5vb294eHgUkzrdycnJwfLlywFIrQXWA3L79+/Xet2vXz+cPXsW7u7uTPQIgoDk5EkIC7N768pkDqfMo8tAhKlthlzgVtj4Jt27d2ea1U1NbGwsERGtXbuWAFCjRo2Yx2zJysqSB8AB0Jw5c5hren0KKh9M5pRFwGMl6UZhxgZiYmJw/PhxWFhYYOjQocWgSndGjhyJsLAw+L181J01axbz8Y6TJ08iIyMDtra2CAgIwI8//mh0Ta/HNHp9CiqPZMrhFEyZN4bCsH37doiiiJ49e6Jy5crMdBARLl68iHbt2uHBgweoXbs2hgwZwkyPmgMHDqBGjRo4c+YMMz2aYbBjYqRkOTNmSO/NmCG91gyEx+FwXsGNoRCoZyOxHnSOjY1FWloakpOTAQApKSlo3rw5tm/fzkyTKIpISEjA5cuX4eXlxUSD2ghOnpR+zpvHxxM4ZZuoqCi9jufGoCc3btzA9evX4eDggA8//JCplvDwcK3XiYmJ8PHxwbBhwxgpAnJzc7Ft2za9B/MNyevdRocO8SmonLLL8+fPsWTJEr3O4cagJ+rWwuDBg5nnW37dGD766CP8/PPPTGck2djYMLkv6jGF69fzdhtlZ0vv8/EETlnk1q1b+OOPP+SeBV3gxqAHKpUK27ZtA8C+GwnQNgYfHx9s2bIF5ubmDBWxQz2mMG4c7zbisOP8+fNISEhgLUOLW7duISMjA3/88YfO53Bj0AFplpc02yYmJga1a9dG+/btGat6ZQzNmjXDvn37mLdgWKE5pnDzJu824rDjxo0bWLlyJWsZWty6dQsA5KgIusCNQQdWrFiBFy9eaA06s15ABkjG4O7ujsDAwDKZ9lPdfaQeXG7RApg2DfD15d1GHDY8fPgQv/zyC1JSUlhLkbl58yYA4MmTJzqfw41BB4KDg9G9e3fs2bMHgGl0I+Xk5CAjIwNHjx6Fq7rfpIzh5wdcvCiFtuBTUcse+/btk1vzpsLDhw+RkpKCX3/9lbUUAFJvh7rFoA/cGHQgJSUFISEhyMzMhJWVFcaMGYPx48cz/VLGxcXhwIEDeOedd5hpYIm6+6hnz1ddRgAfUyhLBAYGYseOHaxlaPHgwQMAUk6UjIwMxmqknCjp6el6n8eNQQc0m4W5ubl4+PAhFi1axLQ7yc3NDd7e3syuzxr1lNQnT6RZR66ufEyhrJGUlISZM2ciMzOTtRQA0tO52hhevHiBdevWMVaEQrUWAG4MOqFpDIIgYNu2bXBxcWGoqOwSEwN07gxs3Ch1GwUHA9HRgJOT9pRUPqZgWB4+fMhaQh6Sk5MRGRmJZcuWsZYCQDKq1NRU+fXSpUuRnZ3NUJFkDC4uLnrXV9wYdEDTGObOnYsuXbowVFO28fMDzp8H6tThU1KNyQ8//IA7d+6wlqGFel7+kiVLEBkZyVjNq24kNTExMfjzzz/ZiHlJgwYNcPv2bbRp00av87gx6IDaGDp37ozvvvuOsZqyi3pcwcMDuHqVT0k1JnZ2dujdu7dJzdFPSkoCIOVGmT17NmM1eVtVDg4OWLx4MRQKBSNFUrj7SpUqoVatWnqdx43hLWRnZyM3NxfOzs7Ytm1bmV1AxpLXp6VeuwZMn553WirvPio+atSogYcPH+Kjjz5Cbm4uazkAoLWSd8uWLbjE+Mng4cOHGD16NDp16gRASpy1Z88evHjxgqkuANwYDE1KSoo8rlDQtNDExESTmzYXHx8PlUrFWoZMUFAQUlJSCjVTozinpd64cUOvUAHFjSiKWL16NYYPH870SfN1atasiXLlysHZ2RlPnz5lLUfOG+Dt7Y0KFSogJCSE+dqiUaNGYdOmTfDy8oK5uTliY2PRsmVLpnHD1OhrDMyT7hRms7a2NkDKCt0IDw+nOXPmvPEYR0dHKl++PMXHxxtJ1dvp0KED2djYUHBwMGspRET0zjvvUJs2bcjKyopOnjxJoaGhOp2nTrAzfDiRjQ1RTMyr96ZPJ/L1LZquiRMnkq2tLZ0+fbpoBeVDdDSRjw9R27bSz2vX8r7u3l37byIiEkWRjh07ZnA9ReHRo0cUGxvLPOGSGoVCQXfu3KHExERSKBSs5WiRnJxM2dnZrGVokZ2dTZmZmTon6hHIxJ50daF8+fJkrDnCKSkpKF++PCws8k+PnZSUBCcnJ9ja2iIjI4P5Uwsgmb2DgwNSU1MRHR1tEgvgGjZsiLCwMPn1smXL8NVXX731PF9f6efly8DZs3nfb9++8F1IRAR3d3fUq1cPu3fvhoODQ+EK0iAmBhg+XPq9fn2plaNUAhYWQMOGwJ072q8fPQIqVADq1QN27OD5pjnFiyAIIUTU6q0H6uIeprbZ29sbykiLTEhIiJxSkzXp6emUm5tLjx49IgBUuXJlEkWRtSwiImratKmc6rNly5Y6PeVFRxPZ20tP1zEx0msnp7xP2IUlLCyMRo8eTTk5OUUuS906qFGDyMqKyNpa2ipUkEZAypeXfpYrp/26f3/pp5WVdK76b+VwigOU5tSeVlZWrCXIqKeo1alTh7ESaayjc+fOOHToEAApuB4Ak5hJom5xmZmZYf369QW2wDTx85OmpV6/Lv1u6GmplStXxp9//lmk75N6XUXr1sC5c0Bk5KvBcIUCcHeXYjiVKwfY2gLly796XakScPgwYGkptSIiI6Uy2rThIT04bCmRxmBpaclagox6ipopGIOrqyvOnz+PadOmAYCc7vPIkSOMlb36zHx9fdGyZUudzjl7VpqWmpQErFhh+GmplStXLnTXX36GoFQCZmavwnMAQEQEsGQJkJAAZGUB8fHAzJnS69RUyTx69wZEUTpPqZRWc3t7c3PgsIMbQxExJWOwsLBAtWrV5NePHz+Gra0t04xuaiwsLODu7o4ffvhBp+NjYoDnz4GJE6Wnb83pqaynpcbEAG3b5jUEUQTMzYGKFaVNvcZi506gcmWpxVClimQUjRpJxwOSeVSqJB0rioC9vVQuN4eSj3q6uymgT3rPEmkMptSVZErGAEjTCjX5/vvvTWLthaWlJX777TeUL19ep+PnzQOePn319G0qUVNjYgAvL+mpXqF4ZQhEgI0N0KABkJwMvHgBqFRATg6wfr3UUlC3GK5eBW7dkt4XRen3Fy+k8x0dgZQU6e+OjAT+7//Y/r2corF161bcu3ePtQwAwNq1a3U+tkQaA28xFIymMTRq1AiDBg1iqOYVY8eOxQcffKDTsTEx0myeYcOAXbskMzCVsBf/93+SPuDVWIKNjbRlZ7+q8DVp3z5vfoj88jxlZkrdZuXKSccAwNatwI0bxfs3cYoHURTh7++vNRuPFbm5uXoF9SuRxmAKLYZ169YhJydHTn7h7u7OVtBLNI3hhx9+gJmZaXzEo0eP1vlYPz+pO2X7diAx8VXkVNZhL44fB15mdpWxtpYMISur4PPmz8+7Lzj4zQahLhsABg4snF4OWwIDAxEWFmYSxrB79269urRMotYQBOEDQRDCBUG4LwjCN2873hS6Rv744w94e3tDpVLBzs4OK1euxCeffMJalmwMzZo1Q//+/RmreYWug7zqeEh9+0rdKpMmaUdOZTm+kF8FrUvwzA8/LPi9NxlETo708/593mooiSxfvhwATMIYmjZtihh1U1cH3moMgiDsEARhpiAIPQRBqFIkdfmXbw7gVwA9ADQEMEwQhIaGvo6h8fT0lFPmpaam4ttvv0W3bt0Yq3plDKbUWtAHPz/go4+kLqSTJ6WfAwey70I6fhxISyvcuVlZwKlTbz4mODh/c1AzZEjhrs1hQ2hoKP755x8ApmEMjRo1grW6CaoDutQc/wWQCWAggOOCIOwVBKFiIfXlR2sA94noIRHlAggA0NeA5RcLnp6eWq/r1q2Lvn3Zy65ZsyZatmyJPn36sJZSKC5flgZrk5KAli2lrqT169lHTi3qUM2bWg1qgoMBjUllWty9y37g3dQJDAxkLUFG3VoAgLt375pU3DJd0MUY3ACcBvAJETUHsAuAbnMOdaM6gGcaryNf7tNCEIRJgiBcEQThSnx8vAEvXzheNwZfX1+T6OKqWbMm5s+fbxKhOQrDzp1SF9LEidpdSbt2sdN07Zo0U6go6NJqAIDatQt+b968omkozSQkJODrr79mLQOAlE7zf//7n/w6OztbHotkSdabBsJeQxdjeAfAAgB3BUG4CqAbgAGCILxnoK6l/GqwPAGciGgdEbUiolZVqhi8R0tvNI3ByckJY8eOZSdGAxcXF/Ts2ZO1jEJjil1JQ4cappx+/d5+THCwtNYhP/bvN4yO0siyZcsQHh5uEk/mq1atyqPDFLqTDL2OYRUR9SGiegC6ANgKoByAEQAOF0qhNpEANCff1wAQ/aYTiIh5qOTatWvLfXaffvqpzvPzixtBEEpsawEwza6k8HDDlKPrGEVBudtNoEFqkjx//hyrV6+GSqXSa4C1OEhJScHx48cxePBgAECFChVgZWVVKo3hmCAIjwVBCAQwD8BXAHYQ0XgiMkQ2+ssA6guCUFsQBCsAQwEceNMJN2/e1Eq3yQJzc3M0aNAAVlZWcggKTtExxa4kY/rstWsFT319UzdTWcbPzw+ZL+f4Pnv27C1HFy+2tra4du2aHG2gQ4cOCAkJga2tLVNdgIGNgYhaAKgL4GsA/wL4BZI5GAQiUgKYBuAogDAAfxHR7TedU65cOf0TTxQDnp6eGDlypEkk4igtmGJXkg7x/nRClyd+dfSSAQMkQ7x2TVrPMGkS+1AganJzcxEUFMRaBgApr/Kvv/4qv2ZtDFZWVhAEQWvha+PGjTF16lSmugD9jEGnrzwRqQDcfrkZHCI6DD26pZydnYtDht40bNgQA/nqI4OimXdBHWtv/fo3T+Usblq3zj8XhD6Ym0sxld7EtWvS7CMA2LNH+tm8ufTz77+Ldn1DsmzZMtja2sLHx4e1FCxevBjZGotJWBuDGlOLiACUgVhJdnZ2rCUAAD7++GM0atSItYxShborKTpaCpzn4CA9MbPsSgoOloLiFZaKFd9uCjExQIcOBb9vKt1IERERmD9/PpRv+4OMQGRkZJ74P9wYCqbUG4OpUK2gSeecQuPnB4wZI/2+aRPwv/9JwepYB5NLTdW/1aKOkZSa+vZj/+//gIwMKZObugvJyUkaa/H1NY1uJCLC5MmTkZOTYxL5qBctWoRy5cpp5fbgxlAw3Bg4JZbLl6WYSNWqSTOTuneXIpDu3cta2avwFbpuulTm6rwOAQFSWO7796WZWM2bv5qRdfGiaaTf3bhxozy2wLrFQEQYO3Ysnj17JuUoFgQsW7YMz58/Z6oLkILnPXr0CIA0e9FU4MbAKbEEB0vdSI6OUnhqR0fg6FHpabp9+9Kz+jcmBvjgA2nR2rlzUkTW/GYjOTvfM4nWQlxcnNYCMtYtBkEQ4O3tjYiICKhUKtSrVw9fffUVNm3axFQXIFXAubm5qFy5ssl0e4uiiOjoN64C0IIbA8fkUHcnbdok/ezWTVr0dfEi+5hJRUXTEC5ckP5GQBpHiYmRTNHJCRg+PB2VK29Bz54LTWJdiq+vL5KSkuTXrFsMam68jC7YtGlTAKbRdaNrN1K2LhEYDUR8fLxenxk3hlIOESEuLo61DBld9Ki7k9SbIEgJboiA1asNH2mUiPD48WPDFloAfn6SIWzeDPTqJbUUHB2lSKqurlIXWmIisH17BSQk1Eb37t2NoutNpKWloX///hg1ahQAwM3NjXmLQY3aGNT5zU0BtTHUrVu3wGOICHPmzDGWJL26kQBIAkvaZmlpSbm5uWQqTJw4kVxdXen8+fMkiiKlp6cz0yKKIoWHh9PRo0fJzc2NJk6cSIMHD2amR5Pbt29Tly5dqGbNmpSZmfnGY6dPlzbN31u0IDI3J2rZ0rC6zp49S61bt6bg4GDDFqxBdDSRjw+RgwPR8OFEVlbS7y4u+Y9QtG2roh07dlB8fHyxadKX7OxsOnnyJCUmJtLOnTtZyyEiSdPVq1fpyZMnrKXIZGdn0927dyk8PLzAY5YvX06tWrUymqbc3Fx68OABAbhCOtSxzCv5wmwA6NGjRwa8bYXj6dOnpFAoaPDgwQSAli5dSn379qXQ0FCmuiZOnEi2trYEKeYUjRkzhqkeNWfOnCFLS0sCQPfu3Xvjse3b519hNmwo/WzXjigmxkjCC0l0NFH37pLO6dOJrK2JGjcmcnSUfrZoIR3j5PTqGF9f1qo5xc2FCxfIwsKC3nvvPaNfu9QbQ1BQkCHvV6E4duwYOTk5kbu7u1wJA6Dk5GSmuuLi4qhixYqyni+++IKpHk02btxIAOjUqVM6Ha9uLWi2IKpUkVoOvr7ala+poNY0caJkAhMnEtnbE9nZSeYwcSKRt3f+xte+PWv1nOIkMTGRatWqRQBowIABRr9+qTeGTZs2UUxMzBuba8WNKIrk7e2tZQqVKlVipkcTPz8/WdP333/PWo4WX3/9NW3evFmnYwtqOZibv6p01T9ZGsTrrQN7e8kEQkNftRSmTyeqVo0bQllFFEXq16+f/H85btw4o2so9cbQuXNncnR0pKtXrxryvunNvn37tIzB29ubqR412dnZVKdOHQJAK1euZC1HC6VSSVeuXNH5+PzGG6ZPlypbzcrXwcG4rYjXzUDTqIYPlzRduyb9LGgsgRtC2WHlypVadcV09ZfaiJR6YwBAZmZmlJWVZcj7pjcqlYqaNGkif9hDhw5lqkeTPXv2EAD6888/WUspEgW1GlxctCvfESOk/vr8WhFFMQvNc99kBmqDGjHi1f4WLaSf6nEEIj6WUBa5dOmSPL6m3ubNm2d0HWXCGBo0aGDIe1ZoduzYIX/Ys2fPZi1HRhRF6ty5M+3bt4+1FIOg2XKIjs6/8h0xIv9WhLoSf71FocvvmucWZAYTJ0rnaHYbRUcTWVjwlgJrzp49y/T6SUlJVK9ePapcubKWMfj7+xtdS5kwhoEDBxrynhUapVJJ9evXJwC0YcMG1nK0uHbtGp05c4a1DINQUMvBwkKqhDW7lzRbEQ4O0hYaqt2ieN0w3mYAmuW8bgYTJ0rnTJzIzcCUOHXqFPXq1YuphqysLMrNzaXff/+dAFDNmjXJ3Nycfv/9d6Nr0dUYDBRpng2NGzdmLQGAlLRn1qxZGD9+/BsXtbCgWbNmEEWRtQyDoBkaokOHV6GwlUppYRgg5U4YN07aRo8Gdu8GatQALC2BFi2k3A6bNwPnzwNdukjnnDpV8O9t20rltGjxKsKpZvoNP79X16lbV1qc9zrt25tGELyyxrVr19C3b1+MHj2aqQ4bGxsAwObNmwEAc+fOhbW1NSpUqMBS1hsp0cbQpEkT1hJkRo4cie+//94kluS/jplZ6Vvgrq5oNQ0CkExi/XrJIA4dkvZt3iwFqNOMs+Tq+qqi16z0CzKAmBjgZVw0zJuXvxkkJr46npsBWx49eoQePXogLS0NDRo0YC0HT548wenTp2FtbY2PPvoIDg4OJhNWJD9KpDHY2toiKyvLZFoMAGBpaYm5c+eievXqrKWUKXRpRbi6AkOGAHPnSnkdRo+WfldX9Nev5/+7pgEAwNix0s+//pJiGgHcDEyR+Ph4dO/eHbEvnwRMwRi2bt0KAOjbty8cHBwAQCtcuKkhSN1OJQt3d3eKjY1Fenq6Sd1cURRL5dN5SeP1VkR+qM0CAE6fBjp1yvu7pgEUBDcD0yI9PR1dunTBZY0+vcePHzNNBUxE8PT0RHh4OA4ePIgPP/yQmRZBEEKIqNVbjyuJxuDl5UWVKlXCsWPHWEvhlCB0MYyC4AbwdhQKBSwtLZlev3fv3jh69Ki8z8bGBhkZGUwf2C5duoT//Oc/qFKlCqKiopjeI12NoUQ+3gqCgBUrVrCWwSlh6JtoR3PjpvBm7t27h8WLFzO7viiKmDBhAk6dOqW1v379+sxb8Vu2bAEADBs2jKkp6EOJNAYAPNcyh2MinDhxAv/5z39Qv359ZhoEQcCmTZsQHh4Oc3Nz2QxYjy/k5uYiICAAAOSw5SUB0+mg53A4JQoiwi+//AJfX1+YmZmhR48ezLSokxktXboUKpUKI0aMgLu7OzM9ao4cOYKEhAR4enrCy8uLtRyd4cbA4XD0Jjc3F9OmTcP69esBAF26dIG9vT1TTbGxsfjjjz8AAN988w08PT0RERHBVJO6G2nUqFEmkYlPV7gxcDgcvYiPj8fAgQNx5swZeV/fvn0ZKpJYsWIFcnJy0Lt3b3kqu6enJzM9SUlJOHDgAARBwIgRI/Q+/+HDh4iKikLHjh2LQd2bKbFjDBxOWeTWrVt5BliNyY0bN+Dt7a1lCgDQp08fRookkpOT8dtvvwEAZs+ezVSLmp07dyI3Nxc+Pj5wc3PT69ywsDB07NgRrq6uxaTuzXBj4HBKAGfPnkXv3r3x3nvvoXnz5kw05OTk4K+//kLDhg219rds2RI1a9ZkoknNr7/+irS0NPj4+KBNmzZMtahRh8DQNyTHtWvX0KlTJ6hUKoOG2NFnaQI3Bg7HRBFFEX///Tc6dOiADh064O+//4afnx+cnJyY6LG2tsaCBQvg7e0N4NWAL+tupMzMTKxcuRIAMGvWLKZa1Dx8+BBnz56Fra0tBg4cqPN5Fy5cQOfOnREfH4/27dsbdFzizp07Oh/LjYHDMTEUCgW2bNmCZs2aoXfv3jj7clVep06dmAeECw0NxcKFCwEAe/bsQeXKlZl3I23YsAEJCQnw8vJC165dmWpRow6B0b9/f1SsWFGnc4KCgvD+++8jOTkZANC+fXuDavr77791PpYPPnOMikqlAiBFpDUVTpw4gatXr0KpVEKlUkGpVIKIMG7cOCZTHg8dOoQlS5bg9u3b8j4LCwusWbOG6cyW3NxcjB07FkqlElOnTkW/fv1gbm6OZs2aMdW0bNkyAFJrwRRm/hCR3I2k69qFw4cPY+DAgcjOzpb3sTQG5rkVCrN5eXlRjCllfycpKY4+6SqNgVKpZBLz/U0kJSVRx44dKSgoiLUUmYsXL5K5ubmcQKVOnTr077//MtW0ceNGraQu33zzDVM9RETLli2T709aWhprOUREtGXLFjlpl0qlYi2HiIjOnTtHAMjFxYUUCsVbj9+1a1ee7G42NjaUk5NjME0JCQlkZmZWuhP12Nra0uLFiw1204pKUlIStWrVijw9PUkURdZyZPr06UPm5ua0d+9e1lJkfv75Z/nLP2DAAHrw4AFrSRQaGkouLi4EgD799FOTqPQSExOpc+fO5OnpSe7u7pSRkcFaEmVkZJCvr69JmXp2djatX7/epL7jubm5dODAAdq8efNbj1WpVLR//3765Zdf1BU3AaB3333XoJoUCgUFBQWVbmMAQJ06dTLgbSs8oijSTz/9JH+gR48eZS2JiIju379PDRo0IADk4OBADx8+ZC2JiIi2bdtG3bp1oyFDhtDkyZNp7ty59Pz5c9ay6IcffqBjx46xlpGHxYsX08GDB1nLKNUY8sm8sMydO5cAkKenJ1WoUIFmzZpVLNfR1RhKZHTVSpUqUUpKCl68eMF8taWavXv3YsqUKWjZsiUOqTPEMEapVOLEiRPYunUroqOjceTIEVhZWbGWZZKYasj0lJQUk/mOl0YOHTqE2NhYTJgwgZmGp0+fokGDBsjOzkZQUBDCwsJQs2ZN9OrVy+DX0jW6KvOn/8JsXl5e9N1339Hu3bsNZ6UGIDExkcaNG0cRERGspeQhLS2NXrx4wVoGh2MSKJVKmj17NpmZmdGTJ0+Yahk+fLhWDntRFCkrK6tYroXS3GJo1aoVXblyBXFxcXBxcWEtJw+ZmZkoV64caxkcDicf4uLiMHz4cJw6dQodOnTIs4rbmJw/fx7t2rWDlZUVwsLCij01sK4thhI9XdUUTQEANwUOx0QJDg7GkCFDEP0yNd/QoUOZaRFFEb6+vgAAX19fk8oXb3qdqhwOh2NgiAjLly+Hj4+PbApmZmYYNGgQM007duzAxYsX4ezsbDLxndSU6BYDh8PhvI2UlBSMHz8ee/bs0dr/3nvvwdnZmYmmjIwMzESLMoQAAB6VSURBVJw5EwDw008/wc7OjomOguAtBg6HU6pJSkpCv3798gTXGzZsGCNFwLJlyxAVFYVmzZph3LhxzHQUBDcGDodTrGRnZyMuLo7Z9d3d3dGmTRvcvHkTAFC+fHlYWVmhf//+TPRERkZiyZIlAKQcEqYUHkYNNwYOh1MsEBF27tyJd999l+mEjNzcXAwbNgwZGRkYNGgQ1qxZgx49esDBwYGJnlmzZiErKwv9+/dH586dmWh4G3yMgcPhGJzLly/jyy+/RHBwMPz8/HSOMFocfPfddwgJCYGbmxvWrl0LOzs7ZpndLl68iK1bt8LKygpLly5lokEXeIuBw+EYjMjISIwePRqtW7dGcHAwXFxcMHXqVGZ6Tpw4AT8/P5iZmWHbtm1wdHSEubm5nFPCmBARpk+fDgCYPn26wZLwJCUlGaQcTbgxcDicIpORkYF58+bhnXfewZYtW+T9s2bNYtaNFB8fL+ev+O6779ChQwcmOtQEBATgwoULcHZ2xrffflvk8lQqFebPn4/Dhw8bQJ02vCuJw+EUicuXL6N///6IiorS2l+9enVMnjyZiSYiwoQJExATE4P27dtjzpw5THSoyczMlKenLliwoMjTU6OiojBy5EhcvnwZsbGxhpCoBdMWgyAIgwRBuC0IgigIwtsDO3E4nHxJTU1ldm1vb2+cO3cuT9fIt99+CxsbGyaa1qxZg4MHD8Le3h7btm2DhQXbZ+Dly5fj2bNnaNq0KcaPH1+ksg4dOoRmzZohKCgIAwcORIUKFQykUgNdAioV1wbAE0ADAEEAWul6npeXl+GiSnE4JZSEhARas2YNvfvuu3TixAlmOkRRpMmTJxMAsrKyIgBUq1YtZuGsb9y4QdbW1gSA/ve//zHRoElkZCSVK1eOANCpU6cKXU5OTg75+vpqJfQ5efKkXmWgJOVj4MbA4ehGRkYGBQQEUO/evcnCwoIA0Ny5c5npEUVRrqysra3p+PHj5OHhQRs2bGCiJzMzkxo1akQAaNy4cUw0vM7o0aMJAPXr16/QZdy7d4+8vLy0TMHNzU3vrHWlzhgATAJwBcAVNzc3vW4Gh1OSUSgUdPToURo9ejRVqFBBq3Lo0qULKZVKZtrmzJlDAMjCwoL+/vtvIiLasWMH5ebmMtEzZcoUAkD169c3iUx8ly5dIgBkaWlJ9+7dK1QZR48epYoVK2p97gDo22+/1bsskzEGACcA3Mpn66txDG8xcDj5IIoiff/993LrQHNzcXFhmvt84cKFBIDMzMzor7/+YqZDzf79++VK2BTyr4uiSO3atSMA9PXXXxeprJiYGKpXr57W53/37l29yzEZY9BJBDcGjokgiiI9efKEAgMDyd/fnyZOnEgdO3ak33//nVk+b1EUad68eVqVgpmZWZH6q4vKypUrCQAJgqBTbuPiJjIykipVqkQAaOnSpazlEBFRQEAAAaAqVapQcnJykcpSf/5VqlQhFxcXatOmTaHKKfXGoFQqmf2jckoPycnJtHDhQho5ciR5eXlR+fLl81TAv//+OzN9qampNGLEiDythfnz5zPTtH79elnHf//7X2Y61KhUKurSpQsBoK5du+rd764LCoVCr+MzMzPJzc3NIPfo+PHjJAgCCYJAR48eJX9/f/rtt9/0Lic9Pb1kGAOA/gAiAeQAiANwVJfzGjduTN98843eN6a4USqVFBISYhJ9m2pEUaScnBxKTU2l+Ph4pmaqVCpp/vz5NGHCBBo5ciQNGjSI+vbtSx988AH5+voyu2+7d+/Otw/X2tqa9u7dy0QTEdGVK1fk7gNbW1v6/fffqWXLltS1a1dm4wpbt24lQRAIAK1YsYKJhtdZsmQJAaDKlStTdHS0QcuOi4ujTz/9lB4+fKjXeQsWLCAA1KRJE71NRZPo6GhydnYmADRnzhwikiYgJCUl6V3Wy1ae6RtDYTczMzOTaL6qiY+Pp4EDB5K9vT3TGSKaqFQqGjBggPxP7OjoSDt37mQtizZt2qRV+QqCQDNmzKDs7Gymmuzs7LR02dnZUVBQEDNNO3fuJEtLS7lyuXPnDhERzZ49m+Li4phoOnr0KJmbmxMAWrBgARMNrxMSEiKPvxw8eNBg5ebm5pK/vz/Z29vT2LFj9To3KipKbnkWZRqxQqGgTp06EQDy8fEp0sNATk4O1axZs3Qbg4ODA2VmZhb6JhkaURSpW7duNG3aNJPq3vrkk0/k5nVkZCRrOUREtHz5cq3pdiwrXzWnT5+WBy0BkLOzM4WGhjLV9PTpU3JycqIpU6ZofddZzkBKSkqitm3b0qxZs5hpeJ2MjAz65JNP6LPPPjNYmYGBgeTh4UEAyNzcXO/ZRNnZ2bRs2TIaNWpUkXR8++238iSDoraEFAoFbd68uXQbgykOPsfGxhZL32ZRiImJoZUrV5qUrszMTBoxYgSNGjWqyANyhuTq1avUq1cvql27dqGnFRqa2NhY1hLykJWVZVIPP2oM8R2PiIigDz/8UKvlOHr0aAOo058jR47I4wqGXLzIjYFjsly/fp21hHyZMWOGwfuoOaZPamoqzZgxQ24xak48iIiIMLqeZ8+eUeXKlQkAff/99wYtW1dj4NFVOUanadOmrCXky6JFi+Dq6spaBsfIJCYmokqVKnBzc9PaP3z4cNSvX9+oWpRKJYYNG4aEhAS8//77zIL/cWPgcF5iZsb/HcoitWrVQseOHbWilJqZmTGplOfMmYPg4GBUrVoVW7duZZb2k4fd5nA4ZZpbt26hR48eyMjIwLBhw3DhwgW0a9cODRo0MKqOQ4cOYcmSJTAzM0NAQABcXFyMen1N+CMSh8NhRnZ2NoKCgphd/8GDB+jatSuSkpLw4YcfYtOmTRg7dqzRWwtPnz6VkwrNnz8fnTp1Mur1X4cbA4fDMTrPnj3D7Nmz4ebmBlEUmWiIiorC+++/j9jYWHTq1Al//fUXLC0tMXPmTHh4eBhNh0KhwNChQ5GYmIju3btj1qxZRrt2QfCuJA6HYxSICMHBwVi1ahX27t0LlUqFyZMno0uXLkbXkpCQgK5du+Lx48do1aoVDhw4AFtbWwCAtbW1UbXMmjUL58+fR/Xq1bFlyxaTGOtir4DD4ZRqsrKy8Mcff6BFixZ49913sWvXLqhUKtSsWRN+fn5G15OamooPPvgAYWFhaNiwIQIDA4ucarOwHDhwAMuXL4e5uTkCAgJQpUoVg18jJiYGf/75p17ncGPgcDjFRkhICOrVq4cJEybg+vXrWu+tX7/e6BVyVlYW+vTpg5CQENSuXRvHjh1D5cqVjapBzePHjzFmzBgAwE8//YQOHToYtHyFQgF/f380aNAA7u7u+p2sy2IHU9v4AjcOp+Tw6NEjORCcehs/frzRdeTm5lKvXr0IAFWtWpXu379vdA1qcnJyqHXr1gSAevbsafDoBKdOnaKGDRsSAGrfvr28Wh185TOHw2FNdHS0XAGqt2rVqhUqOmhRUCqVNHToUDmg5M2bN416/df54osvCADVrFmTEhISDFbus2fPaPDgwVr3OzAwUH6fGwOHU0YRRZFu3LhBa9asoaysLGY6QkNDqUaNGnLAxHXr1hEAOQWosRBFkSZPnkwAqEKFCnTx4kWjXv91du/eLadDPXfunEHKzMnJocWLF+fJJ+Ll5aUV24obA4dThsjMzKRDhw7RlClTyM3NjczNzen48ePM9OzevZvKlStHAKht27YUGxtLubm59Mknnxhdy8yZM+X8Giyz3hERPXjwgOzt7QkALVu2zCBlqtO/Ojk55ckpsmfPHq1juTH8f3v3HlVllfcB/LsVDBQZp4tmqL0oUl7GIXIyl5SSyvIuaoq2cnT1hjOD7yIvQZLVHzOVGZVmOTmusVypeMkya5mT5cghZuBFByJkVKS8jhgqigaIcJ7v+wewXw5oHOFw9jn4+6x1ViLncL7uDs/vefbez95CtHGnT5/m2rVrOXHiRPr7+zscEJqzw5crWJalN6kBwCeffNLhqqUlm9Y0x7Jly/Ty2Tt37nTrezd09epVPvjggwTAiRMnunyV2u3btzt8BgYMGNBo7EIKgxBt2BdffHHdXecAMD4+3kimiooKh21IX331VaNLdL/33ns6y4YNG4zlqDN//nwC4L333ssLFy649Gfv27ePt912GwEwLCyMAJiSktLoeW2+MHjKxjPi1nL8+HHu27fPdAySNcWhXbt2DkVh7Nixbj8rJ2v2/hgyZAgBsGPHjo26MNxt06ZNevfCd99912gWkty6daveDCozM9OlPzs7O1ufJPzud7/juXPnOGDAgOtu6tSmC0NwcDA3b97cosZsDZZlMT093XSMG/LEDVY8mWVZzM/P53vvvccnnniCPXv25B133KG32TTl6tWrfOGFF/SWlvW7DkpLS92eJycnp27bSPbo0YM5OTluz1DfZ599prcgfeWVV9zynt9///0N/90FBQX6wO3qfbKPHj2qpwJPmzZNF4MbTcVt04XBz8+Py5cvb15LtqIVK1a47YN4s/Lz8/mXv/zFdIzrqqys5Oeff84lS5awrKzMWI7q6mpmZWXxzTff5OTJk3nHHXc4HHg7d+7MAwcOGMtHkpmZmXp+OgDGxcXx0Ucf5Z133nnTG9a7wo4dO/Qg85AhQ1hUVOT2DPXV71JJSEho9ZOh7OxsxsTEMDg4mD/99FOj71dUVOiunSlTprg0z5kzZxgcHEwAfOyxx5zaN71NF4a6XwhPkpGRQR8fH/75z382HcWBZVl855136OfnZ/ygVl9VVRX37NnDp556il26dKGvry8zMjKMZrLb7Vy1apU+0NV/+Pn50WazGctWVlbGZ599VncdhYSE6P2y4+Pj3X6lalmWHtgFwCeeeMLo1FiSzMrKYkBAAAEwNja21YqCZVn8+uuvOXr0aP3vv9HAdt002eDgYJfeu3Hx4kX+6le/0lNSL1++7NTr2nxhGD9+vNON2NrOnz+vL6U9qYurqKiIY8eO1QNSpruS7HY709LSGBcXx7vuusvhwLtq1Sqj2eoUFBRw2LBhDtl8fHy4a9cuY5lsNhtDQkL0dpOLFy92uLJyd/dRRUUFZ8+erdvn5ZdfNv7ZOnjwoJ6uGRMTc93+9Zaqrq7m1q1b9cyiusfkyZOv+/yUlBQCYIcOHbh//36X5SgrK2NERAQBMDQ0lD/++KPTr23zhWHgwIFON0Zrstvt+uALgH/7299MRyJJ7ty5U+8bC4CrV682msdut/O5557TA4L1HzNnzjR+YCktLWVCQkKjfX+VUtyyZYuRTJcvX2ZcXJzO0r9/f5cPXN6ss2fPcujQoXqQefv27UbzkDX9+927d9eD75WVlS5/j48//ph9+vRp9Nnt2LEjT5w40ej5hw8f1lcv77zzjstyXLt2jRMmTCBq7yA/fvy4068tLCxs+4UhMDDQ6QZpTevXr3f4wJi+q5IkL126xJdffpl+fn66G8TdSxBcj2VZfPLJJx1+sfr168crV64YzbV9+3Z269ZNZ5o7dy4/+OADAjA2LpOens5evXrpOfgvvPCCU33Irenf//63zhQUFMR//etfRvOQNf3svXv3JgA+8sgjrTZGVVlZyY0bNzY6cUhOTm703LKyMt3NM336dJed9Njtdv72t78lULOsx8GDB51+rWVZjIqKatuFoWvXrlywYAEvXbrkdMO0pszMTI4bN47jx49nQUGB6TgkyStXrnDEiBEMCQnh7NmzTcfRFi5cqPvJO3XqZHyGD/n/UwkffvhhZmVlkawZM3r99deNZcrLy6Ovry/DwsKYnZ1tLEd9Z8+eZa9evfjQQw/xzJkzpuOQrLnSGz58OMPDw1v1eHDx4kWOGDHCoSgMGjSI165da/Tc8vJyPv300+zTp4/LMlmWxcWLFxMA/f39+Y9//OOmXl9dXc0//elPbbsw1N3gZrr7oaHy8nKWl5ebjqHZ7Xbm5uYyLS3NdBTt6tWrzMnJYbt27TxmPMayLO7atcvhLlET9wI09M0331z3wGPS0aNHPeozTtb83rlyIbqGTp06xYEDBxIAu3XrxkWLFhFAk+sclZSUuCzD8uXL9XjXF1980eyfc0sUBuG9Vq5caTqCEE3Ky8vTCwGGhobyhx9+4H/+8x/OmzfPbRnWrVunr1I2btzYop8lhUEI4fVKSkq4devWVhlQbkpqaqpe8G7o0KE8d+6c/p67rpp27Nihu15dcTLlbGGQHdyEEB7l8uXL2LBhAyZMmIBu3brBsix06NDBrRm2bduGqKgolJaWIjo6Gnv37nXY6a1uf+jWZLPZMHPmTFiWhaVLl+KZZ55p9ffUnKkenvaQKwYh2paffvqJmzdvZnR0tL5zGTCzIOBbb73lcGd5a9wT0ZTs7GwGBgYSAOfNm+ey8VRIV5IQwtNlZWVxxowZjZYNR233jTu7kOx2OxcuXKjff9myZUYmuNRf/2jq1KkuLUzOFgbpShJCGBMWFoaRI0dCKeXw9127dsVHH33kti6kyspKzJo1CytWrICPjw8+/PBDLFmypFGu1lZUVISoqCgUFxcjMjISmzZtQvv27d2aAQB83P6OQghRq6ysDDabDeXl5frv2rVrhy1btiAoKMgtGS5duoTo6GjYbDYEBATgk08+wejRo93y3g1zjBkzBseOHUN4eDg+/fRT+Pn5uT0HALliEEKYkZ6ejrCwMKSkpMDf3x8PPPAAAODVV19FZGSkWzKcOnUKERERsNlsuPvuu5GWlmakKFRUVGDixIn47rvv0LdvX+zevRuBgYFuz1FHCoMQt5jy8nJYlmXs/auqqvDiiy9i+PDhOHHiBMLDw5GdnY3f//73iI6ORmJiolty5OXlYejQocjPz8f999+PjIwMXZzcqbq6GjExMUhPT8c999yDPXv2oGvXrm7P4cCZgQhPe8jgsxDOu3r1KlNTU/nSSy8xIiKCy5YtM5alsLBQ7/SmlGJiYqIeYD5y5Ijblrn5+9//rmf9DBs2zOVbbTrLbrdzzpw5ev2jvLy8Vn0/yKwkIW5NVVVVzMjI4CuvvMKRI0fqxRRRO/3SxEwby7L4wQcf6BVHg4KCuHfvXrfnIMnNmzezQ4cOevMck0t8PPvss81e/6g5pDAIcYuxLIt//OMf9TaSDR+PP/64kTn5JSUlnDFjhs4xderUVl3b6Oe8+eabOsf8+fONtEed+usfuWu/jzZdGEJDQ13ZVi7jaYuLiVtPdXU1//CHPzQqCpGRkUaW7U5NTdVrDXXq1Inr1q0zcsVit9u5YMEC3R6vvfaa0UU4669/tGHDBre9b5suDH5+fh6x+mVDS5cuNR3hhoqLiz1upU5vVVpayo8++oixsbEesWx4ndLSUi5cuJDt27d3KAphYWFuX6L+2rVrTEpK0hszDR482NiS9BUVFZw+fToB0NfXt8UL0bXUp59+qtc/WrFihVvfu00XBgAes0Z9ncLCQvr6+hrfTOV6qqqqOGbMGI9bprw+y7K4fv36Vh98a67CwkKuXLmSo0aN0pu1vP/++6Zjkaxpu5SUFL2LmVKKMTExBGr2Gi4qKnJrnoKCAg4ePFhnSUpKMnZSUlJSwkcffZQA2LlzZ3711VdGctRJTU3VS348//zzbn//Nl8YXLldnivExsYSAI8cOWI6SiOLFi1ijx49TMe4odzcXEZERHDIkCEeU7yqqqpos9mYkJDAfv36NeqaSUhIMB2RJJmfn8/IyEid6ze/+Q3379/PsrIy3nXXXTx69KjbsliWxb/+9a/s2LEjAbBnz55MTU112/s3dPLkSfbv358A2L17d+bk5BjLQpI5OTl6JlRsbKyRz3qbLwwxMTGubK8WOXnypD6L3L17t+k4Duo2JA8PDzcdpZHS0lIuWLBAd33s3LnTdCStuLiYTz/99HX3qJ40aZLRQUuyZoe+xMRE+vj4EABvv/12rl271mGzodzcXLflOX/+PKdOnarbaMaMGS7dqOZm5ebm8p577tHbx97M3sitobCwUG8f6+r1j25Gmy8MnnQGHB8fr38hVq9ebTqOlpubqxcnGzt2rOk4WsOuDwAcMGCAw0HNExw4cIDBwcEOReHXv/610T2qLcvitm3bGBQUpDPFxsY67BXgbnv37tV5AgICuH79eqNXfnv37tVn5hEREcbuUahz5swZ/TmKjIxkRUWFsSxtvjAA4IkTJ1zZZs1y9uxZh3niixYtMh2JJHnhwgW9SToAzpkzx3Qkko27PuoepgcE66uoqGBSUpK+kqn7b7du3Yx+5g4fPszRo0frNgsPD2dmZqaxPJWVlUxISNBXVUOGDGFhYaGxPGTNFXLd1fu0adOMHoTJmr2iBw0apP9/lZaWGs1zSxSGTZs2ubLNmiUxMdHhABcdHW06EqurqzlmzBiHXImJiaZj8eTJk4yKitK/uHWP4OBgj5ll9s9//pP333+/HjiNj4/nunXreNtttzEjI8NIprKyMj7//PO63bp06cLVq1cb7c46dOgQw8PDCYDt2rXjiy++aHTWm2VZTE5O1p+p+Ph449195eXlfOSRRwiAffv25Y8//mg0D+klhQFAMoDDAL4DsANAFydfR9TexWnShQsX9J2cdY9BgwYZzUTWTJtteEb+xhtvmI5FsmYaY1RUlEO2NWvWmI7FsrIyLly4UJ/9hoaG8ptvviFJZmRkMCUlxe2ZLMvijh072KtXL91Wc+fONXqAsSyLa9as0V2U9957r24nU6qrqx26c5OTk41PYqiqquLEiRP1wPexY8eM5qnL5C2FIQqAT+2flwNY7uTr+Prrr3PEiBGubrubsmzZMk6YMIGhoaFE7Q08AQEBRj+Ux48f57x58zhlyhSHg687b6K5EbvdztmzZ+vB0t69e7N79+7GL/dtNhv79Omjz34TExMdblY08f/z+++/57hx4xxOOEwfgM+dO8fJkyfrTLNmzeLFixeNZqqoqOC0adOI2nsUPKEXwbIszp07V1/decoU7KSkJO8oDA5BgCkANjnzXH9/f1qWZXxQqa77Iz4+niEhIbTZbIyLi2NxcbHRXCS5e/duhoSEcNKkSfzFL37BL7/80nQklpeXc+TIkfT392dGRgbffvttJicnm47FN954Qw+AZ2VlmY5DkkxLS9Nz71euXOkRXW3Hjh1jYGAgO3fu7BEnGmTNbKj77ruPgYGBxtZeaqi8vJyjRo2iv78/09PTTcchWVOsaqfUO1UYFGsOysYppT4HsJXkxht8fx6AebVfDgRw0F3ZbgF3AjhvOkQbIW3pWtKernUfyc5NPanVC4NS6msAd1/nW0tJ7qx9zlIAgwFMpROBlFIHSA52bdJbl7Sn60hbupa0p2s5256tvrUnyVE/932l1BwAEwCMdKYoCCGEaF1G93xWSo0B8ByA4STLm3q+EEKI1md6a893AXQG8JVS6lul1BonX7e2FTPdiqQ9XUfa0rWkPV3Lqfb0mMFnIYQQnsH0FYMQQggPI4VBCCGEA68tDEqpZKXUYaXUd0qpHUqpLqYzeSul1HSlVL5SylJKydTAZlJKjVFKHVFKFSqllpjO482UUu8rpYqVUnK/UgsppXoqpfYppQ7V/p4/09RrvLYwAPgKwECSgwAUAEgynMebHQQwFUCa6SDeSinVHsBqAGMB9AcwSynV32wqr7YewBjTIdqIagCLSfYD8DCA+U19Nr22MJDcQ7K69stMAD1M5vFmJA+RPGI6h5d7CEAhyR9IXgOwBcBkw5m8Fsk0ACWmc7QFJItIZtf++QqAQwCCfu41XlsYGngKwG7TIcQtLQjAqXpfn0YTv3xCuJtS6r8APADgf3/ueUZvcGvKTSynUQ1gkzuzeRtn2lK0iLrO38lccOExlFIBAD4GsIDk5Z97rkcXBllOw3WaakvRYqcB9Kz3dQ8AZwxlEcKBUsoXNUVhE8lPmnq+13Yl1VtOY5IspyE8wH4AfZVSwUqpDgBmAvjMcCYhoJRSANYBOETyLWde47WFAc1fTkM0oJSaopQ6DWAogF1KqS9NZ/I2tRMh/gfAl6gZ3NtGMt9sKu+llNoMIAPAfUqp00qp/zadyYsNAzAbwGO1x8pvlVLjfu4FsiSGEEIIB958xSCEEKIVSGEQQgjhQAqDEEIIB1IYhBBCOJDCIIQQwoEUBiGEEA6kMAghhHAghUEIF1BKtVdKvV273n2eUqq36UxCNJcUBiFcIwnADyQHAFgFIM5wHiGazaMX0RPCGyilOgGYQvLB2r86BmC8wUhCtIgUBiFabhSAnkqpb2u/vh3A1wbzCNEi0pUkRMuFAXiJZBjJMAB7AHzbxGuE8FhSGIRouV8CKAcApZQPgCgAnxtNJEQLSGEQouUKULPJOgAsBLCL5DGDeYRoEVl2W4gWUkr9EjV7jt+Jmj0E5pGsMJtKiOaTwiCEEMKBdCUJIYRwIIVBCCGEAykMQgghHEhhEEII4UAKgxBCCAdSGIQQQjiQwiCEEMLB/wEHmz3wz7edTAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:05<00:00, 2.16it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXdYFFcXh39D74qAWFAxthgrNkysoAQ1Jhq7iTUaNRpLitg1ajSxRP3UEDX2Eo3YC4o9dsWGDQtYERDpdVmWPd8fkxlYUdnFhTuY+z7PPmHXGXizC3PmnnvvOQIRgcPhcDgcCRPWAhwOh8NRFjwwcDgcDkcHHhg4HA6HowMPDBwOh8PRgQcGDofD4ejAAwOHw+FwdGAeGARBqCAIwnFBEEIFQbglCMJo1k4cDofzX0ZgvY9BEISyAMoS0RVBEOwBXAbQmYhuMxXjcDic/yjMRwxEFEVEV/79OgVAKIDybK04HA7nv4sZa4HcCILgDsADwIVX/NsQAEMAwNLSsmHt2rWL1O11qNVq3LlzB66urnB1dWWtAwDQarW4ffs2SpYsiXLlysHEhHn8BwDcu3cPpqamqFixIszNzVnrAACioqKQlJSEihUrwsbGhrUOACA9PR0PHz5EmTJl4OTkxFpH5v79+7CyskL58uUV8zsVFRWFzMxMuLq6wtramrUOACAxMREJCQkoWbIkHB0dWesAADIyMhAdHY34+PhYInLJ9wQiUsQDgB3ENFKX/I4tW7YsKYUBAwYQAOratStrFZkpU6YQAKpTpw5lZWWx1iEiok2bNhEAKlmyJEVHR7PWISKiiIgIsrGxIQB07Ngx1joygwcPJgA0atQo1ioyYWFhBICcnZ1Jq9Wy1pHx9PQkAHTy5EnWKjLS39/UqVNZq8gcPHiQABCAS6TH9VgRYV8QBHMA2wFsIqId+R1funTpwpfSg5CQEKxbtw5mZmb45ZdfWOsAAMLCwjBnzhwAwO+//w4zM/aDwvj4eHz33XcAgLlz5ypmZDVx4kSkp6ejc+fO8PLyYq0DAEhKSsJff/0FABg6dChjmxzOnTsHAPjwww8hCAJjmxwiIyMBAOXKlWNskkNaWhoAwNbWlrFJDllZWQYdzzwwCOJv2SoAoUS0QJ9zlHCxA4Bx48aBiDBs2DBUq1aNtQ6ICKNGjYJarUbfvn3RokUL1koAxPcpJiYGzZo1w6BBg1jrAACCg4Oxfv16mJubY968eax1ZDZs2ID09HS0atUKH3zwAWsdmbNnzwIQA4NS0Gq1iIqKAqCswJCamgqAB4a3pRmAvgC8BUG49u+jA2up/Dh8+DCCgoJgb2+PqVOnstYBAOzevRsHDhyAg4MD5s6dy1oHAHDq1CmsXLkS5ubmWL58uSJy00SEMWPGAABGjx6NqlWrMjYSISIsW7YMADBs2DDGNrrkHjEohRcvXkCj0cDR0VEx8wtAzojBzs6OsUkOhgYG5rfeRHQagHLGpnqg1WoxduxYAMD48ePh4pL/XE5hk56ejtGjxS0gM2bMQJkyZRgbiRPzUjrEz88PtWrVYmwksnXrVpw9exYuLi6YPHkyax2Z06dP49atW3BxcUGXLl1Y68ikpKTg+vXrMDU1RePGjVnryDx79gyAskYLgDJTSRqNxqDj2d++FUM2btyIkJAQlC9fXr7zZM3s2bPx5MkT1KlTByNGjGCtA0CcTwgNDUWVKlUwadIk1joAxNUZfn5+AICZM2eiRIkSjI1ykEYLgwYNgoWFBWObHIKDg6HValGvXj1FXeyk+YXy5ZW1up2nkv6DZGRkyHeZM2fOVMQSx/v378t5cqVMON+/fx8///wzAPGCp5Sh/oIFC/DkyRPUrVsXgwcPZq0j8+LFC2zbtg2CIGDIkCGsdXSQ0kgfffQRYxNdlD5iKM6pJB4YDGTx4sV4+vQp6tSpg379+rHWARFh5MiRUKvV6NevnyImnIkI33zzDTIzM9GnTx+0bduWtRIA8Q5TWj22cOFCmJqaMjbKYc2aNVCr1WjXrh0qV67MWkcHJU48A8odMfBU0n+M2NhYzJ49G4CYJlHChWXXrl0ICgpS1ITzxo0bcfToUTg6OuK3335jrSMzadIkpKWloVOnTvD29matI6PVarF8+XIAwDfffMPYRhetVovz588DUF5gUPqIQUmBgY8YCpGff/4ZycnJaNu2LXx9fVnrIC0tTZ7j+PnnnxWxPyAuLg7ff/89AGDevHmK2XNy+fJlrF27VnHLUwFxhduDBw9QoUIFdOigrAV59+7dQ3x8PMqUKQN3d3fWOjoocQ8DkDPHwFNJ/wHCw8Ph7+8PQRAwd+5cRWzykSac69Wrp5g7TT8/P8TGxqJly5b46quvWOsA0F2eOmrUKEXsOcnNH3/8AQAYMmSIIkahgPj7rtFoFLuxDcgZMfBUUv7wwFBITJw4EVlZWejTpw88PDxY6+DevXuKm3D+559/sHr1apibm2PZsmWKuZAEBATg9OnTcHZ2Vszy1EePHuHYsWOIiIjA3r17YWZmppjNf4A4r+Dr64vAwEAA4sSzRqNBcnIyYzNg7NixuHv3rs6I4e7duwbn0Y0JESEiIgJEpBMYsrOzpZI/TDH4vdGnbobSHg0bNnzLyiGGcf78eQJAlpaW9OjRoyL92a9Cq9XSxx9/TACof//+rHWIiEilUlGNGjUIAE2ZMoW1jkx6ejpVqlSJANAff/zBWkfmn3/+IQcHB+rduzcBoG7durFW0mHfvn1SbR0CQLVq1aIyZcpQREQEazX6+uuvydLSUnZr0qQJeXl5sdai5s2b05gxYwgAmZqa0sKFC5l/roGBgbRo0SIaP368QbWSmF/kC/IoysCg1WqpRYsWBID8/PyK7Oe+iW3bthEAKlGihGIK0k2fPp0AULVq1SgjI4Opi1arlQu9zZo1iwBQ7dq1FVNQkIhoy5YtOhfenj17kp+fHz148IC1GhERnT17VscPAP3000+stYiIyN/fP49bQEAAay0aO3ZsHq/58+czdYqMjHzZiQcGY7B7924CQKVKlaKEhIQi+7mvIzU1lSpUqEAAaMmSJax1iIjozp07ZGFhQQDo6NGjrHXo5s2btH79eoqMjCRbW1sCQIcOHWKtpcOiRYvyXERGjBjBWkvmzp07Om7lypWj1NRU1lpERHTu3Lk8bmq1mrUWBQYG6ngJgkBPnz5lrUX16tXjgcGYZGVl0fvvv08AaOHChUXyM/NjwoQJBIDq16+viDtgrVZLrVu3VlRaa/ny5VSyZEnq1KkTAaBPP/2UtVIexo0bp3MRadmypSIubhIxMTE6fmvXrmWtJJOWlkYmJiaKG8kkJyeTqampzmeqBF76XeOB4W1ZtmwZAaDKlSuTSqUqkp/5Ju7cuUPm5uYEgM6cOcNah4iI1q5dSwDIycmJXrx4wVqHiIj69eunc1HbsmULhYWFKerCm9uxQoUK9Pz5c9ZKOmRlZcl+DRo0oOzsbNZKOtSsWZMAkJmZGT179oy1jozUHwIALVu2jLUOEREdP36cBwZjkZycTK6urvKFhTVarZZ8fHwIAA0cOJC1DhERvXjxgpycnAgArVmzhrWOTJUqVfKkaUaOHKmoi5v0WVpZWdGlS5dY67ySEiVKEAA6fvw4a5U8SJP23bt3Z62igzTJa2ZmRrGxsax1iIgoMzOT7OzseGAwBtOmTSMA1LhxY0V0rAoICJA7oLG8u0xNTZVzzf379ycA1Lp1a0W8R0RE0dHReYLC+PHjFeMnUadOHQJAmzZtYq3yWipXrkydO3dmrfFK5s6dSwDoxIkTrFV0kDqldejQgbWKDp999hkPDG9LZGSk3PJRCb94KSkp5ObmRgBo6dKlTF327dtH48ePp2PHjhEAsrCwoDt37jB1ys327dt1gsKsWbNYK70SZ2dn+vHHH1lrvJGmTZvSvXv3WGu8ksOHD1OtWrUUF/BTUlLIzMyMNmzYwFpFh1wruXhgKChDhgxR1KSlNHnk4eFBGo2GqcuoUaPIzMyMKlasqKiJP4nvv/9eDgqLFi1irfNKMjMzydfXVxGLB97E/v37WSu8ltjYWPr9999Za7yStm3bUnJyMmsNHcLDw6UUKw8MBeHWrVtkYmJCJiYmdPv27UL7OfoSGhpKZmZmBIDOnj3LWkfexCblUf39/SkoKEgxd26enp4kCAKtXLmStcprSU1Npbi4ONYaxR7W+2Vex5UrV1grvJKVK1fywFBQPv30UwJAQ4YMKbSfoS9arZbatm1LAOirr75irUOPHj3Kk7+3tbVVzJ1lWloaWVtb019//cVahcNRHNnZ2XoHhmJZK0mqXmhs/vnnH+zduxe2traYPn26XuekpaWhXbt22Llzpxhpjci2bdtw5MgRlCxZEr/++qve5xERunbtimXLlhlcPOtNHD58WOd5mTJlcPLkSb0rgn7//feYMmVKoX1+N27cwObNm9G7d2+9z1m3bh2++uorPH36tFCcCsLdu3fRpUsXnD59mrWKDBFh0KBBWLNmjVF/p96WpUuXYt68eYiIiGCtInPkyBHMnDlTLkCoBMLCwuTGWXqhT/RQ2sPJycloUVQiOzubGjVqRABo2rRpep+3cOFCAkCNGjUySjrl8ePHtHv3bkpJSaHy5csTAPL39zfoe+zatYsAkLOzs1Fznd26dZNHCjVr1qSHDx/qfe7NmzflFN3NmzeN5pQbQ5ejpqeny++xkiYLhw8frqhlyUREV69eJQBUpkwZRS37lTagBgcHs1aR+eGHHwgAzZ49m7WKjFTBAe9yKqlmzZrGfM+IiGjz5s0EgFxdXSklJUWvc1QqFZUrV44A0M6dO43isXbtWipfvjx988038uYiQyacNRoN1apVy+i7tTUaDZUsWZIAUKtWrSg+Pt6g89u1a0cAaNiwYUZzelt+/fVXAkD16tVTzMUuLi5OXhF3/fp11joyM2fOVExKU0KlUpGpqSkJgqCYch1ERH369CEAtGrVKtYqMn/99de7HxiMPcegUqmocuXKBu9WXLFiBQFi5UljXVikvQHSw9AdzuvXr5d30xpzck6qMNurVy+Dd4FLa7vt7e0Vs8M3Li5O3sB18OBB1joyUrBq06YNaxUdmjZtSgBox44drFVkrl+/TgDovffeY62ig7R5cd++faxVZKRrFQ8MBrBgwQICQO+//77eSwizsrLovffeIwC0ceNGo3hotVp5Gaj0EASBvvjiC728MjMzyd3dvVDuVmbMmEHjxo0zOABmZWXJI5hffvnFqE5vw48//kgAyNvbWzErqtRqtZza2rt3L2sdmZiYGBIEgczNzRW1DFMa5StlWblE3bp1FZfeklLePDDoSXx8PDk6OhIA2r17t97nbdq0Sb5bMdZ69PDw8Dyrfnr37k2ZmZl6nb9kyRKDA5y+FPSXfPny5QSAKlWqpJjlhY8fP5br+Svpj1e60FWvXl0xqS0ionXr1hEA8vHxYa2iw6RJk+Sd7UpCKqXz+PFj1ioyUiqQB4Z8iImJIaKcGuotW7bU+84xOztbvgtevnz5W7tI/PnnnzpBYfTo0XpfIFJSUuRfyG3bthnN6W1ITk6m0qVLEwBFLSGV0nU9e/ZkrSKj1WqpSZMmBEAxG7f8/f0pLi6OunfvrqgNg9u2baOEhATq3LmzUUfsb4NWq6XMzEzSaDRy5Vel3AgR6VRY5YHhdcTGxlKrVq3owYMH8p3jhQsX9D5fWvVTrlw5o1Zd/eKLL+SgMHv2bINSHD///LNRV0cZg4kTJxIA8vT0VIzT9evXSRAEMjMzo/v377PWoZMnT9KtW7fozJkzBIAcHR0VM5E6YMAAqlWrFjk4OBAAun//Pj18+JB5ldrJkyeTu7u7fCO0dOlS8vPzM3hBhLHx8fGRS7JITbRYr3a7ePEixcfH07fffssDQ35IDTWk+kOG3DlqtVpq3LgxAaAFCxa8lcfL37ds2bJkYmJCf/75p0Hn5p5IPXz4sNGc3obHjx+TlZVVgSbQC5MOHToQoJymOL///jtVqVKFfH19CQCNGzeOtZLMwIEDdUaw9vb21LVrV9Za0g5enceXX37JWit3oToyNTUlMzMzmjx5MlOn3bt3k6OjI1WvXt2gwFAsN7i9LRcvXgQAeVNMamoqfvjhB8TExOR77tGjRxEcHAwnJycMGTLEaE737t1DfHw8tm/fjsGDBxt07pw5c5CUlARvb2+0bdvWaE5vw8SJE6FSqdC9e3d89NFHTF2kDVknTpxAYGAg7OzsMGXKFKZOEo8ePUJ4eDiCgoIAAJaWlli0aFGhbQI0BEEQdJ6bmZlh6dKljGxycHd313kuCAImT57MRiYXjRo1kr/Ozs5Gdna2wX/LxqZFixZITEzEvXv3DDtRn+ihtMfbjhjat2+fZ+WPvqt4pG5lM2fOfCuHl9m8eTP9888/Bp8XEREh35mfP3/eqE4F5cKFCwSIlVfDw8NZ69CAAQNIrVbLOXwlFf6T8ve5H8Ycib4NgwcP1vFat24dayUiIgoLC9Px6tWrF2slIiI6cOCAjlf79u1ZKxERUYMGDXJ78VTSq9BqtXJzGSko6Nu2UMoD29vbG73/c0FXEQ0dOpQA0Oeff25Un4Ki1WqpefPmBEARZaWTkpJIEATy8vIiAFS6dGlFLbmUgpX0+OabbxQzH/P111/LXu3atVOMV2ZmJgmCIP/9FtZOekN58eKFzme5a9cu1kpEpFtxmAeG15D7bsPExMSgyaFPPvlEUcvj7t+/T2ZmZmRiYkK3bt1irUNE4ooRQGz1aezgWRCkvhG57+LWr1+vmB4S0qotAIorxS2Vn7ezs1PU0ksikucHldbBTdpHVLZsWcV8lnv27OGBIT+k/Qempqa0efNmvc+TasVYWVkpZveu1N6wf//+rFWISNxBLrXVZN1QSGLOnDl5UjXe3t6UlpbGWo3S0tJkp9q1a1NSUhJrJR2k0aihtbqKAmlUqqSyIUQ59cRYTzrnJiEhQV5Cq29g+M9NPl+4cAGmpqbYvHkzevXqpfd5v/zyCwDg66+/RunSpQtLT2+uXbuGzZs3w8LCAj/99BNTlxUrViArKwu///47wsPDUaNGDaNOzL8NwcHBOs+9vb2xd+9e2NjYMDLK4fHjxwCA0qVLY9++fXBwcGBspIuJiQlatmyJoUOHslbJg7u7O7p06YI6deqwVtGhcePGEASB+aRzbkqWLAkPDw+YmZnpfY7+R74jXL16FVu3bkWXLl30Pufu3bsICAiAmZkZxo4dW4h2+jNp0iQAwLBhw/Ks0ihqfv/9d9y8eRMbNmwAAMyfPx/m5uZMnSRyB4Y2bdpgz549iggKgBgYrKyssGfPHlSqVIm1Th5sbW2xcuVKmJgo7/6xcuXKBv0NFxWNGjVCu3btFPd5tm7dGq6urggMDNTvBH2GFUp7FDSVlJ2dXaCCadJ6bqVUljx16hQBYpMc1mmtpKSk3MNUatSoEb148cKoG/8KSkxMjOzVtm1bRaSPcrNs2TIKCAhgrfFaIiMjWSu8lkePHrFWeCWJiYkGldYpKvbt20cbN27kcwzG4tGjR/IErxIao2u1WmrWrBkBoClTprDWocOHD+fJ4VtZWSmiYun+/fvloJCens5aJw9RUVGsFTiFgFJWb+UmKSmJUlJS9A4M/7lUkqHMnz8fGo0GPXv2RLVq1VjrIDAwEGfOnEGpUqXwww8/sNbJ06XK1tYW+/btQ+vWrdkI5SI4OBg+Pj7YvXs3rK2tWevkoUyZMqwVOIXAyxsDlYCh81fKSx4qiOfPn2PlypUAxJ28rMjMzMTx48eh1WrluYUJEyagRIkSzJwkcgcGe3t7BAUFKSIoAECpUqUUGxQ4HCXDA8MbWLhwIVQqFT799FPUrVuXmcfNmzfRp08f+Pv7IyQkBOXLl8eIESOY+UhotVqcP38eAODo6IijR4+iWbNmjK1y+Pbbb3lQ4HAKAE8lvYaEhAT4+/sDYDtaAIDLly8jMjISI0eOBABMnTpVERe8e/fuISEhAc7Ozjhy5Ajq1avHWkkHJQ7pOZziAB8xvIalS5ciJSUF3t7eaNq0KVOXK1eu6DwfOnQo6tati9jYWEZGIufOnUOZMmXwzz//KC4ocDicgsNHDK8gNTUVixYtAsB+tACII4bcVK9eHUFBQXB2dmZkJBIREYGTJ08qYlKew+EYj2I5YsjMzCyU76tWqwGIO3nj4+Ph6ekJb2/vN55DRJg6dSquXbtWKE5ZWVm4fv26/Lxq1ao4duwYypYt+8bz5s2bh+PHj4trkguJH3/80aCgsGbNGmzZsgXZ2dmF5mQoR48exW+//Yb09HTWKjIREREYN24coqOjWatApVIhPT0dWq0WU6ZM0fldZMnWrVuhUqmwbt06HDx4sNCuCYZw48YNZGRk4MyZMwgICEBUVBRrJfnv/8mTJ/jrr78MO7G4Pezt7Y22vjc33bt3p9TUVCpbtiwB+vWAPnHihNzNTaPRGN1JqtEEiP2lnz59mu85jx49IhMTEzIzM1PMJqXU1FS5qu2xY8dY6xCRuN68UaNGiip1TUQ0evRoxZSTDg0NpU6dOlFQUBABoPLlyxfK77mh9O3bl7y9valUqVIEgEJDQyk9PZ1p4boNGzZQvXr1qE2bNnK9sGvXrtHDhw+ZOQUHB9OMGTNo9erV734RvUqVKhnxrRORSubWq1ePAFCdOnX06rfcp08fAkATJ040uhNRTrcqd3d3vStc/vjjjwSAevfuXShOBeG3334jANSkSRPFbADau3cvASAXFxfm7TQfPHhAhw4doufPn5O1tTUBoCtXrjB1Isq58ZHae06dOpWSk5OZly6X+nZLjxo1ajAvDX706FEdJxsbG3JxcaGUlBRmTomJifKm03c+MNSvX9+Y7x0REZ0+fVrnQ23cuDENHjz4jc1vEhIS5Dc8LCzM6E5ERMOHD6eKFSvqfdeRkpIit/lUSuOejIwMg0ZhRYFWq6WGDRsSAJo3bx5rHdq3bx85OTnJF7wOHTqwViIior///lvn78LU1JRKly6t18i1MHm57aiNjQ09ePCAqdOdO3fyVAFYuHAhUyciogoVKhhcdlsRcwyCIKwWBCFGEISb+hxvampqdIc7d+7oPA8ODgYRoUmTJq89Z/PmzVCpVGjdujWqVKlidCcAiImJwbFjx/QulLd+/XokJSWhadOm8PT0LBQnQ1m7di2ioqJQp04ddOzYkamL1DJz7969uHz5MkqXLo1vvvmGqRMAhIaGIi4uDuvWrQMAeHp6Yt++fYiPj2fq9fz5c53ngiAgICAAbm5uhfuDN22Cxs0dWsEEmgruwKZNOv/88jVg9uzZqFy5cuE65UO5cuV0nru5uWHYsGGMbHIoUAVafaJHYT8AtATQAMBNfY4vjFpJUvpFenTq1CnffKXUMm/jxo1G95GIiIjQ+9js7Gy56feWLVsKzckQ1Gq13LzEkP4XhcXnn39OsbGx5OHhoai5hUGDBuW52xwwYADztNukSZN0nJYsWVL4P3TjRiIbGzGhIT1sbMTX/0VqIgSAPD09FTHvQURkZ2cne61YsYK1DhERjRs3rvg26gHgzjIwdOzYUX7zmjdvnm/RtStXrhAAKlGihGIKtElF49zc3EitVrPWISKitWvXEgCqVq0a8z/erKwssrKykoNnmTJlFPPZSYURpUfHjh0V0QEsd9/nfv36FU2gqlRJNyhIj1xzi8OGDSMAZG5urpjWnkRENWrUIABUtWpVxfwN/ltVtfilkvRBEIQhgiBcEgTh0osXL4z+/aVUUu3atbFnz558dxavWrUKAPDll18qYhcyAHnvxYgRIxTRDyE7O1tucDRhwoRCSQEaQlhYGFQqFe7duwdALOMxZswYHD58mKkXESE0NFR+3qxZM/z9998GNVYpLKRUUoMGDbBs2bKi2U3+5Em+r0s9IiZPnoxatWoVvpOeSOmk6dOnK+JvECjGqSRiPGJQqVRkYmJClSpVomfPnuV7fHp6OpUsWVIxK0eIiG7evEkAyNrammJjY5m6SOXJt27dSgCoYsWKirh7knxyPz7//HPmd+a5+0bUrl2b4uPjmfrkpkmTJuTs7Fyk/Q+yyld65Yghy62SfMy3335LtWvXpszMzCLz0ocvv/xS7xWNRUVmZiaZmZlRhw4d3r0RQ2ESFhaGUqVK4dChQ3kmkF7Fzp07kZiYCA8PD3h4eBSBYf4sXrwYANCvXz84OTkxdfn+++8RGBiIWbNmAQD8/PwUcff08uYsX19fbN68mfmduTRaqFSpEoKCguDo6MjUJzdxcXHYunVrkXYk21xnFtRmul321GY22FJ7lvzc3Nwcq1atgoWFRZF56UP58uUxc+ZMRXW9s7CwQPXq1TFmzBj9T9InehTFAwxHDAcPHqSLFy/qfbyXl5e8gUUJxMbGystmb926xVqH3nvvPbK0tCQA5Orqqpg8fqdOneQ78xYtWiimo9vy5cvJ2dmZ7t69y1pFB61WS3/88UeR/9xmzYh6YyM9RCXKhkAPUYl6YyM1a5ZzjNLeK4kzZ84wXzDwKmbMmEFarbZ4TT4D2AwgCkAWgAgAg950vLEDgyHDvrCwMHnDiFKG/L/88gsBoI8//pi1CqWnp5MgCPIF2MLCgpydnWnRokWs1ahy5coEiO1Hk5KSWOvITJkyhYKDg1lr5EGr1SryIscxnIyMDCIivQMD+9ktAETUm+XPN2TYt2bNGgBA165dFTHkz8rKwtKlSwHAsKFiIXH//n0p2AMQ60/16NEDo0aNYmgFpKSk4OHDh6hduzYOHjxocEerwmT06NHM03+voqjLlkdFAQMHAmvXAry5nXGxsrIy6HjlJMKKARqNRg4MgwYNYupy4MABxMfHY/v27Xj27Blq1KgBX19fpk4AdFbXAECPHj2wePFi5r0Rbt68iapVq+Lw4cOKuwgrzYcVc+cCFy+K/+WwRREjhuJCUFAQIiMj8d5776FVq1ZMXY4ePYr58+cjJSUFADBq1ChFTHjlDgxt27bF+vXrmS9TBYCkpCQcOXKE91lWKFFRwLp1wNGjQNu2gJ8fHzWwhP2VpBgh7V0YNGgQ84vw48ePcezYMQQHB0MQBJiYmGD16tXQaDRMvaT9II3SKz7VAAAgAElEQVQaNcKOHTtgaWnJ1EfC19e3SFfWcAxj7lygf3/AwwPo14+PGljDA4OePH/+HHv37oWJiQn69+/PWgdPcm32ISJ88803sLa2VsTSy+rVqyMwMBD29vZMXXLDOpXFeT3SaMHPT3zu5yc+V0A7iv8sPDDoyfr166HRaNC+fXuUL1+etQ4eP36s8/ynn35C795M5/CRnZ2NtLQ0BAUFwcXFhakLp/ggjRak3lNly/JRA2t4YHgDRIS7d++CiOQ00uDBgxlbiV21cle9/OKLLzB16lSGRiIJCQnYtWuX3pVgOf9doqKAdu3EUUFwMLBoESAIOY9Fi8SJaA4b+OTzG0hOToaPjw/mzZuHu3fvwtXVFZ988glrLZ000kcffYRVq1YpIlXi7OzMvA81p3iQewXS6dOsbTgvw0cMbyA2NhZPnz5Fr169AACtWrXC8ePHcfOmXm0jCg0pjeTu7o6dO3cavEaZw2FJ7hVIfC5BmfDA8AZiY2N1nm/duhWDBw9mvuTx8ePHcHBwwL59+1C6dGmmLhyOofAVSMqHp5LewMvlvS0sLLBt2zbm6ZLIyEhs3bpVUeWGORx9kEYLt26Jz/38gNq1+b4FpcFHDG/g5RHD4sWL39jqs6gYOHCgInY5F2e0Wi3i4uJYa+QhOzsbWVlZrDXykLvMSUGQJpunTeMrkIoDxTIwaLXaIvk5uQND//79MWTIkFced/DgwTxBpDCpUKFCvsccPXpUZ5JaCZw9exYhISGsNQAAz549Q8+ePXH9+nUEBQW99YXPWISGhmL27NnYvXu3ogLEqlWrsHfvXiQnJxfofGmyef9+461AIiIsXbo0z9Jt1hw/flxuBqUUnj59isuXL+t/gj6V9pT2sLa2futqg/og9UqtX7/+a0tHS01WrKys5AqGrNFoNOTq6qqYMtwSTZs2JQC0Y8cO1ip0/PhxAkCOjo4EgH799VfWSkREtGrVKrk67dSpUykqKoq1EhER+fr6EgDq0aMHPXz40KBzIyOJHB2JrlwhKlWKyFj/S1J73YYNG9Lz58+N802NQOvWral8+fIUGRnJWkVm7dq1ZGpq+m436rG1tS2SnxMbG4uSJUti+/btr23fefToUQDAhx9+qJjVQefOncPz589RqVIl1KxZk6mLVKIjNDQU58+fh52dHT7++GOmTgAQHh4OQNx7AYhpwjp16uDBgwcstXDhwgV59DJr1iycOnWKqQ8ApKen48SJEwDESsT6LL7IvU+hsCabt23bBjs7O0yYMEExizDi4uIQGhqKjRs3oqyUL1MAFy5ckJt56YU+0UNpj8qVKxsxlr6ezp070969e994zMCBAwkA/fLLL0XipA/fffcdAaAxY8awVqEFCxbQqVOnyM/PjwDQwIEDWSsREdGECRN0WnyamZnRoUOHWGtR/fr1ZZ9t27ax1iEiov379xMAmjx5st69S8aMEUcJQ4aI/5VuniMjjTNq0Gq19OmnnypqRExEdOnSJQoPD2etkYdz584Rkf79GJhf5AvyqFOnjtHesDdx4MCBN/67VqslNzc3AkCXLl0qEqf80Gq15O7uTgDo5MmTrHXohx9+oBIlSpCzs7PspNVqmffE7dGjh05gWLNmDVMfIqK0tDQyNTUlc3Nz2rVrF2sdme+//96g9yd36sjKiujrr3X/fcwYou++ezsnlUpFiYmJb/dN/oO804HB2B3cCkpoaCgBICcnJ+YXOgkp7+ri4kIajYa1jjyikh7u7u7k5eXFvIl7w4YNZaeffvqJqYvEqVOnyMLCgvbs2cNaRYewsLB8j4mMJPL1FUcCY8aIDyKismXFq8zLj9xtOjlFh76Bge9jeAsOHToEQOw7wLoMd1ZWFszNzbFz504AQOfOnRXRByE+Pl7neUpKCtatW8e8ibs0xzBgwABF1JkCgJCQEOzcuRMdOnRgraJDlSpV8j1GWnU0bRoQEJCzT+HyZXGfwq1bfJ9CcaJYTj4rhcOHDwOAIiZTR44ciUePHmHHjh0AgC5dujA2EskdGARBwKZNm/RabluYxMfHIzExET4+PlixYoUi6kwBQJ8+fRQXFPQhd4mL9euBbt34PoXiDh8xFBC1Wo3jx48DAHx8fBjbAHfv3sWHH36I6Oho2Nvbo2rVqjh58iRatGjB9MKXOzBMnTpVERvzwsPDUbduXWzbtg3m5uasdWRKlCjBWsEgpB7NFSvmrDpydAT+/FN85KZZMzaOnILBRwwF5Pz580hLS8P777/P/A4YEJeFRv9bjSwlJQXVqlXD5cuXmd8NS4HBx8cHU6ZMYeoikZmZif3798PBwYG1SrFm7lzgwgVxlCA12bl8GShVSgwauWcVeAXV4gUPDAVESiMpYbQAIE9Lz1atWmH06NGMbESICPHx8Shfvjw2bdqkiDkPAGjevDnc3NxYaxQ7cu9NkNJHHTrk7GAGeOroXYGnkgzk6tWr8PDwkCeelTC/AOgGBjs7O6xZs4b5hHhGRgays7MREBDAO7q9A+TuoUAkpo+CgwGVKmdOQYKnjoo3PDAYyODBg9GrVy9cunQJZmZmaNWqFYiIecomd2BYsGABKleuzNBGJD4+HvPnz8eHH37IWoVTQKR5hDlzciaY27QBtFogNFQMCFFRfOXRuwZPJRmIqakp/Pz8oNVqYWdnhx49ejBP2QCQC661b99eEe1HAcDFxQWjRo1ircExkJfLWVy8KAYHaYLZ3R147z2+8uhdho8YDMTS0lL+OjExEWfPnsXq1asZGoloNBo4Ojpi5cqVzEcvErnfK46ykUYGa9fm3ZOwZYsYKNasEY81MxNTSC//mvH00bsDHzEYyMsXu9mzZyuiWJZGo4G/vz/KlSvHWoVTDMkdDF7ek3DgAFC/vvg6IB43Zgzw3Xd85dG7Cg8MBpI7MDRu3BjDhg1jaJND165d5d7UHI4+SCmjkJC8waBMGfFiLwji6ODqVWDhwrfvocApHvBUkoFIgcHExATLly9XzBLM6dOns1bgFBNyb0zLPX+QOxjMnSvOG2zbljOp/N134r8tWMD6/4BT2PDAYCBSYBg9ejQ8PDwY2+SglF4QHGXy8hzChQvAiRPAnj058we5g0GVKuJIAdBdisrnEYoncXFxcHJy0vt4nkoyEEtLS7i5uWHGjBmsVTic15I7TST1Ws49hyBtTNu2LWf+IDhYLGURH58TFAAxGPB5hOLN9u3bceHCBb2P5yMGA7GwsMDSpUthZ2fHWoXDycOr0kQPH4qjg3PngI8+Arp2BQIDgb59xR7MkZHiHEJumjXjQaCgHDt2DN7e3qw1dAgPD8f+/fv1Pp4HBgPp2bMn2rRpw1qDw9Ehd0B4OU3UubO4ssjERLzrDwkR5xT8/IDt28Vz58wpnvMHSthc+jLr/l2+paTgEB4ejj179uh9PE8lGQgPChwl8KpUkVTQLneaqFatnNHBwIHiHMKdO+KqonLlxLRR2bLFd5XRn3/+KXYcUxCxsbH48ccfodVqWavIhIWFGXQ8DwwcTjFCCgjSnMHAgboBARDTQ127iq/VqycGiREjgBs3xDmEl+otynMIxTF1FBgYiBUrVrDW0CE2NhZXr17Fpk2bWKsAEEdVUmMqfeGBwQgkJSUp5q7l8ePHICIkJCQgOzubtY5MZGQksrKyoFKpWKvo8OLFC8U5AWJpE2mPTO7RwYcfinMF69eLO5KvXQO8vMRz9u8HqlUTy1XY2IgB4d49schd/fq6AaEgE8rTpk3Dhx9+CLVabeT/24Lj4uKCFStWIDU1lbWKjKWlJSwtLREfH6+I60JMTAxq1qxpWO8Rffp/Ku1hYWFhjPanRsPJyYmsra0pOjqatQrNmTOHunbtSp6enmRhYUGHDh2iXbt20YsXL5h6/fnnn9S4cWMyMzMjf39/unTpElMfiXnz5pGdnR0tX76ctYoO7doNpHLlrtO1a0SVKhGVKEFUuzaRIBDVqEFkZUX09dfia5aW4n89PIgaN351j2Vj9FqeMGECNW3a1Gj/j8YgMTGRef/wl0lISCCVSsVaQyY1NZXUajWlp6fr3fOZ+UW+IA9ra2tjvm9vRVpaGgEgMzMz0mg0rHVox44dcpN7yatRo0ak1WqZeu3Zs0d2KlWqFCUkJDD1kZgxYwZZWVnRzZs3WasQEVFkJFHr1kRubrrBoEsX8a+1ffuc55aWRF9+KQaJ+vWNHwg47x76BoZiuSpJCe0Y1Wo1zM3NERERAQBwc3NTxC7o6tWr6zzXaDQYP34885UbpUuXlr+eNGkSSpYsydAmh4yMDMybNw+1atVi5hAVBXzxhfh1tWpiqigzE+jSBdixA/j8czFNZGICPH0qpoXu3dNNFV27pvs9+XJTztvAA0MBSUhIwIABA9C9e3cAQIUKFZCYmIjQ0FCm/QeqVKkCQRDk3Gb16tXRuXNnZj4Srq6uAICKFSti+PDhjG1y8PLyQtu2bZn8bCkghIUBMTHihf7cObHXgYUFsG+fGAxsbMT5gerVxRVFuecKcm9EA3hA4BiHYjn5bGbGPp65urriypUrGDRoEADgxo0bKFOmDB48eMDUy8rKChUrVpSf+/n5KWIkI40Yfv75Z0WV7/Dx8Sny0VRUlDhh3LChuN8gIiIn+ZOVJQaI7t3Fr6tXF/calCyZNygAupPIVExXFnGUR7EMDEoYMQBA3bp15a8TExPh6OgojyBYUq1aNQBAuXLl0KdPH8Y2IjY2NmjWrBm+kHIm/0GiosQLeeXKwJkz4nMJKTZptWIwsLERn9+5I6aK4uLyfj8+OuAUFsU6MEjpElbkDgwAMGzYMFhYWDCyyUEKDN99952imuUoqRptUSEFgxIlxM5n0vzBvw33ZGxtAXt7MUDcvCnuN3jVrzevW8QpCoplYMjIyECXLl0QGRnJ1CN3YDA3N8fQoUMZ2uRQvXp1lCxZEkOGDGGtogPLCd6iJioKaNxY3F189iyQnAyo1eIF3STXX52VFeDkBCQmiqMCHgw4SoB9sr4AREdHIzMzE+XLl2fqkTsw9OzZE2UU0gm9WrVqGDFiBBwcHFir/OeIigKaNgWePHn9MVKlBFNTMU30qv11PE3EYYkiAoMgCO0A/A+AKYCVRPRrfuco4e68Zs2aMDU1RXZ2tqKa3teuXRuNGzdmrfGfQ585bOkYIuBVG9N5QOAoASG/PL0gCJsBXANwHeLmiBdGFRAEUwD3APgAiAAQDKA3Ed1+3TkWFhaUnp6uiNVJH3zwAUqUKIFz586xVuEw5m0XN/GgwClMsrKyYGFhcZmIGuV3rD5X1mUA6gLoCuAXQRAeAuhHRClv6SnRBEAYET0AAEEQtgDoBOC1gcHFxUURQQEQ00lK2CfAYUtBg4K9vTj/wHn3CA0Nhbm5OapWrcpaBQCMXna7IoB/AAwjovoAtgEwZoPh8gCe5noe8e9rOgiCMEQQhEv/Poz449+O9u3bo2vXrqw1OMUMe3sxncSDwrvL0qVLERISwlpDZtmyZXofq09gqA7gZwB3BEG4CuBjAF0EQWgjCIJLwRR1eNVVPk9+i4hWEFEjImqklEleAOjbt69i9lVw2GDIfQoPCP8NEhMTsW7dOty4cYO1CgCxH8ORI0f0Pl6fwLCYiD4joqoAvAFsBGAD4EsAgQWy1CUCQIVcz90AsF2HagAmJsVyxS+niDE15QGhMGFdceBl1qxZg7S0NFy/fp21CgAY3LNCn0T9IUEQHAGEArgL4H0Am4lotOF6ryQYQDVBECoDeAagF4D/7vZYzjsH432Y/wlGjhyJvXv3KuJGLTs7G0uXLgUARQSGzMxMrF692qBz8g0MROTx78qh9wHUAHAEwMECGb76+2sEQfgWQBDE5aqrieiWsb4/h1PY8As/W86fP4/AwEBERkbCzc2NtQ4OHDggj2DCw8ORmpoKOzs7Zj47d+6Eh4cHMjMzcerUKb3O0Su8ElE2Ed0ioh1EtI+INPmfpT9EFEhE1YmoChHNMub35nA4xoV1xYGXmTNnDgDg3r17jE1EFi9erPP85s2bjExEOnfujMOHD8Pd3V3vc9iPuzgcTrEhOjoas2Yp594tNDQUu3btAgDcv3+fsQ1w+/ZtHD58WOc11ukkqZpxdHS03ufwwMDhcPRm5syZBjeWL0zmzZsnf62EwLB06dI8hSKVsjKJBwYO5x0gNTUVYWFhrDVk7t+/jxUrViAmJoa1CgDg6dOn2Lhxo/ycdSpJq9WiQYMGsoe5uTmWLFmimBVTUbnrvOcDDwwcjkIZPXq0Yi7CADB58mRoNBo8f/6ctQoAYOHChcjKVb+c9YjBxMQEgwcPhlqtBiC2+/3222+xbt06pl6AWA4jNjZW7+N5YOBwFMj27duxevVqWFtbs1YBAAQHB2Pr1q0AgJiYGGilErGMiI+Pz7M2Pzw8HJqXW9wx4Mm/pXWlTorOzs4sdQDA4BuMYhsYlPAL8DJKdMp6uSMMQx48eIBPP/0U117uXM+QtLQ09OrVCzt27GCtIqNSqfDHH38AgGICw9WrV/Hpp5/CwsICDg4OSExMZOpz/fp1+Pv7Y8CAAQCADh06wNbWVr4os0RyqFChQj5HFh2GzC8AELugFbeHg4MD9enTh5RATEwMzZ49mzw9PWnatGmsdWSuX79OTZo0oV27drFWkTl58iRZWFhQQEAAaxWZuLg4sra2pvHjx7NW0SElJYWuXLlC8fHxrFVkUlNT6erVq/Tw4UOKi4tjrUNERGlpaRQSEkLPnj2jp0+f0uPHj1krUXp6OoWGhlJYWBhrFRm1Wk1hYWEEsUJ2vtdYZZQoNZDk5GSoXtXdhAHOzs44cOAALly4gA4dOrDWkalevTo0Gg0SEhJYq8i0aNEC8fHxsLW1Za0iU6pUKSQmJiqmWq+EnZ0dPDw8WGvoYGtri/r167PW0MHGxiZPi13WWFtb4/3332etoYO5uTmqVKmi9/HFNpWklFK2giBg/vz5AJSRS5SwtLSUc8JKQklBQcLCwkIRpRQ4HKWgrNskAzAk+hU2TZo0Qe/evRUVGADxPZImwDgcDlsyMjIQERGBatWqsVbJl2J5myQIgqICAwDMnj2beQ/qV8FLgnM4ymD27NnM91roS7EMDE5OTopJJUm4u7vjo48+Yq3B4XAUSGhoKObMmYPMzEzWKnpRLAND2bJlFXl3rqTOchwORxkQEYYNG4asrCweGAoTPlnI4XDeBOsNeLlZu3YtTp48CQA8MHA4HA4LVCoV/vzzT9YaAIDY2FiMHTtWfi6Vy1A6xXZVEofD4byKqVOnKmbH/9ixYxEXFyc/5yMGDofDKWJOnz6N+fPnK2LD4okTJ7B27Vqd13hg4HA47zxKyuWnpqaif//+ICLmy7QzMzMxcuRI1KhRI8/rxQEeGDgcToFZsmQJawWZsWPHyr0PWI8YiAjBwcFYuHAhAKBWrVrw9PQsNnMMPDBwOJwCsXr1armtJmuCgoKwbNky+TnrwGBlZQUrKyscOnQIAPDZZ5/h2LFjaNGiBVMvfeGBgcPhGMy1a9cwYsQIlCpVirUKEhISMGjQIJ3XWAcGCan/s4+PD2xsbNC2bVvGRvrBAwOHUwwIDg5GRkYGaw0AQFJSErp16waVSqWIwDBq1Cg8e/ZM5zUlBIZnz57h1q1bsLGxKXZVEXhg4HAUzsOHDzFgwABFNO0hIgwcOBDh4eEAwDwwxMXFwcvLC4sWLQIgVhUGlFEj7MiRIwCAVq1ayV7FBR4YOJyXUMoaeEBsYdm+fXvFlCtfuHAhdu7cKT9nHRicnJzw1VdfITIyEgDw9ddfY+7cuYoYMUjzCx9//DFjE8Nh/+5xOApi2bJlaNasGerUqcNaBSqVCp06dcLdu3fRq1cv1jo4ffo0/Pz8dF5jHRgAcRQjtWb9/PPP4e3tzbz1qFarlUcMPj4+TF0kiEjvY3lg4DAjPj5eERcWiaVLl2LChAnMLyqAeGEZMGAATp8+DYB9Y6qYmBj07NkT2dnZOq8r4fO7desWwsLCUKpUKbRs2RIAULJkSaZON27cQExMDMqVK4cPPviAqYuEISW/eSrpP4BS2qBKEBFmz54tFxZTAv/73/8wcuRINGjQAKampqx1MGHCBPz999/yc9b9R0xNTXH58mXMmDEDAFCiRAkAyggM0mjhs88+U0QKCchJI/n4+Lyx6rJWq8W1a9eKxEm6ydCHYhsYpMkvJRESEoL09HTWGjqcP38ec+fOZa0ho1arMWjQIEybNg3e3t6sdQAACxYswJgxYwAAnp6ejG0Af3//PJ8Z68Dg5OQEV1dXrF+/HgCwYcMGfPnll4oIDNKcR5cuXRib5JB7meqbmDt3Li5evFgUSgYFBhBRsXu4urrStm3bSEkEBARQ8+bNWWvIaLVaWrZsGZmbm9OhQ4dY6xARUXx8PHl5eREA8vLyYq1DRERz5swhAPIjICCAqc+ePXvIxMRExwkAPXv2jKkXEdHJkycJAJUtW5aysrJIrVZTWloaU6cHDx4QALK1taWMjAymLhLp6elkaWlJACg6Ovq1xx05coRMTExox44dReJVtWpVAnCJ9LjGFssRw/Pnz9G0aVPWGjJBQUHo3r27ojavnDx5Et9//z0cHBzQunVr1joAgDNnzuD+/fsAgPbt2zO2EUcv9evXR7169eTXWI8YvLy8kJ6eLq97NzMzg7W1NcqWLcvUC4BcEK5v374wMzODubk5bGxsmDpJo4UOHTrAysqKqYvE6dOnkZmZiXr16sHV1fWVxzx9+hS9e/eGVqstkl7x0dHRCAsL0/t4ZSTkDKRChQqK6uDm5eWFxYsXyxNfSqBly5ZYs2YNwsPDFbGmGwA6duwIExMT7NmzRxGBwcLCAh9//DFcXFxw8eJFbNy4EW5ubkyd7OzsAAAbN27E77//jk8++QRjx45VRHfAWbNmoWbNmvjss89Yq8gMGDAAzs7OqFy5MmsVmaZNm2L37t2vLTCYmZmJ7t2748WLFwBQJIHB0dERR44c0fvmVSADljAphUaNGtGlS5dYaxQLiEgRF5XcqNVqmJubK85LaaukJO7evZunSifHcJKSkuRJc5aMGDEC/v7+8vOYmBi4uLgUyc8WBOEyETXK77himUri6I/SLr6AeKeuRC8lBgUAPCgYgSVLluDWrVusNbBhwwadoCAIAhwdHRkavZpimUricDgcfQkMDMSYMWPw5MkTph7Xr1/H0KFDdV5zdHRUzBLb3PARA4fDeWe5ceMGevXqBVNTU+YT+Ddu3MDChQt1PIoqhWQoPDBwOJx3kujoaHTs2BEpKSlwc3ODiQnby92XX36JZs2aISoqCnZ2dpg1a1aRTDwXBOWNYTgcTrElNDQUNWvWZK2BjIwMdO7cWU4fVapUibGRyKpVqwAAvXv3xsSJExW17D43fMTA4XCMwvnz5+WSGSyR6kxduHBBfk0JgSEzMxMbNmwAALmxkFJ2/78MDwwcDuetuX37Nj755BNUqFCBtQqmTZuGrVu36rymhMCwZ88exMXFoVatWmjSpAlrnTfCAwOHw3krnjx5Al9fX8THxzNPIz19+hRpaWno1q2bzutKCAxSGmnw4MGKXK6dGx4YOJxiRnBwMGJjY1lrAABiY2Ph6+uLiIgIAGAeGCpUqIAFCxbIu/3btWsHS0tL5oHh8ePHOHToEMzNzdGnTx+mLvrAJ585nGLEjRs30KNHDzx48IC1ClJTU/HJJ5/gzp078mvvv/8+QyORZ8+eISAgACYmJvjjjz9w5swZuLu7M3Vau3YtiAidO3dW7Eqk3PDAwOG8BpVKpZjCbIDYaMXHxwdVqlRhnopQq9Xo2rWrTsnoMmXKMG+QA4hlyzUaDbp06QJ3d3e4u7sb1L3M2GRnZ2P16tUAciadlU6xTSW9rkAVh2MMtm/fblj9+kLm8ePHaNu2LZ4/f466desyddFqtejfv7/cjEaCdRoJANLT07F8+XIAkHtsAGxLwxw9ehRPnjxBxYoVFVWB+U0Uy8CQlZWF/fv3s9bIQ3x8vFwxUUlotVpFehER9u3bx1ojD8ePH8cXX3yBatWqsVYBAERFRaFt27Z4+vQpACgiMCxevDhPBz4lpJE2bdqEuLg4NGjQAM2bN2etAyBn0nngwIF6dwfcvn0706ZfTAODIAjdBUG4JQiCVhCEfCv+Sbx48QJXrlwpTLUCMW/ePEXkfl9m5cqVuH79OmuNPPj7++PAgQOsNXS4evUqOnXqBDMzM0UsvYyLi4OPj49OLf06deowNBJ7RLi4uGDZsmUAgKFDh6Jjx47MRwxEhP/9738AgNGjRzNPtwHi57dr1y4IgoCBAwfqdc6xY8fg5+fHtteFPt18CusBoCaAGgBOAGik73lmZmbUtWtXo3U2MgZRUVFkbW1dZN2Y9OXp06fk4OCgmC5uEqdOnSIzMzP66aefWKvI3L9/n0qXLk0AyMPDg7UOJSUlUaNGjfJ0c0tMTGStRvfv3ycTExMyNTWlBw8eUHx8PN24cYOp0+HDhwkAubq6kkqlYuoisWjRIgJAH3/8sV7HX7lyhezt7alNmzaF4gM9O7gxnXwmolDA8PyfRqPBjRs3CsWpoMyePRsZGRl49uwZaxUZIsLw4cORnJysqDmZZ8+eoVu3btBoNK/tcFXUREVFwdfXFzExMQDY58uJCPPnz4e1tTWsrKygUqkAABUrVlRET4Fff/1VnmuQmuSwLh+9aNEiAMDw4cNhaWnJ1AUQP8OVK1cC0G/SOTw8HO3bt0dKSgr7tJw+0aOwH9BjxABgCIBL/z7IxMSE0tPTjRpNC8qjR4/IwsKCANCECRNY68hs2bJFvssMDAxkrUNERCqVijw9PWUvJYywEhMTqV69ejp35TNmzGCtRUREN2/eJEEQyNzcnGxsbKhjx46slejJkydkbm5OgiDQnTt3WOsQEdG9e/cIAFlYWNDz589Z6xAR0YULFwgAOTk55TuCiYqKohTAtfkAAB7sSURBVPfee0/+/VuyZEmhOEEpIwZBEI4AKPOKf5pERLv1/T5EtALAin+/J2m1Wty+fRsNGzY0kmnBmTFjBtRqNQAgMjKSsY1IbGwsRo4cKT/Pzs5maJPDyJEjdWrYsB4xqFQqfPbZZwgJCdF5nfkd279Mnz4dRIRBgwahadOmuHv3LmslzJs3D1lZWejevbtimggtXrwYgFjBtHTp0nqfl5KSAnt7+0Jxkiad+/bt+8YRTFJSEtq3b68zP8n890+f6FHYDxg4x4B/o+qaNWuMF0oLyN27d8nU1FSO9G3btmWtREREffr00bkD3r17N2slWr58eZ58eVhYGFOnCxcu0Pz586lly5Y6Xqzz5UREISEh8l3wkydPiIgoIiKCqVN0dDRZWVkRALp27RpTF4mEhASytbU12Ons2bM0b968QnFKTU0le3v7fH+XMjIyqHXr1nn+Lp4+fWp0p8zMTL1HDMVyuarEzZs3WStg2rRpOnfjShgxBAYGYuPGjTqvsZ5jOHfuHL799ts8r7MeMTRp0gTDhw/HvXv3AAAdO3aEiYmJIpaqTp8+HYBYW0daIVW+fHmWSli4cCFUKhU6duyIevXqMXWRWLVqFdLS0tC6dWu9nS5evIh27doV2uccEBCAlJQUNGnSBLVr137tcf7+/tBqtTrzRra2toXyOR85ckT/g/WJHoX1APA5gAgAmQCeAwjS8zyDZvoLi2vXruWJ9CVKlGDqlJycTBUqVJDnPKTH9u3bmXqFhIRQSEgINWzYkPDvHJGNjQ1TJ4mlS5cSAKpXrx5lZ2fT2LFjWSvR1atXCQBZWloWyt1jQYiLiyM7OzsCQOfOnWOtQ0REWVlZVKlSJQJAu3bt0uucS5cuUYkSJQiAPBIzNs2bNycAtHz58nyPzT0KK126NDVs2LBQnPr27av3iIF5GqkgDwB04MAB5oHhwIEDdOzYMWrfvj0BIB8fHzIxMaHU1FRmTs+fP6eHDx/KF7uaNWuSlZUVBQQEMHOSuHv3LgEgKysrOnr0KNWtW5e1EqnVaqpYsSIBoL///puIiLRaLWMros6dOxMAGjlyJGsVmZ9++okAFNpSyoKwfft2AkDvvfceaTSafI+/cuUKOTo6EgBycXEplM86NDSUAJCNjQ0lJSXle/y4ceMIAHXs2JHOnz9PAwcONLpTenq6lNpSxuRzYeDq6gpfX194e3uDiJhtZGnXrh0AcQLrgw8+wPDhw/HkyROkpaXB1taWiZM08daqVStMmDABnp6eKFWqFNNdlBLOzs6YO3cukpOT4e3tje3bt7NWgiAImDVrFrZt24auXbvKr7Fm1KhRSE1Nxfjx41mryHTr1g337t3D119/bdB5Wq220NpqNmrUCD/++CNq1KiR767ikJAQtG3bFgkJCQCABg0aFMpn7eLigjlz5iAtLQ0ODg5vPDYhIQH+/v4AgEmTJsHT07PQ0lu//fYbhgwZotexAhG74lIFpVGjRnTp0iXWGhwOJx/OnDmD1NRU+Pr6MvW4ceMGvLy8EBcXJ782ceJEzJo1i6EVMHPmTEydOhVeXl44duxYof88QRAuE1G+VSaK9eQzh8NRLidOnICvry9q1arF1OP27dto06aNTlAAwHype2pqqrwpb9KkSUxdXoYHBg6HY3SCgoLQvn17ODo6ws3NjamLi4sLzpw5I6d+JRo0aMDISGTFihWIj4+Hp6en4no/88DA4XCMyp49e/DZZ59BpVLhww8/ZK0DFxcXaDQaHDp0CKamphg/fjxKlSrFtKubSqXC/PnzAYgpLSXMa+WmWE4+czgckRcvXuDmzZvw8vJirQIA2LZtG3r37g2NRgMAiggMADBlyhRotVoMHjwYs2fPhru7O9OL8bp16xAVFYU6deqgY8eOzDxeBx8xcDjFlJiYGHh7eyumy9ymTZvQs2dPOSgAyggMwcHB2L59OywtLTFt2jQIgoChQ4cy89FoNJgzZw4AYMKECYW2YuttUJ6RHiil7g/n3YeIkJaWxlojD1JQuHPnDurXr89aB6tWrULfvn11dthbWFjAw8ODoZXIxIkTAQDffvst8/kOANiyZQsePnyIqlWrokePHqx1XkmxDAxRUVGKDA4GbTkvQjIzMxV5cZNISUlhrfBaZs2apbjud1JQuHXrFmrXrg1ra2umPkSEBg0aYO/evbCwsJBfb9iwIfPy18eOHcORI0dgb2+viD0hWq0Wv/zyCwBg3Lhxend0k7h27VphaOWhWAaG2NjYInuD9EWlUmHkyJFQ4r6QNWvW4P79+6w1Xsnu3btx9uxZ1hqvZPPmzZg+fboi7jIlYmJi4OXlhVu3bgEAGjduzNhI3BDo4eGB8+fPQ61Wo2HDhqhcuTI++ugjpl5EhAkTJgAAxo4dC2dnZ6Y+ALBr1y7cvn0bbm5u6Nevn0HnLly4EDt27Cgks5fQZ3u00h4ACq0qYkHZtGkTAaCHDx+yVtEhMzOTKlasSDt37mStkoeEhAQqW7YsHThwgLVKHs6cOUOWlpZUqVIl1ioy0dHR9MEHH+jUwNKnFk9R8OTJE7nez6lTp+jEiRPMe23s2LFDLn2RnJzM1IVILLUi1QpbtGiRQefOnTuXANDevXvfygHveq2kTz755K3eIGPTqlUrAqCImkS5WbFiBQGghQsXslbJw1dffaWoJkIS4eHh5OzsTACoZcuWrHWI6NVBAQBduXKFtRoRyQXaqFu3bvJr2dnZzHw0Go38fhl6ES4sDh48SADI2dmZ0tLS9D5v1qxZ8ucdExPzVg7vfGBwcHCgrKyst3qTjMWdO3fkD87Pz4+1joxarSZ3d3cCQKNHj2ato8OhQ4fk92zfvn2sdWQSEhLo/fffl9369evHWomIxG5848aNI1dXV9nNysqK1Go1azUKDg4mAGRubs68v4bE2rVrCQBVrFhRMf2fpZ4fs2bN0vuc6dOny5935cqV39rhnQ8MAOjixYtv/UYZgx9++EH+8Ly9vVnryKxatUr26tSpE2sdmZSUFLlUsjGGx8ZCrVZTmzZtdO7Ip06dylpL5urVq3Kbz4oVK1LTpk1ZK5FWq6UWLVoQAPrhhx9Y6xCR2D5Wqphb0GZexq66eurUKZJuaBMTE/X6+VOmTNH5XezZs+dbe/wnAsPcuXPf+o16WzIyMsjJyUn+8BwcHJgOoSXUarVOD9l69eqxVpIZOXKkzi/8nj17WCuRVqulQYMG5UnVrF69mrWaTLt27QgAjRo1is6ePUvfffcdayU5j1+qVCmKj49nrUNERP/73//kkvP6lOJ+ma1bt9Kj/7d358FRVukex78nC5ElGMBhC2HClUUWcQHxAjNeFGW7yEwygKAsjpQ4CDWCwkCIo4LIlCKLbIKW4IwEkFHwYjFMQEdMBRGRTQxc9EYUMiEsgRAIWTvP/aPp17Rh6SRvc07i+VR1lQn9lr96091Pn/37713N5Nuaf/r06dd8bmlpqUyfPr3ca3HevHlVzvGzKAz9+/ev8o2qqtWrV5f7A5pwQLqvKe176D5AyCc1NVWUUn7ZTDh2dO/evTJu3DhnrMj3+Ne//qU7moiIfPzxxwJIZGSk088cyDfPYCosLJTWrVsLIAsXLtSaxSc3N1d+8YtfCFCpwe8lS5ZITEyMqy2G3bt3O+czBDJG8PHHH0vfvn2lRYsWfq/F7du3VzlLjS8MzZs3l3r16mkfZ7jcea2rVq3Smqm4uNh5w5Z9nD17Vmuu/Px8adeuXblcJs2Y6tmzp4D30CVA0tPTdUcSj8cjXbt2FUBmzpypO45j/vz5Akjbtm2NGOsQEZk5c6YA0q1btwp9uJeWlspzzz0ngIwYMcLVTIMHDxZAJk6cGPA1ZYtunTp1JCwsTC5evFjlLDW+MGzevFnef/99+eGHH6p8syrr1KlT8vzzz8uaNWsEkA4dOsiECRPk6aef1pZJRCQ5OVnGjBnjnAIWHR0toP/w9qNHj8r27dvl1VdfFUBatGghSint0xp9vvjiC6c7MDc3VxISEqSwsFB3LHn33XcFkCZNmmg9HbCs7Oxs5yQ0E1p8IiKnT5+W+vXrCyAfffRRwNeVlJTIE0884XxReeutt1zLdPDgQWdcqCJHtC5cuFAAadOmjezYsUPuvvtuV/LU+MKQmprqyo1yg6+f1TeFtqpTytzim0L4+uuvy/r16+XTTz/VHUlERAYNGuTkWr16tRFjDCIiDz/8sABOYTfhiM+ioiK5+eabnftliqeeekoA6dWrlxH3SURk8uTJAsj9998f8DX5+fkSHx/v14L97rvvXMs0evRoAeTxxx8P+JqcnBxnurTvrHa3uqdrfGHYu3evKzfKDcuWLRMgKGe1VsUdd9wh4F1wZIr8/HypU6eOwI8HsZswWJ+RkSFhYWESEhJi1CJF39ndJnXXHD58WMLCwkQpJbt3767w9aWlpa639I8dOyYREREVmq2Yk5NTris4NjbWtUxHjhyR0NBQCQkJkW+//Tbg6xISEgSQHj16uF50Ay0M1XJLDIB69erpjuA4ceIE4D2L2hQej4dDhw4BaD9Bq6xt27Zx8eJFOnfuTExMDIARu0suXryYkpIS4uLiiI2N1R0H8O4hNXPmTABmz55NeHi45kReU6dOpaSkhFGjRlX4sJuioiJGjRrFsWPHXM00c+ZMCgsLiY+PD2ibkKysLHr16sW2bdv8fu/m9uWvvPIKHo+HYcOG0bp164CuycjIYP78+QDMmTNH39bggVQP0x6AZGZmullIq+TJJ58UMGt18bfffiuANGvWTHcUPxMmTAh42t71cuHCBae/3KQuyhdeeKFSA6nBtG3bNgGkdu3akpGRUaFrz549K/fee6/ri1MPHz7sfDM/ePBgQNcUFRVJZmamTJw40a/F8Le//c2VTJmZmU4L5sCBAwFf9+ijjwog8fHxruQo69y5czW/K8mEvU98fve73wkgSUlJuqM4NmzYUOH+1mArLS11VmK7MfXOLa+//roActdddxnzAZyVlSV169YVQLZt26Y7joh4u/zuvPNOgYov/Dt69Kh07NhRAImLi3M119ChQyvVlXvixAm58cYbBZBHHnlEgAoNEF+Nb7yjIgtL9+/fL0opCQsLk8OHD7uSo6xLA9o1uzBUZuFKsPzqV7+q8EyIYJs1a1aFp8gFW1pamgDSqFEjY/5+Ho/HmUK7evVq3XEc48eP95vQYIK//vWvTiv0/PnzAV+3d+9ead68ufOt3M1BdN8agVq1alV43ML37fyBBx6Q0tJS194r2dnZTlHfuXNnwNf17dtXABk/frwrOcryeDzSpk2bgAtDtTzas2HDhhXexzyY+vTpQ5MmTYzpmwZo3749Q4YM4de//rXuKI6QkBBGjx5NVFSUMX+/wsJC4uLi+Mc//sHgwYN1x3HceeedREdHO3v3B2rlypWMHDmSsDD339otW7akY8eOPP300wGP8SUnJzN48GAuXLjg/K5v376uZbrhhhvo27cv7du3p2XLlgFf99lnn/H2228THh7OokWLUEoxd+5cVzIVFRUxdOhQsrKy6NatW0DXbN26leTkZCIjI3nuuedcyVFWQUEB8fHxzslx1xRI9TDt0aVLFzeLqWUZ04VUVkVnIf3lL3+RXr16BSmNV3FxccCtvRUrVkhoaKhfH37r1q2Dlqsiz7399tsFkISEhKDkEQl8tp3H43HyzJo1K2h5RKRmz0o6d+6c7gjleDwe12dauKXscYvW5V1r9oeO11ygs5BEhGeffZaEhAR69uwZ1ExhYWEBtfbOnDlDVlYWv/3tb/1+36dPn6DlCtSyZcvYt28fMTExJCYmBiUPBD7bLikpiX379tG8eXMmTZoUtDwVUS0Lw/Hjx3VHKOfTTz/lgw8+0B3jslauXKk7whWJCHv27NEd46pycnKC+gFSFSLCpEmTeOmllwCCXhgC1bBhQ6ZNm0ZBQQEAUVFRQPAKQ6BOnDjBs88+C8CCBQuoW7eu1jz5+fnOa+vFF1+kTp06WvP4VMvCkJeXR3Z2tu4YftasWcMnn3yiO0Y5WVlZJCYm+gbtjfP3v/+dzZs3645xRR6Ph4cffpjc3FzdUcrxeDyMHTuW1157DfC2erp376451Y/Wr1/Ppk2biIyMZOfOnbRq1crVdQKVMXXqVM6dO0efPn2Ii4vTmgVg0aJFHDt2jE6dOjF69GjdcX4USH+TaQ9A1q5d61a3W5UVFBRIVFSUNGzY0IhVvGW9+OKLAri+jbAb8vPzJTY2VvveUlfjW4Vq0gFMIt7xh+HDh/v139966626YzlycnKkWbNmAsiiRYtEROTQoUNaM/nORAgPDw/KdNCKOn36tDNd9nqdYkhNHmMA+Oc//6k7giM5OZmcnBzOnDnDgQMHdMdxlJSUsHz5cgD27t2rOU15Cxcu5Pvvv+fMmTO6o1zWunXrnFlBzZo105zmRwUFBQwZMoQ1a9b4/d6UbiSAxMREjh8/Trdu3Rg3bhwAt9xyi7Y8JSUljB8/HoApU6bQtm1bbVl8Zs2axblz5+jduzf9+vXTHcdPtS4MYkj3SNk36E+X2Ov04YcfkpGRAZhXGE6dOuX0i5tYGPbv38/vf/9752eTCkN2djaPPvoojzzyiN/vTSkMO3fuZOnSpYSGhrJ8+XIjpiYvXbqUr776ipYtWzJ9+nTdcUhPT2fJkiWAd+sMbVtfXEkgzQrTHlxqOuveRlrEe0ylb1M4KrjSMdjKHlM5aNAg3XH8+LYRAaRnz5664/g5deqUs0Lb9zBl9bHPxYsXneNRfQss3dwVtLKKioqkc+fOAsjkyZN1xxER7ypy33bcpmzx/tBDDzkrrq8navrKZ0BefvllN+9ZpSQlJfl9gERFRRmxqvfQoUN+uWJiYnRHcqSlpfnNb2/fvr3uSI7i4mK57777/O4dYESfdFkvvfSSANKpUycpLCyUoUOHGrEW45VXXhFAfvnLXxpzdsSoUaMEkH79+hlxj3bu3Oms1r7eY38/i8Jw7733unnPKmXgwIHlPkT27NmjO5b88Y9/LJfr9OnTumOJiMiAAQP8cjVp0kR3JMe6detk8ODB5U7AM2lvrszMTGfLhS1btoiIdwKEbkeOHJHatWsLIJs2bdIdR0REUlJSnA/hb775RnccKS0tlXvuuUdbi6rGF4bFixfLAw88UKE9W9yWnZ0trVq1cpqFsbGx0rZtW5k7d662TCLe3ULr16/vHPbhe2zdulVrLhHv6XIhISFSr149J1d4eLgR3+R8iouLnVPvevfuLXXr1tUdyY9vj58HH3xQdxRHaWmpc+D9kCFDdMcREe/f8dZbbxVAEhMTdccREZGNGzcKIA0aNJAzZ85c9/9/jS8M+/fvl9LSUq3dNrm5uVJUVOSc4DZw4EApKiqSXbt2acskIpKeni67d++WN998UwAZPny4zJ4925k2qNPBgwclJydH+vTpI4CMHDlSateurbXA/5RvZ9rWrVtLSUlJULdNqKgvv/xSgKDtwFlZvuNH69evb8yW+AsWLBBAWrZsKXl5ebrjSHFxsdxyyy0CaPvyWOMLQ6D7rl8P77zzjgAybNgw3VH8zJgxQwCZNm2aiFR8751g8Xg8zmDg0aNHZffu3Vq+PV2Jr2jNmTNHRMzZR6m0tNQZaJ40aZLuOI6zZ89K06ZNBZClS5fqjiMi3u4232tsw4YNuuOIiMjy5cudngVdXX+BFoZqubsqVGxvlGDLy8sD0L68/qf+/e9/AxAdHQ0EvvdOsB08eJDc3Fyio6OJiYlxTnIzQXp6Olu2bCEiIsKZrmrKVML33nuP1NRUGjVqxJ///GfdcRwJCQlkZWVx991388QTT+iOA8Cf/vQncnNz6d+/P7/5zW90x+HChQvOrqmzZ88mIiJCc6Krq7brGEz5kAOcLYVNKwyZmZkANG/eXHMSfzt27ACgR48empOU51sQOHToUBo1aqQ5zY8KCgqYMmUK4D3GskGDBpoTee3YsYNly5YRFhbGG2+8YcQxrSkpKaxatYpatWqxcOFCIwr73LlzOXHiBF27duWhhx7SHeea9P8VK8mkwuBrMZh0DjWUbzGY4rPPPgMwal8f8J7NsGLFCgD+8Ic/aE7jb/78+fzwww907NiRsWPH6o4DQHFxsZPlmWeeoXPnzpoTeTP5VjhPnTo14LOWgykrK4s5c+YA3nOcTSie12J+wiswsTDYFkNgTG0xvPfee2RnZ9O5c2ejitbx48eZPXs24C0QpnSjzp07l6+//prY2NigHC5TGUuWLHEyTZs2TXccAF544QXy8vIYOHAgvXr10h0nMIEMRJj2ACQ7O9vNMZkq8R3DuGDBAt1RHEVFRaKUEqWUMYPOIt6NwwCJiIiQwsJC3XH89OzZ06gBVJ/HHnvMmfVmivT0dLnhhhsEkM2bN+uOIyLeAefIyEgB5IMPPtAdR0S8s/BCQ0MlJCRE0tLSdMep+ZvomdRi8I0xmNSVlJWVhYjQuHFjo+7V559/DkCXLl2oVauW5jQ/OnDgANu3b6devXqMGDFCdxzHnj17WLlyJWFhYbz66qu64wDeL5Pjxo2joKCAYcOGGbMB3JQpUzh//jwDBgxg0KBBuuMAMG3aNDweD2PGjKFDhw664wTMFgYXmNiVZOr4gqndSMuWLQNgxIgRREZGak7jJeI9hEdEmDBhAu3atdMdCYC1a9eyZcsWbrzxRubPn687DuA9KCspKYmIiAhjBpxTUlLYuHEjderUYcaMGbrjVEi1LQym9LOCmYXB1PEFEweeL1y4wDvvvAOYNei8fv16UlJSaNiwoTF9+GfPnmXixIkAvPzyyzRt2lRzovIDzjfffLPmRN6iPnnyZAAmT55s1O68gdBaGJRSc5RS/6uU+koptUEpFRXotSZs5etj4qwkE1sMJSUlfPHFF4BZhWH16tWcP3+e7t27c9ttt+mOA5g7PXXq1KmcPHmSHj168Pjjj+uOA8DixYtJS0szasB53bp17Nq1i8aNGzsFQrfU1NSAn6u7xbAV6CQinYFvgIRALlJKGdFU9DFxHYOJLYYDBw6Ql5dHbGysMd+gRMTpRjKptbBgwQKOHDlChw4djFk0lpqayptvvklYWBjLly83YtplZmYmzz//POA9+Kl27dqaE3mnPSckeD/KZsyYYUzXZEW6s7T2x4jIljI/fg4MDuQ6Uw7M9mnXrh0ej8eYb3UAN910E7fddhtt2rTRHcWRl5fHXXfdZdQgXF5eHtHR0WRkZDBkyBDdcRyFhYWEh4czb948Y7pNT548SVRUFOPGjaNTp0664wDeqbyNGzfmnnvu4cEHH9QdB/AeQtW0aVNq1arFmDFjdMcBvC3Q+vXrB/x85Z3BpJ9S6kPgXRFZdYV/Hwv4VvZ0Ar6+Xtl+Bm4CTusOUUPYe+kuez/d1U5ErtmECXphUEp9BFxuhCpRRP7n0nMSga5AvAQQSCn1pYh0dTfpz5e9n+6x99Jd9n66K9D7GfQ2qojcf7V/V0qNBgYCvQMpCpZlWVZwae28VEr1A6YC/yUiF3VmsSzLsrx0TytYDEQCW5VS+5RSywK87o0gZvo5svfTPfZeusveT3cFdD+NGXy2LMuyzKC7xWBZlmUZxhYGy7Isy0+1LQxV2U7D8qeUGqKUSlNKlSql7NTASlJK9VNKHVZK/Z9Syoy9GaoppdQKpdRJpZRdr1RFSqkYpdQnSqlDl97nT13rmmpbGKjkdhrWZX0NxAMpuoNUV0qpUGAJ0B/oAAxXSpmzxLv6eRswYz/v6q8EeEZE2gP/CYy/1muz2hYGEdkiIiWXfvwcaKEzT3UmIodE5LDuHNVcN+D/ROQ7ESkC1gL6T6GvpkQkBTijO0dNICLHRWTPpf8+DxwCrrq7ZrUtDD/xGLBZdwjrZy0aOFbm5wyu8eazrOtNKRUL3AHsvNrzzNid6woqsJ1GCZB0PbNVN4HcS6tKLrfdr50LbhlDKVUPeB+YKCK5V3uu0YXBbqfhnmvdS6vKMoCYMj+3ADI1ZbEsP0qpcLxFIUlE1l/r+dW2K6nMdhqD7HYalgF2AW2UUq2UUrWAYcBGzZksC+U9vOYt4JCIzAvkmmpbGKj8dhrWTyil4pRSGUB3YJNSKll3purm0kSICUAy3sG9dSKSpjdV9aWUWgPsANoppTKUUmYcbFA99QRGAvdd+qzcp5QacLUL7JYYlmVZlp/q3GKwLMuygsAWBsuyLMuPLQyWZVmWH1sYLMuyLD+2MFiWZVl+bGGwLMuy/NjCYFmWZfmxhcGyXKCUClVKvXZpv/sDSqn/0J3JsirLFgbLckcC8J2IdAQWAk9qzmNZlWb0JnqWVR0opeoCcSLS5dKvjgD/rTGSZVWJLQyWVXX3AzFKqX2Xfm4IfKQxj2VVie1Ksqyqux14TkRuF5HbgS3AvmtcY1nGsoXBsqquAXARQCkVBvQBPtSayLKqwBYGy6q6b/Aesg4wCdgkIkc05rGsKrHbbltWFSmlGuA9c/wmvGcIjBWRfL2pLKvybGGwLMuy/NiuJMuyLMuPLQyWZVmWH1sYLMuyLD+2MFiWZVl+bGGwLMuy/NjCYFmWZfmxhcGyLMvy8/8ZvFLKWBaqZAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:06<00:00, 2.08it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXlYVGX7x79nGBhAkMUNQVTU0pRwQ01xIXNf0pRcMtfU1FyrVy0ttV9Zalm+be6p5b6FoaZgggtuqKikpiIgCiKiIDszzP37Y95znIEBZoA5zxk6n+s6l8yZM+f5emDO99z38zz3wxERZGRkZGRkeBSsBcjIyMjISAvZGGRkZGRkDJCNQUZGRkbGANkYZGRkZGQMkI1BRkZGRsYA2RhkZGRkZAxgbgwcx3lzHHec47gbHMf9zXHcLNaaZGRkZP7NcKznMXAcVxdAXSK6xHGcM4CLAAYT0XWmwmRkZGT+pTCPGIgomYgu/e/nTAA3AHixVSUjIyPz70XJWoA+HMc1BNAawDkj700GMBkAlEpl25YtW4qqrTQSEhJARKhXrx6USmlc0vv370Oj0cDDwwP29vas5QAAkpOTkZubCw8PDzg6OrKWAwBISkpCRkYGGjRowFSTWq1GbGwssrOzAQAKhQJ+fn6wsbFhponn2bNniIuLA8dxaNasGezs7FhLEoiLi0OtWrXg5OTEWopARkYG7ty5g/r166NWrVqs5QAACgoKcO3aNQB4TERliyIiSWwAnKBLIw0x4ViSEi4uLgSAUlNTWUsRaNSoEQGgq1evspYi0KxZMwJAx44dYy2FiIgSEhLIwcGBAFB4eDgzHWfOnCFPT08CIGwvvvgiZWRkMNNUlOTkZNq5cydrGcVQq9WsJRjlzJkzlJ+fz1qGAZcvXyYAUWTC/Zh5HwMAcBxnCyAEwBEiWmnC8VRYWAiFgnkmDIWFhUKUoFarJRExZGdnw8nJCTY2NsjOzoZKpWItCbGxsWjSpAmqV6+O1NRUSTx1Dh8+HLt27cKbb76JXbt2MdGwfv16vPfeeygoKEC1atXg4eGBOnXqwMPDA6NGjcKQIUOY6JKpmnAcd5GI/Ms6jvldjOM4DsAGADdMMQWe/Px8ODg4WE6YiWRkZAAAnJ2dJWEKAHDjxg0AwIsvvigJUwCAgwcPAgB69+4tCVOIiIjArl27YG9vjxUrVjDRkJmZiebNm+P69euoU6eOpNIhMv9upHAnCwAwGsA1juOi/7fvYyI6VNqHCgoKJGEMT548AQC4u7szVvKcv//+GwDQokULxkqeExISAgAYMGAAYyW6KG/WLN2o6Llz56JBgwZMdDg7O6NTp05M2paRKQ3mxkBEpwBw5n4uPz/fAmrM5+nTpwAANzc3xkqeIzVjyMzMRHh4ODiOQ9++fZnp0Gq1UCgUWLduHa5cuQJvb2/MmzePmR4ZGanCPklfTgoKClhLACBNY4iJiQEgHWMIDQ2FWq1Ghw4dmI3SuH//Pn744Qc8ffoUCxcuBACsWLFCMqOjZGSkBPOIobxIJWKQcirJ19eXsRIdUkgjnTx5Eh999BFOnDiBtLQ0dOnSBcOGDWOmR0ZGysgRQwWRWsSQmZmJe/fuwdbWFk2aNGEtB1qtFocO6bqLWBtDTk4O9u7dCwCYOHEiEhMToVarmWmSkZEqVmsMUokYpGYM16/rKok0bdoUtra2jNUAFy9eREpKCurVqwc/Pz9mOk6cOGHweuzYsfj000+hGxQnIyOjj2wMFURqqSSp9S/op5FY3YTT0tKE9BrPjBkzsHHjRskMMZaRkRJWawxyKsk4Uu1f6N+/PzMNp0+fNnj96aefYtWqVZKYICkjI0Ws9nFJKhGDVI1BChFDUlISLl26BHt7e3Tv3p2ZDv000sqVKzFnzhxmWmRkrAGrNQapRAxSSyVJyRj4TufXXnuN6bDQkydPCvMXJkyYwEyHjIy1YLXGIEcMxUlPT8eDBw+gUqnQuHFj1nIkMUw1KysLMTEx2LlzJ4KCgpjpkJGxJmRjqCBSMgY+WnjppZeYl2vOy8tDaGgoALb9C9euXcO+ffvQu3dvZhpkZKwNqzUGOZVUHCmlkcLDw5GTkwM/Pz94e3sz09GhQwe5k1lGxkys9hsjhYhBrVYjOzsbHMehevXqrOVIyhikkEYCIJuCjEw5sNpvjRQiBj6N5OrqKokbkFTmMBCRZIxBRkbGfNjfzcqJFCIGKaWRAOnMYbh+/ToSEhJQs2ZNtG/fnqkWGRkZ87FaY5BSxCCFjue0tDSkpKTA0dERDRs2ZKqFjxb69evHvBNcRkbGfKzWGKQQMUjJGPRHJLFOa8lpJBlLQkRITk5mLaNKY7WjkqRgDFJKJbHuX1Cr1bC1tUVaWhoiIyOhVCrRq1cvJlqsGY1Gg2+++QZvv/02vLy8mOl4+PAhDh06BEdHRzg4OAj/enl5wcfHh5kuAOA4DqtXr8b169cxY8YMdOnSRTLFEBMTExEXF4euXbuyllIhrNYY5FSSIaz7F86cOYPjx4+jSZMm0Gq16NatG1xcXJhoMQetVguO4yRxY4mJicGECRNw7do1DBo0iKkWDw8PuLq6YuLEicLfuUqlwrlz55jq4vn444/RunVrdOvWDaNHj8aGDRskUU24Xr16eP311xEYGIgvv/wS9vb2rCUJ8JG8KVhtKikvL4+1BOELc+/ePSxevBgpKSnMtBQdqrplyxZ89dVXiI2NFaV9juOwePFiYS3lNm3aICQkBDdv3hSOWb9+PRYvXoy4uDhRNJnCwoULERQUhMzMTGYa1Go1Pv/8c7Rp0wYXLlxAXl4eOnXqBI1Gw0wTAAwZMgRXr14V6lxpNBqoVCqmmnhUKhV++eUXeHt7Y8CAAZIwBUD3PZg+fTpeeOEFyVwrQBfJDBw40PQPEJHVbQBo1KhRxJpZs2YRAPL09CQAFBUVxUSHVqulGjVqEACKj48nIqJu3boRADp69KgoGk6cOEEADLbGjRtTdna2cIyfnx8BoJCQEFE0lcXu3bsJACkUCgoPD2eiITo6mlq3bl3s2gUEBFBGRgYTTUUpLCykZcuW0fLly1lLKcadO3dYSyiGVqtlLcEoO3fuJABRZMo91pSDpLYBoF69elXmNSsXY8aMIQDUpEkTAsDs5vLw4UMCQE5OTsIfZdOmTQkAXb16VRQNJ0+eLHZz078esbGxgsbc3FxRNBnjwYMHRER07do1qlatGgGgFStWiK6joKCAvvjiC3J0dCRbW1ths7OzIzs7O3J2dqa//vpLdF2lkZOTw1qCTAUx1RisNpXEd/yyhE8lOTk5AdAVbGOBfhqJz5Xzaa06deqIoqFojn7q1Kno1q2b8Hr//v0AdENYWeVdExISMHr0aDx9+hSDBw9GdnY2RowYgQ8++EB0Lba2tvj444+RnZ2NgoICYcvPz0d+fj6ePXuGV199VXRdpeHg4MBagoxIWK0xpKens5YgmBNfDoNVnrpo/0JeXh7S09NhY2ODGjVqiKJB3xjq16+PZcuWGbzPG8Mbb7whih5jrF+/Hn/99Re6d++O2NhY+Pn5Yf369ZLoeJaRkRJWawwZGRmsJRiUxACkETEAwKNHjwAAtWvXFm2Cmf7Nde3atXB2dhZep6SkIDIyEnZ2dujXr58oeoqiVquxYcMGAEB0dDTs7Ozw66+/olq1akz0yMhIGas1BlY3YX14Y+DnMbDSVHQOw8OHDwGIl0YCnhvDuHHjipW4Dg4OBhHhtddeY1ZsMCQkxGBSVEFBAVq1aoWvv/6aiR4ZGSljtfMYcnNzkZ+fz3RIGJ9K4tM1LIyBiIrNYeCNwcPDQzQdHMfBw8MDK1euLPaeFNJIa9asMXhds2ZNrF27lqkmGRmpYrURAwDcvXuXWdu8MSmVSmGCGwtjSE5ORnp6OlxcXODp6QlA/I5nnp9//rnYZL+MjAwcO3YMHMfh9ddfF1UPT1xcHI4ePSq8HjBgAK5duyabgoxMCVi1Mfzzzz/M2taf9czn01l0PhsbkcQiYmjZsiUGDx5cbP+hQ4egVqsREBAgulHxrFu3DkQEJycnrFu3DgcOHBD12sjIWBtWm0oCgFu3bjFrW79OEsvhqsZqJPERg5g3v5KGoLJOI6nVamzcuBEBAQHYsmULGjVqxESHjIw1YdURA0tj0I8YWBqDsRpJLDqfjZGXl4fDhw8DYGcMhw8fxpw5cxARESGbgoyMiVi1MUgtlcTSGPQjBhapJGOEhYUhKysLLVu2ZFaRs1evXpg3b96/Yl2I5GSgTx/gf79+GZlyY9XG8G9NJRERMjMzDUYkGUslsY4YWKeRgJJTXFKlrJt7ae8vXw6cP6/719zzysjoY9XG8OjRI2YzoI2lksTqfOY4Dr169cL+/fuRmZkJd3d31KlTB4mJiQDYRgz5+fnIy8uDRqPBgQMHALA1BmujtJt7ae8nJwObNwPHjun+LWoAsmnImIPVGgM/AodV1MC6j0Gj0WDo0KEAgMLCQjRr1gzff/89srOzkZWVBVtbWybrRDx+/Bivv/46QkND8fjxYzRq1Agvv/yy6DqkSmk34bJu7qW9v3w5MHYs0Lo1MGaMoQGU1zRkw/j3YrXGwMOqn4H1qCT9dZ0zMjKQmJiIDz74wCCNxKIGkEajQWhoKIYMGQJAty7Dnj17JLPAC2tKe3Iv7eZe2vv8jX/uXN3ruXMNDaC8piEbxr8YU0qwSm2DXmnnhQsXVlJBWvN46623CABt2rSJnj17RgDIwcFBtPY//PBDgxLX77//PhERnT59mgCQv7+/aFr04ctr629169altLQ0JnrEJimJqHdvouRk4++5uRFdukTk7m54DP9eUtLz1/rHlPb+7Nm6TZ/Zs4nmzCn7vPqf5T9TltbZs3Xv8cfKWA+oymW39Z+EWUUM+qkkvhBbbm4uCgsLRWlfP2Kwt7fHhx9+CIB9x7OxVcfWr18viXWxxaC8EQH/Xt26utd16xoeU9r7Fy4A330HcNzz7bvvnuso6XOlRRplRSfGIgw5kqhCmOIeUtsUCoXwNNqyZcvKNFST6dChAwGgkydPEhEJi76ItepWSEiIcA1mzpwp7P/pp58IAL3zzjui6CjK33//bRAtTJw4kYkOFlQkIggIIAKKbwEBpr1fEqV9rqRIY/Jk06IT/QiDfy1HEtIGVXkFNxsbG+HG4+joSIWFhZV57UzixRdfJAAUExNDRER16tQhAHT//n1R2o+JiSEApFKphFXJiIgWLVpEAGjBggWi6CjKlStXhN9Nw4YN6dmzZ0x0WIrSUkVl3TRLSvewoiTT8PQ03zBKMsXSrld5uXXrVuWdrBJ59uwZRUdHs5ZhFI1GQ0RV3BhsbW0JALm5uREAunfvXqVdQFOpVasWARBuyo0bNyYAdPPmTVHaz8zMJAD03nvvGex/9913CQD997//FUVHUS5evCgYw/Hjx5losCQlPRVXNCKQEuYaxpw5JZuiJaKIbdu2Uffu3ens2bOVd9JKom3bthQaGspaRjH+7//+j7RabdU2Bjs7OwJAbdq0IQAUFhZWmdewTLRaLfFRC78ObsuWLQkARUVFiabD09OzmCkOGjSIANCuXbtE06HP+fPnCQDNmjWLSfuWpKwO2cqKCO7fvy9Eoqw4fPgwzZ07l5YtW0br16+n/fv308svpxs1jHbtjJtidHTJ16siFBYWUrt27QgADRo0iK5du1Y5J64Epk6dSkqlkn799VfWUgzo2rUrffXVV1XbGFQqFQGgwYMHEwD68ccfK/Malgk/Csne3l7YFxAQQAAoPDxcNB0bNmwotu+VV14hAHTixAnRdOgTGRlJTZs2lfzC8YmJiWZ/prRUUWVEBJmZmfTpp5+Sg4MDXb582Wx9lYlWq6WVK1eSftpWpVLRqVOnih1bkim2bl3yiKeKppciIiIEXb6+vqJF6mWxb98+AkA2Nja0adMm1nIExo4dy1+vqmsMSqWSANCMGTNEfTotKCigwsJCSkhIEIZhEhFdunSJfH19CQCFhISIooWIjPatNGzYUIgY9uzZI3qa7fTp0yWG+IcPH6adO3dSenq6qJqM8eqrr1JcXBytWLGC5syZI1zLkm5aZaWKKoJGo6ENGzZQ3bp1hZudl5cXabXaip+8gpw8edJAl7HfbUmmaGNTcgd2ZaSXXn/9dXJxcaFly5ZV7ESVyNOnT6lJkyb01ltvsZZiwLJly+iNN96o2sbA/5F++eWXBID69OlTmdewRHJzc6lr1660bt06AkAtWrSgixcvUrNmzYQvzvbt20XRYgytVksODg4G0dTWrVtF1cB3chnj1VdfZaKpKCdOnCAA1KlTJ+H3xo8uK+mmZanO49DQUPLz8zMYyQWAAgICJBN1JScnU2BgIC1dutRksyprxFNldFLfuHGDjh8/LgkD1YdFn2dZFBQUEBH9O4xh06ZNBIAaNWpUaRewLDp27Ch8eflhs927dxf2rVu3TjQtRcnIyBBSXEOHDiUAtG3bNmZ69Hn69CkplUpSKBTMJ7v17t3b4Cb8zTffEFHpfQiW6DyOj4+nlStX0oIFC2jKlCk0bNgweu2116h169bk5+dH8fHxFfyfVh5qtZpiY2NNPt6UDmxLd1LLFMdUY7DqhXpq1aoFjuMQHx8v2vrPnTp1wpkzZwAAWq0WDg4OGDBgAP766y8AbEpv8xgrnqdQSGMO49GjR6HRaNC5c2emk93Onz+PI0eOGOz75ptvkJqaipycLzB2rMJgUhe/hPWpU5WvpUGDBpgzZ07ln9gCKJVKs9azMHa9kpOBFi0MJ9T5+uom0vGT5nr00O2XF9hjiyTuGhzHbeQ47hHHcTHmfC47OxsNGjSAVqtFbGyspeQZ0KlTJ4PXQ4cORdu2bYXXLIzh4cOHiImJMVi5TavVAgCTeknGOHjwIADdesss+eKLLwxeKxQKDB06FGPGzMOvvypKrDckU3FKmoU9fryRWdZbt0JTryG0nAIa74bA1q0spf/7MCWssPQGoCuANgBiTDmeHykxb948IS2wf//+Sg66jJOcnGyQhggLC6PU1FTh9dy5c0XRoU92djbZ29sLOXx/f39q1KgR02Gr+mg0GqpZsyYBYDq0MDo6mgAPAg4TUIe6dOkiTEiS4gS0qoapndSTqv1GhQ6Ohgc5OhL99hvb/0AVANbWxwCgoanGYG9vTwCoR48ewsikr776qnKvYCnwN11vb29hNAtfEmP06NGi6dDHWAcmANqzZw8TPfpERkYSAGrQoAHTjsI333yTgJXEcU+ob98bBlqsaQJaVcKYIac5NzD+y2jQgIXEKoWpxiCJVJIpcBw3meO4KI7jovh9V65cQdOmTQGIuy4Dn04aO3askMP38vICACQlJYmmQx/9dBag638B2KaSUlNTARimkVjpuXHjBoKDz8Pe/l2cOGGHc+eaISXluZZTp4zdiSzTtyDzHGMFAF0z7xk/+F4J+2UqHasxBiJaS0T+ROTPVzNNTU0V1kIQs8qqvjHwNGjQAIBuVTkW+Pv7G7yuX78+ALbGMG/ePOzatQshISEAgP79+zPTcuHCBYwYcQlTpjiic+dqRtc7kBEfY4as9apv9FhNCftlKh+rMQZ99Efa3LlzB4C4EUNAQAC6dOmCJk2aCPsaN24M4PkCPmKjbwweHh6oXbs2ALbGoFarMWLECFy5cgUcx+HOnTtYsmSJ0dLclqZnzzH44w93uXPZCtj+8hcoUDoa7CtQOmKH7xclfEKmsrFKY8jJyRF+XrZsGezs7JCamiqskWBpWrRogZkzZxrs41NaGRkZomgoip+fH5RK3ejjCRMmCIbAcrgqx3F8/xGICDNnzkSjRo0EnZak6NoAZa13ICMd1mSOwjjNWsSjAbTgEI8GGKdZi9WZo1hL+9cgCWPgOG47gDMAmnIcd5/juHdKOz47O1v4WaPR4IUXXgAgXtRgY2MjrLfM07x5cwA60+JvhmJib28PX19fcByHSZMmCRpYRgxF2+7bty/efvttUdouumBOaYvZyEiLU6eAbTQKDSkeCtKiIcVjG42S+3tERBIT3IhoZAU+K3S03rp1Cx06dKg0XaVR9KbH9zFotVokJSUJndFi4u/vj7p166Jhw4aSMwZnZ2esWbNGFD36q4zxE6bkm4qMjOlIImKoKHzOmtUynwBQvXp14efr168z0eDv7493330XAIQJbqxTSTwrVqyAt7e3KO2WtoSmjIxM2VilMRR96kxOTgYgbgd0UfjRUQA7Y+jdu7cw8kdKEUNgYCAmTZokSpulrWMsIyNjGlZpDC4uLgCAli1bQqlU4u7duwDYRgyOjs9HUcTEmFXZo9Jo2LCh0LErFWNwcHDA+vXrRYtc5E5mGZnnlHcEoFUag5ubGwBdZ2bHjh2Fm+Dt27eFFIqYPHz4EDY2NkIRv5iYGISGhjLRwiMFYwB0tYn4obyWoOjoI7mTWYYFLAacmMLt27cRHBxs9ues0hhcXFxgZ2eHnj17onfv3gB0o3Jyc3Nx//590fXMmjULQUFBwlPxhQsXsGDBAqb5fSn0MXTq1KnYsN7KpujoI3kGswwLoqKicEqCf2S2traYNGmS2RNvrdIYbGxsMHjwYAQEBKBXr14Anjs2i36G4cOHY+/evcjNzQUAFBYWol27dqLr0EcKEcOECRNgY2NjsfPrjz6S+xH+HUj1ydzHxwcDBgzAlStXWEsxgJ/jNXnyZLOunVUaA6Cb2KZSqdCmTRu4u7sjPz8fABtj6Nevn9DvwVOvXj3RdQDAli1bEBMTI/wRaDQabNiwgUkNJ0ubkjz66N/H2bNnsWbNGskZRM2aNaFSqdC7d2/cvn2btRwBW1tbAEBwcDA2b95s8ues1hgaNmwIQBc99OjRQ9jPogPa3t6+2IQ3/hciNlqtFn5+fjh37hwA4M0338SSJUtQl++NrSLIo4/+nXTo0AHffPMNevXqhXsSK6rXvHlzpKSkoGfPnnjw4AFrOQB0EQOPOWldqzUGffh0EsBuyOpbb71l8DouLo6Jjr59+4KIkJeXB0C3cNDrr7/OvBO6spFHH1mW9PR0ZnW/SkOhUGDatGkICwuDr68vNmzYIJnooUWLFgCAhIQE9OrVC2lpaYwVGT6gZmZmmvy5KmcMN2/eZKIhMDDQYElNVnMZ6tSpU6x/Y9CgQUy0WAJ+FNLp0/LoI0vi5OSEd999F02bNsW4ceOwevVqREdHMymAWJRx48bB0dERmZmZmDhxIvr168dk0ElReGMAdN//fv36mXUztgT6EYM5VAlj8Pb2ForYJSQkCP0NYmJjY4MRI0YIr1kZA2C4fKazszO6devGTEtlw49C6ty54qOPtFotEhMTLSe2HKjVauzduxdr1qxhqkOpVGLr1q1o2rQpNm/ejKlTp6J169ZYvHgx8yd0V1dXjBr1vKDerVu3sG3bNqbDw4Hn9dJ4vLy88NtvvzFSo6PcKW1TVvOR2taoUSNh5TSeWbNmCauWxcTEmLyiUWWQl5dHx44do9DQUFIoFOTg4EAAKDU1VVQdPFFRUcK1GDhwIBMNxrhz5w5du3aN8vPzy/X5pCQiNzeiS5eI3N2JkpMrpufAgQP09ttv0+7duyt2okrg/v37tGjRIvL09CQA1KlTJ9aSiEj3t80vnwuAwsPDWUsiIn6ZVpCjoyO9/fbbrOUQEQlL/LZu3ZpeeOEFio2NZS2JiIjs7e1pzJgxVLt2betb2tOcDQAdP37c4D9/8OBB4Y933759Fb2WZjFw4EACQJs2baKRI0dS27ZtCQCdOHFCVB08hYWF5OjoSAAk86UhIpo2bRoBoOXLl5fr8/rLQFbGesz8GtlKpZISEhIqdrIKcPv2bZowYQL5+vqSQqEQjIHlMqj65OTkUPfu3enbb7+VjCYioqCgIIqLiyONRsNaisCXX35JGRkZktIUGhpKBQUFpNFoqr4xTJw4UfiPa7VaysrKEr5UCxcupD///JP+/PPPSrmwZfH1118LN+EHDx7Q6NGjCQCtXr1alPaN4e/vTwBo6tSpzDTwrFq1iuLi4igwMJAA0MGDB80+Bx8t6C8aX5GogX/i5LfevXtTRkZG+U5WieTk5NC5c+do06ZNkrq5ZGVlUXJFQ7RKJisri7WEYkjJOI1hqjFYbR/Dnj17hL6EiIgIDB8+XCiV8cMPP6BPnz5wdnYWRUvPnj0BAGFhYahbt66Qa2TZz9C5c2cA7JYa1Sc5ORmtWrXChQsXAACnTp1CUFCQSR1zfGfzokWVOwrpu+++A6CbRb927VocPnzYoEIuKxwcHNC+fXuMHTvWopMDzaVatWoGgyukAL/Er5SoMqP/THEPqW18Dp9PGWm1WmrdurXBEyAASklJqTSnLQ2tVkt16tQhAHT16lUKDg4mANSjRw9R2jfGkSNHCAC1a9eOmQaeNWvWFPvdzJ8/36TPzp6tixQ8PclIVzNRQID5epKTk8nOzo4GDx5MDx48MP8EMjJWCqpyxODu7g4A2Lp1KwCdS8+fP9/gmOrVqwsL+FgajuOESXZhYWGSiBiaNWsGQDdKizX8ZEQeR0dHvP/++2V+Tr/kRV6e7nVRayhPeZrff/8dW7duxb59++Dp6Wn+CWRkqjhWawwcxyEkJERYY3no0KHCEp+AbgirmGEdn04KDQ2Fj48PVCoVkpKSkJ6eDiISffy3p6cnbGxs8OjRI6GGEyt8fHwMXk+bNs0k07ZUyYuJEyciKCio6oT9MjJ6pKenV3iCrVUag52dHbp27Yr8/Hzs3bsXgG4ewVy+PgLKP7GjvPARQ3h4ODQajfDEfvr0aQQFBQkGJhZKpVJYXpT15J/69esLN2F7e3t88MEHZX7GkiUv+DUrZGSqImq1GuPHj6/QvA6rNAYAwgQX/Qkko0ePhqurKwDg2bNnourx8vLCSy+9hNzcXLRt21Zof/DgwQgLCxPSX2JSv359AGBeU0alUgkpm3fffdekTky55IWMTPlQKBSIiIjADz/8UP5zVKIeUQkKCoKdnR3Cw8OFglUqlQozZswAoLsZ8vWCxIJPJ8XGxgqhnEajgY+PD5O0hVSMAYCQXtOP6kpDLnkhI1M++NFs8+fPL3elV6s1Bjc3N/Tr1w9EhO3btwv7//Of/8DaJcZqAAAgAElEQVTGxgZqtRqnT58WVRNvDDVq1DDYXzTHLhb6xpCfn8+0M7xhw4Z45513TO7sDQgA3NyAOXPkBXdkZMyBN4bc3FyMGzcOhYWFZp/Dao0BeJ5O4kcnAbraQHwRuaNHj4qqp1u3blAqlUhKSjKYQyG2MVy8eBFLly4VopSwsDC0bt0a165dE1WHPk2bNsW8efNMOlZegEfGmsjOzmYtwQD9VRsjIyPx7bffmn8SU8a0Sm1r27YtERHl5uZS9erVCQD9/fffwljdvXv3EgBq1apVRYf9mk2XLl0IAA0dOlQYs//f//5XVA1qtZq8vb2LzR3Qv0Zik5aWZvKxlV36QkbGkkyePLlY7TaW5ObmGnzvVSqV8N1HVZ7HwGNvb4+goCAAhlFD3759oVKpEB0djZSUFFE18emkatWqCTMzGzVqJKoGpVKJ9957z2CfnZ2dwXBesTG1811egEfG2rh48SI++eQT1jIEis6Yz8/Px7hx48waMm/VxgA8Tyfpl911cHBA165dAejmFYgJbwynTp3CtGnTALDpY5g0aRIcHByE1y+99BKzVeXMYflyICgIGD9eZwbyaCQZqePp6YmlS5dix44drKUAMEwlAUCTJk3g6upqVglwqzeGbt26wdPTE/Hx8YiMjBT284v3iN3P4O/vDxcXF9y9exdBQUFwdHQsNvNXDNzd3TF69Gjh9csvvyy6hvJw4QKwbh1w5IjOFOTRSDJShx9QMWHCBFy6dImxGp0x2NnZYdasWQB0GYSjR49i3Lhxpp/DQtpEw8bGBiNHjgRgmE7q3bs3AJ0x6FJr4qBUKvHqq68CAKKjo/Hpp5/C0dFRtPb10V/j1VqMYfdu3WikS5cAd/fnZTDk0UgyAHDp0qVyjbKxJLwx5ObmYtCgQaKnr4vCcRwOHDiAFStWwNXVFTdv3jR7ZUurNwbgeTpp165dKCgoAAD4+vrCw8MDKSkpoo/G0S+PMWfOHFHb1qdFixbCjGxrMQZLlcGQqRrcu3cPo0aNglqtZi1FQH8I9v379zF06FDRVpHMysoyur93796wtbVF//79AQDBwcFmnbdKGEOrVq3w0ksv4cmTJzhy5AgAnWvqp5MKCgqEss+WhjeGY8eOMS+dzIeT1mAMcsezTFl07NgRO3fuRFBQkOgTWEui6Nyc06dPY/r06aJkKrZt24bo6OgS3x88eDAAXeFIc6gSxsBxnMGcBr4TmjeG33//Hf3790dYWJgoepo0aYIGDRrg6dOnzHOO/fr1Q/v27YW6SVKGjxYA3RoMHCdHDTKG1KlTB40bN8aBAwfw+uuvIycnh7WkYsbg5+eHlJQUnDx50uJt29raYvjw4aVGDiqVCufOnUNycrLJ560SxgAAb731FgDgwIEDePDgAfz9/YUF1U+fPo2wsDCoVCpRtHAcZ7B4DwBmC5UrFAr89NNPVlFJ9MIFXUezp+fzzme545ktJ06cEL0ycFkEBAQA0KVq+/TpI3pdtKLwxsDrcnJywoEDB4SRkZbE2dkZt27dwvTp00t8v0ePHiAi/PHHHyaft8oYg4+PDwICApCbm4vjx4/jP//5TzHHFrPiqn4/w82bN/Hpp5+K1nZR2rZty6xtczh1CkhKKt75LHc8syMlJQUdO3bElStXWEsR6NSpk/DzyZMn0bNnTzx58oSZnpo1a2LmzJk4fPgwnJ2dERkZWWp6pzLhKyxs3rwZv/76q9FjBg0aBMC8dFKVMQbAsETGsGHD0KdPH4P3xTAGtVqN9evXw8nJCYAuWgkICDArjPs3I3c+S4s33ngDqamp8Pf3x4IFCySR1+efzHnOnz+P7t27M1vGVqFQ4LvvvoOzszPGjBkDAPj5559FaVu/9M7UqVNx69atYscMHDgQHMfh2LFjJp+3ShnDm2++CaVSibCwMKSkpOCnn34ymOQlhjHY2toiPj5eGA1QUFCAJ0+eiJbGsmb4zuexY3V9DOPGyZ3PrFEqlZgxYwY0Gg2WLl2K1q1bIzY2lqmm5s2bw8XFRXjt4uKCV155BSEhIcw08anaqVOnAtAtByDGGiz6xpCdnY0RI0YUGxHl4eGBjh07CiM2TcEqjSE3N9doj3/NmjXRp08faLVa7NixAz4+Pli0aJHwviWNIS4uTljcfsGCBcXKYNjb21us7ZJ4+vQpHkrsrqpWq5Gbm4ukpKRi7/HRwubNun6FzZstHzXk5+eLNrTQFK5evYqAgAC0adNGEk/ngG7FOz4CnjFjBho3bsxUj0KhQMeOHeHk5ASVSgVXV1csW7YMEyZMYKoL0A0R79atGwAgKirK4u3xvxeey5cvGy1WOXjwYPP6GU0pqCS1DQBdunTJaAGp7du3EwDy9/cnIqKCggLy9fUlALR7924zy1GZxsyZMwkArV+/Xth3+PBhg0JW8+fPt0jbJfHjjz+SjY0NzZFIBbrw8HD67bffyNbWlgIDA2nEiBHFjgkIKLqis24LCLCcrrt375KDgwOFh4dbrhEzSUtLo59//pm1DAPmz59Pp06dIo1Gw1oKERF99tlntHbtWjp+/Djl5OSwlmPAP//8Q0+fPhWlrdTUVIP7jKurKzk7O1NwcLDBcWlpafTw4UOTi+gxv8mXZwNAH3zwgdELlZ2dTU5OTgSA/vnnHyIiioyMJI7jil2symLdunUEgLp3726wf9iwYcIvbNGiRRZpuyQiIiIIADVq1Ii0Wq2obRvjzp07ZGNjI1yP2Xz51CKIXVn19u3b9Morr0jmhidVCgoKWEsw4MGDB5L4u2ZNXl4eAaCXXnqJAFC3bt1Iq9WWaJZV3hjq1q1b4pd59OjRBIA+/fRTYd/UqVPp8OHDZVzm8vHkyROytbUljuPowYMHwv4HDx4IZcG//PJLi7RdEmq1mmrUqEEA6OrVq0SkM02WvPPOO4IxfPPNN8XeT0oicnPT/ZuURBQYSOTqSpScbDlNCQkJdPPmTcs1ICNjYcaPH0+PHz8mOzs7AkD37t0r8VhTjcEq+xjs7OyQnJyM8PBwo+/rj07SXQtg6dKl8Pb2toge/dXkdu7cKez39PTEF198AQCidz4rlUoMGDAAgG46/DfffIP9+/eLqqEoCxcuFCq8Gvtd6K/zvHw5cOUK4ONj2T6G+vXro2nTppZrQKbK8tdff7GWAABYv349atSoIQx40V/RstyY4h5S2zw8PAgAjR8/3qgrqtVqql27NgGgs2fPlmW4lcLOnTsN+jZ4NBoN+fv7048//iiKDiKi+/fv065du+irr74iAOTs7EwAaMuWLaJpKIkpU6YQADpz5kyx90rqY2jXjoFQGZkyePXVV+nixYusZQjwC5T5+fmVeAyqcsTAr6m8d+9eoyM3lEqlUHHVnBrkFWHAgAFwcnJCVFSUwVhiGxsbrFmzRli0Rwzq1q2Ln376CfPnzwcAYbSUFKpSfvzxx7CzszMaMZw6pbOC2bN1G/9z584MhJaT6GjdxLxWrQBXV8DfH+jUCXj1VXnYbVXD1tYWI0eOLLEchSUorcROv3794OLigqtXryImJqZC7VilMdjb26N169Z49uxZiWOX+XTSzp07RanE6OjoiDfeeANA8VCuTZs2GDp0qMU18CgUCmzcuLGYGbEqy6GPt7c33nvvPXh4eBh9X7+QXnKy7kb7yy/Sv6mGhgK2tkDHjsDTp7o0WEaGbgb3+fNAZCTQsKHOJKT+f5ExDScnJ9y6dQszZswQrc29e/capKv1KWlFy/JglcYAGPYjGMPf3x8vvPACUlNTRSuex9dr2r59u9C3wVN0vLGl8fHxwddff22wTwrGAACLFy8useosi36GirJjB9CrF6DRAHl5gP5/jQgoLATUaiA/Hzh3DmjXTo4gqgL8d3rTpk3Ytm2bKG06Oztj8uTJuHv3rtH3ja1oWS5MyTdJbWvbti3dv3+fOI4jW1vbEheaX7x4MQGgUaNGEREJC2JbioKCAqpZsyYBkETuUavVUo8ePYSRQGvWrGEtqUysrZ9h+3bjehUKIhsb3aZS6fZxnOExkyezVi9TEaZOnSp8t5ydnSk2Ntbibf7www8EgNq3b0/5+fnF3i8sLCQvLy8CQBEREcXehzX1MXAc14fjuH84jrvDcdx8Uz7j5eWFV199FWq1Gnv27DF6DO+ev//+O3bu3GnxmZG2trYYNmwYAIj2BFEaHMdh/fr1wrR5qUQMpWGsn2HSJODRI2k+YeutnmqAVquLFAoLdZECACiVhsesWyenlqwZ/SxAZmYmRo4cafG0Nf9dPn/+PBYuXFjsfYVCIWQuKpJOKtMYOI7bznHcPI7j+nIcV6vcLZV8fhsAPwLoC6A5gJEcxzU35bOlpZO2b9+O06dPw9vbW6ghkpaWVnnCS0A/nVRYWIjU1FSmJRcaNGiAlStXApBG57MpFF2wBwDu3QP0qptIgh07dOmjkrC3B/RHKVevDuhXZSECzpyR3v9L6lCRNC0riqaHz58/b/Eqyvq1kVasWIE///yz2DH8fXH37t1m1UfSx5SIYTWAHABDAYRyHLef4zjnMj5jDu0B3CGiu0RUAGAHgEGmfHDo0KFQqVQ4ceIE7t27Z/Be06ZNMXnyZCQmJgr7xBg90LFjRzRo0ABJSUkIDg5Gr169kJ6ebvF2S+Odd95B7969rSJiAAz7GZKTgT17gJEjgS1bpPV0XVK0wJOX9zxaAIC0NKCgwLAPArCOznUpsWXLFtYSABQ3hrlz50KlUln0AVTfGABgzJgxxSo3+/n5oUWLFnj69CkOHz5crnZMMYb6ACIATCGiVgD2AFhSrtaM4wUgUe/1/f/tM4DjuMkcx0VxHBeVmpoKQFdVkZ/EZWwk0IoVKwz28cM2LcXly5dx4MABvPLKKwCAYcOGITo6WtThbMbgU0rVq1dnqsNU+AV7OE63aM/Tp8C2bbon7ldekcZNtKxogcfZyCNU0cBNrZajBnP47bffzF7D2BJUq1YN/fv3x+j/PSEolUosXrxYGE5vCYoaQ2pqKt5++22DbEDRFS3LRVmdEAD+D8ABAHcAXAawGUA8gNcA1DKlI6OM878JYL3e69EAvi/tM23bthU6U/bv308AyNfXt1hHi1arpYEDBxoUmSosLCyrf6fcpKWlkbe3t0F7AOjKlSsWa9McpFbvpiz0S2QQEU2apOvAlUKnLd+hXNb24ou640vqVOc3OzvLlv6oSvTq1Yvq1KlDjx8/Zqrj+vXrlJubS8eOHSMA1LBhQ4vXb4qJiTG4t3Tv3p1mzZpFJ06cMDguPj6eAJC9vT1lZGQI+1FZtZL0b/4A3AD0BPAIwEYAF0xppIzzdwRwRO/1RwA+Ku0z+saQl5dHrq6uJd6AU1NThV56AAYXyRKcOHGCFAqFwS/v9OnTFm2zqqJfUI83ibfe0t2UAwPZ3khNMQV+4ynNHKRieNZAnz59CACNHDmStRQi0lU3qFu3LgGgyMhIi7aVkJBArq6uNHfuXAJAr7zySonHdunShQDQL7/8IuyrTGO4/L8I4TCA7wD8CWCVKSc3SQCgBHAXgA8AOwBXALQo7TP6xkBENGnSJAJAc+fONXqBwsPDhZv1/fv3S7nslcOSJUsMjOHIkSMWb7MqUtKNtFo1nTmwrCju7Gy+MRCVbg516rD5v1gb/fr1E75be/bsYS2HiIhmz55NAGj69OkWbefZs2d09uxZyszMJEdHRwJAt2/fNnrs6tWrCQC99tprwr5KMwbduWADoAWAIQAGAFCa8jlTNwD9ANwCEAtgQVnHFzWG8PBwAkDe3t4lpor4OQ03btwo9cJXBhqNhrp27Sr88e7du9fibVZlilZddXUlql5dty86mqh3bzbRg42N+cZApDMAazMGKaUh9dPDtWrVokePHrGWROfPnycAVLt2bVKr1aK0OWrUKAJAS5YsMfp+WlpasarPphqDSfMYiKiQiP4mon1EFEJEJnS7mQ4RHSKiF4moMRF9Ye7nu3TpAm9vbyQmJuLkyZNGj1m4cCG6detm8Q5oQFcf6bfffoObmxsAcUZDVWWKzoYeNw6YMEFXYmL8eF3JCRYzozUa02KGqsDx48dx8eJF1jIA6Mbq86SmpuK9994TXYOmyMgDf39/NGnSBI8ePRKt6qqxKtL6uLu7o2/fviAi7Nixw6xzS2KCW0VRKBRlFs2zsbHB1q1bRSt/7e3tjY0bNwKQjaGi6I9S+u6755tWq6ultHOnbt7DlSu6taKlMGqpNEQo3VXp3Lt3D4sXL2YtA4ChMQC68fq7du0SVcO3335rMPyb4zhhDpNYk1t79uyJWrVq4datWyWadnlHJ1UJYwCeX4A9e/aUOKHMy8sLfn5+omkaPHgwpk2bJhtDBTE2G5pIV2+oVSvg8GHd2tAsowdTSU4GnjxhrcJ8EhMTERISgvPnz7OWAoVCIZiDjY0N1q5di/j4eFHn6Rw/fhzr1q0z2Mc/nO7btw+5ubkW16BUKjF8+HAAJd/4Bw4cCGdnZ1y6dAk3b940/eSm5JukthXtY+B5+eWXCQDt27evpLSc6OTk5Fhsrel/G6WtCX35sm5kz9Gjuj4I1qOWipKUpOsLGTKk5KSTpydrlSUzfvx4AkB9+vRhLYVGjRpFu3btEpazPHr0qOgaunfvTq6urvTw4UOD/W3atCHAcuvLE5HBioNnzpwhAOTh4VHiipbjxo0jALRw4cLK7WOwFvTDpuzsbHz//feMFQEODg6iltyuyvCRQ9Ho4dQpXSqJjx58fHSlJpYv1z2hs04vJSfrynGfOQPs21fycT4+hq+vXLliWWFmwFcQ+PPPPxEZGclUy9dff40333wTgwbpCiSwmOyWn5+P9PR0fPjhhwb7xUgn/fjjj0LqqEOHDmjcuDEePnxYYt9GudJJpriH1LaSIoaEhAQCQCqVigIDAyXxdCMFMjMzJbVwemVoKa0Kq/6opUmTdP+yGNrKRwmjRumimSZNTI8WUlNTqVu3buKLLoGmTZsKI4F69OjBWg4RPX9a9vb2Fv3vu23btsL1CAsLE/YnJiYSx3GkUqno6dOnFml74sSJ1KZNG2H00yeffEIAaOzYsUaP159ngaocMRTNJRIRpk2bhtGjR8PBwQH5+fkIDw8XZQQST1ZWFtNiecbIzs7Gw4cP8eGHH+L27dus5QAA8vLy8Mcff+Dy5csVOk9J0UNAwPNRS15euvpKx44Z75zmo4n79zWVOpKEP++iRcDZs7ryGYMHA3fuAA4Oxj9TNFr48ssv8fjx40rTVBGICGlpafDy8oK3tzc6depUrDYZC9q3bw8PDw8kJibi+vXrorat/12fOnWqsJJkvXr10LVrV+Tn5+Po0aMWabugoACXLl3CDz/8AOB5RLBv3z7k5OQUO97GxgYjRowwrxFT3ENqG8dxdO/ePQNXTElJ0XdFAkpf+7QyWblyJTk7O9PGjRtFac8UTp8+TV5eXtSiRYtisx9ZMnz4cFKpVDR69OhKO2dJ0UOdOrqJcMnJuhnUrVsbRg+zZ+tev/FGHAEeVL/+dYqPzzOrbT4q0J9PMXs2kYuLru033tBpGTVKNzGvpD6SomRlZdH169cr4epUnPz8fLp27RrdvHmTkvj6JBLhr7/+ooSEBNHbbdKkicG9Rn8uwdmzZ+nq1asWa3vEiBEEgKpVqybcB/kIZseOHUY/c+fOHTp+/HjlTnCT2gaAfvjhh2L/+WPHjhHHccIvy8fHx8RLXTE2bNhAAMjf31+U9kojJyeH1q5dSx988IHBH+6kSZNYS6Pdu3dTtWrVCADZ2tpW+k3GWAmNSZN0RqDfOe3urruRu7kRXbqke/3OO4Xk6lpIM2aohZt9cjIZ/bmoCbi5PTcdPnX11lu6+kcqFZGvry5VZKopyEifojXRVCoV3bp1S5S2hwwZIrQ7aNAgItI9nAKggQMHlvrZKm8MJeU5/9fzTgCoZs2apV6kyiI7O1uo13T+/HlR2iyNjRs3FqvX1Lx5c9ayiEhXS+rFF18kALRgwYJKPXdpo5b4iGHOnOc/8yYyaZLuBs6bhH6/BH/j1/+5qAkcOfLcdFQqXXTg5qYzBHOiBBnroVatWqRSqQgAvfTSS7Rq1SrRMgYDBgww+G7v37+fkpKSSKFQkFKpLLW4YJU3BqVSSU+ePCn2H1er1RQQECC4uFjMmTOHANC4ceMoPz+fVq9eLVrbxtixYwcplUqDPyBj14sFubm5tGDBAvLw8KCcnByLtGHK0NboaN2xvDEkJxuahKurbtP/uagJTJr03Gj4z/r66va1ayebQlUlMDCQLl++TICugmlubq5obffq1cvge+3l5UUZGRnUs2dPAkA///xziZ+t0sbg5OREAOi3334z+p9PSEggNzc3AiBajZd//vlH+CMZNmwYBUjg2x8cHEx2dnbCH9DBgwdZSzIgOjpalAhLP8XEv+ajh6IpJ32TaN1atxE9/7moCfDRweXLz18rlbIhWJrs7OxicwjEJCsri4iez53SH5lkaQIDAw1SWLVr16aZM2fSpk2bCAB17ty5xM9WaWOoV68eAaCgoKASLwC/TkNaWlrpV7kSWL16NX388cdUu3Zt0fs3yuLIkSPk4OBgkdSNtVDWWgj81q7dc5OYNOl5lBAd/XwIrKuroQnwUQOR3I8gJhcuXCixeJyY8JmCefPmidZmx44daejQoYIxZGdnU1JSEqWnp5O9vT0BoPj4eKOfrdLG4OvrSwDIycmp1BBu+vTpJV6gyiQ+Pp5q1qxZrDNKKnMHIiIiyMnJiQIDA1lLkRwlmUbdus8jDf1IgY8gSjIB2QzEYcOGDeTh4UH5+flMdRw6dIgAUJs2bURrc+vWraTVaql169YEgA4fPiy8N2zYMAJAS5cuNfrZKm0Mbdu2JT8/vzLTI7m5uRabZFKUiIiIYjl9MaIVUzl37hzVq1dPUuWTpYapkYVsAuzh1z/49ddfmWnQarWUlZVFdnZ2xHEcpaamitr+vHnzCADN0Zu9GRwcTACoRYsWRh9MTTUGq5zgBugK1AHA77//DgCIiYkpdoy9vT1cXV1F0dO1a9diJTiSkpJEadsU2rdvj5CQEDx48IC1FMmiP2nOnO3UKdbK/31cu3YNALBq1SrdEy4Drly5gjt37qBTp04gItHKbfP07t0bAAwm0vXp0wfu7u74+++/cfXq1XKf2+qNITg4GN9++y0WLFjAWBEwZcoUTJkyRXgtJWMAgJYtW6Jhw4asZcjIVBjeGKKionDmzBkmGu7evYvPP/8cPXv2BACEhoaK2n6nTp3g6OiIv//+W3jgs7Ozw5tvvgmg5CUITMEqjeH+/fvYtWsXVCoVHj16hPfffx+FhYWsZQHQPcF07doVgPSMQUamKvDo0SM8evRIeL1q1SomOuLi4rB37140atQIgM4YxIxeVCoVAgMDARhGDXyJjO3bt5f7vmiVxuDq6orly5cb1CuRijHY2dlhz549aNCggWwMMjIWgI8WePbu3StUfxWTuLg4EBGCg4Ph5uaGhIQE3LlzR1QNvXr1AmBoDAEBAahfvz4ePHiAEydOlOu8VmkMTk5O+OCDDwz2ScUYAKBWrVoIDg5GRkYGaykyMpWOVqtlWjCyqDEUFhbip59+El1HXFwcAGDXrl1o3749APHTSbwxhIaGCsVFFQpFuVdu47FKYwCAzz77DC+99JLwWszVm0yhZcuWmDNnDmsZMjKVTnBwsHmrgVUy165dQ+vWrVGtWjUAwLJlyxAbGytUOBWLu3fvAtDde549ewYACAsLE1VDs2bN4O3tjbS0NBw4cEDYr7+iZXmui9Uag729PTZv3gwbGxsA0ooYeDw8PFhLkJGpVIgI//d//yc8LbNg8ODBOHfunJDb7969O3bt2gV7e3vRNBAR4uPjhdfnzp0DAPz111/QaDSi6eA4Togali5dKuxv0aIFWrZsiYyMDBw6dMjs81qtMQBAu3btMH/+fADSNAYZmarGwYMHcfnyZYObotgMHDgQtra2qF+/PgAwWRvi4cOHBk/iWq0Wzs7OyMjIQFRUlKhaeGOIiooy6NesSDrJqo0BAD799FP4+flJLpUkI1PV4KMFAEwjBh6WxlD0/9+kSRPBKMTuZ3jttdcA6H4/y5YtE/aPHDkSHMchJCQE6enpZp3T6o3Bzs7OIKUkIyNjGY4ePYrz588DANOIgYc3hoSEBNHbjouLwzvvvIPJkycDAMaOHYsNGzYAEN8Y3N3dhfvf2rVr8fTpUwC61eS6deuGgoIC7N2716xzWr0xAECrVq3w0UcfsZYhI1NlISJ89tlnwmspRAwNGjQAwCZiGDBgANavX4927doBAK5fv47+/fuD4zicOXMGWVlZomlJS0sTUul5eXn48ccfhff4dJK5k92qhDEAuqngMjJVESLCli1bKrxOdkU4fvw4IiMjhdf8GH6WsEwlubi4AACaN28OQGcM7u7uaNu2LTQaDSIiIkTTUnQ991WrVglrPwcFBcHOzg4RERG4f/++yeesMsYgI1MViY+PR9++fbFixQq0atWKmQ79aAEAsrKy8OTJE0ZqdPDGcOvWLWYa+CHzN2/eRGFhIZPyGEWN4fHjx0Jay9XVFf379wcRYfv27SafUzYGGRkJUlhYiFWrVsHX1xdHjhzB7NmzwXEcEy2nTp1CTk6OUH6BHxbKOp1Ut25d2NjY4NmzZ8wmk7q5uaFu3brIz89HXFwcM2NQKBTC38fLL7+M9evXQ61WAwDefvttAOaNTpKN4V+A1Iby8p1jUiE5ORmXL19GQUEBaykAgBs3bqBz586YPXs2srOzUbNmTSFXzIIOHTrg/Pnz8PPzAwB88skn+Pbbb5mXfFEqlXB3dwegm3THCv10kq+vLxwdHXH9+nXRKhkXFhYiIiIC3t7eAIAaNWrgwoULwkjNfv36wcXFBVeuXDH5nFZtDNevX2ctQUCr1aKwsNDs3n9Lkp+fj5iYGPzyyy+spQhkZYt+/2sAABuASURBVGVh8eLF2L17N2spAlqtFt26dYOTkxPatGmDiRMnYvXq1cjOzmaix8fHRyipDABTp04VdfJWUWxtbQEAf//9NwDA19cXs2fPxoABA5hp4lEodLcw/Vm/YsMbQ1RUFNasWSMU0Tx27Jgo7X/++efo3LkzWrZsCQA4f/48bGxsoFKpAOgivKCgIPNOasqiDVLb7O3t6auvvqI33njD9FUtLMjRo0epadOmNGTIEMmskpaenk4dOnSgevXqUcuWLSWzmtzcuXMJACmVSvr9999ZyyEi3SJG/DriNWvWpHnz5tHdu3eZakpNTaX58+eTp6cnJScnM9XCc/nyZdq4cSOlpKSwlkJERBqNhlxcXAgANW7cmJmOn3/+mQBQYGAgvfjii3TkyBHatWsXPXnyRFQdixcvFhYJO3v2rMF7UVFR9NNPP1XtFdz4/3z//v0rfDErQl5eHn3xxRf0+uuvC7+QWrVqMdVERPTo0SNauXKlsNYzADp16hRrWZSRkUFBQUGCJltbWzp06BBrWaTRaGjkyJH022+/UV5eHms5BkRFRbGWIFkiIyMNVky8desWEx0REREEQFjzndXvbMeOHcK1+Oyzz4weY6oxWHUqie9cYYVKpcLLL7+MgwcPCvtSU1ORmprKUBVQs2ZNODo6CmE2AIOxzaxwdHTEggUL8NNPP2HMmDHw8fHBkCFDRC88VhSFQoFt27Zh1KhRQvgtFdq2bctagmQpmj7S/x6KCZ9Kevz4MQBg27ZtTHS8+OKLws/6ZbjLhSnuIbUN/3NFqaRttmzZYvDkEh4ezloSERHdvXuXAgMDhafzhw8fspZUjMePH9Px48epsLCQtRQZK6N58+YG37sePXow01KzZk1Bh6enJ2k0GtE1ZGZmChpsbGwoPT292DGQIwbxGD16tMEqUnwnHWt8fHxw7NgxfP/997C1tcW6detYSypGjRo1EBgYaBDdyMiUxZ07d4oNPomIiEBmZiYTPfqVlJOSksq9QE5FcHJygpeXFwDdSKXjx4+X+1xW+W3k67BLZXghAMycOROLFi0CIK3RUgqFAtOnT8eVK1dw48YNUUsCy8hYiqtXr2Lt2rWYOnUqAGDJkiVYsmQJLl26xERP0Qeb8i6QU1GMpZMKCgrMNkyrNAYfHx84OjpKJmLgWbRoEaZPny6ZiEGfJk2a4Ndff5XcnAYZmfIwZMgQTJo0CUqlEgDg7OyMjz76CN26dWOip+gs8D179jBZ5a5p06bCz7wxnDlzxuz+F6s0BpVKha+//lpSEQOgWzRj1apVaNOmDWspRlEoFJLrXJWxbh4/fiwsUsMCXdoczGaFA0B6erpBHSIfHx/Y2Njg8OHDomvhIwY7OzvExsYiNjYWoaGh2LNnj1nnsUpjAIApU6YIdcilhEKhwFdffSX8wcrIVGVmz56NlJQUZu1LwRgePHhgUIfolVdeQWJiIho3biy6Ft4Y+CJ/R48exdGjR3Ho0CGzJmxarTFwHIcvv/yStQyj2NraMv1DlZERg5CQEGzdupXpQxBf9oHl4IUWLVpg+PDhcHJyAqCLohwdHfHyyy+LroVPJfFp9pCQEERFRSE3N9esCMZqjQF43gktIyMjLhkZGZgyZQoAMDWGohEDqzlEHMcJ60M8evSIiQYAaNiwIWxtbYUV244fPy5cI3PSSVZtDDIyMmz4z3/+IxSJk5IxLFu2jFk5cD51xLIcuVKpFHTUr18fubm5wnshISEmn0c2BhkZGbM4duyYwZwYKaSSOI5DXl4efvnlF1y8eJGJFj6Nw2ouBQ/fz9CsWTOD/f+KPgYZGRnxycrKwqRJkwz2SSFiUCgU2Lt3L548eYKoqCgmWnx9fQFAWD2NFbxB2dnZlfscsjHIyMiYzIIFC4ot0CMFY+A4DmvWrAEAZsbAr7CnVquLXRMxl/rkI4ai60Hw61ObAlNj4DjuTY7j/uY4TstxnD9LLTIyMqVz9+5dJCcnY+jQoQb7pWAMycnJOHnyJAAwSyW98MILgib9IbyZmZn44IMPRNPBG0N2djY6duwo7F+yZInJ52AdMcQAGAJA/MIiMjJWSkxMDC5fvix6u40aNcKuXbvQqFEjAMCkSZPw2muvSaKP4dSpU8K+hIQEJqOT9BdT0l8tbc+ePbh48SLS0tJE0cGnkh4+fIh+/foJ+82Zic3UGIjoBhH9w1KDjIy1kJ6ejtmzZ6Nfv37CIvQs4Ee3jBgxAiEhIfD3Zxfs86YUGRlpsJ9F1MBxnLDaXXR0tLB/06ZNAHSlKcSgdu3aqF69Op49e2bwu7EaYzAHjuMmcxwXxXFcFOv1DmRkxESr1eKXX35B06ZNsWrVKsyZM4fZUp93797FjRs34OzsjM6dO8Pe3l6IIFjAG4P+sEyAXT+Dg4MDAF1UBwCxsbFCpdWi5mUpOI4TogaVSiV0QickJJh8DosbA8dxYRzHxRjZBplzHiJaS0T+RORfq1YtS8mVkZEUUVFR6NSpEyZMmIBHjx6hVq1amDx5MjM9fDG23r17V2jUS2XBG0OXLl2EfS+88AIzY3B2dgYA3Lx5EwCwZcsW4T2xjAF43s8QGxsLT09PAIZRTFlY3BiIqAcR+RrZgi3dtoyMtfL48WNMnjwZ7du3NyhS9/777zOd8c+nkQYMGMBMgz58H8OwYcMA6NYkuHbtGjN97u7uAHQ3ZK1Wi82bNwvvnT9/XrSK0Lwx3Lp1C97e3gCAa9eumfx5q0klycj8W0hKSsKAAQOwbt06g45dNzc3TJs2jZmurKwshIeHg+M49O3bl5kOffjrw08qq1OnDlQqFSZOnMhED28MT58+RXBwsEH6Jjc316yn9orAp5L++ecfIdV369Ytkz+vtIgqE+E47g0A3wOoBeAgx3HRRNSbpSYZy/PkyRPhCyQF9u7di02bNsHd3R01atQQ/uV/5nPpYuHp6YkzZ85g6NCh2L9/v7B/1qxZqF69umg6ihIWFoaCggJ06NABtWvXZqZDH94Ynj17BsBwJTUW8KkkAMK8Cn0iIyPNmk9QXvQjBn5kkjnLFDA1BiLaD2B/mQca/6zkKpg+e/aM6RfXGKGhoejRo4dkrlVBQQFmzpyJXr16YcyYMazlANBNTDpz5kyx4YRt2rTBN998w6Sj98svv8T+/fuhUqng6uqKnJwczJw5U3Qd+kgtjQQ8TyVJxRj4CquAbh7B9u3bMXLkSNSuXRvjx48Xre+Dn1MRGxsrjJQyB6tMJSUkJEhq+czU1FS89957wjKDUkCr1WLChAkYN26c2as3WZLvvvsO27dvx9ixY/Huu+8iLy+PtSQkJiYamIKXlxc2b96MCxcuIDAwkImmoUOHwsfHBzt37sSMGTMwffp0uLm5MdHCM2rUKEybNg2DBw82+v7u3btFVgQMHz4cn3/+uXBDrlOnjuga9OF1DBw4EN9//72Q0qlduza++uorrFy5UjQdXl5eUKvVQomODh06mH4CIrK6DQAdOHCApIBaraZ33nmHAJCTkxMVFBSwlkRERMHBwVSzZk0CQM2aNSO1Ws1aEhERLV++nAAIW9u2bSkuLo6ppry8PJo3bx5Vq1aNPvvsM8rOzmaqhycvL4+IiBITE+nRo0eM1ZTO3bt3qUGDBszanzdvHgGgzz77zGC/VqulQ4cOiaZj9uzZBIBWrFhBRETHjh0jANSlSxfRNPB0796dANCYMWMIAH344YcEIIpMuMdaZcSgUqmK1WthhVKpxIoVK9C1a1dkZWXh7NmzrCUBALp37445c+bAxcUFN2/exIYNG1hLQmFhIXx8fPDjjz9iyZIlmDlzJpo1a4aFCxciPj6emS6VSoU2bdrg9u3b+OSTT+Do6MhMiz78Mqz16tWDlIdoa7VajB8/vthcAjHhS1AUjRj++OMP/P7776Lp4PsYsrKyADwvwc2iT43vZ+DXZrCaPoby8sILL5hVQtbSuLm54ciRIxg7dixCQ0MNxlSzwsnJCR9//DGmTJmCFStWYNmyZXjrrbcMOsfExsbGBkFBQczaLw1+uKOM+fz3v/9FRESEMF6eBQ8fPgRg2MdARFjy/+3dfWzU5ZbA8e8pLW2xQG9tQFIKy0IpVl4KNEJ9QbK9KlfchWJQfNmgaFDXJWzjHyvBVCFRQkCLZVdgE2542auuSd2yCJZLFURxFVio5YLc0nIV6/JWlra8lLbTefaP8htmCradvszzm3I+idGZzsSTH8ycnnOe3/MsWUJiYmLI4nBaSc4qqQsXLgBYaQM6icFJTj3yzmd/0dHRLFy40HYYAWJiYvjwww+tHOfXmoSEBJYtW8bevXsDDixXqiscO3aMRYsWAc3Vsy03qxi2b9/OwYMHQ1qNOonBqRhsJgZnvuHsFNHjKwbANeW+v4iICGbPnm07jJsaNGgQgwYNsh2G6kE8Hg9z5871LSCwmRhaVgxOtQDNi1W8Xm9IzoVumRjc0Epyjhrt8RWDUsq+5cuXs2/fPt9jW4nB6/X6vvycimHHjh3s378faP5C9N8Guzu5qWJwzn92YgimYtDEoJQKWklJyQ37+9tKDOfPn6epqYn+/fsTExMTUC04QtVOclNi8D//GbRiUEp1s71797J8+fKAYa+txNCyjVRcXHzD6sBQJQY3rUqC63MG0IpBKdXNXnnlFWbNmsXp06fp06cPhYWF1la8+Q+enWqh5W/owWw53RluWpUE1+cMEFzFELbDZ6WUXc79AQ8//DAzZsxg3LhxVuLwrxguX77MypUriYiIYNKkSaSkpDB9+vSQJwY3tJJAE4NSKsScDf6ys7OB5mGnDf4VQ1xcHJMnT/Ztdz1u3Djy8vKszRi0laSUCjlj6bzlc+fO8dVXXxEZGWl9U72b3dx25MgRAO666y4gdEnLPzE0NTVRU1MDQHx8fEj+/y35VwzB7EumiUGpMNTQ0MCbb77pW6YZalu3bsXr9TJ16lTrm/s5FYN/YnCO1nQSQ6jExMQQERFBY2Oj78ayvn37WhvMDxgwwDf7CWbLEk0MSoWZI0eOMHnyZEpKSqztJtqyjWSTUzH4X4uWFUOoiIjvi/jnn38G7LWRnHiGDRsGENQ2QpoYlAoTXq+Xd999l4kTJ3Lo0CFefPFFK3FcvHiRnTt3AjBjxo1HtztnJIRKy4rh4sWLnDx5kqioKN+5BKHktJNOnToF2Bs8O5x7GbSVpFQP89NPP5GVlcWrr75KfX09Q4cO5aGHHrISS1FREfX19UyaNImkpKQbfr5mzZqQxtOyYnDOaklNTe3QITWd5SQGJy7bicGZM+gNbkr1EMYYNm7cyNixY9m9e7fv+fnz59OrVy8rMbXWRjp06BDLli0LWSwej8fXy3eOG7U1X3A4icGZ/9g+xtZJDI2Nje1+jy5XVcqlLl++zNy5cykoKAh4PjIyknnz5lmJqaGhwXciYMvE0NjYyLx584JaFtlZVVVVGGNISEigd+/egL35gsNJDE7Csl0xpKWlAc3nobSXVgxKudRtt93G+vXryc3NDXh+xowZ1s42/uKLL6itrSUtLS1gKSTAihUrKCkpCekS2taWqo4ePTpkcfhzEoNzXKxbEkMwNDEo5WI1NTW8//77wPUvP1tDZ/j1NtLRo0d9G9eFMjHcbKmqWyoG2ze3Ofr16xf0ezQxKOVSdXV1ZGdnU1VVRVZWFrt372bkyJFkZWVZiaepqYktW7YAgYmhqamJ559/3tdCslExOIPn6upqfvnlF6KjowN2Fg0lZ7mqc3Ob7YoBCPosCp0xqJAzxiAitsPwWbJkCZ988onvsf8XW0xMDEuXLmXatGkhjckYw0svvcTBgwcZOnQoH330EYmJiXz88cchOXDmZr799lvOnDnDkCFDmDBhgu/5/Pz8gN1MbVYMTrUwatQoa8N5p2Kora0F3JEYIiMje/6WGKEcboU7p5x1kwULFlBRUWE7DJ8nn3ySkydPUlpaSmlpKYcPH+bw4cP07duXzZs3hzwpAKxevZpNmzYRGxtLYWGh79xiWxvVwfU20syZM32JvaKigsWLF1uLqWXFYHu+ADfusGq7lQT4BvPtFZaJwU1fKtB8Q8/ixYt9Oym6xZo1a8jOzg5qNUJ327BhA5s3byY9PZ2NGzda2+vHX1lZGdXV1b7HsbGx5OXlsWfPnoBNyEJpxIgR9O/fn/Xr15Oenm4lhpbS09N54IEHeOyxx3zPHThwgFWrVjF27Fig+TfTUP6Zjh8/njlz5viuke35ghPT008/7bsObqgYgj4K2RgTdv8MHz7cuEl5ebkZNmyYeeedd2yH4nPy5EkzePBgA5iVK1faDscnPz/fAL5/nnjiCXPhwgWrMV25csW8/vrrBjBTpkwxx48ftxqPo6qqynYI7XL58mUTExNjAPPNN9+Yu+++21osWVlZBjBbtmyxFoMjOTnZAKaiosJ2KGbEiBHOZ+6Aacd3bFhWDLZ2Kvw1w4cP5/vvv/ddVDdITk5m7969vPbaa6xatYqysjLbIWGMITk5mXXr1pGXl8dbb71FSkoKmzZtCurmm64WGxtLSkoKq1evZteuXYwYMcJaLP5uv/122yG0y65du7h69SoTJkwgMzOToqIia7HYvrnNn1tWJUHwrSRxyxdZMDIyMsyBAwdshxE26urqKC8vZ8yYMbZDcS2v12ttqBvuXn75ZdauXUtubu4NZy2H0vnz50lMTCQ2NpZLly5Z/fNsbGykd+/eiAgej8f6360JEyZw6NAhgP8xxmS09Xr9JNwCYmNjNSm0wfYHN1wZY/j0008BrJ/L4MwX0tLSrP95OvPG+Ph467EAREdHB/V6+xErpcJWaWkplZWVDBw4kIkTJ1qNxQ2DZ4eb2khwi6xKUkq5g1MtPPLII9Z/M3bTfMH2Wc8tacWglAoZt7SRwB33MDjclhi0YlBKhcS5c+f47rvviIqK4sEHH7QdjraSWqEVg1K3iA8++MDqMt/PPvsMYwxTp0717Q9ky9mzZ6mqqiIuLo4hQ4ZYjQW0YlBKWbBq1SrWrl1r5YQyh5vaSM58IS0tzRX7cLktMWjFoFQPZozhjTfeICcnh/vuu89aHA0NDezYsQOA6dOnW4vD4ab5AlxvJYVrYtDdVZUKE16vl5ycHPLz8wGYMmWKtVi+/vpramtrGTVqlLXtrf25ab4A1ysGt8wYgm0laWJQKgx4PB5eeOEFNm7cCDTfkHfPPfdYi8c53tMNbSRwb2LQikEp1S3q6+uZM2cOhYWFvufS09M7dDJXV3HTfMEY46p7GMB9rSStGJTqQS5dukR2djbFxcUBz99///2WImreprysrIz4+HirVYvj1KlTVFdX079/f5KSkmyHA7ivlaTDZ6V6kJqaGnJycpg9e3bA8zbnC04badq0aVZXRTn820huWJEE7msl6XJVpXqQpKQk7r33Xr788ksA30okmyuS3NRGAvfNF8B9rSStGJTqYZYuXcrZs2fJzMykuLiYxx9/nAEDBliJpaamhj179hAREWHlyNObcdt8oa6ujvr6eiIjI33HfNqmiUGpHuTYsWPk5+cjIuTn5xMdHe1bmWTDzp078Xg8ZGZmuuYgIbfdw+DfRnJLa0tbSUr1EMYYcnJy8Hg8PPfcc2RkNJ+vEhMTYy0mt7WRjDEcPXoUcE/F4LY2EmjFoFSX8Xg8nD592tpxrdu2baOoqIh+/frx9ttvW4nBX1NTE9u3bwfckxgqKyupra0lISGBgQMH2g4HcN+KJAiz5aoisgL4W6ABqACeM8ZU24xJ3VqamppYt24dJ06c4PTp05w5c8b374aGBjZs2MDMmTNDHld9fT05OTkA5ObmuuJLb//+/Zw7d46hQ4e65rdz//mCW9o2bluRBOF3g9tOYJExxiMiy4FFwD+39Sav19vtgQXDGENNTQ3x8fG2QwlgjHHNh8VfUVGRawaXvXr1YsyYMSxcuBCPx+N7fuTIkRQWFnLnnXdaieu9996jvLyc1NRUFixYYCWGlvzbSG75e+W2+QJoK6nTjDF/NMY4n8ZvgcHted/x48e7L6gOeOqpp0hNTeXq1au2QwlQUFBAQUGB7TACfP755zzzzDM8++yzXLp0yXY4APz4448BSeHRRx9l37591pICwNWrV4mKiiIvLy/oNkB36dOnD3fccYcrNs1zxMXFMXr0aNLT022H4tOvXz8yMjIYOXKk7VB8EhISGD9+fLtfL7b6py2JyFbgP4wx//4rP58PzL/2cDTwp1DFdgtIBKpsB9FD6LXsWno9u1aqMabNwzO6PTGISDFwx01+tNgYs+XaaxYDGcAs046AROSAMSajayO9den17Dp6LbuWXs+u1d7r2e0zBmPMb1v7uYjMBR4FstqTFJRSSnUv26uSptE8bH7AGHPFZixKKaWa2b6P4V+AvsBOESkRkbXtfN+/dWNMtyK9nl1Hr2XX0uvZtdp1PV0zfFZKKeUOtisGpZRSLqOJQSmlVICwTQwiskJEjolIqYj8p4i467bjMCIis0XkiIh4RUSXBnaQiEwTkT+LSLmIvGY7nnAmIr8XkbMiovcrdZKIJIvILhH54drnfGFb7wnbxEDzdhqjjTFjgTKat9NQHfMnYBawx3Yg4UpEegH/CvwOSAOeFJE0u1GFtQ2AO/ZNCX8e4FVjzJ3AZOCVtv5uhm1i6Oh2GupGxpgfjDF/th1HmLsbKDfGnDDGNAAfATMsxxS2jDF7gP+zHUdPYIw5ZYw5eO2/LwI/AK0ejh22iaGFecBntoNQt7Qk4Ge/x5W08eFTKtRE5K+A8cB3rb3O9u6qrQpiOw0P8IdQxhZu2nMtVafcbLtRXQuuXENE4oAC4J+MMbWtvdbViUG30+g6bV1L1WmVQLLf48HA/1qKRakAIhJFc1L4gzHmk7ZeH7atJL/tNP5Ot9NQLrAfSBGRYSLSG5gD/JflmJRCmg/PWA/8YIx5tz3vCdvEQMe301AtiEi2iFQCmcA2EdlhO6Zwc20hxD8CO2ge7n1sjDliN6rwJSIfAv8NpIpIpYg8bzumMHYv8PfA31z7riwRkUdae4NuiaGUUipAOFcMSimluoEmBqWUUgE0MSillAqgiUEppVQATQxKKaUCaGJQSikVQBODUkqpAJoYlOoCItJLRN67tt/9YRH5a9sxKdVRmhiU6hqLgBPGmLuAfOAfLMejVIe5ehM9pcKBiNwGZBtjJl576i/AdIshKdUpmhiU6rzfAskiUnLtcQJQbDEepTpFW0lKdV46kGuMSTfGpAN/BEraeI9SrqWJQanO+w1wBUBEIoGHgK1WI1KqEzQxKNV5ZTQfsg6QA2wzxvzFYjxKdYpuu61UJ4nIb2g+czyR5jME5htj6uxGpVTHaWJQSikVQFtJSimlAmhiUEopFUATg1JKqQCaGJRSSgXQxKCUUiqAJgallFIBNDEopZQK8P+5X/fEkZSq0QAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:02<00:00, 2.61it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXd4U+X7/98n3YO2tIXSQWlZHSCrDJU9lCJfUJE6AEWRsvFXQHEiDj6iIEspikwB2SgyZAooe7dASwu0rA5mR7pHzv3745iQ0JW0SZ6T8ryu61xNTs7J8+5J8rzP/axbICJwOBwOh6NGwVoAh8PhcOQFNwYOh8Ph6MCNgcPhcDg6cGPgcDgcjg7cGDgcDoejAzcGDofD4ejA3BgEQWgoCMJBQRAuC4IQJwjC/2OticPhcJ5kBNbzGARB8AbgTUTnBEGoA+AsgJeIKJ6pMA6Hw3lCYR4xEFE6EZ3773EOgMsAfNmq4nA4nCcXa9YCtBEEIQBAWwAny3ltFIBRAGBtbR3WunVrs2qrjFu3bkEURfj5+cHaWh6XNC0tDcXFxfDy8oKDgwNrOQCAlJQUFBcXw9vbWxaaSktLcfXqVRARgoKCYGVlxVSPUqnEvXv3kJ2dDYVCgVatWjHTpFKpoFQqkZ2djezsbJSWlgIAQkJC4OjoyERTSUkJlEqlZlNratSoETw9PZloEkURubm5yM7OhlKpRGFhIQCgXr168Pf3Z6IJAAoKCjSfXW5uLgDA0dER+fn5D4ioXpVvQESy2AA4Q2pGGlTVsVZWViQnvLy8CAClpKSwlqKhbdu2BICOHTvGWgoRERUVFZGHhwcBoDNnzrCWQ6mpqRQaGkoAKDAwkJKTk5noyMzMpHnz5lHTpk0JAAEgW1tbGjZsmFm/T6Io0sWLF+m7776jbt26kZWVlUYPAPLz86PRo0dTQkKC2TTl5+fTnj17aMqUKfTUU0/p6AFADRo0oLfeeov+/fdfs2kSRZHi4uJo7ty59Pzzz5O9vb2OJicnJxowYACtXbvWbJqIiLKzs2nLli00cuRI8vX11dFkZWVFXbp0oZkzZxKAM6RPfazPQabeANgA2ANgsj7Hy80Y6tSpQwAoIyODtRQN7u7uBIBSU1NZSyEiot9//50AUIsWLUgURaZakpOTqXHjxgSAQkJCTF4BFxcX09atW3X2xcbG0qhRo8jR0VGn8p0xYwbduXPHqOU/fPiw3BuEvLw82r59O40dO5b8/f3LVCZdu3almTNn0oULF8zymalUKoqJiaFZs2ZRnz59yM7OTkeTvb099e3bl+bMmWM2TUREGRkZtGnTJho5ciT5+fmVMag2bdrQhx9+SAcOHKCioiKzaFIb+axZs6hHjx5kbW2to8nLy4vefvtt2rBhg069ZDHGAEAAsArAfH3Psba2Ntb1rTGiKJJCoSAAZvtSVIVSqdTceapUKtZyiIjopZdeIgA0a9Yss5f94MEDKi4uJiKiuLg48vHxIQAUFhZG9+/fN3nZPXv2pOHDh1NxcTFt3LiRunXrpvMj7tmzJ23ZsoVKSkqMWrYoirRp0yaqX78+bdiwgYiIkpKS6Mcff6Tw8PAyFa+npye9+eabtH79eqPf5GRmZtK4ceMoJydHZ39aWhr9+uuvNHToUE3k/XilO3XqVNq/fz8VFBQYTY8oinTv3r1yXystLaUTJ07Ql19+Sc8884zm9619nYYMGUK//vorpaenG01TVeTk5NDWrVtp1KhR1LBhQx1NCoWCnn32Wfr666/p7NmzFf7uLckYuvz3z10AEPPf9kJl59jY2NTwEhuPwsJCzR0W6zthNRcvXiQA1LRpU9ZSiIjo/v37ZGNjQwqFgkkEM3bsWDp48CCdOXNG05zVtWtXysrKMmm5cXFxOpGJ2pDUTQ5jx46lS5cumaTstLQ0evnllzXlvfrqqxQcHFym4g0LC6Np06bRiRMnqLS01Og6RFGkdevWkZeXFzVv3pzy8vJo9+7dNHnyZGrZsmUZPd7e3jR8+HD67bffjB45qUlKSqLnnntOJ4pLTU2l5cuX02uvvaaJth9vivn666/p9OnTJrnZunnzJs2dO1dnnyiKFB8fT99//z317t2bbGxsdHTVq1eP3nzzTVq3bh09ePBAr3Isxhiqs9na2up1EczBw4cPCQC5uLiwlqJhx44dBIB69+7NWgoREf3www8EgPr27Wv2smNjY0mhUNBzzz1HLi4uBIDCw8MpLy/PpOXu2LFD08SovTVv3pwWLFhgMlMSRZGWLVtGrq6uZcoGQHXq1KFXXnmFli9fTmlpaSbRoObatWv0/PPP65jh41GKg4MDhYeH09y5c+nSpUsmvbkqLi6mb7/9lhwcHAgArVixgt5///1y+y8aNWpEo0aNoi1btpj0BkKlUtGPP/5Izs7O9P7771Nubi5t27aNxo4dS40aNdLRJAgCderUib788ks6depUtQyKG4OZuH37tqYjTC5ER0cTABoxYgRrKUREFBYWRgDM3iEniiL17NlT58cVERFh0iY/URTpu+++I0EQylQ2zz//vEnuytUkJSVR7969yzUEFxcX2rNnj1maO4uKiuibb74p0zGr3tq2bUsffvih0ZuHKuPkyZPUqlWrcvWoDapfv340f/58unz5slmi/7i4OHrmmWd0zMjW1lZHl4eHBw0ZMoTWrFlTYdOXIdRqY7Czs6vxBTIWCQkJBIAaN27MWoqGqVOnEgD68ssvWUuhS5cuaSqm/Px8s5a9ZcuWMhXAq6++Srt27TLJD7+goIDefPPNCisfe3t7+vjjj41edmlpKc2dO1enI7u8bdiwYSbvczp8+DC1aNGiQg2jRo0yafmPo1QqaeLEieUadb169Wjy5Mm0d+9esxkUkWScX375ZRkTUG/t27enzz//3CTNe/oagzwG3RuIIAisJWjIz88HADg5OTFW8ogbN24AAAICAphpyMvLg5OTE1atWgUAiIiIMOvchcLCQkyZMqXM/ocPH8LJycno3yGlUokpU6bg3r17ePfdd+Hr6ws/Pz+dv+7u7ib77r777rt45513IIpipVtpaSlsbW1NoiEmJgbr1q1Dp06d0KZNGxQXF6OoqEjn77lz57Bz507079/fJBq02bZtG8aPH4+UlJRyX8/OzsbAgQPRvXt3k2tRc+LECYwcORJxcXHlvv7777/j5ZdfNpueirBIY5ATamNgNemnPG7evAlAmvjDimHDhmHevHlYs2YNAGD48OFmLX/u3LkagwSA3r17Y/r06ejatatJynNxccGSJUtM8t5VYWVlBRcXFyZla9OmTRtER0ezlgEAyMnJgZ2dHRYtWoSSkpIKtytXrqBr165QKEy7CAQRYePGjZg/fz7s7OzQunVrqFSqMtsXX3yBdu3aMf3tAjJYK6k6ODo6krpCZs3evXvRt29f9OrVC3///TdrOQAAb29v3LlzB9evX2cWNTRu3BjZ2dnIyMhAYGAgYmJikJGRYRY9qampCAoKQl5enskNgcOxJARBOEtE7as6jvlaSdVBjk1JcokYCgsLcefOHSgUCvj6sltyKisrCxkZGQCA69evw9XVFf/8849Zyv7444/x9NNP499//8X+/fu5KXA4BmKRTUlyMoa8vDwA8uljuH37NgDAz88PNjY2TDSIoojs7Gydfe+8845ZmpNycnIwevRodO7c2eRlcTi1FYuMGOSE3CIGdbs6yzbK3NxciKKoed6yZUssXLjQLGXXqVOHmwKHU0Ms0hjkFDHIbVSSHDqes7KyNI+dnJywadMm2Rgnh8OpGm4MNUTdlCSXik9uxrB48WIEBwcz08LhcAzHIo1BTsglYlAblNoYWM5hUBvDyJEjMXToUGY6OBxO9eCdzzVELhHD119/DQ8PDyQnJwMA/P39cfToUTRv3hz16lWdl8OYZGZmolWrVvjhhx/MWi6HwzEO3BhqiFwihqZNmyIyMlLzfMiQIfDw8MDly5fNrkWlUmHTpk2yyNLG4XAMhxtDDZFLxNCyZUud5w8fPsRXX31l8hmd5fHiiy8yT5PJ4XCqD+9jqCFyGa4aGhqq89zNzQ1vvfUWEy3cFDgcy8YijUFOEYNcmpJcXFx0RiKNGjUKzs7ODBVxOBxLhRtDDZFLUxLwqDnJysoK48ePZ6yGw+FYKtwYaohcIgbgkTG88sor8Pf3Z6zGMigtLUVBQQFrGTrk5+fjzJkzZitPn4U009LSsGnTJr2ONRfp6en4/fffcf/+fdZSNOTm5mL//v1MBn1UhEqlwtmzZ3H8+HG9z7FIY5DTD1kdMaxbt67M+kDmRm0MUVFRiI6OxuzZsytci54Fs2bNwvTp03H37l3WUgBICw5GRETglVdeQXFxsVnLFkURv/zyi86+hIQEREVFwcfHB/369UNRUZHJdVy9ehXjxo0rs//evXvYuHEjxowZg6CgIPj6+uLVV1/FtWvXTKolNja23NdKS0sRExODRYsWYdiwYWjcuDF8fHzwyiuvmGxVY31M8P79+/jjjz8wefJkdOjQAW5ubnjuueewfPlyk2jSB1EUcfHiRSxYsAAvvfQSPD090b59e3z66af6v4k+2XzktgmCYJx0RjVg2rRpdPbsWWrYsKEm89Ls2bOpsLCQmaZz585Rp06diIgoJCSEANDp06eZ6dEmPz9fk2T92LFjTDSIokhXr14lIqLs7GxN2k9XV1e6dOmS2XRkZWXR//3f/1FYWBgVFxfTpk2byqQg7dChAyUlJZlMQ25uLn3yySdka2tLr7/+Oj148IC2bNlCEyZMKDcDm6OjI/Xt25fOnz9vdC0ZGRk0adIksrGxofj4eCIiyszMpF27dtG0adOod+/e5OzsXEaTk5MT9ezZk7Zv325UPaIo0ubNm+mjjz4qsz85OZl+/fVXioyMpODg4DKaFAoFtWvXjhYsWGBUTURU4W9ZFEVKSEign376iSIiIqhevXpldPn7+9OYMWNqd2pPhUJR7YtrLKZNm6ZJ0K2++D179mSqKT8/nzZu3EhFRUVkbW1NACg3N5epJjXLli0jANSuXTuz5NMtj61bt9Lw4cPp3r17mjzUXl5eFBMTYzYNiYmJmgqlXr165O3trZN3eMSIESY1c1EU6ffffyd/f3+dfNCPp760t7enXr160ddff01HjhwxSa7o4uJi+uGHHzQ3DFZWVjRy5MgKU4MGBATQkCFDaOHChXTu3DkqKSkxuqbY2FiNSc+fP58uXLhA0dHR9Prrr5Ovr2+56Vq7d+9On332Ge3evZuys7ONrik5OZkGDBhAERERmn3Xr1+nZcuW0bBhw8jHx6eMLm9vbxoyZAgtXbqUkpKSNL85bgwm5uDBg2U+jKVLl7KWRaIoavIsBwQEsJZDRJKmNm3aEABasWIFEw0FBQUUGBhInp6emoo5ICBAE0GYg7/++otcXV3LfG+CgoJo3rx5lJGRYdLyr1y5QuHh4eVWujY2NtS1a1f6/PPP6eDBgybNgSyKIu3YsaPcO25tPU8//TRNnjyZNm/eTKmpqSbTQ0R0//59Gjt2LCkUCh0Nj+tyc3Oj/v3707fffktHjx41aQtBQUEBffnll2Rvb08AqH///jRixAgKCAgoo8vT05MGDx5MixYtosuXL1d481WrjcHKyqraF9tYFBQUkJ2dnc6H8/DhQ9ayiIho48aNmi+SHDh8+DABIA8PD7MmXdfm66+/1vmsWrRoQSkpKWYpWxRF+u6778pNSB8cHExZWVkmLT8vL48+/fTTCpPPA6DVq1ebVIOaCxcuUJ8+fSrU0adPHzpy5IjZvifFxcW0YMECcnNzK1ePr68vvf766xQdHU0XLlwglUplFl1//fUXNWnSpMLr5OrqSgMHDqR58+ZRbGys3rr0NQY+87ma2Nvbo3Pnzjhw4AAAKQ+Au7s7Y1US6kTjj096Y4U6F0NkZCTs7e3NXv6tW7fwzTff6OwrKCjAypUrMXbsWJN+bvn5+Rg5ciTWrVtX5jWFQoGsrCxMmjQJixcvNkliJSLCoUOH4Orqio8//hh5eXnlbosXL0aXLl1MuvhiYmIifv75Z7i7u6NPnz7IzMxERkYGMjIyNAM3Dh8+DBsbG7N8T/bt24eoqCjEx8eX+7qjoyP27NmDFi1amFyLmps3byIqKgpbt24t9/UvvvgC/fv3R9u2bU06kZQbQw3o2bOnxhhYptF8HPUX3Zxf6Me5ceMGrly5gpYtW2LLli1QKBQYO3YsEy3vv/9+mZFsdevWRcuWLeHm5maycouLizF79my4uLjgiy++gLe3N3x8fDR/69WrB2tr0/4EBUHACy+8gBdeeMGk5ehDUFAQoqOjy31NpVIhKysLmZmZZvl9FxUVwdHREbNnz0Z2drbOplQqNY/nzJmDn3/+Gba2tibVQ0RYsWIFPvnkk0qH3168eBHTpk0z/VI3+oQVcttsbGz0DMhMy9GjRzWhnVyabYiIQkNDCQCdOnWKmYZDhw6Ri4sLvfHGGwSABg0axETH33//rROCd+rUiXbu3MmsA5zDqQpRFKmwsJAePnxIt2/fpsTERDp37hwdOXKE9uzZQw8ePKj2e4M3JZmeDh06wM7ODkVFRWZf2roiiouLceXKFQBASEgIMx23b9+GUqnUNKE4OTnhq6++wvDhw82WRKikpATvvfceAKBr166YNm0a+vTpI5vvD4dTHoIgwM7ODnZ2dsyapy1ygpsgCFi+fLmmGYcVNjY2mkqubt26TLWouXbtGkpLSxEQEMB0raTHJ9atXr0ad+/eNWtmuUWLFsHLywuHDh3Cv//+i+eee46bAoejBxZpDEVFRYiMjCyz1DQLAgMDAcjHGOTS8fy4MfTu3Rvz5883W/lEhD59+uDvv/9G9+7dzVYuh1MbsEhjAIDOnTujfv36rGWgYcOGAORjDHLoeAakpiQ1TZs2xcaNG00y6qYiBEFgfg04HEvFYo3h5ZdfZi0BADTD7PhQVV3UEYOrqyu2b98um+vD4XCqxmKN4aWXXmItAYCU3xhgHzGoh7jJJWJISUmBQqHAxo0bERwczFQLh8MxDIs0Bmtra03bPmvkYgzDhg3DqlWrNCOSgoODERsbK01vNzNFRUW4d+8e5s2bh+eff97s5XM4nJphkcZgZ2fHWoIGuRiDu7s7hg8fjpKSElhZWSEkJARz5sxhMgonNTUVkZGRmDhxotnL5nA4NccijcHBwYG1BA1yMQbtpQxUKhXS0tIMW3/diLi4uGDhwoV8aCiHY6FY5AQ3U09P1xdRFJGVlQWAvTE83rT2+uuvIygoiIkWT09PJuVyOBzjYJERg8nXCdGT7OxsEBGcnZ3NOhSzPB5f/IxVtMDhcCwfedSwBiKXJgq5NCMBuhHD4MGDmY9K4nA4lgs3hhogJ2Pw9/fXXJfPPvuMsRoOh2PJWGQfA+umJFEUoVAoZGUMdnZ28PHxQfv27dG6dWvWcjgcjgVjkREDa2O4fPky3n33XSQkJACQjCE2NhY7d+5kqiswMBDTpk1jqoFTfURRxIYNG1jL0JCYmIipU6dCFEXWUqBUKrFo0SKsXLmStRQA0si/P//8E2fOnGEtRUNpaSlu3bplnDfTZ21uuW1NmjSp9nrkxkClUunk7lXnZN2/fz9TXevXr2daviVx+PBhKi4uJiKSRW6Ghw8f0gsvvEA9e/YkURRNnuO4Ms6fP08REREkCAKNGDGCiKScyP/++6/ZUltqaxk1ahQ5OTkRAIqLiyNRFCkrK4suX75MBw8epLt375pNz7179+ibb74hf39/srOzo8zMTM1rRUVFdOPGDTp69KhZc4nn5OTQvHnzyN/fn/bu3Vvm9fz8fLp06RJduHChdud89vHxqdGFNAaPJ1WvV68e5eXlMdWkXcFt3ryZdu7cSUqlkqEiXX799Vdau3YtlZSUMNVRXFxMISEhdPDgQfroo49o3LhxTM3h1KlT1KhRIwJAgYGB1Lx5c2rUqJHZK+GjR49S//79db7XDRs2JA8PD83zGzdumFxHfn4+rVy5kjp16qSjRaFQUGBgIDk4OOjs37hxo0n1iKJIx48fp2HDhunkzfb09KT/+7//o7Zt21L9+vV1NH344Ycm1URElJ6eTh9//LEmX7WdnR2tWbOG/ve//9E777xD3bp1I19fX42m5557rnYbg5WVlTGvb7X46quvyiTorklmJWPTrFkzAkCnT59mLYWIiAoKCsjLy4sAlHtXY07mz59PAMjHx4cAkJWVFZ07d87sOkRRpOjoaLKxsSnzXapfvz4lJSWZRcO+ffuoR48eFSaeB0BOTk4UFhZGsbGxJtOSkJBAkyZNorp161aqRR2lBwYG0rPPPks7d+40iZ78/HxatmwZtWvXrko9AEgQBPLy8qJ27drRnDlzTKKJiCg+Pp7effddHZOqbLOysqLAwEAaPnx47TYGOaT2fDxlpI2NjSyaJIiIMjIyCADZ2tpSUVERazlERLRkyRICQE899RTT63Tv3j2dZkAAtHnzZrPryMnJoddff73cH3KfPn00zVymRKlUUlRUVJm7Xe3N3d2dEhMTTf6ZiaJI8fHxtHr1aoqKiqKuXbuSs7NzGT0LFiygrKwsk+spLS2lpUuX0htvvEEhISGkUCjKNYIlS5bQ8ePH6datWyb/zA4fPkwDBgyo1AR69uxJkydPpujoaNq9ezddvXpVR1etNgY7OzujXOiakJOTQ1ZWVpoPJCAggLUkDXv37iUA1LFjR6Y6CgsLKSEhgVQqFQUFBREA+vXXX5lqGjNmTJkfk5eXF/34449mM6xLly5RcHBwpXd406dPN6uBKpVKiomJoS1bttCsWbNo9OjR1KdPHwoMDKT33nvPbDq0UalUlJCQQL/99htNmTKFevToQW3btmXSZJuXl0cnTpygn3/+mUaPHk2dOnUiBwcHTR+MOcjOzqZTp07RqlWr6JNPPqFBgwZRaGioTsQ5bNiwSt/DoowBwHIA9wBc0ud4BweH6lxXo6MdYj777LOs5WiYMWMGAaAJEyYw1XH58mUKCgqi1atXEwDy9fVlGsHExMSUufMLCAigpUuXmuUOnYjowYMHNH36dPrf//5HP/30E23YsIH27dtHZ8+epevXr1N2drZsIk81xro2aWlEffsSpafrcfCaNVTi24hUEKjErxHRmjVEJJmFuT6rqigpKaH4+HgqLS1lruPKlSu0bds2mjVrFqWlpVV4rKUZQzcA7fQ1Bmdn5+peQ6MyYcIETTvf4MGDWcvRMHDgQAJAq1atYqpj+/btmpAbAH311Vd0//59ysnJMbsWURR12tEDAwNp2bJlsqlk5IIhlbdBFT0RRUUR1a1LNGlSFQeuWUPk6ChVT+rN0VFjDpzqo68xyGIeAxH9CyBD3+MVCgV++eUXFBUVmVBV1XTu3FmTd9rHx4epFjVEhFOnTgEAOnTowFRLUlISAKjNH59//jk6deqE/Px8s2v5/fffcejQIQQGBmLZsmVITEzEiBEjmK9xZS7S04HwcODOncqPmzULOHVK+lsVhhybng78+ivw99/S30p1fPop8Ph3JD9f2s8xC7IwBn0QBGGUIAhnBEE4o1QqsWHDBuZ5GZ599lnNGkVyMYbU1FTcuXMHLi4uaN68OVMtamNQ4+HhgV27dpk9V3dBQQEWLVpUKw3BmBW+IZW3QRX9f+UPHw60bQu89VYVZlLRJC1jTd7iVInFGAMR/UJE7YmoPQBERESwlgR/f39YW0urinh7ezNWI6EdLbCeIX7t2jXNY3t7e2zbto2JWRUXF2P37t21yhDUGLPCN6TyNuRYdflTp0rPp06tXEepj3/5+33L388xAfq0N5ljAxAAPfsYAJh1tmNldOvWjQDQvn37WEshIqIPP/yQANBHH33EWgo1b95c08fAYkiopVNVG35amtRmf+4ckbt7xcdFRUmb+nF5bfzq91L3W6alVfyehhz7ePna+yrqa1gVvoaKrHX7GIqsHWl1OO9jqCmwpM5nMtAY5DBcVU3Tpk0JkKbqs2TFihWkVCqpV69eBIB+//13pnpKS0s1w+jmzZvHVIulUlVnrTErfEMqb0Mr+s6ddfuR1VvnzhUf/wbW0HVIo5KuoxG9gTUVHs/RH4syBgDrAKQDKAGQAuDdyo6vW7eu0S9YdRBFkRwdHQmAzpopLIiMjKSQkBDNpKDdu3dTdHQ0FRYWMtFz/fp1AkBRj9cgHA2VRQRVRQPGrvANqbwNreg58sGijMHQrWHDhsa8VtUmKyuLAJCDgwPzseeffPJJmYlS48ePZ6Zn//79NGjQIOZjvOVMZRFBVdGAKSp8Tu2nVhsD69VV1cTHxxMAkoMe9fo/6s3Z2ZlpP8z58+cpPz+fWflyoLoRgT7RAK/wOdVBX2OwmFFJ2lhZWbGWAABIS0sDII+hqo8PAZ06darZh4Vq06ZNGzg4ODArXw5UNmKoslE96tfUA928vcsec+RIebYg7edwago3hhogV2No0KABJk+ezFDNk0NF8wgqGyJa1fDN06eB+fMBQXi0zZ8vmQyHYw4s0hhYj89XIydjqFevnubxF198AScnJ4ZqnhwqigpqEhHwaIDDGnnUsAbCOmKQmurkZQzqiCEoKAjvvvsuYzVPBhVFBTwi4Fg63BiqQXR0NLZv364xBm9vb6SlpeHu3bvMNHl6egIAvv32W81sbI5xqKi5qKKogEcEHItHnx5quW1hYWFG7Kc3nHXr1hEAzcqqLVq0IHd3dyarhmozcOBA5sNmayPlDSutbOQQHzHEkSuozaOSWNOuXTsA0ho8ABAXF4ehQ4fC2dmZpSz8+OOPEASBqYbaRkXNRZVFBTwi4Fg6Av3XXm5JtG/fns6cOcOsfFEU4erqitzcXM2++Ph4hISEMNPEqTnp6cA77wArVwINGkj7Jk2S/s6bJz0WBGDuXKBLF+Do0bLv0bkzN4AngYSEBGzcuBG+vr7w9fWFn58ffH194ebmxuTmjIiwdOlSHD58GN7e3vDx8dH56+3tDUdHRwiCcJb+W4i0MnhjdDVQKBRo3bo1jv5XM/To0YObQi1Ae4TR3LmPooW4OOn1qVOBli2lv09i5Z+dnQ0igpubm1nLValU+P7777F//344OzuX2erkK2QaAAAgAElEQVTXr49Ro0aZte8xODgYzZo1w4gRI1BYWKjZ7+DgAD8/PzRs2BA//PADWrRoYRY9giBg5MiRePDgAT799FOUd8Nv0OemT3uT3DbWfQxERBMnTtTMMt64cSNrOZxqkJOTQxcvXiSi8mciG7pYnDEQRZFWr15Nf/31l+kKqYKUlBTasGEDzZgxg4YPH07PPvss1atXj3x8fOjBgwdMNImiSNHR0WRnZ6czw1+hUNDevXuZaCIiOnXqFPn4+JRZjubbb79lpmn79u1Up06dMpqGDx9eu5fEeOqpp4x5HavF8uXLCQA1aNCAjh07Rjdv3iSVSsValoYTJ05QcnKyLDqjU1JSiIjo0KFDFBMTw1iNRFoaUbNmSTRgQCStXr263LWJzN2JfOXKFerduzcBoIEDB5qmED0oLi6m1atXU4sWLXQqFnt7e+arCMfGxlJISIiOrlmzZjHVlJqaSh06dNDRxPLzI5KW62nWrJmOJn9//9ptDNbW1sa8htUiJiaGANC0adPIycmJADC7myqP0NBQAkDHjx9nLYVefPFFOnTokKaiYXk3rGbs2AIShAwC5pC9fSC5uan0zi9gbAoLC+nLL7/UuRtu3rw5s5Vx1ahUKtq2bRs988wzBID69u3LfOQdEVFubi5FRkYSAHr11Vfp1q1brCVRfn4+DRkyhADQoEGDZPG7y8zMpPDwcAJA3bt3pzVr1uhtDBbZ+Wxvb0+HDx9mmtO4pKQEbm5uOHbsGNq0aYM6deogOztbFqOCsrKyULduXdja2iI7Oxv29vZM9bRs2RLJyckoKCiAl5cXrl+/jpKSEri4uDDRk54ONG6cj8LCzgD2A9gMf/96uHixj0aTdkezKSEibN26FbGxsSgqKtJsJSUlmD59Onx9fU0rQE+Nhw8fxunTpzFlyhTWcjRs2rQJ9+/fx7hx41hLASBdp++++w42NjayuU4qlQqffPIJlEolfvrpJ707n5nf/VdnA0A7d+40kq9Wn2+++YZOnjxJAKhVq1as5WjYtWsXAaCnn36atRQiInJxcdHcCQuCQABozpw5zPSMHp1PNjY//tc88hO5uubweQcWipyab9VkZ2ezllCGa9euERHV7nkMgiDgueeeYy0DkydPxvXr1wEAgYGBjNU84tixYwCAZ599lrESaSSLUqnUPCcivPvuu5ikHgdqBrRnLksjjQjAbLz//vs4f/4NWFk5Iz2dzzuwROSybpo2rCLhymjSpIlBx1vkcFU7OztZJHW3s7NDcnIyAG4MFXH79m2d5927d8eiRYvM2uSmPQw1NzcPgYFHsGPHQTRu3BjAo4lppm424nAsBYs0BjmtHCqniOHPP/9E//79cfLkSQDAM888w1gRcOvWLc3jJk2aYMuWLbC1tTVb+dozl/v0ARo3dsDly33x+A1U585mk8ThyB75xWF6IKcEMHIyhokTJ2Lo0KHIzc1FQEAAHBwccPz4caaa1BGDq6srduzYAQ8PD7OW//hCd127KsrpTeDNRhyONhZpDHJoRlIjJ2Nwd3fHxo0bAQCpqanw8PDAhQsXmGq6ffs2rKyssHHjRgQHB5ulTHWfQmxs5ctfczic8rFIY5DLstIqlUrTVCIHY6hbt67mcUlJCUJDQ5nnZrh16xYWLFiA559/3mxlqvsU3nmn6hSZHA6nLPKoYQ1ELsaQmpqKkpIS1K9fXxb9Hu7u7jrP586dy/xaDRw4EIMHDzZbedp9Ch07AufPS0lwtOH9CRxO5fCIoQbIqRkJ0DWGfv36mfUuvSLMYQraw1G1+xQmTJAmqvH+BA7HMORRwxoIa2MgIgiCIFtjsLKywvfff89YjflQNx1Nnw5s2lT+aqjqZbQ5HE7VWGTEwHpSy9atW7Fq1SodYxBFEZmZmUx1qfsYRo8ejdDQUKZazIV209GqVcDgwbxPgcPRZv/+/QafY5ERA2t8fHzw9NNPa/oVDhw4gICAAGzbtk2nA9jcuLu7w9XVFV988QUzDeZGu+mobl1gyRJp04b3KXCeZJYsWQIHBwd0NuCHYJERA2vUSXny8vIAACdPnkSzZs3Qpk0blrLg7u6Ozz77DPXq1WOqwxykpwM9ewIrVjwajnr2LODujjLLW/A+BY65UK+EICdSU1MrTN5TEdwYqoGLiwv8/Px09k2ePJmRmke0bt0aEydOZC3DLMyaBRw/DjRuzJuOOPJh2rRpuHfvHmsZOqSmpuKff/4xqEmJG0M10W7DDw4ORr9+/RiqkWjWrBns7OxYyzA56n6F4GBpOKogPNrmz5c6ojm1H0PugM3F9evXZdWUS0RIS0sDAHz22Wd6n8eNoZpoG8OkSZOYd4g/Saj7FWJigKioskNSedPRk8GGDRtYSyhDRkYGFi9ejDj10DjGPHz4EMXFxQCAUwbcMfHarJqojcHT0xNvvvkmYzVPBuX1K/BlLp5cli5din379rGWoUNGRgZEUcQHH3zAWgoAqRmpOlisMag7flmhNoZx48bJalG/2gzvV2CHHJttRFFEZGQkcnNzWUsBIF2jjIwMAMCuXbuwZ88exoqeMGOIi4ur9j9sLEJCQmBnZyebtIK1Hd6vwJbFixdDpVKxlqEDEeHmzZv4+OOPWUsBAOTk5OhcoylTpqC0tJShoifMGKytrdG8eXOmGtzd3fHBBx/Ay8uLqY4nBd6vwJYLFy5gwoQJsowcFi5ciMOHD7OWoYkW1MTFxWH58uWM1EikpqZi8ODB6Nixo2En6pP/U25bQEBATVOgGoX8/HzWEp4Izp8nsrYmiomRnqelEbm7E6Wns9X1JLFw4UICQJ988glrKRq6d++uySXerFkz5r/Hs2fPavQAIBcXF6pfvz7THNCXL18mURQpKipKrav25nxmObtYG3XfQk5OjuzupDIzM2UV+icmJqKwsBD5+fkGnztiBGBlJTUlAcbtV0hNTWW+lMnjbN26FWPHjmXeDKFNixYtYGNjg+Tk5DJ3xiwJDg6Gt7c31qxZg4cPHzLVkpGRAX9/f/Tt2xc2NjZYuHAhTp8+zbQ/NDg4GIIgGD75Vh/3kNtmY2NjRE+tOfXr1yc7OztKS0tjLUVDr169yNbWlg4cOMBaChERffzxxxQWFkY2Nja0du1aOnXqlF7npaVJ0ULZNVKJOneuua4ff/yRHBwc9NZTHdLSiPr2lSKeHj2krbJoRxRF+vfff02mpzpkZGTQlStXSKVSsZai4eTJk5SZmUnFxcWspRARUVxcHN29e5fu37/PPHp5nNzcXMrOztY7YmBeyVdns7OzM+Y1qxElJSUkCAIBoKKiItZy6McffySlUkn+/v4EgBITE4lIqmxYMnPmTE2IbWdnR0lJSVWek5ZG1KgRUWSk9DwqimjSJOPqGjRoEI0ZM4ZKS0uN8n5paY8qf7UR+PkRuboStW1LZGcnbY0a6W8UHI6x0NcYLLIpycrKirUEDffv3wcRwcPDw6xJ7ivi6NGjaNOmjSbX8vr16xEREQFRFJnqcnFx0Tz+4IMP0Lhx4yrPmT4duHVLGnkEGH/OgiiK6NGjBxYtWlTj75R6jkXHjsCxY9Kw2nfekf6mpAC9e0sd59bWUrxz8yYwbJj0+vHjQIcO0vl8PgZHDlikMbDOx6DNnf9+yQ1ksuB/UFAQkpOTNX0e06dPR48ePZibaZ06dQAAfn5++Oijj6o8Pj1dWkb7jTeAzZulCtPYcxYEQcDEiRMhqJ2nGjxuCCkpUsVvaysNq1WppMc7d0oL/AUGSkbXpAlw6dIjo0hJkc7nBsGRAxZpDKwrOW3UxuCtnnHFmMeH8Xp4eOCdd95hpOYR6ohh9uzZeqVBnTVLqkjXrgUyMiRTMPacBWMbQmkpoFBIW6NGgL29VOlHREivKZXA1atSzoiUFOl9/Pyk/0uhkI5RG8TTT3Nz4LDDIo2BRwwVExQUpPN84sSJcHR0ZKTmES4uLujatStee+21Ko9NT5eWvQgKkh6npekup816zkJ6OvDMM2UNQRSl0VOBgcCVK0BhofRcjSBI+tUoFMC1a0BAgBQ5iKJ0TGmp1NQkk1UVOLUEIv1HTlqkMcghYti9ezeWLVumWbmwQYMGyMnJQVJSElNd2hGDg4MDxo8fz1DNI9zc3PDDDz/odZc+a5a07EVsrPRYTstepKcDYWFSxV1S8sgQiKQIISgIuH5dqtwdHIDiYuC336QmpeLiR8+LiqTzRFE6vnlz6XxBeGQQa9YAFy6w/o85tYUTJ07of7A+PdRy2/z8/IzWS19dEhISCAA5ODgQAGrevDk5OTlRjHoWFkN8fHwIAE2YMIG1FA2GjIrq0MF0w1NrytChupoEgcjensjBoXzNhm7q91EopL9Nm7L+jzk1QU7De0eNGqX3qCSBDAgv5EJAQADduHGDqQZRFOHm5oacnBzNvqeffhrHjx9nqEqiV69e+Oeff3Dt2jUEBgaylmMwkyYBeXnSiCR/f8DZGZg7l7UqaVRR27a6++ztpSajyvj7b6BXr7L7u3QBjh6tutzYWKBVK/11cuRBbGwsCgsL0alTJ9ZSUFBQgAYNGkCpVJ4lovZVHS+LpiRBEMIFQUgUBOGaIAhVDlmRQx+DQqFA28dqiTFjxjBSo0tQUBBeffVVizQF9WJ5gNTJLAjyWVb75ZfL7qvKFABg4MDy9x85IsUJVaXi1aNbhiNDFi9ejLNnz7KWAUCaTa9UKvU+vkpjEARhnSAIHwqC0E8QBKMnExYEwQpANIB+AEIBvCEIQmhl58ihjwEAwsLCNI/d3Nzw6quvMlTziKCgINmsB28os2ZJo3Y2b5butDdvBl55hX3/QkwMUN0gNS8POHCg4tfVBuHjU/7rCQnyMEaO/uTm5mLNmjU4c+YMaykAgJUrVxp0vD4Rw88A8gG8AmCfIAh/CIJQx3BpFdIRwDUiSiaiYgDrAbxY2QnW1tZISUmp1ro7xqR9+0cR2fDhw2WTl2HIkCFo164daxnV4vRpYMkSIDMTaNdOGqq6ZAn7ZbUHD67Z+RVFDdpUFuBNn16z8jnmZd26dcjJyZFFxJCSkoIDBw6gYcOGep+jjzH4A/gHwBgiagNgM4AvqyexXHwB3NZ6nvLfPh0EQRglCMIZQRDOJCUl4bnnnmNeEWtHDKNHj2aoRJf69euzllBtNm0C7OwANzepr0E9VHXzZnaa0tOBmg42qypqAKTIoaJV3P/8s2bl13by8/MNGo5pSogIP/30EwBp6e2CggKmenJycpCYmIixY8fqfY4+xtAcwAwACYIgnAfwPIBBgiD0NlLTUnnjF8t8wkT0CxG1J6L2RUVFGDZsWI0mKBmDZs2aoU6dOujevTtCQkKYaqktqO+MDxyQ+hYEgf1QVWO1yr30UtXHVNRKKpPWU9myfPlyzdBx1pw5cwbnz58HAKhUKlxgPOY4JCQEjRs3NmhVXH2M4QciGkhETQH0ArAGgCOAoQD+qpZSXVIAaMc4fgCq/ITlkGdZ3QEtl07n2sCOHdIYf3Uzkrc3+wxtW7YY5320BrBVSEXBnm+ZGJqjprS0FHPmzEFiYiJrKQCAn3/+Wee5XPoZDFleXh9j2CsIwg1BEHYBmA5gCoB1RDSCiDpUU6M2pwE0EwQhUBAEWwCvA9hW2Ql16tSBv7+/EYquOf369cPL5Q1X4RhMero0yictTcrS5uYmNSulp7Od7VxUZL6y1KOcXFykobGRkdI1eHyYLOcRmzdvxo0bN2RhDFlZWVi3bp3OPjn0MwCGGUOV4z6JqO1/I4eCAQQB2A9gd7XVlX3/UkEQJgDYA8AKwHIiiqvsHE9PT2MVX2OioqJgZ2fHWkatQJ2+E5CWxAgNBc6dk5qXFi9mp8vaWprlXFPqVDFkIz1dGoEESOsqnT8vbYAUSXHKQkSY9V87oxyMYc2aNVCpVHB0dNQMjrFEY9BrHgMRqYgojoh+J6IdRGTU1FJE9BcRNSeiJkT0v6qOd3NzM2bxNcLe3p61hFrD6dNSs5GPD5CdLS1HXVTEvlI0NF1ueVhZSZV9RaSnV16OnKak7N27l7UEDX///bemPV8OxtC0aVOkpaUhICAAALBp0yb4+Pgw74AGyuakrgxZTHAzFIXCImVzquDIEakZydVVakY6dw6oWxfIz2c7jv/Ikarv9iujc2dp7aSKUC/Kl5pa/usdOrBfOFBNVlaWbNbfAqTVetXIwRjCw8Ph4eGhWVyza9eu+Ouvv2SRq8XoEQOHYy7UC+i9/bbUrj54sLQAHetx/EqlNAlNX4OoU+fRCkhVVerTp0uL8gnCoz4V9TDdyEhp6Qy58NVXXyEpKYl54icAiImJ0Ylebty4gUJ9pqKbmKKiImRkZEChUMDT0xOCIMhiUq5Buc31WVBJbltYWJjBC0hxLIOKFtDz8mKtzPio04Da2REFBUkL8sl18UAiovj4eLK2tiYApFQqWcuhIUOGaNLFqreLFy+ylkU3b94kANSgQQPWUjQUFxerr1HtTe3Jqb107iyNSCKS7prr1pXWKLp/v3YtQa2d06G0VBqFVN78rNDQDFk0IxERoqKiUPpfm1iOPmNvTciNGzdw9uxZhIeHAwCcnZ0ByKM5SW45WgCpCdAQuDFwZIW6A1oQpE7ozEzgjz+kSlMGiehqTHo6EB4uTZq7eVMyBWtrYNs23eajCRNKMGDAQIwfv561ZADAtm3bdJptDFmQzRR4eXnh8uXLGmMYMmQI/vrrL+aGBcjTGAxqRgI3BqNBRBBFEcnJyZq7Ktaow8Jbt26xlqKBiHD37t0KX1cvKKeOFs6fl/7u3i11RnfubPyOaJVKhfT0dOO+aQXMmgWcOAGsXy8l9SGSRl55e0tGqF4b6s8/07B9+3b0Km+9bgbcvXsXEREREAQB9evXZ24MDg4OEAQB165dAyCNBurXrx+Gq8c7M0SOxmDIiCQAltnHYGVlRTk5OUZqfas+GRkZJIoiffDBB+Th4UFfffUV+fj4GJSUxhSkpaXR6dOnyc/Pj/r160ezZ89mqkfNtWvX6Pnnn6eQkJAqj42K0t2IiOrVI7KyIoqMJOrblyg93Ti6Tp8+TQMGDKDExETjvOFjpKVJemNiiOrWJXr5ZanvoE2bivsUCgoK6Pfff2f+XdKmoKCATp48STdv3qSrV6+ylkNERLm5uRQbG0upqamspWjIy8ujhIQESk5OZi1FQ2FhIa1fv17vPgbmlXx1NgB07NgxKi0tpYyMDGNeP4NYs2YN+fn5kbe3t6bzSw4dTjt27CCFQqHR9P3337OWREREKSkpFBAQQADo7t27lR7buXP5laaVldRZ6+ZGNGmSmYRXE7UhREZKhtC2rfTYzo6oZUtJf1oakbu7tF/u/w+nepSWlrKWQEREI0aMqP2dz3v27EF4eDiuXr3KTMMbb7wBb29vnWYId3d3ZnrU9O/fH0OGDNE8Z73YoBpfX1/s27cPXl5eiIurdHI7jhyROqHVHdHqxyNGSO3y/ftLi+zFxkpt9nLJV6DuQ7hz51Gz0apVUtNRTIw0J8PDA7h0CZg3T7f5iPXS4hzjI4oifvnlF9YykJOTgw0bNuh/gj7uIbcNWsPTUlJSjGmqBnP48GGd4XJdunRhqkfNgwcPqH79+gSA5s6dy1qODrGxsbRmzZoqj6soavDyenSX3batdDeuvvs2ZhOTITweHaj/DhkiRQhqrT4+FTcfcWofO3fupN69e7OWQUuXLqUmTZrU/qYkAKRQKKikpMSY169aDB48WGMMAwcOZC1Hw6ZNmwgAzZs3j7WUMhjyuan7GdLSpMo2LU16PnSoNPZ/795HRqGulE1lENrmo/04KorI1VUygXPnpL9Dhz7Sww3hyaRXr17k7e3NWgYlJyeTSqV6MoxBDhecSOpUtbW1JQD09ttvs5ajwyuvvELz589nLaNGVBQ5eHtLd+GTJj1qu1dXytp9EBVV5vo8fvz8qKhHEYr68ePRQUzMo34EtaG5uz86n/clPBmcP39ec8PIsi9UmyfCGNq3b2/Ma1Yj3n//fQJAkydPZi1Fh/T0dFq9ejVrGUahIoPo3PmRMagr5aFDdSvjxytzfR8TlTWAc+ck43FzKz86UHcyW1vzKOFJ5q233tIYw9GjR1nLIaInxBhefPFFY16zGpGZmUkeHh40Y8YM1lLKIJdREcZEexiruolJu1JWNy1VVJnr89jd/dEQU7UBREZKZbZtK21paWWjA24InNTUVLKxsdEYw5IlS1hLIiL9jaHKfAxypG7dusjMzISvjNJaubm54csvv5Tlyq9yWMDL2Jw+DRw9Ks2SVrNkiTSLeOdOwMlJyrO8apWUGrRt20dLV+v7+K23pNnWw4cD2nOV0tOB69elx9OnS8etWCGNNNLWA0gT8uSwpMWTQmpqqizqhYULF6JEK4lHfHw8QzUSRQZknLJIY/Dx8UF2drYsvgDajB49GhcvXmQt44lAu7Lt0kUyCUAayurjIz3uoJVfULsyj42t+vGdO5IhLFggVfqzZkkGoE7z+fbb0t+NG6VZ2o/DDYENkyZNwm+//QYbGxtmGvLy8sqk95SDMTx8+FDvYwUpurAs2rdvT61atUL37t1lMQWeIw+0DUKbzp11TeKff4Du3St/LAhSA9A//wA9ekhzDMp778fL4WbAjiNHjqBr1664d+8e6tWrx0xHdHQ0pv+3Try6Mm7YsCHzpWkuXLiA1q1bnyWi9lUda5ERAwB8/vnnzC80R148XimrjUK9aaNOmVnZ44r2cQOQH6IoYvLkyQCkdYFYGkO3bt2Qnp6Ojh074uHDh9iwYQOWLVsGpVIJFxcXZroePHig97EWawwBAQFo1KgRaxkcGcMr7yeHtWvX4vTp0wCqsWCckXnqqacAANf/a5fs1q0bIiIimC+uaYgxyK+n1ADkstQDh8NhR35+Pj7++GPNc0OXmDYFmZmZyM7OhoODA7y8vCAIAtN+D+AJMgYOh8OOkpISnJLBAk9z585FSkqK5jnriAF4FC0EBgbK5gaWGwOHwzEpRISJEyciKSmJqY60tDR8++23OvvkZgxygRsDh8MxKQsXLsTixYvh7+/PVMe0adOQl5ens08OTUncGDgczhPF7t27ERUVBUAahsmKgoICdO3aFbt27QIgTTJt3LgxjxgqQLu5rSq4MXA4FgTreUfx8fF47bXXIIoiFAoFfNSzCRng4OCAt99+G/fu3QMAdO3aFadOnUKrVq2YaVKTnJwMQF7GYEizHzcGDscCuHbtGqZPn87UGB48eIABAwZo8j37+PjA2pr9iPdjx44BAJ599ll4eHjg3XffZaxInhHD/fv39T6WGwOHI2MyMzMxefJkhIaGonXr1szW4iouLsagQYM0d8IAmPcvqDl+/DgAyRjkgCiKuHHjBgDJGERRZCsI0qxn7bWbqsJijSErK4u1hDKwnsDCqT0UFxdjwYIFaNKkCebNm4ennnoKL7/8MhMtRIQxY8bg8OHDOvtZ9i+oUSqVuHjxIqytrdG+fZUrPZiFO3fuoKioCHXr1oWjoyPWrl3LWhJWrlxp0PEWawwvvPACLly4wFqGDmPHjmU+fO9xZsyYIYvOODWFhYVYvHgxCgoKWEvR8O+//2LevHmIjo7G0qVLsXr1amzcuBGJiYlM9MTExKBly5aIiorSjLCZMWMGs/HwhYWFGDduHP744w+d/XKIGE6ePAkiQtu2beHo6MhaDoBHzUiNGzfGn3/+iR07djBWBIMXHLVIY8jIyEBqaiqeeeYZbN68mbUcAMDBgwdx8eJFdOzYEQcPHmQtBwBw8eJF7N69G23atClzt8eK9PR0zJ49GwEBAZg5c6YsIj9XV1dMnToVEyZMQGRkJMaMGYObN2+icePGTPS0adNGs+4PIDWRhIeHM9ECSJ287du3x969ewEAkZGReOONN2QRMWj3L8gF7f6FRYsW4Xx5C3CZmZ49exp2gj5JG+S24b/kF+rts88+I5VKZZREFtWhqKiIvLy8NHqsra1p0aJFzPSoCQ8P12hSKBT0xRdfME/aM2PGDJ3PzsXFhT788ENKN0WCZj05e/YseXp6EgDq378/Xb9+nZkWNQ8fPqSxY8eSp6cnHTx4kLUcIiK6f/8+zZw5k+Li4qigoIAuX77MWhKlpKTQb7/9RmfOnGEtRUNaWhr98ccftGrVKs33XKlUMtWUmZmpzgFfezO4qfMra28DBw6k7OxsY15LvcnPz6du3bqV0TRu3DgqLi5moonoUbpR7a1bt25069YtZppOnTpFCoWCAFDDhg2pV69eNHr0aFq4cCHl5+cz0/XBBx/Q5s2bSRRFZhrKY/PmzawlcKrJxIkTNb+7w4cPs5ZD6enpehuDReZjEAShXNGhoaH4888/0bRpU7PqWb58OaZMmVJus0jPnj2xadMmeHh4mFVTWloapk2bBqVSidzcXJ3N1tYWCxYsQJ8+fcyqCQBiY2NhZWWFJk2awMHBwezlV4RKpaqVme44bMjNzYWvr69maO+CBQvw3nvvMdV09epVNG/eXK98DBZpDK1ataLFixcjPT0daWlpOn8LCwsxZ84chIWFmV1XXl4eUlNTkZqaipSUFM1fBwcHTJ8+Hc7OzmbXxOFwzM8vv/yC0aNHa56//fbbWLFiBUNFwLlz5xAWFlZ7E/XY2trimWeeYS2jDE5OTmjevDmaN2/OWgqH88SSlZUFNzc3ZuUTEX766SedfefOnWOk5hE5OTl6H2uRo5I4HA6nPLKyssqstmpuTpw4gZiYGJ1sbfHx8SgqKmKoihsDh8N5Qvn2229x+fJlphpEUURSUhIGDBgAAJg5cyYiIiJw6dIlproMMQaLbEricDicx7l9+zYWLFiANm3aMNXRuXNnANIAEABo27YtPvroIxQXF7OUxSMGDofz5PH555+jsLDQoMXiTInaGNQr0Nra2rKUw42Bw+E8WVy8eBG//vorAGiW4WbN48bAGm4MHA7nieKjjyIoyFsAAB8nSURBVD7SLEmek5ODwsJCpnpycnKQk5MDW1tbuLu7M9WihhsDh8MxG+np6cjNzWVW/sGDB/HXX3/p7GPdnJSeng5AihZYLX74OIYspsmNgcPhVJvc3FwMHjyY2cqmoihi6tSpZfazbk5SNyN5e3sz1aHNlStX9D6WGwOHw6kWpaWlePXVV5GRkcEsgdDFixcRHh6OcePGAZAqYkEQZGMMculfAB6t+qoP3Bg4HI7BEBHGjRuHXbt2oUmTJsx0tG7dGl9//bWmf+G9997D9u3bmQ8NlZsx5Ofn4+7du3ofz3QegyAIEQC+ABACoCMRnWGph8Ph6MfMmTOxZMkSADD7opXlcerUKQBAx44d0atXL6a5sQH5GcOuXbsMSjHKOmK4BGAQgH8Z6+BwLIqSkhJmld+aNWvw6aefap6zjBgAKcNcbGwsAGgWz2Td4avd+SwHNm3aZNDxTI2BiC4TEZv8iRyOBVJSUoIVK1bgww8/ZFL5HThwACNGjNDZx9oYYmNjUVpaiuDgYLi6ujLVokYdMdy+fZuxEqCgoMDg9KKsIwa9EQRhlCAIZwRBOMN6KBqHY27UhhAcHIzRo0drOlvNyaVLl/Dyyy+jpKREZz/rpiTtZiS5oDaGX375hfmciosXL+Kbb76BjY2N3ueY3BgEQdgvCMKlcrYXDXkfIvqFiNoTUft69eqZSi6HIytKSkqwfPlyBAUFYcSIEUhOTsakSZOYVca7du1Cp06dNM8VCgUCAgKYaFEjN2MgIo0x3Lp1C2fOsO067dixI8aPH1/G0CvD5J3PRGS2NGFnzpxBTk4OgoOD0aBBA+btjIWFhbC1tWU2lI9TPURRhFKpRGZmJjIyMjQbAAwePNgsmd5KSkqwevVqzJgxQ2eYoZeXl077vjlp2bIlrly5glOnTsHGxgazZ8/G/Pnzma8BdPr0aQBAhw4dmOpQo1QqkZ+fDysrK6hUKhw7dgxdunRhqsnQCYi1anVVLy8v9OnTB9nZ2XBxcUFwcHCZrUmTJmb7ImdnZ+Ppp59Gw4YN0aZNG7Rt2xZt2rRBixYtmPyYjhw5gq+++gphYWFo164dwsLCEBgYyMRAlUolXnvtNTg7O6Nx48Zo0qSJZmvYsKFZ02zm5ubirbfewqVLl5CRkYHMzMwyIzg6dOiATZs2mUVXXl4e3nzzTfzxxx9lXps5c6bOOv/mZu7cuSAiDBs2DP/v//0/5kmpsrKykJiYCBsbG7Ru3ZqpFjXqaEH9HTp69ChLOQAMWw4DAKpMCm3KDcDLAFIAFAG4C2CPPueFhYVpElwXFBRQfHw8bdu2jebNm0dhYWGaBNzlbQMGDKCrV69WM522/qhUKkpPT6f333+/jAYbGxtq3bo1vf322zR//nw6e/asyfWoefHFF3W0uLm5Ua9eveiDDz6g9evX05UrV0ilUplFy9atW8v9jGxsbKhZs2YUHh5OK1euJFEUTa4lKSmJ3N3dy9UzYcIEKiwsNLmGxxk3bpyOjvbt25vtsymPu3fvkp2dHQGguLg4Zjq02bdvHwGgDh06sJaiYf/+/Tqfm6enp1m+w5URHx+v1nOG9Kmb9TlIbpunpyd1796d/Pz8SBCESo0AAFlbW9Nbb71FFy5cMOa11uHDDz+kQYMGUadOncjPz4+sra2r1BUaGkrR0dGkVCpNoumnn36iIUOGUK9evSgkJITq1q1bqR5nZ2caM2YMJSYmmkQPEdGWLVvoxRdfpObNm5OVlVWFWrp160Z79uwxyw/qjz/+oEaNGpV7PdavX2/y8ssjOjpao8Pe3p4A0LFjx5hoUTNt2jQCQP3792eqQ5tvvvmGAND48eNZS9GwatWqMt8lU/6m9OHkyZO13xi0L7hCoaDAwEDq06cPjR49mkaOHKl5rU6dOvT+++/T7du3jXmNy6VZs2Zlvgx169alkJAQnX1WVlYUERFBhw4dMnml9/rrr1dpTgCodevW9PPPP5vMoLT5/vvvy5i29vPw8HA6fPiwyXVoc+jQIQJADRs2JIVCQQCoRYsWdPnyZbPq0ObatWvk6+tLP//8M0VGRtLQoUOZaVETGxtLQ4cOpX/++Ye1FA0nT56kzz77jPbt28daioYdO3aU+Y2tWLGCqabbt29Tp06darcxNGrUiHbt2kVXrlyhoqIinQvwySefkK+vL82ePZuysrJqfEH1Zd26dbR27Vo6dOgQXb16lfLy8oiIaO/evQSAGjRoQNOnT6fU1FSzadq3bx8tX76cdu3aRefPn6c7d+7QokWLCADZ2dnRW2+9RceOHTNrmJuQkEBr166l8+fPU25uLjVu3JgEQaBXXnmFzpw5YzYd2oiiSAcOHKC8vDwCQMOGDaPc3FwmWrTJyckhIqlpwhw3N7WB/Px8OnHiBFMN6shKexs5ciRTTUREI0aMqN3GoN3H8DiHDh0qYxYsWbhwIa1fv142moYNG0Zz5syhBw8esJZCly5dojfffFM27dUpKSm0ePFi5u3BnOrz448/0rx585iVL4oiTZs2jU6ePEk2NjYEgBYvXky9e/dmpknN0KFD9TYGgaSmGYuiffv2xHpssKVCRMyH8aqRkxaO5VNUVISmTZti0KBBWLBgAVMteXl5cHZ2hq2tLQoLC5GXlwcnJyem3/eIiAhs3rz5LBG1r+rYWjVclVM1cqqI5aSFY/msXLkSKSkpuHHjBmspyMzMBADUrVsXgiDA2dmZsSLJOPWFz7zicDgWT0lJCWbOnAnAsLwDpkLbGOSCIUtzcGPgcDgWz+rVq3Hz5k0AwI0bN8C6iVw9U15OxsAjBg6H88RQWlqK//3vf5rnOTk5BuU3NgXqiMHd3Z2pDm2USqXex3Jj4HA4NcbQtXiMybp165CcnKyzj3VzkhybkgxZlZobA4fDqRHFxcWYMmUKk7JVKhVmzJhRZu0x1h3QcjQGtSZ94KOSOBxOtSEijB8/ntkd+t27d7Fo0SI8ePAAr7/+Ojp16gRXV1ceMTzG/fv3kZ+fr/fxPGLgcDjV5ocffsDSpUvh5+fHpHwfHx/07t0bV69eBQB07twZu3btQv/+/ZnoUSM3Y9i+fbtBx3Nj4HA41WL37t2YPHkyADAzBjVxcXEAgNDQUCgUCoSGhjLVI7dRSVu3bjXoeG4MHA7HYBISEvDaa69pcg40bNiQqR61MbRo0YKpDjVyGpWUm5uLvXv3GnQONwYOx8J5+PChWcvLyMjAgAEDdIY/sowYSktLkZiYCAAICQlhpkMbtTEUFxczViJFdobMYQC4MXA4Fsvhw4fx/PPPIyEhwWxllpSUICIiAteuXdPZz9IYkpKSUFxcDD8/P7i6ujLToY3aGNSGxZKLFy/i559/NugcbgwcjgVBRDhw4AB69OiBbt26wcvLC507dzZb+Tt37oSfnx+Cg4N19rNsSoqPjwcgn2Yk4JExxMTEMFYCfPHFFxg+fLhB5zxRxnDv3j2kpaUhKytLFiEeh6MvRITdu3ejS5cu6N27N/755x84Oztj1qxZZtXx0ksvYenSpZpmpF69esHBwYFpJ6t2x7McICJN5/OxY8eYL88hCILBTUlP1DyGO3fuoEuXLprE2NbW1nB0dISTkxMcHR3h6OiIBg0a4JtvvkH79lWuTFtjkpKSMG/ePLi6usLFxQWurq462+P7TAkRobCwEA4ODiYtx1JR/9jT09ORnp6OtLQ0pKenIzQ0FAMHDjRpuTt27MDXX3/9/9u7+6io6vwP4O+vCOigCASigQ/pGlagKSa1budXCgjSgTV1Fd2ftLqbHiMVc8sy87jbdmBJV6xUPOHxYc2iEh9YH/KhXVf5iU/pQopQmAiKrmiLkggy798fOHdnZECUmbmDfl7nzGEGZvy+z/XO/dzvvTP3g0OHDln87Z133kHXrl3tNnZjsrKycO7cOQQFBWHHjh146623dL1SrrPNGK5du4a6ujoAQFlZGYqLi9G7d29dM0lhaIKnpydGjRqFVatWAag/aVVZWant/YwdOxYLFy5EQECAQ/L07t0bBoMB7733XqPPCQkJQVpaGp5//nm753n11Vexbt06+Pj4wNvb2+Kn6X7nzp0xfvx4u15GeOPGjcjKyoKHh4dWtE33zW99+/ZFr1697JKhpKQEs2fPRmlpKc6dO4fy8vIGb66ZM2di9uzZdhnfJDc3FwsXLmxQFIKCgjBjxgy7jt2YDz74AACQmJiItm3bIiUlRZccJs42Y7hw4YLF4z179rS6wqB7N7Z7uTXVwc1caWkp165dy0mTJrFnz56N9jzu27cvd+3a1ax/0xbOnz/PzMxMvvrqq+zXr5/VTA899BCXLVvG2tpah2QyGo3Mz8+nn59fo8spOjraId3WampqGB4e3miOdu3a8Q9/+AOvX79u1xybN2/WunCZ39zc3Bzawzc/P5/+/v4WGbZt2+aw8c198803Wj91R/QIv5Pa2lq6ubkRgENb+TZlyZIlFv9X8fHxekdiYWGhKc+D19rz4sWLzMzM5NSpU/noo482eEN36tSJsbGxfPjhhwmABoOBycnJdm27aTQaWVhYyIyMDL700kvs3bt3oxs8AHRxceH06dNZUVFht0xkfW/cvXv3MiUlhXFxcU0WhMcff5zbt2+3ax5TYfrggw84cuRI+vj4WM0SGxvL4uJiu2aprKzksmXLrBbtrl27OrSn8IEDB7RlYdq5iY2Nddj4t5s8eTIBMDExUbcM5k6dOkUADAwM1DuK5vadGn9/f93bxebl5T04heHy5cvcuHEjp0+fzpCQkAZvYg8PD0ZFRTElJYWHDh3izZs3WVdXR29vb44ePZolJSU2W/AmN2/e5NGjR5mWlsbRo0ezS5cuDXIZDAYOGzaM8+fP565du7QVKSIiwm575KWlpczMzOTMmTM5ePBgq3vCfn5+HDRokPbY19eXS5cutcusxWg0sqCggMuWLeOvfvUrdu7cucmC2atXL2ZnZ9s8h7m8vDxOmzaNHTt21Mb18vLS7oeFhbGsrMyuGcx99dVX9PDwIADGxMTwypUr9PX15ffff++wDOYuXbrEdu3aEQALCgp0yXC7DRs2EAAjIyNJ1i8zPVVVVWnLyPx24sQJXXMdPnz4/i8M/v7+DA0NpVLKYuG7u7vz+eef5x//+Efu27fP6kygoqLC5nu/tbW1/NOf/sSoqCh6enpaPSwUFxfH999/n7m5uaypqdFeW1dXx7CwMG7atMnmexWrVq3iuHHj2L179waZlFIMCQnhlClTuHr1ahYVFdFoNHLJkiV0c3Pj73//e165csWmeUhy69atnDBhgjZru33Paty4cUxPT+epU6f40EMPOeSw0ddff81nn33WIsszzzzDtWvX8syZMwTAl156ye6Hrsxt2LBBK97jx4/X1pl9+/Y5LMPtUlJSLDbCzuDdd98lACYlJfHy5cvs37+/rnkOHDjAcePGaevRhAkT+Pbbb3PlypW65tq/f//9XxhMC71t27YcMmQI3377be7Zs8ehb1xzRqORgYGB2srQo0cP/vrXv2Z6ejq//fZb1tXVNfra2tpaVldX2yXXL3/5Sy1Tx44dGRERwfnz53PHjh2NHo9dvXo1v/vuO7vkIckFCxZYFMxRo0bxww8/5IkTJywKY1FRkUMOG5FkVlaWNsOcMmUKjx07pv2tsLCQaWlpDj8UkJOTQ4PBwMTExCbXH0fauHEjn3rqKW7evFnvKJovvviCY8aM4ZdffsnU1FQqpVhVVaVrpt27d3PAgAEEwNdee41k/ZEEPRUUFNDd3f3+LgwBAQHcvn07r169astl1yIZGRlct26dXQ5P3avs7GwuXbqUx48f133FNMnLy+PixYt5/PjxJjd45rMqe6utreWKFSv4n//8x2FjNkdhYaHux6atccZMtbW12sz48OHDesfhvHnzCIDz5s3TO4rG29u72YWhVX5ctUuXLhg+fLjeMSxMmjRJ7wgN6H3pYWuCg4MRHBx8x+e5uro6IE29tm3b4ne/+53DxmuuPn366B3BKj2/s9CYrKwslJSUAADy8/MRGhqqax5T7wMPDw9dc5i7efNms5/7QH3zWQhxf1q8eLF2Pz8/X8ck9UyFwWAw6Jzkv0xfumsOKQxCiFbt4MGDyMnJ0R47Q2GoqqoCIDMGIcQDjvUfDHG4tLQ0i8fOUBicccYghUEI4VBbt269q2bztlJWVobMzEyL8x6lpaX48ccfHZ7FnGnG4CyFgaTWVKk5pDAIIVrk7NmzmDhxIjw9PR0+dnFxMbZs2YLExEQAwMSJEzFw4EDt+kl6cbaTz3dzfgGQwiCEaIHa2lqMGzcON27cQNu2jv+Q47PPPouoqCiUlZUBAIYPH44DBw7oftE6Z5sxSGEQQjjM3LlzkZOTAy8vL11z/PDDDwCAHj16wNXVFV26dNE1j7PNGO7m/AIghUEIcY+ys7ORmpoKALoXhjNnzgCoLwzOQGYMQogHzpkzZzBx4kTtsZ6FoaqqChUVFXB1ddWlcZE1MmMQQjiFgoICh4xTU1ODsWPHWnwKSc/WnqbZQrdu3eDi4qJbDnPONmOQwiDEA2b//v2IjIzErl27HDLem2++idzcXIvf6TljMD+/4AxIOt33GORQkhAPCFNB+MUvfoFz585h6tSpdh/zxo0bCA8PR3Z2NgBoe+h6FgZnO79QXV0NoP56X4685ldT7nbG0CovomcvWVlZWL58OVxcXBq9tWvXDklJSQ5pPH7p0iXk5uZqK1hTt27dujnlxc2E7e3fvx8LFizAzp07td8tXrzYIR8XdXd3R3R0NN59910AwKhRoxAWFqbrF8pMhaFnz566ZTDnjJfDuNsZgxQGM3Fxcfj888+xfv16q38fOHAgMjIyHFIUAMDHxwdr167FZ5991uhzHnnkESxfvhzdu3e3axaSSE5ORkFBAdzd3eHm5mb1Z/v27REfH6/rMWdHIInKykqUlZWhtLTU4mf//v0xdepUmxdqawUBqF9vw8PDbTpWU0hizZo1AICEhASMGDFC+x6BHpxtxuBsh5GAu58x6N5b4V5ujfV8vhdGo5GnTp3iX/7yF0ZGRpqaWVjc2rdvz9TUVLu0uGxMXV0dDx8+zPnz5zfoVIdbvaFff/11hzYlKS0tZbdu3RptvzlgwAAePHjQrhkKCgoYEBBAg8HADh060NPTk15eXvTx8aGvry87d+7MRx991C7NZH788UeOHj2aQUFB7NChg9VlMHv2bLv0vqioqOCsWbMatIp1c3NjUVGRzcdrSk5OjtZxz5HvicY8/fTTBMA9e/boHYUkeeLECQJgnz599I6iOXny5P3fwa2lheGnn37i1q1bmZiYyF69ejV4c7u5uWn3hw4dateOZubKy8u5Zs0aTpgwgX5+fo1ugJ966imLLmP2VFdXx2+++YZ//vOfGR4ebrVwenh4cNGiRQ7ZSBiNRqanpze6bGJiYnj27Fm7jX/y5En6+vpaXWdWrVplt3FJ8sqVKxwyZIjFuK+//rpdx7RmypQpBMBZs2Y5fGxrunbtSgC69cK+nam/st5tRs3l5+dLYbCmqKiIS5YsYXR0dINm3d7e3hw7dixXr17N8vJyhoSE0MvLixkZGXbtVnXjxg3+/e9/55w5c7RWgOa3hx9+mJMmTWJ8fDwBsEOHDkxLS7N7N7aysjKuWrWKEyZMYOfOnRvdCANgXFwcz5w5Y9c8lZWVzMrK4m9/+1urvaIB0NfXl5988ond/r+uXbvG9PR0hoSEWO1VnZOTY5dxTS5cuMAnn3ySABgQEEA/Pz/6+/s7vOvc9evX6eXlRQA8fvy4Q8e2prq6mgDYpk0bqz3e9fCPf/xD6xvuLI4dOyaFgaxfgbdv384ZM2awT58+Vg97zJ07l/v27bPY062urmZ8fDzPnz/fvCV+l77//nsuXbqUcXFxDQ5HuLu7MyIigu+//z7z8vK0jdy0adMYGxtrt7ahVVVV3LZtG2fNmsXg4GCrBSohIYHr1q3joUOHCICBgYHMysqySx6S2uG98PBwurq6NtgQ9+3bV3s8fvx4Xrx40S45ioqKmJSUxE6dOmnj+fn5aTsXAwYMsHs717NnzzIoKIgA2Lt3b54+fZovv/yyLg3mMzMznWpvuKioSFsfncW2bdsIgOHh4XpH0Rw5cuTBLQzFxcX86KOPGBMTw/bt21tsTDp16sQxY8Zw5cqVPHfuXKML0NZ7nFevXuWWLVuYmJhotUAFBQVxxowZ3Lp1a6PnC8yLhC3U1dXx6NGjTE5O5rBhwywOnZnOqURHR3PRokXMz8+3GHvTpk1MSkpiZWWlzfKQ9YV8x44dnD59On/2s59Z5FFKMSwsjAsWLODhw4dZV1fHyZMnMzAwkNnZ2TbNQdY3bs/OzmZUVJRFjrCwMK5du5bV1dX09fXlmDFjeO3aNZuPb66oqIg9evQgAAYHB2vr7smTJ5vsmW0vMTExBMBFixY5fGxrdu7cSQAcMmSI3lE0X3zxBQEwNjZW7yia3Nzc1lMYAKQCKADwLwBZALya8zpTYaiurubOnTuZlJRksQdpuvXv359z5szh3r17HdZc3mg08vjx40xJSeHQoUMbbHQ9PT05cuRIpqen84cffnBIJvK/h4fGjx9v9fzFwIED+cYbb3D37t2srq5u9N+x5XmEkpISpqenMzY2lgaDwSKPl5cXx44dyzVr1vDChQsNXrtixQqbH0apqKhgamqqxXknd3d3JiQkWJxUNxqNfO+99+x6mJGs3yEwnWwePHgwKyoq7DrenZSXl9PFxYUuLi4sLy/XNYvJxx9/rM0ancWaNWsIgPHx8XpH0ezfv79VFYZIAG1v3U8BkNKc13Xv3p2xsbH08PCw2Jh07NiRL774Ij/++GOWlpbaetk2qqamhuvXr2dCQoJ2Isx8b3fQoEGcO3cu//nPfzqsQJHUiuYTTzzRoBAEBATwN7/5DT/55BO7HYax5siRI5wzZw779evXIFNISIhWyB35aZf8/HxOnjzZ4txT9+7dmZyczH//+98Oy2EuNzeXPj4+BMDnnnvO5jO0e7Fw4UIC9Sf4ncW8efMIgG+99ZbeUTTLli0jAE6ePFnvKJq9e/feVWHQ9XsMJL8ye3gAwOjmvK6kpAQlJSUAgODgYIwYMQLR0dH4+c9/Djc3NzskbVqbNm3wyiuv4PLlywAAf39/DB8+HMOHD0dERAT8/PwcngkAkpOTsXv3bgD1n6l+7rnnEBERgcjISDz22GO6fCHu008/1a7IaTAYMGzYMMTExCA6Otru38VozMGDB5GRkQEACA8PR2JiIl544QVdr7tz+vRpXLlyBTExMfj888/Rvn173bKYtGnTBn5+fkhISNA7isbb2xshISEICgrSO4rG29sboaGhuveEMGcwGBAaGoojR4406/mK9XvrulNKbQHwGcm/NvL3lwG8fOthMAD9G7veP3wBXNI7xH1ClqVtyfK0rSCSHe/0JLsXBqXULgDWumbMJbnp1nPmAhgE4EU2I5BS6jDJQbZN+uCS5Wk7sixtS5anbTV3edr9UBLJJr+rr5RKAPACgGHNKQpCCCHsS9dzDEqpKABvAPgfkj/pmUUIIUQ9vS+7/SGAjgB2KqWOKaWWN/N1K+yY6UEky9N2ZFnalixP22rW8nSak89CCCGcg94zBiGEEE5GCoMQQggLrbYwKKVSlVIFSql/KaWylFL69RZs5ZRSY5RS3yqljEop+WjgPVJKRSmlTimlvlNKzdE7T2umlFqplLqolJLvK7WQUqqbUuprpdTJW+/zGXd6TastDAB2Aggm2Q9AIYA3dc7TmuUDeBHAXr2DtFZKKRcAHwGIBvA4gHil1OP6pmrVVgGI0jvEfeImgNdIPgbgaQCv3GndbLWFgeRXJE396g4ACNQzT2tG8iTJU3rnaOUGA/iOZDHJGgCfAojTOVOrRXIvgMt657gfkDxP8uit+1cBnAQQ0NRrWm1huM0kANv0DiEeaAEAzpo9LsUd3nxCOJpSqieAAQBym3qerl9wu5O7uJzGTQDrHJmttWnOshQtYu2KhPJZcOE0lFIdAHwJYCbJyqae69SFQS6nYTt3WpaixUoBdDN7HAjgnE5ZhLCglHJFfVFYR3LDnZ7fag8lmV1OI1YupyGcwCEAfZRSjyil3ACMA7BZ50xCQNVfXz8DwEmSi5rzmlZbGHDvl9MQt1FKjVRKlQJ4BsDflFI79M7U2tz6IEQigB2oP7mXSfJbfVO1Xkqp9QD+D0CQUqpUKTVZ70yt2BAA/wtg6K1t5TGl1IimXiCXxBBCCGGhNc8YhBBC2IEUBiGEEBakMAghhLAghUEIIYQFKQxCCCEsSGEQQghhQQqDEEIIC1IYhLABpZSLUirt1vXu85RSvfTOJMS9ksIghG28CaCY5BMAlgCYpnMeIe6ZU19ET4jWQCnlAWAkydBbvzoNIEbHSEK0iBQGIVouHEA3pdSxW499AOzSMY8QLSKHkoRouScBvEPySZJPAvgKwLE7vEYIpyWFQYiW8wbwEwAopdoCiASwRddEQrSAFAYhWq4Q9U3WASAJwN9IntYxjxAtIpfdFqKFlFLeqO857ov6HgIvk7yubyoh7p0UBiGEEBbkUJIQQggLUhiEEEJYkMIghBDCghQGIYQQFqQwCCGEsCCFQQghhAUpDEIIISz8P0y635UnxgNbAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:07<00:00, 1.96it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "outfolder = './out/simgd'\n",
+ "if not path.exists(outfolder):\n",
+ " os.makedirs(outfolder)\n",
+ " \n",
+ "for gan, outfile, hs_g, hs_d, nsteps in plot_configs:\n",
+ " trajectory = trajectory_simgd(gan, theta0, psi0, hs_g=hs_g, hs_d=hs_d, nsteps=500)\n",
+ " plot_vector(gan, theta_s, psi_s, path.join(outfolder, '%s.png' % outfile), trajectory)\n",
+ " simulate_trajectories(gan, theta_s, psi_s, trajectory, path.join(outfolder, 'animations', outfile))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXlcVOX+xz9ngBkQhlVUFEUNRP2BhmguqLm2qJVhi4plZVB5r9st7VqZXXPLW2ppXpdrm3pdUjOv6XUrNdw31Nx3IXBBERTZhvP9/fF4ZoEZmP0c4Hm/Xuc16znnyzDzfM53eb6PQETgcDgcDkdCJbcBHA6Hw1EWXBg4HA6HYwIXBg6Hw+GYwIWBw+FwOCZwYeBwOByOCVwYOBwOh2OC7MIgCEJDQRB+EwThtCAIJwVBGCW3TRwOh1OTEeSexyAIQhiAMCI6IgiCFsBhAP2J6JSshnE4HE4NRXaPgYiyiOjIw/v3AJwG0EBeqzgcDqfm4im3AcYIgtAYQByA/WZeSwGQAgA+Pj7xLVu2dKtt5hBFEVevXsWdO3cQFRUFf39/uU1Cfn4+MjIycP/+fTRs2BB16tSRzRZRFHH37l3k5OQgNzcXRITatWsjIiLC7mOWlpYiOzsbt27dQlFREVq2bAkfHx8AgE6nQ0lJCYqLi/Wb8eOSkhKIoljumL6+vmjevLndNlWGTqfT21xcXAwAUKvVCAoKKmenhIeHBx599FGX2VQZRITr168jMzPT5PnY2Fio1WqZrDIlKysLt27dQpMmTaDVauU2R09+fj6KiooQHBwstyl6SkpKcPz4cQDIJqLQSncgIkVsAPzAwkiJlb03KiqK5Ob8+fMUGxtLAMjHx4dWrlwpqz2XLl2igQMHEgACQCEhIfTNN9+43Y68vDxatmwZ9e/fnzQajd4eANSpUydavHixXcf9448/6O233yZfX1/98Tw9PalHjx7UrFkzqlWrlsm5LG21atWi6Oho6tWrF7322ms0YcIEWr58uZM/BfPodDpat24d9erVi9RqNd26davc65mZmbR//37asmWLW2yqjAMHDlCzZs3Iw8ODzp49K7c55di3b5/cJlQZjh49SgAOkTXjsTVvcvUGwAvAZgB/s+b98fHxTv7IbOPnn3+mgIAAAkCRkZF0/Phx2Wy5c+cOvffee6RWqwkAaTQaGjduHN29e9dtNlQmBrNnz6b09HSbj6vT6einn36iHj16WDXo+/r6UvPmzalXr170+uuv04QJE2jBggW0ceNGOn78OOXk5JAoii74BGzn1KlTihxozXH//n16++236dy5c3KbwnGQKiMMAAQAPwCYbe0+cgmDTqej8ePH6wei5557zq0DsDFFRUX05ZdfUnBwsN6ewYMH0+XLl91yfleJgYQoirR+/XoaNmwYtWvXjry9vc2KwaRJkxQ36FdXSktL5TaB4yBVSRg6P/yRHweQ9nDrU9E+cgjDzZs3qWfPngSAVCoVTZs2TZYfiiiKtGbNGoqMjNQPjl26dKEDBw64/NyuFoOK0Ol0dPr0aVqxYgWNHz+e+vTpQ+Hh4RQbG0tFRUUuOSeHU92oMsJgz+ZuYdi3bx+Fh4cTAAoNDaVt27a59fzGdnTu3Fk/GEdFRdFPP/3klCtlSyInpxhYQ3Z2Nt2/f1+283M4VQkuDE5AFEWaN28eeXl5EQBq3769LIOgucTynDlzqLi42OFj63Q6mjx5Mm3dulX/nNLFgMPh2AcXBgfJz8+nV155RT8gDh8+nAoLC11+XmNycnJcmli+dOkSJSQkEAA6fPgwFwMOp5rDhcEBypaiLlmyxKXnK4urE8uiKNJ3331HWq1Wf3zJK+JiwOFUX7gw2ImcpajuSCzfvn2bXnzxRbMVPlwMOJzqDRcGG5G7FNWViWWJrVu3Uv369c2Kglar5ZOFOJxqjrXCoKiWGHJx69YtDBo0CNu3b4dKpcKUKVMwbtw4qFSubyV1+fJlfPDBB1ixYgUAICQkBJ988gneeusteHl5OeUcOp0OM2bMwL/+9S/4+PigZcuW8Pb2Lrd99913iImJga+vr1POy+Fwqiayd1e1h7Zt29KhQ4eccqz9+/fjhRdeQEZGBkJDQ7F8+XL07NnTKceuiLt372Lq1Kn48ssvUVxcDI1Gg1GjRuGDDz5AQECAy8/P4XBqHoIgHCaitpW9r8Z6DESE+fPnY9SoUSgpKUH79u2xevVqhIeHu/S8xcXFmD9/Pv7xj3/gzp07AIDBgwdjypQpaNy4sUvPzeFwONZQI4XhwYMHePvtt7FkyRIAwF/+8hfMnDnTqV0jpS6eUjiKiLBu3TqMGzcOFy5cAAB06dIFX3zxBdq1a+e083I4HI6jyL4eg7u5cOECOnTogCVLlsDHxwdLly7F3LlznSoKRIQRI0YgJycHAHDgwAF07doViYmJuHDhAqKiovDTTz9h586dXBQ4HI7iqFHCsH79erRt2xYnTpxAZGQk9u/fj6SkJKeeg4jw7rvvYt68eTh58iQGDRqE9u3bIzU1FSEhIZgzZw5OnjyJ/v37QxAEp56bw+FwnEGNCCWVlpZiwoQJmDZtGgDgueeew/fff+/0JC8RYfz48Zg1axYAoFu3biAinljmcDhVimovDO4sRf3kk0/w2Wef6R8TERITE/HFF1/wxDKHw6kyVGthcGcp6tSpUzFp0qRyz588eRI3b97kwsDhcKoM1VIY3F2K+vnnn+PDDz80eS48PBwdOnRAhw4dzK4zzOEYU7aKTQ7OnDmD0tJSNGzYUBHrl5ujsLAQ3t7ecptR7al2wuCOUlRjvvrqK3z88cfo3LmzXgjat2/v8vkQnKpJTk4Ozp07h7Nnz+Ls2bP6+/Xq1cOmTZtktS00NBQDBgzAzp074e/vj0aNGqFhw4YmW6NGjdC+fXvUqlVLFht37NiBr776Ci+99BL69++PwMBAWewwR2FhITw8PJzWsUBWrOmbobTNUq+ksl1Rly5damMnEdsoKCigw4cPO2VdBI7zUcJSnyUlJTR79mxKSEig0NBQs32qBEGgrVu3UklJidzmUlFREb355psW19X+6KOPZF/i84MPPiAApFar6ZlnnqFly5bRvXv3ZLWJiPVbGzBgAK1cuVIR3z1j7ty5Q0Q1sImenF1R8/Pz3XYua8nKypLbhHJcvHjRLXbt27ePXnjhBbp+/brF9+Tn59Px48dp7dq1tGnTJpfaI4oibdy4kR5//HGLAy4etj5v1qwZ9e3bl0aNGkUFBQUutasie2fOnEkqlcrEvpCQEEpNTZXFJmN0Op1+mV0ANGTIEEUIAxHRxo0bCQB1795dPxgrgR9++IE++eST6i0M//d//6f/0cvdFXXTpk1Ur149OnTokNvOWRGiKNKCBQuoVq1atHLlSrnNIVEUaevWrfTMM8+QIAj03nvvuew8xoNvly5dTAb/zz77jN58803q1q0bNWjQwGTA69atm0tsMse+ffsoMTGRBEHQnz8oKIjCwsJMbPLz85P9qnPDhg0ma3YAoFOnTslqk8TNmzcpPDycateuTT/88IPc5ugRRZH69OlDM2fOlNsUE+7du0cjRoyo3sKg1Wpp8eLFdPPmTf2Vg0qlomnTprnVzd20aZN+tbOxY8e67byWyM7Opueff17/I37nnXdks+XevXs0b948atGihd4etVpNI0eOdOp5iouLacmSJfoQovG5Kro69/DwoMjISHrqqafok08+capN1nD27FlKTk4mtVpN0dHRJIoi3bt3j9LS0ujHH3+kRYsWud0mc5w4cYIaN25MdevWVYS3YMzevXud3preGbjzwtRWqrUwAKAePXpQeHg4AaDQ0FDatm2bMz+/SjEWhXfeeUf2uOu2bdv0ay1otVq3rzonceHCBRozZow+rAeAwsLCaNKkSRWGdmzl3r17NHv2bGrUqJFVg/+IESPoq6++oo0bN9L58+cVkxfKzMykv//9705bnc8V3Lx5k5588km5zTCL0kRB6VR7YZC29u3bu33FMSWJQlFREY0dO1YfmujYsSNdvHjRrTaIokhbtmzRh4uk/03Hjh1p+fLlVFRU5NTzFRcX09y5cykpKYnatm1bLtwBgDw9Pd2aZ6ruOPt/yJGHGiEMKpWK5syZQ4WFhc787CpESaJw+vRpatOmjf6zmDhxossqW0pLS8td8VsKF7366qt08OBBl9hhDlEUKSsri3bs2EELFy6kd999l5555hlKSkoinU7nNjs4HKVTI4QBAMXFxdHatWud+dlZRCmiICWYfXx8CABFRES4NP6bn59PL774Iq1evZqI3BcuqqpkZhJ160bUsSO7TUtjt2XvK7BwjFPNqdbC4OHhQcOHD6fDhw878zOrEKWIQtkE8+DBg12a7MrIyKD4+HgCQBMmTHBbuEhuMjOJnnySDd5lB3rj58wN9qNHE2k0RB4e7DYujt2WvZ+SYp2ApKWx9wQFER07Jvcnw6nKVGthiIuLc+ZnVSlKEQV3J5gPHTqkP1/Zih93h4tciSQCaWmG24gIosBAojFjyg/0xs+ZG+wDAoj8/Nivy/hWqzXc9/dn71erKxeQuDj2HoAoNtayeEhCxuFYoloLg6WZz65ACaIgR4J51apV+lCV8TZ69OgqHy4q6wEkJ7Or8bg4dhsTQyQIRElJ7LFWaxjgtVo28Gu1bHA3N9jHxLBjxcURhYYS+fgYHkv3k5OJVCoiL6+KBUS6DxD5+rJbL6/y4hETw8QjPJxo61aikBCibdu4WHBM4cLgBJQgCmUTzB9//LFLWyeIokiTJk2yWAIaFRVFZ8+eddn5nYG5MJBxTL+sB6DREG3ezMRgxQr2q3j+eaLgYDbghoYaBnZpsA8NZccxN9ir1czb2LLFMKhrtYaBPSCAiY5KxWyQzmFOQCRvITSUHR9g+5kTD0lkQkLY3xIays4VEcHEIiiIqFMnLhQ1GS4MDiK3KLg7wUxE9ODBAxo4cCABIG9vb4qKiqIePXrQ0KFD6aOPPqIFCxbQpk2b6NKlSy61w1bKCoG5MJAUAsrMNA31SFffyclsEJauvFNS2HPSYOvvT3T0KLsF2MC7dathUC472Ccns3NLIiJt0jnUakMYKTHRvIBotUwgpPtJSey8AFF0tEE8YmLYc2o1kacnuz91Krt9+mm2T0gIeyx5Fd26GTwLnreoOXBhcAC5RcHdCWaJixcv0uHDh+nmzZtVYuKQ5A2EhxuEIDm5fBjI359tQUEGATAWgebNmThIV/iJicxbSEpir4eEsPcTGa7my3oRcXFE9esbBnhbtvr1zQuI5EWEhhrERKNhf4dKZRAMLy/2WHoNYO8PCWH2P/00e65WLcM51Wp2XEFgf39QEFHbtrxaqrrDhcFO3C0KZQdgpcxgViJlw0KjR7MBDjAIgVpNNHiwaRho9Gi2SYOrvz8TkqQkw5W75DVIV+uObgkJlv+OhATHj69SMfEICTGIwiOPsNckr6FPH3YbGclumzc3CIrkCc2bZzimILDPQgo9cW+i+sGFwQ7kEIUPP/yQiJQxg1mJGIeJjMNCUvWPNLAHBbGBz8OD7SOFgQSBVexkZhryCjEx7FjWDtAVDfLuwlYxkfInkihIXoX0WBCIvL2ZOEpCYy5Pwb2J6gUXBhuRI3w0a9YsUqlUdOzYMbcmmKsCkiBIFUOSEEhhIY2GxdmlK/2YGMOVc1YWe04SgTFj2DHDwpQvALZiq2AYexZeXuwzCghgjwMCmBg0bkxmvQlBIBowgCexqzJcGGxADlH4/fffydPTk6S+Pu5KMCsRcxPIRo9mA5VGQ3TkCLu6la70peofKcmbmcm8BikxWxU8AFdjjWCEhhoEQqUyCITkPQwYYPq4bChLo+ECUdXgwmAlcohCVlZWuf77Tz/9tKLb9bqSsuWjKSnsqnTwYPY4Lc2QB5DCRCqVdUJQE0TAGqz1LCRvIjKSfb6SWAiCoQJLymEYh6T4nImqARcGK5BDFEpKSsyu5KVWq2nMmDH04MEDl9sgN2XbSRiXj2q1TACkZLJxGam3Nxt4KhrkuBBYj/HkOUublHOQBMKSBxEUxITdy4u9lyetlQkXhkqQqyR17Nix5UQhPj6e/vnPf9LVq1fdYoMcWEoily35lEpIpbBRZqbpFSoXAtdQmUchzaeQvDSpGgwwlMEae3C+vjxZrUS4MFSAXKKwZs0avRjExsbSlClT6Pz58245t1xUlEQ2nr0bGMgmkBlP/OJC4H6k8unKvAkphGTp/yR5G2Fhzmv+V1JSQgsXLlTkGuvFxcVVolUMFwYLyCUKZ8+epccee4wmTpyomHVzXUVZ78BSEtl4stjo0WxfS5PEuCC4hz179tDTTz9Nn376KaWmplKnTqVW5SakTZoZXnbz8HBOyevMmTOpfv36tHDhQsVV7j3zzDOKLB45c+aM/j4XBjPIOaM5JyenSswmdoSyM5ErSyK3a1fxIFNTxEAURcrLy6OzZ8/Szp07aeXKlbR//37Z7Pnxxx/182lq1apFTzzxBE2fPp32799PWq1Y4f/MOBdhydOoV89+gSgsLKSIiAgCQNHR0bR27VrF/K4+++wz8vT0pNmzZyvGJiKihQsX0oQJE0gURS4MRES5ubn6+3K3uagJlJ2JLE2gspRElvaJizPMNXA16enplJmZ6Z6TmeHYsWM0fPhwSkxMpE6dOlHTpk2pVq1aJjmnRo0a0a1bt2SzkYho3rx55XJhAOiRRx6hc+fOWRVqqux1jca+ENMPP/xgYlOHDh1o586dzv8QbOTy5ct6m15++WW6d++e3CYREdHx48cJAI0bN44LAxHR888/Tzk5OTVSFNx1xWK8loHxTGTpvmkS2fLVpqu9g+zsbHrvvffIz8/P5IIhMzPT7d1i9+/fTz169DA78AKgTp060axZs2SPpU+cONHELg8PD9q+fbvJe6wpg60oD+HjY3sOQqfTUatWrfR2devWjQ4dOuTkv94+OnToQFI7m48//lgRY41OpyM/Pz/p86q+wtC6detKP4wdO3YQAHrttddcKgq3b9+mF154QVEdR2/dukWdO3em3bt3u/Q8xp1MJW9AmoksNX6zVFHkrjDR/fv3afLkyeTv708AqGHDhjRx4kTq16+ffi7JU0895R5jjBBFkbZs2aJfHa/sptFoqLi42O12lbXx7bffNrGrrDAYU5lImCtzNX7Nlslyv/zyCwGgwMBA+uijj5z0FzvOrFmzqEmTJvTMM88oQhQknnvuOerTp0/1FobatWtX+CGIokjt27c3+UK7QhREUaQBAwYQAOrdu7dTj20vt27d0l9NxcfHO91zME4sS51MExMNDdikmciWrhJ9fY+65QdTVFREc+fOpbp161q8MgdAfn5+lJiY6HJ7LFFaWkqrVq2iqKgoklqizJ49myZNmiSbTcbodDp64YUXKCoqinbs2GHVPpUJhKUwkyAwgahAe/SIokjPPPOM4joBZ2Rk0B9//KEom4iYx0xE1VsYYmNjK/wQjMtCAZAgCJScnEzbt2936j/s3//+t35wuXDhgtOOay/GohAVFUV//vmnU49v7CGkpDDvYPBgljMICRHJ19dSqOh38vHxocmTJ1NBQYFTbSpLaWkpLV26lJo0aWJRDAYNGkRLly6lM2fOKOaqrri4mBYuXEj169dXRLzcmMLCQruuyq2ZQGcp9GRNcjovL8/Ov6jmUq2FoaIcQ0lJCUVHR5cbDHr37u3UOOTZs2f1ScPvvvvOace1F1eLApHpWgfSesWZmZU1p/udnn/+ebpy5YrT7THH5s2b6W9/+xsNGjSIunfvTi1atKCgoCCT70KnTp2oqKjILfbYyoMHDxRxkVEWRy6obGn0J3maHh7Wew8c66lSwgDgGwA3AfxhzfsrEoaFCxeaDAJt2rShLVu22Ps5mqWoqEgfG3755ZdldxtdJQplW1dIHoK0UExMDHvfp5/+m4Bs6tnzIjVr9l/9Zx8ZGUkbN250ii2OUlhYSFevXqV9+/bRunXr6PLly3KbVOOwRSAGYSldRgSVQqAsTQTlfL1UbvOrBVVNGLoCaOOoMOTn5+sTik2bNqXly5e7JFTw/vvvk5TIvHPnjtOPbwuuFIWICNPF5qX5B9LENLnDRpyqSWUCMURYSvdRy+TJ+6hFV6dycXCUKiUMzF40dlQYpk6dSqGhoTRnzhyXhQp+/fVXEgSBVCqV7LFgV4aPpIXn1WpDrDgpib1meWLa79StWze3hY04VRtLOYjLiDD7wmVE8DbfDlLthAFACoBDAA41atSo3B9cUFBAs2bNcmlCKjs7mxo0aEAA9CuvyYWzRcFc2EhaCKeislPgd5PQna+vL82ePZt0Op2T/lJOdadsBVspzJctlUIglYoVO/DurfZR7YTBeHPlms+WEEWREhMTCQC1b99e1hpzV3gKxh1PpbWRAwOZ51C3buWiEBAQQM8++yzNmjWL0tLSFFPtw6kaGIeXKvIYpIcqFRcHe+DC4GSUUprqKk9BqzXteNq8uWHGcnCwoaVFcvI9ioiIID8/P3r66adpxowZdPDgQe4hcJyChwdLPJvLMbzisZQAwzwIQeAryNkKFwYnIndp6pEjR4jINaIgJZilDqdxcRWvf9CixW3au3ev7LNyOdUXrda0KukyImgQTEXB2HPgoSXrqVLCAGA5gCwAJQAyAAyr6P3uFAa5S1P3799PcXFxLgkfSfMSPD3ZbVqa5cRyTel0ylEOtkyQ8/XlnoM1VClhsHVzpzBIpamNGjWinJwct52XiOU1unfvrhcDZ4iCcdM7KcEsrZgmdTh1d8dTDscSFYmD8WQ4gKhOHS4OlWGtMHiCY5HffvsNM2bMgEqlwpIlSxAYGOjW82/ZsgW//fYbAOD8+fNo3LgxduzYgfr169t8rKwsYPBg4MIF4P59YMgQ9ry/P1BaCvzxB9tmzTLsU6uWM/4KDsd+8vLYrb8/cO+e6Wulpaa3N28CbdoAR44A9eq5z8bqiEpuA5TK7du38corr4CIMH78eHTt2tWt5xdFEe+//77Jc1euXMFzzz2HgwcP2ny8GTOAPXuAjAygRw8mAi+8ABw4AGRmAsHBQHIyMGaM4ZosNdVZfw2H4xh5eYBWW/n7srKAxo2B48ddblL1xhq3Qmmbq0NJSihNXbp0qcn8AMC+BUmMq46ktRI0GsMC7jyXwKlKWJt3cHc5q9xtcSzx4MEDk8ewMpTEPQYzLF68GGvXroWfnx+WLVsGLy8vt56/qKgIH330kf5xdHQ01q5diz179tjkuWRlAR07Anv3Al5egCAAQ4cCnp7Agwfl35+QwL0EjrLJzSUQVe49iCIQF+c+z+Ho0aPYtWuXe05mA7t27cLmzZtt39Ea9VDa5kqPQe7SVCKiL7/8kgBQWFiYQ4ueG1cdAaylRWYmm7gmLbfJE8ycqsSRI0do69atRFRZV1+2+fi4JyH9559/UkhICF28eNH1J7OBX3/9lerVq6dfKha8Ksl25C5NJWLrVEdGRtLUqVPtXtpRCh+p1YaqIx464lQHCgsLKSAggFauXGl1t9YBA1xvl06nI09PT2rZsiXdvXvX9Se0kj179hAA6t+/P4miyIXBWgoLC/X35SxNlTh79qx+tSV7kCatqdVMECw3vOOiwLHMgQMH6Oeff1Zk7Lxnz54kCALNmTPHanFwxwzpiIgIAthSsfZ6+c7myJEj+hzl4sWLuTBYy6xZs2j//v0mXVN37drltOO7Gyl8pFKxJHNWlmlbCx464liDTqej2NhYSkhIoNTUVLnNMWHy5Mn6wW7ChAkkiqJVSWmNxrUJ6c6dO+vtGj16tOtOZAOnTp3S2+Tr68uFwVrat29PCQkJiumaai9lw0eW1tXlXgLHWjZs2KAfVJ599lk6efKk3CYREdHu3btNqvVSUlJIp9NZJQ5+fq7zHAYNGmRi14IFC1xzIhu4ePFi2epGLgyVcfnyZZMPrXXr1lWyB5C14SMuCuU5fvy4rOfft28fLV68mJYtW0Zr1qyhDRs20LZt2yg1NZWuXbsmq22iKFLXrl31vw+VSkVvvPEGpaeny2pXcXGxdPWr3xITE6mgoIC8vCoXB1flHMaNG2dik6enJ22XeW3SP//80y5hqNHlqqtWrTJ5fOzYMYSHh2Pnzp0yWWQfY8cCV68COh0rRV2/3vykNV6KakCn02HSpEl47bXXZLWjTZs2uHTpEl555RUMGDAA/fr1Q69evfD666/D01PexgSCIOCzzz7TPxZFEXl5ecjIyJDRKsDLywtdunTRP65Tpw5atmyJo0eP4rHHKt9/zRrg11+db1ejRo1MHg8YMABr165FYWGh809mJd7e3vbtaI16KG2Li4tzipq2adPGRE3r169vczxVFEX67rvvZEtWZ2YaFk5XYpJZ6uskiiJNmDCBfv31V/mMeciFCxeoQ4cOBICCgoJoxIgRcptEv//+OzVu3Fj/XdRoNJSbmyu3WURE+smeKpWK5syZI7c5RET02Wefkbe3N4WFhVH37t1NVmy0NiHt7HzDzz//TH5+fpSQkECRkZF08OBB557ADvLz80mtVtOQIUMoNDS0eoeS/Pz8HP7Azp07ZyIK3bp1o+vXr9t8HCne2ahRI7cvTpOZaajl/r//M//l79BBvuqI/Px8iouLo5KSEn3Fl7+/P92+fVsWe0RRpG+++Yb8/PxM/vedO3dWRPXN3bt36dVXXyUANH/+fLnN0XPmzBnq1KkTnThxQm5T9Bw4cICmTZtG6enpZv931ohD48bOtenYsWO0YcMGysnJUcxCVTqdjn755RcqKioinU5XvYUhPDzc4Q/s008/1Q8M77//vt3lZS+//LL+GO4kM5MoPJz9B0NC2HPJyUTe3iIFB68m4AsaP368W20qy/Tp0wkPy/cAkIeHB61atUoWW7Kzs/VXvmW39u3bK6r2fNWqVXT69Gm5zTBBzsWpzKHT6SrNB1ojDj/+6CaDFYK1wiCw91YtWrVqRccdnOseGxuLa9eu4fvvv0f//v3tOkZGRgYaN24MIsLly5fLxRhdSUoKsGiR5dfV6oO4c6clfH193WaTMXfu3EHTpk2Rm5sLAPDw8MDy5cvx4osvut0WURTx448/4s6dO/DInCcRAAAgAElEQVT29oZGo4G3t7d+02g0eOSRR1CPt+SsltSvz9rDWCIrq+Z0YxUE4TARta3sfVWy7bZarXZo/5MnT0KlUuHQoUOIioqy+zjz589HaWkpBgwY4DZRkNpn79kD+PgABQXm3vUn/vOfa/D1becWm8wxffp0vSgATBhWrVqFoKAg9OrVy622qFQqvPzyy249J0c5NG1asTAMGQJs2+Y+e6oCNbIqSafTYe/evQ6JQmFhIRYuXAgAGDFihLNMq5SJE4GdO1kP+pgY8+8JDMxBYmKi22wqS3p6Or766iuT5zw8PNCsWTO0ayefWHFqJqmpFTfd274dWL3affZUBWqkMLRu3Rq1HFyFZuXKlbh16xZatWrltrUasrKAH35g0VHAtCz12WevA5gJLy819u9XQxAEt9hkjokTJ6KoqAgAE4SUlBRcuHABU6ZMQUBAgGx2cWoueXmsw7AlkpLcZ0tVoEYKg6MQkf6KeOTIkW4ZhLOygMceA0pKgNBQ5jGEhbH46Z07wPr19QA8hvfeew/NmjVzuT2W+OOPP/D9998DYHXcJ0+exIIFC+xadY7DcSaW5jgIAlBcDHz+uXvtcReiKNq8T5VMPrdt25YOHTok2/n37NmDhIQEBAcHIyMjAz4+Pi49X1YWEB/Pbr29AfPzZVLRsOFgnD59WraEMwA8++yzyMvLw/Tp09GhQwfZ7OBwzGFuiVBjqmMiesuWLYiMjETTpk2tTj5zj8EOJG8hOTnZ5aIAsLyClDwjYvczMwEPjxIA8wEIALpg1qxZsorC9evX8c477+C3337josBRJHl5zNO2hLQWenUiLS0N8+bNs2kf7jHYiLtLVNPS2ALnlv9NfwIIBwA0b94cXbp0wddff+32Vec4nKpC587A7t2WX3fEaxBFESqVsq63k5KSsHHjRmRkZMDPz497DK5AKlHt37+/y0UhK4t9iYlYaap5LuvvabVaTJ06lYsCh1MBqamAh4fl1//6V/uPvWjRIijtYvvYsWO4e/culi1bZvU+XBhswLhEdeTIkS4/39ixQH4+oFKx3EJaGhAYCGg0QK9eFyGFkADgiSeewK+//oratWu73C4Op6qj07Fyb5XKUMra9uF19Jo1wPXr9h13zZo12Lhxo3OMdAKFhYU4c+YMAGDOnDlW78eFwQbcWaKalgYsW8aubEQRyMkBHn0UuHsXKCoC9uwJ0b930KBB+O9//ws/Pz+X2sThVCfOnWO/LSkZbRydHjvW3mOew4wZMxw3zkmcOnUKpaWlAFjFoLVwYbASd5eoDhrEbh/+T83Yc1Fvy9KlSx2eDc7hVDWkK2F7qWiuZZmO/FZRUFCAa9euYdeuXdi3b5/9hjmRY8eO2bUfF4ZKyMnJAQDs3bsXR44cQXBwMAYPHuzSc6alAWfOsAk5UgjJeG2FzMwsFBS0xZQpUzB79mzFJbs4HHcwfPhw6HQ6u/dPTQXi4lhIycMDiI5mYVqAzWuwtR3bhQsX9PkFpXgN9vaU4yNKJXz66afYvHmzW0tUBw5ktyUlbM7Co4+ySWyLFgEHDgCpqalYtGgRPvjgA1lnOHM4clFaWoqdO3diyZIlDh3nwgXgjz+YZ372LAvTSvTrZ9uxzp49q7+/bt06k8dyYewx2LJoDxeGSrh8+TJeeuklrFmzBiqVCsOHD3fp+dLS2BfUHAkJ7CrnySefxJtvvulSOzgcJXPr1i2IooiJEyc6tEJaXh5gaepPerptSWhjISAifC7zVGoiglqtxv/+9z8AsKkNEBeGSkhPT0deXh50Oh1UKhU6dOiAYcOGuawkTepK3acPCx+lpTH3NiXFsDSnv7+/S87N4Zjjzp07uHjxotxmmHD94Yidnp6Of/3rXw4dq6JIrC2lq+fOnTN5/MMPPyCrorauLoaIsGHDBvTu3Ruenp64c+eO1ftyYaiEa9eu6e/rdDqEh4dj7ty5LgnhZGUx1xYANm5k4aNHH2Xu7YYNTj8dh2MVRIQhQ4Y4FM93NteNLuWnTJmCvLw8u4+VlwfUrWv+tXXrrD+Oscfg5+eHunXrlusy7E5UKhU8PT2hUqnQoEED2/Z1kU3VgsLCQty6dUv/uEGDBli3bp3LcgwVXZ00aeKSU3I4leLt7Y19+/Zh6tSpcpuix1gYbt++jS+++MKh41ma8FZaal0Smojg7e2NX375BQCg0Whw5coVvPLKKw7Z5SzCw8Ntej8XhgrIyMjQ3/fx8cH69etd1iU0Kwv46Sd2PyWFVSB5exsqkaQwEofjbjQPS3UmTZqE/fv3y2wN43qZ4P8XX3yBmzdv2n28ii68rO2ftHnzZjz11FPw9vbG7du3kZubi5YtW9ptkzNp2LChTe/nwlAB6enp+vtLlixBmzZtXHausWMN/ZAWLmQVSIWFhkokTs0gOzsbxcXFcpthgqenJzw9PVFaWoohQ4bg/v37cptULnafn5+PKVOm2H281FTAUm729OnK9xcEARqNBiqVCpGRkQBY+apS4B6DE5GEYfLkyRgwYIBLz7Vmjfnn69fn3kJNQqPRoHv37lixYoVdffRdheQ1XLhwAWPGjJHZGuYx9OzZU1+CeeTIEbRr186hPEh0NJvToNGwNRqk8FJpqW3VSUoUBu4xOJFr164hKSkJH3zwQYXvu337tkNVSllZltZYsD+3cOPGDUUlC9euXYucnBzcq6gZvgycPXvW4Rm0zkSr1WLQoEEYNGiQYsI2ALMrPDwcffv2xRtvvCG7VzNo0CBs3rwZjz76KGrVqoXi4mIMGTIEnp72L2MvzWkoKmLeu9R1gIi1vreWqKgoqFQqh0JbzsZWjwFEVOU2jUZD7uC7776jgoKCCt8jiiIFBASQr68vZWdn23Wep58mAoimTiUSBKJt24g0GqKUFLsOR0REHTp0IB8fH9q7d6/9B3EiUVFRFBsbSxqNhg4ePEhXrlyR2yQiIkpMTKSgoCBKT0+X2xQ9RUVFtG3bNrnNMGHXrl108+ZNEkVRblNMuH79Oul0Oqcdr25d9lssu9Wta/0x8vLyqKioyGk2OYPCwkIqKCggAIfIijG2Sq7H4OvrS/n5+S4/DxFVWpZ669Yt1KlTB35+fsjLy7OrjFWlMr/eQv36wJ9/2nw46HQ6aLVaFBYWIjs7GyEhIZXv5GIiIiJMSn/nz5+Pt956S0aLgH379uGtt97C9OnT8dRTT/FZ5BzUqwfcuFH++dBQQEEOgN1Yu4Kb/X6XjLirYZw1A4UUR4yMjLRrYNm61fIiPPaGkU6dOoXCwkJEREQoQhQAmMxO7devH1JSUmS0hhEYGIgjR47Ao6Lm/JwahaXfosIioC6HC4ODnD9/HgCLK9qD1EVVqwUePACGDQMOHmTJL1uTzocOHUJwcDAOHz4MAGjbttILA7chCUOdOnWwePFiRVydN2/eXG4TOArD0jVCYSFLQFfl9aBLLbVqNkOVTD4raYUyyWOwRxiysoDbt9n9e/dYsmvhQuDoUeCh3thEbm4u4uPj8e9//xsA0KJFC/zvf/+zu8OiM5GEYfHixahTp47M1nA45mna1PJrtiSgjVFKC+5NmzZZ/d4qKQxK9BikEjVbmDiRXaGEhDAPISSEPU5JYdP0bSUsLAx3797Fnj17ALAy21deeQWNGze2/WBOhIhQXFyMd955B/1sbVnJ4biR1FTL7TF+/tn24+3btw+LFy92zCgnUe1XcFOiMNjjMaxfz7yE27dZbPP2bfbYni8gANQz4+d++OGHsjfdKyoqQnR0tOzdJjkcdzNjxgxFtN8+b2MIgucYHICITJLPtmIpnmlvLjQoKAheXl4oKSkBADRq1AjvvPOOfQdzIjqdDkuXLrWp7S+HU9U5e/Ys1q1bh9DQULlNQWRkJDZv3mx1bq9KegxKyTFkZ2cjNzdX30nRVgIDzT9vbwheEAQTr2HSpEn6Gaty4ufnp6hEOIfjDj7//HMQEW7evIm7d+/KaoutxR6KEAZBEJ4SBOGsIAgXBEH4uxXvd4dZFsnJyUFxcbHDpapSvXRAAKBWs9xCXFzF/eErQxKGli1bYoi13b84HI4eZ0ztysrKwg8//KB/XHatBqVT6RAkCMJyQRDeFwThaUEQnO4TCYLgAeBrAE8DaAlgkCAIymhJaIHbt2/jsccew7qHzdqjoqJw5coVm6oPjCuScnPZGrOOVCRJSMIwdepUXp/PqVE8ePDAoXUZJJxx3fnll1+atA2pdsIAYD6ABwAGANgqCMJPgiBonWjDYwAuENElIioGsALAc048vtNp3LgxTp06pV/we+PGjWjSpIlN/ZImTgSkiJgUepe8Bke+2/Xq1UPHjh3x7LPP2n8QDqcKMmfOHFy6dEluM5CXl1duVTklJKBtwRphaARgJ4C3iehRAKsB/MOJNjQAkG70OOPhcyYIgpAiCMIhQRAOGS+eIweenp545JFH9I/z8/PRuXNndOzY0epj/PIL8DBHjAcP2G1xseMrtYWFhWH69Omyh9s4HHeSk5OD6dOnl1unwR4shXKtdcAXLlxYznNRgjDYcuFqjTA0AzAZwBlBEI4CeAJAoiAIPZ0UWjI3gpX7C4hoIRG1JaK2SsjyN2vWzOTxuHHjbNrf0p/g6NyvwYMHo2vXro4dhMOpYsyYMQN37951ijBYqiOx9rep1Wpx/PhxaLUssDJixAhFrJl9W4pdW4E15apfEdEtABAEIQhAW7B8QBKA6QDa2WGjMRkAjJuFhwPIdPCYLic6Olp/v2XLlujbt69N+5eWsisTUQRatWLLB6pUhla/zrCLw6kJZGZm4ssvvwRQfmU3e9DpDHkGPz/myfv5WV8U8tZbb+HGjRu4d+8etFotvvzyS5w4ccJhuxzFeOGxyrBGGLY8FITTAM4CaA5gORGNss+8chwEECUIQhMAfwIYCGCwk47tMowH4LFjx0JlYynRuXNMFADDmrKiCCjA4+RwqhSffvopCgoKADhHGM6eNVQmSc3ziorYZi3GrXIEQUCrVq0ctstRjJcqroxKhYGI4h5WDjUHEA1gG4D/2W1d+ePrBEH4K4DNADwAfENEJ511fFchhZIaNGiAwYNt17EWLYBjx8o/r5AlYjmcCjl16pQi1jM+f/48Fi1apH/sqDBkZZX3Fnx8WBM9W37mjrTKcRXO9hhARKUATj7cnA4RbQSw0dr3X7t2DaIo2nyV7kwkj2HMmDF2zcRWqVhvpJwcdnUiCEBQkGNzGDgcd3Dp0iV89NFHWLt2rdymYMKECSZdQx0VhhkzDOFcaWlrqerUlsIQR7suuwKnegxKxMvLS1ZRAIDQ0FA0btzY7nUFzp0DjNcaknolWVrik8NRAjqdDq+88gqCgoLkNgVHjhzBypUrTZ7Lyspy6Ji7d1vO89myPoojXZddhS0eQ5W8Pq1du7bcJkAQBMyePVtfeWArgwcbvAM/P3arUgFJSU4ykMNxAdOnT8eePXvg7e0ttyk4ceIEli5diri4OACsCMRRj+HRRw1lqUlJrG2NRsPmF9myPooSQ0m2eAxVcmnPtm3b0qFDh+Q2wyEsLSFYty5bEITDURoHDhxAp06dUFpaiqSkJCxdulRukyCKIoKCgpCXl4f09HQsX74cI0eOtLtHmKXfpS3L7BIRAgICcO/ePdy4cUMx649ERkbi4sWLVi3tWSU9huqAJXdVqlTicAC26tadO3fkNgP5+fkYMmSIPp6vBI8BAC5evIi8vDzUrVsXDRo0wNixYx1qHGnpd9mg3JRby9y8eRP37t2Dv7+/IjqrAkysbPEYuDDIxMPqunJIs6A5NRsiwi+//IIePXooYhb7u+++a9LTXwldewG2nC0AxMfHO/w5ZWUBkgY//TS7DQgAkpOBzp2tP46jzTVdQXZ2NopsqLflwiATliJ4zvYYlBgqFEVR/+NRAkSkiJmpxqxYsQL9+vVDv379ZE/0FhYWYsCAAXj77bcBsMILpXgMR44cAcCEwVEmTjT8/qRVMHNzgUWLgAMHrD+OLRVJ169f16/R7kps8RYAsB9FVdu8vLyopKSElMKwYcOoQYMGtH//fqv3iYsjCg1ltyEhRACRIBDVqeMcm+bNm0cRERE0c+ZMKigooBMnTjjnwHaSm5tLOTk5FBsbS127dqVhw4bJao8xM2bMoMDAQLpx44bcpugpKiqiGTNm0IMHD+Q2RU9xcTFt2bKFMjIy6Pvvv5fbHCJin9PRo0fpypUrDh8rOJj9Dstujz5qu01nzpyhM2fOVPi+Bw8eUPv27enw4cMOWG0dxcXFdPHiRQJwiKwYY2Uf5O3ZAFB6erozPzeHSExMJAC0dOlSq/fx9TX/JQSIsrLstyUjI4POnTtH8+bNIwDUs2dPio+Pp++++87+gzqBP//8k0JDQwmsDxYlJSXJao8xZ8+epRdffJFGjhwptykcmcjMZBdmAFFSElFgIFFQEFFMDFGbNs4/nyiKNGjQIAJAN2/edP4JLGCtMFTJeQwAc43Cw8PlNgOAwWW0JTySnAzs3Alcu8bimr6+bEKNRsMm2cycaZ8tAQEBiIuL0/eC3759OwDz60G7k/r162P+/PkYMGAAABaeUArNmjXDqlWrcOzYMZSWlvJ1LGogY8cawrvLlhmez8kB7KxIr5ApU6Zg+fLl8Pb2VkT5fVmqbI7BlskarkaqVZZii2RFXP/gQbYoz+3b7AspzbIsKgJ++81+W/z8/DBhwgTk5uaaPC+3MABAYmIi3njjDQDKEgaJ1q1bc1GooViaxN2unWPro5hj9erVmDBhAgAgPDxcMQlqY6qsMNicTHEBhYWFKCoq0gvDhQsXsG/fPnzyySeV7puaCsTEsFYYSUlskR7p++HomJmSkoLGjRubPKcEYQCA2bNn45FHHlGkMHBqJmlprErQy4t57GlpQHCw7dVI1nD48GG8+uqr+scNGzas4N3ywYXBAVQqFdq2bYsvvvgCAKuQSEhIsPoKQOriuGwZ68ciORpnzjhml0ajwaRJk0zsVIq7qtVqsXTpUpP+NhyOnLz4IrstKWEe+6OPsvCurdVIlZGZmYlnn31W3wkW4MLgdJQQSlKr1Xj99dex4WF3rZKSEoiiaPWaCBWN1Y7Ofh48eDBiYmIAAHXr1lVUiKRDhw5499135TaDw0FaGmApNZiQYFsbjIp48OABnnvuOWRmmi41w4XByWRkZODAgQOYOnWqrHYkJycjMDDQ5Lmyq7tZomlTy6/99a+OWAV4eHjoPxulhJGM6devn9wmcGoYJdJaukZI3kKPHiyUu20b4O1te2+kyiAirF+/Ht9++y0A1ggU4MLgdA4fPoyOHTvK3mVVq9Vi+PDhJs9ZKwypqZaXEVy3zlHL2ODbqVMnRQoDh+MuiAgTJ05ETk6OyfPG3sKvv7JQbq9eLMfn6NrrZfH19UVYWBj+/e9/AwA+//xzPPvss1wYnE1xcTFEUUTr1q3lNgUjRozQtwgICwuzqeOqpQhPaalhZTd7EQQB06dP58LAqbGUlpbi7bffxpo1a8o1s5O8BXPY0mLbWg4fPozdu3dDq9Xi9ddfx7Jly5wyY9sVVFlhkFCCMNSrVw9Dhw4FYPuayxV9AR+W/DtEly5dMGzYMMcPxOFUMQoLC/HSSy9h4cKF6N69u8lrkrcgCKaVSDExQJs2zg0jScyZMwcA8MYbb0Cr1cLPzw91LYUMZKZKtt0WBIEAti7DzZs3FVEHfP78eURHRyMlJQXz58+3aV+1mlVEmKMK/ns4HNnJzc1F//79sWPHDgDAmjVrkJiYCIA1y4uKMl0oyxit1vlzF27evImGDRuiuLgY586dk20BH0EQqn/b7datWytCFAA2+zkxMdHq/IIxFVUn/fqrA0ZxODWQ69evo1u3bnpREAQBjz/+uP71sWMti0JCgvNFAQAWLVqE4uJi9OnTR1GrulmiSgqDr68vAKBVq1YyW2LK+++/b3MoCai4Oum55xwwiMOpYVy8eBEJCQlIS0vTP9eqVSuEhIQAYN7C8uXsebWaPc7MdE0lkkRJSQnmzZsHABg5cqTzT+ACqqQwSEkkJeQXjGnXrh169uxp836pqaxXkjnu3wdWr3bQMA6nBnD16lX07dsXly5dMnleyi9kZbEWF1Jr7eJiICyMrc7mikokibVr1yIzMxPR0dHo3bu3a07iZKqkMAQFBaFevXqKEwbA/pWtKqq6feklvtwnR/kQEVJTU63qFeYKIiIicObMGYwdO9bkeUkYxo5ly3P6+Jjf3xWVSIAh6fzXv/5V9vJ6a6kaVpZBEASMHDkSLVq0kNsUp5GXZ9lrIAJeecW99nA4trB37148/vjj2LVrl6x5vzNnzmDWrFkAgKlTp0KlUqFr165ISzN0TS0tLR9CInJNGMm4RFWqXKwSWNObW2lbfHw8FRQUOKU/uZLQai2v0QAQHTsmt4UcjimnT5+m559/ngBQWFgY3b9/XzZbRFGkXr16EQB64403iIjo66+/JiK2roKl31X9+q6zaejQoQSARo0a5bqT2ACq80I98fHxzvysFEX9+pa/wA0bym0dh8PIyMig5ORkUqlU+sWXFixYIKtNq1atIgAUGBioX/wmM5OoY0f2+7G0QltCgmvsuXHjBqnVagJA586dc81JbMRaYaiSoaTqTEVxzvR0nojmyMvdu3cxfvx4REZGYtGiRRAfZnKbNWumX2tDDu7fv4+//e1vAFgIKTQ0FABbx3nvXvaeP/4ARo9moSNXh5AA55ao5uTklGvp4VKsUQ+lbdXZYyDiISWOMikpKaEPPvjAZIlWaVu9erWstr3//vsEgNq0aUM6nY6ImLegVlv+HbkyhFRcXEz169cnAPS///3PoWMdOXKEOnbsqP+77CUnJ6f6L+1ZncnLA/z8LE/C6d8fKFORx6lm3L9/HwUFBfrFoAoLC/VbUVER6tatq2+r7i48PT0xZcoU+Pv74+9//7v++ccee0w/q1gOzpw5o18T5euvv4aHh4e+NLW0lE0gzc4uv5+rqpAA55WofvPNNxg+fDjefPNNh1vn//zzz9a/2Rr1UNpW3T0Gosq9hh9/tP5YpaWlrjPUTm7fvi23CSZs27ZNUTatXr2aPD09y12ZA6DXX3+d8vLyZLHrn//8p96O6OhoAkA7duyQxRYi8wnnzEyi8HD2O6lVy/zvx1V5BYmEhAQCQHPmzLFr/wcPHtCwYcP0n/WuXbsctqlv3741I/mclpbm8IflLERRJFEUadWqVU47ZkWJaGtCSqWlpVRUVETjxo1zmk2OotPp6OrVq/TEE0+QKIpym0NERAUFBTRq1CiqX78+bd26VW5ziIjo0qVLFBERYSIIwcHB9KMtVwROZv369SaJ5o0bN1KfPn1ks4eI6JdffimXcE5OZr8PlYooMJAoK4uJhbc3UUqK6206evQoASCtVmuXgF+8eJHi4uL0n3WDBg0cvrjLyckhLy+v6i0M3t7e9Nlnn1Hv3r0d+rCcxerVq6lly5Y0YsQI0mg0TrtCT0ioWBhUKsvicOHCBerUqRN17dqVANCVK1ecYpMjiKJIr732GgUGBhIA2rhxo9wmERHRTz/9ZDIAjxkzRvZy6Pz8fAoJCdHb1Lt3b8rIyJDVppKSEho4cKC++qioqIhOnz4tq006nY7mzZtHs2atoG7dWAWSRkPk42P+N+PKvIKxTevXr6f58+fbvO9///tf/e/D+PvoKKWlpbRr167qLQzSB9a5c2eHPzBHOHXqFE2dOpX69Olj8o/MzMx02jkqCyn5+rIrIglRFGnLli00ffp0E5u+/fZbp9lkD6Io0tGjR02uhGJjYx1OqDmDgwcP6ssKjW07fvy4rHZduXKFNBoNzZ49WzHhQKV4ecZkZhJFRLBEs0pF5OFB1K6d+d+Lq0NI9iKKIk2ePNls6HD//v1OO4+1wlClk8+FhYWynj86OhpHjhzBxo0bTZ5PT09HWFiYU86Rl8f6xRcXm389Px9o3Ro4dgyoV4/NCtdoNJg2bZrJ+3777Te89tprTrHJHkRRxKFDh3Djxg39cydOnMB//vMfvCLztO7s7GzMnTu3XKJ35cqVCA0NlW2hIyLCwYMHERsbK8v5zaGUbsbGTJwIXLvGFr0SRcDLC1i/nklBTAxb18TPD5g5U25LLSMIAv7+97+jZ8+eePzxx1H88AffpEkTtGvXzv0GWaMeSttgdFUnN/n5+RQfH+/S0r3KQkoAUViYqedw7Ngxqlevnt6mhg0bKuJqLz8/n6ZNm0YBAQEEgCIiIqiwsFBuszhVkMxMom7dWOgoOpp5CpZCSEr1FIwRRZH69etHACguLo48PDzo/fffd+o5UBNCSVFRUc78zOwmIyODwsLC9IPwrFmznH6OykJKAJEgEG3fbtjn0qVLFBkZqbfrwoULTrfLXrKzs+ndd98ltVrtks+LU72RwkdeXkwQAgKI6tatuqJARDR37lwCQAEBAXT16lVKSUmho0ePOvUc1gpDlZz5LK3HIHcoSaJBgwZYv369vrNqenq608+Rl8dWlqoIIuCppwydWJs0aYLdu3ejTZs2AFg4SSmEhITg888/x7lz55CRkYH79+/LbRKnCjFxInD1KpunQMQ6EB89ypbnTE4G4uKAMWPYa9bObM7Ozka+pclDLubkyZN47733AAALFixAo0aNMG3aNPk6SFujHkrbYmJiyNfXl0JDQ50ppg6zcuVKAkAvvPCCy85hjedQu7ZpWCk3N5d69OhBgwcPdpldjqKEMBdH+ZQNHwmC5d+BtZ7C/fv3afLkyfTMM8/I8j0sKCig2NhYAkCvvvqqS8+F6uwxaDQazJ49G0VFRXKbYsJLL72Ef/zjHy7xGCTy8tjiIhWRnc0WNJc8B39/f2zcuBF16tSRQnGKQ4lJTY6yyMoCOnYEdu8GdDrA359JQFkSEqzzFEpKSrBgwQJERkbio48+wgcffCDL93D8+PE4ceIEmjZtirlz57r9/DbkEdoAAB4JSURBVGaxRj2UtsXHx5MoivTSSy85UUudgyiK9O6777r0HNYkowF2VWU8z0Gn0ymm7JHDsRXjiWtqtWHiWnAwe83acn9RFGn16tXUrFkzff4tMTHRtcZbYNOmTQSAPDw8aN++fS4/H6pz8lma+Xzr1i1FhiDcUWVjrThUNAmOw1E6R48ShYQQbdtWefjImtDRb7/9Ro899phJFaGHhwedOXPG9X9MGW7cuEF169YlAPTpp5+65ZzWCkOVDCVJ1K5dW5EhCI1G4/JzpKayn0NlfbVEkYWVjh93uUkcjlPJygK6dgVu3wZefpk9V1H4qLLQ0Zw5c9C7d28cOHDA5Pk33ngD0dHRTrLaOogIw4YNw40bN9ClSxeMHz/ereevjCotDBwWa61fv+L3lJYC7duzig0uEJyqwtixwL17QI8eTBz69gUOHGBLckrVR7ZUHo0YMQLbtm0zWXfZx8cHEydOdOFfYZ558+Zhw4YNCAgIwNKlSx3unOpsuDBUA6xpH1xYCOTkcO+Bo2yysljJ9bFjwIoVQHQ0sGcP84zXrgUEgV0I3bkDLFrEhMJajh8/jhdeeAGiKCIwMBAAMHr0aDRo0MBFf415zJWmKg0uDNWA1FTmSltDaSmr7Oje3VC1xOEoAanqaN8+YOBA9l1dsQIICmL3y2JN+Eji+PHj6NmzJ7Kzs/Hkk09i+/btCA4Oxrhx45z7R1RCYWEhBg8ejMLCQgwdOhQvSzEypWFNIkJpW01Yj8FeKpvn4OlJ+lnSZauWOBxXIYoinT9/vsIkb3Iy+14mJrLvaHQ0e16qPIqJIWrTxvZzHzt2jGrXrk0A6Mknn9R3zt2wYYM9f4pDjB49mgBQ06ZNZVlTA1WhKgnAiwBOAhABtLV2Py4MFWPNJDhp8/VlE4aMJ8RxOM7gypUr9O2339Krr75K4eHh1KFDB7p//77+dWmyWrduRGlp7EJl8GB2a6nySKu1zQZLoiAH7i5NNUdVEYYWAKIB7ODC4FxsEQdBYCtecXHgOEJGRgYtWbKE3njjDWrSpIlJSWiLFi0oOzvb5P2jRzMR0GiYN6DRMLGwtECVrT2PlCQKcpSmmqNKCIPeCC4MLsHauQ7GE+I6duQCwbGd9PR06tChg4kYSFt4eDhdu3aNiNjA/+STzEMIDGQXMNJFTFIS6d9j66S1sihJFIy7pnbp0sWla5Dk5ubS+vXrLb5e7YQBQAqAQwAONWrUyP5PrgZiq/fg7c1zDxzbOXfunEmrd4AtR3ry5El92Cg8nHVCjYtj2+jR7FbKfTnqJRApSxSIyndNdQWFhYX05ZdfUu3atenXX3+1+D7FCAOAbQD+MLM9Z/Qe7jG4GFu9Bw8PLg4c68jPz6cJEyaQRqMxEQUfHx/as2cPERnCRgBLLgsCkb8/8w6cudqa0kThjz/+IG9vbwJAK1ascPrxS0tLadmyZfrQ3VNPPVXh+xUjDFYZwYXBLVQmDlLCT6Vit97eREFBXCCUwLlz5+jy5cv04MEDuU3RI4oirVu3jho3bqwXg6SkJBo6dCh5eIRTbGy2PrEcGMjWTlCr2RYSwjwFCclzcGR5Y6WJQkFBAbVq1YoA0NChQ516bFEUafPmzfToo4/qP3tBECgtLa3C/bgwcCxiq/fg51czKpdu3boltwkW+f3338nT01MfkoiOjqZu3brRwIEDafTo0TR9+nT6/vvv6fLly26x58KFCyZrncfExNDOnTuJiOif//wnPfnkKX1iOS7OkFxOTmaVcJa+a/YuqqM0USByXWnqwYMHqWfPnuVyOUOGDKlwP1EUq4YwAHgeQAaAIgA3AGy2Zj8uDNZTWlpqtqOqreLg6cl+2J06OS4Qd+/epR9//NGxg7iAv/zlLzRs2DB9olQp5OTk0Pbt2ykhIcFsclcafJYtW+by7rllw0ZarZZmzZpFV68W60tPd+++Xy6xrFYzUcjMZF5oYKBjyWVjlCgKripNvXfvHn344YcmKzMCIC8vL7p06VKF+65fv75qCIO9W3x8vCLXCT5x4oTcJphQWlpKu3fvpiVLllh8jy2JaSnM5IhAFBUV0e7du0mtVtN243VIZSQ3N5cWLlxI//jHPwgAaTQaevfdd8uVV7qT9PR0evnll+mRRx6xKAYAqG7duvT1119TUVGRy206f/68SdhoyJAhlJmZSUSmpadlE8s+Ppa9BEeX3bx8+bLiROH27dsuLU0tLCw08dYA0KhRoyrcp7i4mKKjo6u3MISEhNDChQtt/kBdRWZmJg0cOJCaNGlC169fl9scIiIqKSmhl156iZo1a0aNGzeuVEitXVPaWCDCwmzPQUyfPl0fEtFqtXT48GEH/1LH2b59u9lB19/fnyZPnkz37t1zu025ubl6O9RqNcXHx1NSUpKJbVOmTDGZMOZqiouLKSYmhmJiYmjt2r0mk9PKegiVJZadIQpEbI2RoUOHKkYUiNgF2RdffEG9evVyemmqsSgEBwdTq1atSKvV0s2bNyvcTxRFWrFiRfUWBgD0+uuv2/yhuoLs7GxKSUnR/2Dnzp0rt0lExKohpCspADR79uxK96lIHCpaQjEykiUWrXEARo4caTL41qlTh86fP++Ev9h+Dhw4QAMHDqTAwECLV+Vz5851y1W5Mf/5z3/o8OHD+vNu2LCBvL29aezYsbJ5M1evXqWrV4spIoKFhyx5CM5OLFeETqdTjCgY4+ywXllROHr0KC1cuNAmr6RaC4NaraYWLVpY/WG4mo0bN1JQUBABoM6dO8ttDt2/f59Gjx5NXl5e+sEtJCSE7t69W+m+leUepIol49yDdD8oiFWbWPIgfvzxRwoICCg38DZp0kQfkpCL48ePk4+PTznbVCoVhYWFUVxcHP31r3+lO3fuyGbjjh07KD093e3nlSalSaFDqaeRl5f7PYSaijlRIGJhK1s82motDLGxsRQVFUU5OTlWfyCu5vLlyxQfH08AZPnxmuPSpUs0ZMgQEgSBANBHH31k9b4VCYSHh8GDkIQhLMzwup8fm0HdqZNpNZNOp6MjR47QF198Qf369SN/f3/9ANy6dWurhMtVzJs3T1/Zs3nzZjp27BjduHHDpbNUqwKZmUQREWxS2pgx7LG0kpq3N6s2creHoATcuUSuJVGwh2otDPHx8ZSRkSF7CKIsBQUFlJKSQjNnzpTbFBOOHj1KTz31FNWqVcvmK/OKwks+PuVDTGo16T0LSUDCwsyXu5aUlND+/ftp+vTp9OSTT1Lfvn0VGRKoSRg3tsvKMngHSUmsTUVSEhOGgAD2Wt26lr8f1c1DuHbtGn3++eeUlJREubm5bjmnM0WBqAYIg5I5cuSI3CaYZfv27fTNN9/YtW9FAhEczETAy8vye7y8WDuEjh0tz4koLi6WJdFb0zEOFRlXFyUnGzqeSqLg4cG8hNGjTXsaVVcPISsri7766it9qbCPjw8dP37cLed2tigQcWHguIiKQkyenmzg8PAwPCflJKRbDw9D0rJt25oxcU6plO1flJxsqC4KCDD8nzIzmRDExFRchFBdPIRbt27R/PnzqXv37vowrLQtXbrULTa4QhSIuDBw3ICxAFRUzVQ2YW08uKjVbGDiAuFayoaIiEz7F0khIskbkEJIMTGG/Z3Z6E6pnDt3jpo3b16uCAEADR8+3C02uEoUiLgwcNxIRWEmlYpVK5X1ICRxkMJParVhXsS2beUHMY7tWAoRSUlk4/5F/v6GPkaZmQZhqO5CYI6MjAyqX7++iSg89thjbplU60pRIOLCwHEz1rbYkK5QBcG0aZ+xV1GnDnuf5E1UlJfgGDAWAuNqorIhIqkdhXH/otBQVmqs0bD9Lf0/q7sobNq0ST9r2bjU2x1tUlwtCkRcGDgyYo1IqFRskDL2GqQ8BcBaKEgVTlJewtubexPmKJsrGDPGtJrIOEQk5Qok4ZX6F1UUFqzuYkDEKgpHjRqlF4OuXbvSjBkzSBAE2rJli8vP7w5RIOLCwFEI1oiEt7ehtFUqcw0ONl37V7qVrmqNcxNpaWzORHVuEV7WGzAWx7K5gsBAQzVRYKBpiEiah6BSWS41rQlCYMyJEycoNjaWpKZ3U6ZMIZ1OR2lpaW5ZhtNdokDEhYGjQCrrxxQcbBpSioxkIiE9Fx5O5bwJqSWDdMUbG2sYNLduZUJSlbwMadA3Dp+VnWRWtqTUOFcQGEjUvDn7PDIz2WdjHCIisrymck0TBVEUac6cOfqFdB555BHav3+//vWSkhKXT2RzpygQcWHgKJyKPIlatQw5CGkAlFowAIYrYpXKNAzl50f6RLZGw+LmgmDIWWg0bIA1JxhpaeUHZEexNMgbi5Slq38PD0Oi2DgsFBjIEsVSvkCjYUIgiURMjCH0lpVVtVpUiKJI2dnZlJ+f7/Jz3bhxg/r27asPHb322mtOXTPBGtwtCkRcGDhVBGuT1tIkOsl7iIw0DKAeHkwEpAFUpTK0eZ42jcp5GSEh5QUjLs50QE5OLi8algTk6FFDjyjjgV6aIGY8yJetDjJ39S8JnFbLRMB4kllMDPtbpZJS6TORcgVSSEmJQnDv3j06deoUbd68mRYtWkQff/wxvf7669SrVy+Kjo6mWrVq0ZgxY1zehsQ4wRwQEEArV6506fnMIYcoEHFh4FRhrE1eJyUZhEKrNX0cFGTo4ePjYwinNG5cXjCkEJckJlqtYbA2Fg1zAjJmDHtOEIjatDEM9JLXUnaQN77aL/tYShJL3UqlMJAUFkpONohbWppBGKwRVrlFQRRFmjRpEhlX+xhvnp6eLm+lXzbB3KVLF7p69apLz2kOuUSBiAsDp5pgzToRnp6mlTZStZM00NeqxW4TEw0DqdT8LTTUIB7SfSkcY9w91M/PvID4+TFR+M9/DM9ptcwOlcp0oA8NNVztjx5t+lga5CX7jx41rdqS+hZJLSnGjKlYQOUWAnNkZ2dTr169yolCcHAw/fbbby49t6UEs7uRUxSIuDBwqinWhp5UKsOALw30kZHsNclrkATDeHWxrVsN+Qu12rR7aFkBMX5MxG59fAwhJOkYxoO8dLV/9Kih0sr46l8KCxGx41uabVwVhEAiLS2Nhg0bpk/yGm/Nmzd3aTPMyhLM7kRuUSguLubCwKlZ2LOGtXQVLw3uUp5CGtSjow2hG2OPQRIQY28iLc3wODHRIEZSNZCxiEi5BemclV39VyURkCgpKaHVq1fT448/biIETzzxhP65J554wqWt85WQYJaQUxROnz5N7733HtWpU4cLA4cjYatoGG++vqZhIOPBXBIV45xAaKjl9Y2r08BviezsbJo+fTo1bNhQPyD7+vrSX/7yFzp9+jQREb322ms0YsQIKikpcZkdSkgwS8ghCiUlJfTNN99Qp06dynppXBg4HFtxRETkGOivXr1KQ4YMoU8++YSWL19Ohw8flqV1+bFjx+jNN980CRc1bdqUZs2aVW4BpmMunIWolASzhJyewp49e6h3795cGDhVA1EU5TahWjFu3LhysfsGDRpQ9+7d6e2336aZM2fS7t27nX7ekpISWrNmDXXr1q1cuGjDhg1uXeWMiK1z3qpVK5I7wSwhd07h9OnT1KJFCy4MnKrBjh076Ntvv5XbjArZtGkTpaamym2GCQ8ePKATJ07QTz/9RDNmzKDk5GTq3r37/7d3/zFN3nkcwN8fqjAElU2iEBU48BQ8449pLncR2bjdZLsTbhJgXnS5KITEzew0YNRtuZAlJmPaW6fDXeYgLtNMfribt5jFH9llg02U0bjbHMMfaFYU5o5yKUzaUvjcH0BDtdhKn/bb4ueVNFD6PP2+8wSeT5/n++X7vWsm0DsLxN69ezVdcayrq4vLy8s5ISFhzNtFgRRMHcwjVBeF2tpajo6O5pEO/piYGI6JiZHCEGgOhyMo1wc+dOiQX+/l3q++vj4+efIkA+Dt27cHxTGzWCx86tQpbmtrc+ZpampiALxy5Uo+fvx4wD/9dnd3u5z858yZM+bJ390jLS2Nq6qq2GazaZbJbDZzUVERR0ZGerxdFCgWi4XXrFkTFB3MI2w2m7Ki0N/fzyUlJc7jkZeXxxaLhVevXs2rVq2a2IUhKSlJy2PpM7vdziUlJfz++++rjuKirKyM58yZw9u3b1cdxengwYOs0+mcv7g5OTnK/5Dr6+udecLDwzk1NZXXrFnDYWFhfj3R3ktXV9ddJ3udTscpKSmclZXFW7Zs4TfffJNPnDjBRqORw8PD/V7I7Ha78+pE1e2iOzkcDn788cd5+vTpfPToUaVZRgwMDPDmzZsDXhQ6Ojo4IyPD+bui1+udt22bm5tZr9dP7MIwZcoUZZ9Q3Dl37hw/9NBDnJiYGJDFPLzR09PDCxYscJ5Ujh07pjoSM7u/H7548WK+fv26skz19fWcnp7OcXFxHj+Jz549m/fs2ROQxeBLS0udJ/9Lly6x3W53u11NTQ3n5OQE5NbXJ598wt99953f27kf7e3tSjuY3RkYGAjo73R9fT3Hx8czAI6Li+PPPvvM7XYTujAsW7aMb9y4Me6D6A+XL1/mdevWscFgUB2FmZnPnz/PmzZtGrmvyFOnTuXW1lalmWw2GxcWFro94c6cOZO//PJLpfmYh25NGI1Gfv7558csDkTES5Ys4U8//VR1XGYe6nsQwenWrVt+ff/BwUF+4403eNKkSQyA09PT+ebNm2Nu721hoKFtQ8uKFSv4q6++Uh3DrevXryMpKUl1DCe73Y5Tp06huroaV69exenTpxEVFaUkS2trK06cOAGTyYQffvgBJpMJJpMJnZ2dAIDw8HBUVlZiw4YNSvKNMJvNWLRoEaxWKxYsWID58+e7fJ03bx4iIyOVZhTBp6+vD83NzWhsbERjYyOam5uxb98+ZGdn+6W93t5eFBUVobq6GgCwbds2lJeXY/LkyWPuQ0TNzLzC03tLYXiA9PX14eeff0ZsbKzqKC5sNhtu3LgBk8mE9vZ2PPnkk5g5c6ayPF1dXRgcHERsbCyISFkOEbyYGVevXnUWgcbGRnz99ddwOBwAAJ1Oh5qaGuTm5vql/e+//x65ubloaWlBVFQUqqqqUFBQ4HE/bwvDJE1SipAQGRkZlJ90IyIikJycjOTkZNVRAAAzZsxQHUEEOavVioqKChgMhrteCwsLw+HDh/1WFOrq6rBx40b09vYiNTUVx44dw8KFCzVtI0zTdxNCiAdAZGQkXnzxRTz66KMuPyciHDp0COvWrdO8TYfDgdLSUuTn56O3txd5eXk4f/685kUBkMIghBD3pbu7G6WlpUhNTYXRaHR57eDBg3juuec0b7OzsxNPPPEE9Ho9dDod9Ho9ampqMHXqVM3bAuRWkhBCeMVut+Ptt9/Gq6++CrPZDABYv3494uPjsXfvXhw4cACFhYWat9vQ0ICCggJ0dHQgLi4O1dXVyMjI0Lyd0eSKQQgh7oGZnffxt27dCrPZjIyMDDQ1NeHw4cNIS0uDwWDA5s2bNW/XYDAgMzMTHR0dSE9Ph9Fo9HtRAOSKQQghxnTu3DmUlJTgiy++AADMnz8fe/bsQXZ2tnPEWkFBAaKjozVtdzxDUbUkhUEIIe5w7do17Nq1y3lijo2NRVlZGYqLi+86OWtdFMY7FFVLUhiEEGJYd3c3du/ejf3798NutyMiIgJbt27Frl27MH36dL+3H4ihqN6QwiCECBoXL15ETU0NrFYrbDYbrFar8zHyfGTYZlZWlmbtjtWxvHv3biQmJmrWzlgcDgd27twJvV4PAMjLy0NVVZXfRh155M28GcH2CMZpt4UQvhsYGOCioqIx56lKSUnhs2fPatbe4OAg19XVcUpKirONjIwMbmpq0qwNT+41K6rW4OVcSXLFIIQICt3d3fjoo49gMpncvl5YWAiDwaDZPX1vOpb9raGhAfn5+ejs7AzYUFSveFM9gu0hVwxCTAxms5mrqqr46aef5smTJ7u9SpgxYwZ/+OGHmrXZ1tbGzz77rPP9Y2Nj+a233hpzWnN/uN9ZUbWCiTztthQGIULXWMUgLCyMMzMz+cCBA/zKK68wAM7KytLshGk2m7mkpMS5qFFERATv2LEj4Gu79PT0uBSmbdu2BawoSWEQQgQNb4pBZ2enc/sdO3bw/v37NbnXbrPZ2GAw8COPPOJsd/369UoWh2ppaeG0tDTnOtnV1dUBbV8KgxAPONXrad9vMRitt7fX5/aDoWN5tNraWo6OjmYAnJqayhcvXgx4Bm8Lg3Q+CzFBNTQ0oKioCIsXL8aSJUucX5OSkvzWuTrSgVxbW4szZ86gv78fwNBU1JmZmcjPz0dubi5mzZp1z/fxdTEpdx3Lr7/+OnJycgK+xsadQ1Hz8/NRWVmpbiiqN7ypHsH2kCsGITyzWCycnZ19V2futGnTOD09nV944QV+5513+MqVKz6148uVgdaCoWN5tEAORfUGQuGKgYj2AMgGYAdwFcBGZv6fykzC/z744APMnTsX6enpqqN4pbW1FfPmzYNOp1Mdxamnp8e54t3I19Hfm0wmWCwWt/taLBY0NDSAmbFq1SokJCTcd/taXRloRfV/LLsTtENRveFN9fDXA8BqAJOGvy8HUO7NfsuWLdO2jE5g165dUx3Bhd1u56NHj3JYWBi/9NJLbLPZVEfivr4+bmtrY6vV6vb1iooKTk5OZr1ez2azOSCZbt++zSdPnuR3332Xy8rKuLCwkLOysnjhwoU8bdq0Mf8BbPQjIiKC4+Pj7/rZxo0b2Wg03ncmq9UaNFcGI/r7+4OmY3mEqqGonlRWVoZe5zOAtQCOeLNtdHS0tkdMA++99x739/erjuGirq6OExMT+fLly6qjOB05coSjoqKcf8TLly/nlpYWpZnOnj3rzDNr1ixevnw5P/PMM7xlyxYuLy/nffv2OV+fMmUKFxcX8zfffOPXTD/++KPHk35KSgo/9thjvGHDBt65cydXVFTw8ePH2Wg08q1bt3hwcJArKioYACckJPBrr73GP/3007gz2Ww2jomJUV4MRnM4HLx06VLlHcujDQ4O8tq1awM+FNWT0tJSrwsD8dBJWTki+hhANTMfHuP1YgDFw08XAfg2UNkeALEA/qs6xAQhx1Jbcjy1tYCZPfZ6+70wENEZAHFuXnqZmY8Pb/MygBUActmLQET0FTOv0Dbpg0uOp3bkWGpLjqe2vD2efu98Zubf3+t1IvoLgDUAnvCmKAghhPAv1aOSngKwA8BjzHxbZRYhhBBDVK/5/BaAqQBOE9EFIvqHl/u948dMDyI5ntqRY6ktOZ7a8up4Bk3nsxBCiOCg+opBCCFEkJHCIIQQwkXIFgYi2kNE3xPRf4jon0QUozpTqCKifCK6SESDRCRDA8eJiJ4iolYiukJEO1XnCWVEVEVEt4hI/l/JR0Q0l4j+TUQtw3/nf/W0T8gWBgCnASxi5sUALgHYpThPKPsWQC6Az1UHCVVEpANQAeBpAAsB/JmIFqpNFdIOAXhKdYgJwgGghJnTAPwGwAuefjdDtjAw8ylmdgw/bQQwR2WeUMbMLczcqjpHiPs1gCvM3MbMdgBHAfxJcaaQxcyfAzCrzjERMHMHMxuHv+8B0AJg9r32CdnCcIdNAD5RHUI80GYDGL2KfTs8/PEJEWhElARgGYBz99ouqBfquY/pNBwAjgQyW6jx5lgKn7hb/UXGgougQUTRAI4B2MrM7udkHxbUhUGm09COp2MpfNYOYO6o53MA3FSURQgXRDQZQ0XhCDN/6Gn7kL2VNGo6jRyZTkMEgSYAvySiXxBROIB1AP6lOJMQoKG1TCsBtDDz373ZJ2QLA8Y/nYa4AxGtJaJ2AL8FcIKITqrOFGqGB0JsAXASQ517Ncx8UW2q0EVEHwA4C2ABEbUTUaHqTCFsJYDnAPxu+Fx5gYj+cK8dZEoMIYQQLkL5ikEIIYQfSGEQQgjhQgqDEEIIF1IYhBBCuJDCIIQQwoUUBiGEEC6kMAghhHAhhUEIDRCRjojeHJ7v/hsiSladSYjxksIghDZ2AWhj5l8B2AfgecV5hBi3oJ5ET4hQQERRANYy8/LhH10D8EeFkYTwiRQGIXz3ewBziejC8PNHAJxRmEcIn8itJCF8txTA35h5KTMvBXAKwAUP+wgRtKQwCOG7hwHcBgAimgRgNYCPlSYSwgdSGITw3SUMLbIOANsAnGDmawrzCOETmXZbCB8R0cMYWnM8FkNrCBQzc5/aVEKMnxQGIYQQLuRWkhBCCBdSGIQQQriQwiCEEMKFFAYhhBAupDAIIYRwIYVBCCGECykMQgghXPwfzJgcekSRvQYAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:07<00:00, 2.21it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXl8TPf6xz9nZpLJHkGQCLEniBJLVVHa6i3itqW3VwlF22jV3k3RqqqltBc/1cVya1/KrVpaSqm9LdEEsUdJJBIiCdlkm5nn98dxZsucycxkZr4ncd6v13nNnDNn+cx3ku/zfZ7v8nBEBBkZGRkZGQEFawEyMjIyMtJCNgwyMjIyMibIhkFGRkZGxgTZMMjIyMjImCAbBhkZGRkZE2TDICMjIyNjAnPDwHFcI47jDnIcd5HjuPMcx01krUlGRkbmYYZjPY+B47gQACFElMBxnD+AvwC8QEQXmAqTkZGReUhh7jEQUSYRJTx4XwDgIoCGbFXJyMjIPLyoWAswhuO4JgCiAZyw8NloAKMBQKVSdWrfvr1btVkjNTUVRISwsDCoVNIo0rS0NGi1WoSEhECtVjPTodPpoFAooNPpcOnSJajVajRt2hQKhWvbJESEnJwcZGZmoqysDACgVqvh4eGB4uJiaLVa/bm+vr6IjIys8jNLSkqQnZ2NnJwcaDQaAICXlxfq1asHjUYDrVYLjUaj34z3zVEoFIiOjrbr+USEe/fu4c6dOygoKEBkZCR8fX0rnKfRaFBeXl7pa3l5OcwjClFRUaJ/TzqdDvfu3UNOTg7y8/MBAO3atYOnp6f+c+F7i23WPtfpdBaf26xZMwQFBenLID8/H7m5ubh3757JNaGhoeA4DjqdDkQEnU5XYTM/br5vK/Xr10f9+vVx79493L17FwUFBRXO8fDwAMdxICL9JnwH431n4efnh8LCwmwiCq7sXOahJAGO4/wAHAYwh4i2WTtXpVKRpX8mVtStWxc5OTm4desW6tevz1oOAP6fIDMzE5cvX0arVq2YaNDpdBg0aBB+/PFHjBgxAuvWrUOzZs1w6tQp/T+ysykrK8OaNWswZ84cpKamip4XEBCAqKgoREVF4dFHH8Vrr73mNA0ajQa//PILVq1ahV9++QVXr15FSEiI6PlEhMLCQuTm5uq34uJiDBgwwGENf//9N7KystCtWzeH7wEAhYWFyMrKwu3bt5GVlYW+ffva1NDIyMjAxo0bUb9+fQwfPrxKGgTKy8uRn5+PvLw83Lt3T//apUsXhIWFVTi/pKQEe/fuxZYtW7Bz507MmjULkydPrpIGjUaD4uLiCltJSYnJfosWLdChQwf9dbm5ufjpp5+wbds27N27FyUlJZgyZQo+++wzq8/TarUVjLWj7+vWrYs+ffr8RUSdK/2ixtaJ1QbAA8BeAG/bcr5KpSKpoNPpSKVSEQAqLi5mLYeIiDIyMggA+fn5kVarZabjl19+IQD073//mwCQt7c3nTlzxiXP0mg0tHz5cgoPDycAFjeO42jNmjV048YN0ul0LtFhTlZWFqWmprrlWTLi3L9/n/744w/WMoiIqKCggLZu3Upvvvmm2+sMAKfIhjqWucfAcRwHYA2AXCKaZMs1np6eJIQHWHP//n34+vrCw8MDpaWl4L8OW3bv3o2YmBj07NkTR44cYabjX//6F3744Qf9/oYNGzB06FCXPa+4uBg3btxAamqqfjPeT09PR9++fbFr1y5J/E4yMu6G4zibPAYpBMS7AxgOIInjuNMPjk0jot1iF0jpn1qIpQYGBkpGV0JCAgCgY8eOzDTcvn0bO3bsMDk2adIknDx5El988YVL+mK8vb0RERGBiIgIi59rNBpkZGSgrKyMab+LjIzUYW4YiOgYALtqVKlUwACQl5cHgDcMUkEKhmH16tUVOlVfeOEFzJ49m1kHvUqlQuPGjZk8W0amOsHcMDiCFA1DQEAAYyUGBMNg76gWZ6HT6bBixQr9fnBwMFauXInnnnuOiR4ZGRn7YD6PobpjHEqSAjk5OUhNTYWXlxdat27NRMPBgwfx999/AwAGDBiApKQk2SjIyFQjqqVhkKLHIBXDkJiYCAB45JFHmIVsVqxYAR8fHyxbtgw7d+6UzBBeGRkZ25BDSVVEKqGkvXv3IiAggHn/wp07d5CRkYHTp0+jZcuWTDTIyMhUDdkwVBGphJJ0Oh2eeOIJNGrUCADg6emJOXPmICYmxmSijTt0/Pbbb5KZAS4jI2M/ciipikgllBQSEgKNRoPr168DAJYsWYLNmzejXbt2btVRv3592SjIyFRzZMNQRaQSSgoNDa1wbM6cOVAqlQzUyMjIVGdkw1BFpBJKqlu3rklL/bHHHsM///lPhopkZGSqK7JhqCJSCSUpFAo0aNBAvz937lxJlZOMjEz1QTYMVUQqoSQA+hU8+/TpgyeffJKxGhkZmeqKbBiqiFRCSYDBMMydO5exEhkZmeqMbBiqiFRCSQDfAT1w4EB06dKFtRQZGZlqjGwYHOTmzZsAKoaSWC5jHhYWhtmzZzN7voyMTM2gWg44l4JheOutt9CsWTPcu3cPALBv3z7s27cPmzZtYjZE9PXXX5eXn5CxCY1Gg9TUVHh4eDBbcZaIkJWVhfPnz6NVq1YWs7CxgIgkUcewRDYMDvLYY49h2rRp+v24uDi88847TOcNyEah+qDVapGZmenSyrC8vBwpKSm4evUqkpOTcfXqVf12/fp1BAYG4uzZsy57voCxAbhw4QLOnz+vf5+Tk4MOHTrg5MmTLtdhibKyMiQlJSE+Ph6nTp1CQkICVq1aBSnklM/OzsaxY8fQpk0bt6fnlQ2Dg/Ts2bPCMWfltpWpWZSUlODcuXNITExEQkICEhMTcfbsWXzzzTcYMWKES5556tQpjB071mqF26tXL5w/fx4ajQZhYWFQKJwfWT548CDGjRuHCxcuiJ7TqlUrrF+/Hk2aNEHTpk0RFhbmktnzWq0WFy9e1BuB+Ph4nDlzBsbZIIcPH462bds6/dm2kJqaiqNHj+q3ixcvokWLFjh//rzbtTBP7ekIDRo0oFu3bjHVUFpaisDAQJSWlgIA2rVr55bWl0zVICLs3LkTd+7cweuvv+6SZ9y9exfr1q3TG4ELFy5USFoUFhaGdevWoWHDhggNDYWvr6/TdRARfv31V8ydOxeHDx+2eq6Pjw9atmypz4AnbK1ataryUOySkhJs3LgRCxcutKmSUyqVaNSokd5QmL+GhIQ45JlfuHABS5YswYYNG1BYWCh6HsdxqFOnDurVq4f69evrN7F9Ly8vu7UAwPXr17F37169IUhLS6twTteuXdGrVy8EBgYiICAAgYGBou89PDwqfaatqT2rpWEICQmhzMxM1jLwxBNP4OjRowCABQsW4L333mOsSNpoNBqm6ygdOXIEH3zwAf744w/s3r0bjz/+OBISEsBxHHr37u3UZ124cAHffvst1qxZox/SbI2AgACEhoYiJCQEoaGhCA0Nxdy5c51WXn/88QfmzZuHXbt26Y/FxsYiJSUFly9fRnZ2tui1DRo00BuKKVOmoFmzZg5pICLs378fCxcuxC+//KI//s477yAjIwMpKSlISUlBZf/bHh4eCA8P1xuKESNGoHv37jbrKCwsxKZNm7B8+XKcOnXK5LOAgACbfi/za8yNxTPPPIOBAwdava64uBi7du3CunXr8Msvv1RoPNiLl5eXVcMRGRmJMWPG1FzDEBAQQPb+eK5g+vTp+hnG06dPx3vvvSeJiW4AMG/ePKjVagwbNgz16tVjpuPUqVNo27YtPDw80L9/f3Tu3BmzZ892SdhCjLNnz2Lq1KnYvduQRrxx48a4ceMGAKB37944ePCgS55dWFiIjRs34uuvv8aZM2f0x1u1aoU6deogIyMDGRkZKC8vN7nOz88PBQUFTteTlJSEzz77DJs3b8bOnTsRExMDAMjNzcXly5dx+fJlXLlyRf8+OTnZJNRy6dIl0Zza9nDhwgUsXrwYa9euxZYtW0wSORUXF+PGjRu4fv06UlJSKrzeuXPH5F4bNmzA0KFDHdKRkJCAFStWYMOGDSgoKMDy5csxcuRIZGdn4/bt2yZbVlZWhf2srCxotdoK93377bfxn//8x2Ydd+7cwebNm7Fu3TrEx8frjw8ZMgRt27ZFXl4e8vLykJ+fX+F9fn4+8vPzKx0R2atXLxw+fLjmGgaFQkE6nY61DOzduxd9+/aFUqmEVqtFdnY26tSpw1oWdDodgoODkZubi+TkZLRo0YKZlhdffBH9+vVDUlISlixZgrp16+LMmTMWF/1zNtevX8eMGTOwYcMGi/80Hh4eaN++PXr37o3PP//cpVqICH/++Se+/vprbNmyBY8//rjeGOl0OuTm5uqNREZGBoqLizF27FiX6bl27RquXr2Kf/zjH1bP02q1SE1N1RuKsWPH2hSysJWsrCwkJyfb3eJPTU3VG4qYmBg0bdq0SjoKCwuxefNmnD59GkuXLrX5OuG3Mzcc0dHReOKJJxzScunSJaxfvx7r169HmzZtTBo01nQUFhZaNBzC+5CQEAwbNswmwwAiqnabQqEgKZCXl0cKhYIAkEqlIq1Wy1oSERGdOXOGAFDDhg1Jp9Mx05GamkoKhYICAwMJAHl4eNDhw4dd/tzbt2/T+PHjycPDgwBY3KKjo6m4uNjlWiyRlZVF8+fPp3v37jF5vkz1QKvV0tGjR6msrMxp9wRwimyoY6vlqCQhDKHT6dwakjAnICAAnTp1Qnx8POrVq8dUizGHDh0CwIdIWI7gWrZsGXQ6nX4S4D//+U+Eh4e7fJx4UFAQpkyZghEjRuD27du4desWbt26VeH9t99+i0mTJrlMhxjBwcF4//333f5cmeqFQqFAjx49mDy7WhoGIsLIkSMxcuRIp3ca2ssbb7yB+Ph4Sc0hEAxDr169mGkoKSnB8uXLTY5t27YNWVlZ2LRpk0vH73t4eKBhw4Zo2LChy54hI1OTkUYT1060Wi127NhhV1zSVQQHBwOQzuQynU6HI0eOAABTo7l161aTkS7e3t5YvHgxDh8+LJkZrjIyMpaplh4DwIclnNkJ5ii3b98GAKYjf4w5f/48cnJyEBoayrTT+csvv9S/79GjB7777ju0bNmSmR4ZGRnbqZYeAwAMGjSItQQABsMgFY/BOIzEqn/h5MmTiI+Ph7e3NxYtWoTDhw/LRkFGphpRbQ1DZcPs3IVUDMPKlStx584d/QxXlmGkpUuXonv37jhz5gwmTZokmU55GRkZ26iW/7EeHh7w8fFhLQMAPw4bYG8Yzp49i65du+K3334DALRt2xa7du1CcXGxW3UUFhaiW7duspcgI1ONqZaGQa1Ws5agRyp9DH5+frh+/Tru3r0LgI/rf//99/D29na7jjFjxjBdZVZGRqZqVEvD4OiiVa5AKqEkPz+/CvsLFixgpEZGRqY6Uy0Ng5Rao1IxDP7+/ib7M2bMcMuyEzIyMjWPamkYpNKZWVZWhrt374LjONStW5epFmOPISIiAhMnTmSoRkZGpjojjRrWTqRiGIRVHuvWrct0OWnA1DAsWbIEnp6eDNXIyMhUZ6RRw9qJVAyDVDqeAUMoaeDAgZIZyisjI1M9kUYNaydSSO0JSKd/AeA9Bi8vLyxcuJC1FBkZmWpOtTQMrD2Gmzdvori4WHKGYerUqWjSpAlrKQ8tmZlA376ALVlnXXWujIwzkA2DA9y6dQvt2rXDzp079cfmzZuHbdu2MdPUuHFjObWoi7C1Yl6wADh5kn+tDFedKyPjDKplBreWLVtScnIys+eXlZXB39/fJOWhp6cnbt68yXx0kox9ZGYCo0YBq1cDDRpYPmfyZGDNGmDkSEAsUpeZCbRtCxw4APTpA5w/L34/V51rz3eSCkSEtLQ06HQ6i5tWq9W/b9asGQIDA92ur6ioCIWFhSYbEaFnz55u1WKNoqIi+Pj4VBpm5ziu5qb2jIiIoMuXLzPV8Oijj5rkZn355ZexadMmhopkHKGySt/WinnyZP510SL+PceJGxFXnWvrdyovL8e6deuQnZ0NrVYLrVaLu3e9sH3784iJ2Qovr3vQarVQq9X46KOPXD57fs+ePXjjjTeQlpYmek7fvn2xY8cOl4+2y87Oxttvv41ff/0VhYWFKCoqqpAWluM4/Pjjj3j++eddqgXg85qkpqYiMzMTGRkZJq/G71999VUsXry40vvZahiYp+l0ZIuIiKh6jrsq8tZbb5mkijx48CBrSTJmZGQQPfssUWam+OdBQTr66y8d1a5t+bxJk/hNeD95sth9+FdhX+x+5ufevKmjoCAt/fzzX7RhwwaaNWsWpaWl2X1f8/snJFg/9+bNmzRw4ECjv+GFBOQQ8B8CQEqlkn7++WfxBzmZ/Px8Gjt2rMU0rAqFgr799lvKyspyixatVkurVq2ievXqWdTTsmVLWr9+vf53ciUlJSX05ZdfUv369UXT1NarV4+SkpJsSi0MG1N7Mq/kHdlat25tV+G6gu+++87kD4VlbmUZy0yaxFeSlipzIqIhQ25Rs2Y7SKfTWaz0ba2YjY2H8THz+504cYL69DlLnTsfpZdeeok6duz4IB/2Qn2FPHLkSLvvK6alsnOJiH744QeqV6/9A6PQgYBsAuqTp6cnDRgwgL7++mu6fv16hesqM7qOcvToUYqIiLBYAXIcR127dqVZs2bRqVOnXJ5j/d69ezRp0iRSKpWilXLz5s3p1VdfpbVr19KNGzdcpqWwsJDmzp1LtWrVEtXi5+dHPXv2pIkTJ9KaNWsoKSmJysvLTe5Tow1D27Ztq1zQVSUpKUn/g3z++ees5Ugad7X0jLHWcs7JyaHhw98nIId69x5C6enpFit9Wyvm7t35/yTzrXt30/Nu375NYWHXLZ4LHCUA1KNHD5owYQJ9/fXX1K2b1qb7mn9nezwMIqIxY4opKupXI8/hPxUqncjISJo8eTJdvXpVXw7WjG5VKC4upmnTpukr5BdffJGefvpp8vDwMNHUoEEDGjVqFB0/ftz5IoxISkqi3r1765/73nvvUd++fcnPz69COTVt2pRGjRpFO3fudImW3Nxcmjp1Kvn4+Oif+cgjj1BoaKhFY+Hl5UVdu3alMWPG0Jo1a2q2YWjSpIkzy9ohNBoN+fj4kKenJ3377bf0yy+/UElJCWtZelavXk179uyRhKannnqKcnNzaeLEibR27Vqn3lus5Wqp5azVamnlypVUp06dBxXgQgJAMTExJucJ2Frh28vdu3dp9uzZD3RYbv2p1WrSaDR23dcRD8PYmBw8eJCaNn2cgGxauHAjLV++nAYOHEj+/v56XfHx8TaHq6pKYmIiRUdH08yZM4mIDzdt27aNXn/9dZOKcNmyZa4RYIROp6PNmzdTw4YNadeuXUREVF5eTidOnKD58+dT//79TcrpjTfecKmezMxMGjduHHl4eNDHH3+sP7Z7926aPXs2DRo0iJo0aWLyN/Xoo4/WbMOgUqmcVb5VokePHvTyyy+Tl5cXAaB79+6xlkREvNGqXbs2AaCLFy8y1ZKQkEAA6PHHH9dXeKmpqU67v6WWq6WWc2BgOXXs2N/oH+WoSyp9eygsLKRFixbpK7mAgADatm0bzZs3j6ZOnWr3/RwxZObG5P79+9SlyzHq1esv/bHS0lI6ePAgffTRR6TVau0OVwk4En4qLy+n33//vcJxnU5HiYmJNGfOHEpPT7f9hlWkoKCAkpKSLH5WXl5OJ0+epM8//5wOHTrkFj3Xrl2jL7/8UvTznJwc2r9/Py1YsIBWrlxZsw2DWq12qBCdzeTJk2nr1q0EgIKCgljL0XP8+HECQM2aNWPe9/Hmm2+atFoWLlzotHuLtVyNK67c3NwHnZqLLIZIANCoUaOYllNJSQktX76cmjVrRidOnHDrs8WMSbdulr0VR8NVRK4NP8nYhq2GoVoOV/Xx8aFp06Zh+vTpTJfHiI+PR3l5Obp3746OHTvir7/+YqbFmOnTp2Pu3LkYN24cvvzyS2Y6CgsLERoaioKCApPjzz33HDZu3AhfX98q3V9sKGePHsDx4xXP79ChEEuXnkFRURHu379v8jpw4ECEh4dXSU9V0Wg0yM7ORgMJTz4wLnPjY5UNo3VkPoaM86lWw1UBfAcgC8A5G8+n0aNHO9WSOsqGDRsIAA0aNIi1FD0dOnQgALRnzx6mOh64ribb+PHjqaioyK77WApBVKXlKuM4jva72B1+Wr+eyhuGkxYclYeFE61f7wz5Dz2oTqEkAE8A6GiPYThw4ICTi8wx5syZQwDo7bffZi2FiIjS09MJAHl7e9P9+/eZaunSpYveIISGhtLevXsduo+lEIQjHa0ybLDbiK9fT+TjY2p5fHxk4+AEbDUMklgriYiOAMi19XyO4/DEE0+4UJHtXL9+HQDQtGlTpjpyc/ni27NnDwDg6aefdnu+Z2MSExP1M8NfeuklJCUlObQceGYmP4v3wAH+VVivKD4eWLyYD2EI2+LF/JpCMtJiwQJgxAggJITfDwkBXnnFytpP06cD9++bHrt/nz8u4xbYZpexA47jRgMYDQAeHh7ME+MIpKSkAADzVU0XLVqEhg0bYt++fQCA/v37M9WzYsUKBAYG4quvvsLQoUMd7gsSKpXoaENlsnAhcOyYkwXLuIz4eL7Px3zFhu7dRS64ccO+4zJORxIegy0Q0XIi6kxEnQMCAljL0SMVjwEAxowZo1/xNT8/Hx999BEKCwvdrqOwsBCZmZk4e/YsYmNjbTIKllYwFbyF99/n999/39RrkKkeHDtmeUqfmHHXhDa2fLyh5eMyzqfaGAZjfHx8WEsAAGi1Wtx40IphPaJFWIpcq9UCAD744AMoFAqTlJ/u5IcffkDjxrb/I1taWtruEIRMjWBTuzkoU5n+j5epfLA5ag4jRQ8f1dIwKJVK1hIAABkZGSgvL0dwcDCzCljAvEzatGmDadOmMdHi5+dnV84MuR9BxphlBbEYqVmOFIRDBw4pCMdIzXJ8WxDLWtpDgyQC9RzHbQLQG0BdjuPSAXxMRP8VO18qhkEq/QuAafIijuOwcuVKqNVqhopsR+5HkDGG/91jH2xAEwAb2cl5KJGEYSCiIfacL5WOZ6F/QWqGYcKECejWrRtDNdYxTiRDxHsJ58/zn73/PhAVxb/KE6BkZNggjRrWTqTmMUih41kwDE2aNMHs2bMZq7GOcX8CkXg/QmUJaWRkZFyDbBiqgBQ9hmXLljHv77CGcX9Cnz5A8+aGvgRjRIcyysjIuBzZMDhAWloaGjVqJDmPYeTIkQ5NInMn5v0JHCd3JsvISA3ZMDjAjBkzEBQUhKtXrwLgR+EsX74cw4YNYzaUNjQ0FK+++iqTZ9uK4C3I/QkyMs6jvLwcKpXKqQuKVsvhqqyJjIzEokWLkJ6eDgDo1asXdu/ezXR+xcsvv4zatWsze74YxhPX5HkJMvZCElz9ef369VizZg1KSkpYSwEAlJWVYciQIfjmm2+Ql5fnnJvasqCS1LZOnTo5Yz0ph9m1a1eFVUPdlZijumG8AJ6rMqLJ1FwKCwvprbfeou3bt1fIX8yKwsJCat68OdWpU4c++OADSklJYS2JTpw4QUqlknx8fGjUqFH0xx9/WMwxguq0uqq9G2vDcO3aNROj0LFjR+YJcaSIu1JAyjgPKaSCNefIkSPEcRyFhobShx9+KImK+PDhw/r/f4VCQS+88AIdOHCAaT0wc+ZMk3opKiqKlixZQrm5ufpzZMPgQrRarUky7vXycsAWcTQFpAw7rly5Qr169aL333+fDh48SGVlZawlERHRlClT9P9vHMdRv3796Mcff2TqRUyYMKFC5KB169b01VdfUX5+vtv1lJeXU9euXSto8vLyoldeeYWys7Nlw+BqOnXqpM8zUFpaylqO5JAT6VRfjhw5Qp6engSA/P39aeDAgbRixQq35lY2p6SkhNq3b1+h0gsJCaEPP/yQbt++7XZNQkjJXFP//v3p2LFjbtdDxBt240YrAOrWrRudP3+eiGz3GOTOZwdp27YtAGD8+PHw9PRkrEZ6PEwdzZZWhrX1eHp6Oq5cuYKLFy/i3LlzOHPmDBISEhAfH49bjJaR7dmzJ7777jsAQEFBAX788UfExcUhLCwM0dHROHPmjNs1qdVqrF+/vsL/WmBgIDp27Ii6deu6XZOvr6++nAS8vLzwyiuvoDujiTgtW7bEIuO8q+BTEO/fv5/3BGzFFushtU0KHsNnn31GPj4+lJOTw1qKZDBOwVkdOpq1Wi198sknoh6fWEpR82NiSe5tOX7x4kXq0aPHg9ZdAwL2EFCfoqKi6O7du076po5hHrPmOI527drFVNN//vMfE02+vr60detWppqEkFKjRo30uj766CPSarVM9Oh0OhowYADhQQpkQdOwYcNqdiipXbt2zixHh9i1axe99dZbRET0xx9/UFpamqQ6oA8dOuT2TjqxijA1NZWaNGlC27dvp5MnT7pVkxg5OTnUr18/UqlU9MUXX1g8RyylqPExsQ52e45rtVr6+uuvycNjKQE5BPyHvLy8qLCw0KIhchc6nU6oTPTb2rVr3S/ECK1WS08++SQBoD59+hAAGjlyJFNNQkjpt99+oy+++II4jqNOnToxTa1769Yt6tq1KxERbdq0iXx8fKhevXo12zAolUpKSEhwWiE6QkpKCl2+fJm0Wi15eXkRAJPef5bodDpq2LAhAaDTp0+75ZnWRiB9++23+hanSqViPqrk1KlTFB4erq/snnrqqQoVsKXvY+mYWAe7vcczMogCAzXUs+cEArJp5sxv9edYMrbuMhglJSX0xBNPUMuWLWnlypWSaPwIDQ2tVkurV6+m4uJi1pLo6NGjVFhYSEREe/bsYdofI5AhdPAR0dmzZ+nYsWM12zAAoDt37jil8KpKSkoKAaDg4GDWUvScPXtWr8ld7qy1EUjPP/+8vhJWKpX0yCOP0OrVq92iy5wVK1aQt3cz8vA4QC1b9qSePXvS4MGDKS6u0KQCtvR9zI+NHm25g/30afuOGxsYnU5H/fpdoiFDMq0aW0sGw1XGIicnh8aNG+fcm1aRCxcusJZQLanRhkGlUjmzrKr5HQ5aAAAgAElEQVTE3r17CQD16NGDtRQ98+fPJwA0fPhwtzzP2gik0tJS8vPzMwlHfPjhh0zirxqNhnJycmjiRJ3VcJClCjwoiCgw0PSYlxdRXJzpMyZNIoqONhgQW46LGZi4OHHvwpLBEPMunIFUJpfJVI0abRj8/PycWVZVYsmSJQSAXnvtNdZSqKioiIiIevfuTQBo48aNLn2e0EI1rsAEhIrswIEDeoOgUqlo1apVLtUkptFaiMjcE7BUgUdH85sxISFksYPd39++46GhFZ8XF0ekVlv3LgS9kydb79Ng1UchIz1qtGGoV6+eM8uqSowdO5YA0IIFC1hLoWeffZYuXLhAKpWKFAoFZWdnu/R5Qgs1NNRyhde9O9G7775LAKhWrVp04MABl+qxplEsRGSpta5SWf4+rhplJTaCKzS04nex17twpRchU/2o0YahYcOGziyrKiGMjNixYwdrKdS4cWP95JaWLVvSpk2baMOGDS55lq3LXbRp04aaNm1KFy9edIkOS7qEFrItISKxcJCjFamtQ1wrw5qxsNW7EL6v7EXICNRow9CkSRNnllWVEMYuu6vis0bTpk1NYvkKhYLi4+Nd8ixblrtITU2lbt26UVZWlks0iOkSWsi2hIjEwkFinoCl0JTxvq1DXK3dwxr2eBfG31f2ImSIarhhaNGihTPLymEKCwv1I22ksCxGixYtTAzDO++845Ln2LrcxbVr19w6ltvYQ7DUWSwWIrIWDqqs4jfet2eIq9g9LD2zMsSMhVJpuxch83BQow1D69atnVlWDnP69Gl92EYKREZG6o1Cs2bN9J3Rzsa4JW58jEUL1LgSNdZlqbPYFo3WDIFYaErYtxTnF+vTELuHJcPhSOhH7DcS8yLk8NLDQY02DFKY+UxE9P333xMAGjBgAGspRETUtm1bvWH49ddfnX5/ofLo0sX+lrerECpR805ZWzXaYwjMK37jStZSnL+yIa6WKmpzw2HJUNiCPV6Eo8+QqR7s3btX/75GG4aOHTs6pcCqyqxZs1wasrGXRx55hFy5RIDUKg/jitvRTmRbDYF5xZ+YyP/3PP44X7EKn/fubQgh+fsTRUUZtPbuTeTpyVf+GRn8tQDvNQjnmBsOS4bC0da9mBdh6RkyNYPS0lJq2bKlfh5KjTYMrBfRO3HiBGk0GoqNjSUAtHz5cqZ6BKKjo6levXouGaYqpaQ7luZP2NOJLFxvLRQkVPSJify5sbF8pX36tOHZwcH8Oday04lpmjSJvzY4mL+XoEet5itqQae5oRDCU46EmmwZ6WQ8L0IOLdkPy/WRLHH16lUCoJ8/JBsGFzJjxgzq0aMHtWrVioSJZEuWLHHr6BtLdOnShTZv3uySe0sp6c6kSUS1aolPALPl+qAg8VBQRgZRWBi/Hxdnfa6G+da+PR8+UqmI9u0z7Udo3962e9SqZfAMzA2FEJ6qaqhJQGwggfC9peIdVgdKS0vp448/Zi3DBGGCafPmzam8vFw2DK5k7dq1JqN/ANCTTz7JVBMR0Zw5c1yyyJmUku4IWoYO5VvT5usHWarILM1t2LuXiOMMYZzYWCKFgujMGf4+YiOYOI6v8L28+GsE7yEqiig8nH9GcDAfy588mf/M359/zcjgz4mKMngJsbF85Z+QIP5MwVAQmXaqi3Vm29PStxReEoyko/d8WElLSyNfX18mSYPE+O677/R11KpVq2TD4Ep+//33CoZh3759TDURkcvSMEphFJJ5+MiefA+W5jYIHb/CdxALRdWpUzF0NHo0/xoVxd83NpY/NyCAaNAg/r2vL/+ZsD9sGP/MgAB+PzaW/zwqytA3YWwkatcW70Dv0MFQJpY6s+1p6Vc2L8KRe7qD8vJySQwRN+bUqVMEgMaPH89aip6PP/7YZKSibBhcSFZWlolR6Ny5sySWI3YFGRl8i5X1KCR7w0eW+hGMRwmJVYgcx1e0iYn8+4gI0wp+82a+Mu7Xz7Dv6cm/HzSIv0ap5CvTiAj+eHg4f9zfn2jgQP6Yh4fBa4mIMBgawUjExVX0BoTPjfsWjENNgmbjEJa9LX1z79D8nlLxGnJycujzzz9nLcOEn376iQCQh4cH/f3336zlEBHRqFGjzBuxsmFwFTqdjgIDA/WF/cMPPzDV40qkMBLJkfCRpX6E6Gi+cjWe9yB0AE+aZKgEhw3jzxUq/E2b+NfAQL6Sr1fPslGpytayJf/avLmpVxIWZhj1xHHWDbSxF+RoS9/cOzS/p1S8hhs3bpCvry+lpaWxlqJn5cqV+johNjaWtRwiInrqqadkw+BOOnXqRAAoMjKSWQo/V8N6JJIj4SNhWGhgYMV+BLHQDEC0fz9fAarV/KZQ2FexK5Wk9zg8PYl8fEyPC6+AoS+hdm3L9/L35/UrFAYjIXSGCwYtOtr6TG5HvQdrZSz8PQhDclly6dIlAkD//ve/2QoxYs6cOfoKmOM4tyXJskbz5s31mh6soyYbBlcyePBgMh4GVhNhPRLJkdFHghcgeApCa9d4HoEw9DQujv9cqeQ9CWurqtata1rBKxQGj0KsJW8eohKuMz7u7W39+jZt+O8D8BonTzat9L28eCNivg6UM72HrKwsOnHiBBEZjCdrz+Gvv/7SV3iumMzpCOPHjzdpnffv35+pHq1WSyEhIfThhx8SAGGek2wYXMn06dOpcePGLuvwZQ3rkUj2hI+M+xNq1eJb3EFB4h5Cly58pR4SYtqSN99CQgyVvzs2wUD4+oqf06GDYWSTEG6KjRX/Hpa8h6quwdShA/v+hqNHj+or4IiICEl0RL/00ktkFrahw4cPM9NTXFxMN27coLy8PBL6Pmw1DApUQ3JyclBSUsJUQ4sWLfDuu+/Cw8ODqQ5XsWABMGIEEBLC74eEAK+8wh93NZmZQLduwL/+BaSmAiUl/PM5jt8WLwZOnjTVevIkMGoU0LQp8NprvPYePYCMDCAsDPD0BPz9gcBA/v5Nm/KvrVsDcXH8fYKC+PO8vQ06ysosa+Q4wzV16oh/Fy8vQKnk3ysU/HV+fvy+SmV6LhH/WlTEv3p789cEBRnOOX2aL5Nz54A1a/gy2rOH/x5qNTB5MjBpEr8RAceO8ed16MCf9+KLwGOPAbduWf8NAP5awRz4+fmjceNtmDBBh8RE++7jCoqEQgJw+fJlLFq0iI0QI27fvg2/Bz9uQEAApk+fjm3btvEtcAZ4eXmhUaNGCAgIQOPGjVFeXm77xbZYD6ltAQEBTrSrjnHhwgWXLVInBViuhyR0tBpP7LI2+sh4XkKHDpZ1q1SGkIq10I01D0GptL/vwZYtMND658JopBYt+P1+/QzhpdGj+fLy9OTvExhoGBJr6bczL1tbCQvrQkAOTZz4mcXfyN1s27bNpGXu4+NDN27cYCPmASNGjKDr16+Tl5cXAXB5oix7iImJEcqq5oaSmjdv7swyk7EAq9FIwhDMoUMr5jM21yJMGBM6p43nJQizlz09+dCStQrdlj4CqW/16/NlYLxMh1BuQt+DcXjOeF0nW6hXbwMBCwkArVmzz+Q+LEJK69atMzEMgYGB9OKLL7pfiBEajYaIiB577DECpDG3SWDKlCk13zBIZRE9gfz8fMnNY8jOztb/odqLK0YjnT59moqKiqigoMDqeZMm2b7ukXGrVSwebuwpCJ3MarX1vgV3byoV349izzVi5yuVBs+hd29xz8/X175O5Fq1zlm8T2gom47oZcuWUevWralNmzbk7+9PFy9epCtXrugXi2PJ2LFjSaVSSWYNNSITQ1pzDYOHh4czy6zK1KtXj7y8vCiT9Rg+I3r37k1qtZoOHTpk97WuGI00c+ZMioyMJE9PT9q+fTtduHChwjmJiXwlabzaqJhhEjpUBw40PScujvcUAgIq9xT4TUdA+YNXxyp2W8Jr9iyyJ7YJno1Saeg85zh+spxKxXdCC7+duedgPJggI8NgPIyX27DG0aNHKTs7m9LTtSb36d2bv6+7//R///13unv3LqWnp0vCGBiTnZ1NxcXFrGWYUFRURPn5+TXbMKjVameWWZUoKysjgB+3LIU/0KtXrxIRUYMGDQiA3TMwXTUa6dNPP9W7/UFBQXTr1q0K51gaCilmmKz1FXCcYdKa4CnUrs0bCmd4Cs7oZ7HHUNSvL/6ZmOFTKvnvq1IZ1n8yNvaTJhnWcbKnn8D8PsIkQtbDV2Vso0YbBl9fX2eWVZW4ceMGAaAGDRqwlkJERF27dtVXwmq1mrKysmj79u02h7ri4gyLwQk4w2uYO3eu3jCsXr26wuf2pN4UvIW9ew2Tt2rXJvr1V/4evr62GwB7OpNd0fHuDE8CMISWhDWZjI1ix47WE/eYDwd2RG+XLs4vGxnnU6MNgxRGJQn8+eefBICizfNIMmLQoEH6ClihUJBSqaRp06bZfL09eQ3sYf78+QSAnnnmmQpGyrgTmci6ITJPgGOco0BY1VSY7CXsC2s9NW/uWKXrjpFYYuXu4SGuS6k0hJLEDGGrVvzrgQOG8po0yXQ0l0LBGxR7ML5PeDi70Uky9lGjDUPt2rWdWVZVQhg2FxMTw1oKERG99957ZDxaw9vb2+Y8Ea5cAuOLL74gHx8funbtWoXP7BmeGhdnvRJv08axyp+VQRBwlucA8CvCGq8iq1Ty6ztZe449TrhxuHHSJL6vwh6vQ4YN9+/ft9kwVMsJbirzmUEMycjIAACEhoYyVsLTokULk/3Ro0cjODjYpmuFSW3R0c6fzKZUKvHpp5+iadOmJsczM4G1a4EhQ4D//Y+fMCU2me70aWDlSmDgQKB2bf5aIn4yV+3a/AS2Awf4fW9vfjKZUBzh4bZr7d6dv++xY1X80nYgTCbr3t2284UJdsK/gkLBT96rVQvIyeEnAQqbVgtkZQFnz/LPycjgJ80lJvKve/cC9+/zn9uC8HcC8JPnDh7ktX/8sX3fWca9/Pjjj7afbIv1kNoWKiwWLwGmT59OACSTuWn//v16b8HDw8Pm1SddvQTG77//bnH4rJAUxpYWe2WT0xzZvLwMrV2prB4qdAyr1fyS3I58Z29v03CPvz9Ru3aG+xt3QD/7LB+as3UUeGU5HGQMSGnJnKeffrpmh5IaNWrkzPJyiE2bNlF8fLx+vfNly5ZRaWkp5ebmMtV1/fp1vWF4/fXXbb6ORTIeYTJbrVqGhe4qG55q3uGcmckP0zReC6hOHX4/MtL+CtWd4SMxnBlWMt44ji8va3M+bG0ImA9/ZTVsVcrk5eXRN998w1oGERGlpKQQx3E12zA0bdrUmWXmEFu2bCGFQkFBQUEE8Kk9Q0ND6ebNm0x1aTQa8vDwIIVCQcnJyTZfZ09GNGdhnkLSWqvdOJdCXJxpfgBri85VJ4NgjCPGQaEwlFGdOnznu5BoqVs306Q+grdg3KcklKstyMNWK+err76iIUOGsJZBRESffPKJ0GCsPoYBQF8AlwFcBfBBZee3bNnS2eVmN8nJyfqWubC99NJLrGUREVGrVq0c+oN09zIYto6AsjaUtX17/rVTJ74CjIzkW8Zi6wVVB6Mg4ArPQQj3VLUhIA9btY5Op6O2bdtSREQEaymk1WqpadOmzs3HAGATgCkA+gEItuWm9mwAlAD+BtAMgCeAMwDaWLsmMjLSNSVoB1qtlvz9/U0Mw8GDB1nLIiKi/v3709mzZ+26xt1JeYTnJSYalswWe6611m10NN8yFvIn2xtakfowS8GrElKLWtq8vAzzEZRK3jsQclGr1fyooYQE3nAK4R6h/IVyjYtz7HdnnbNDqhw+fJgAfuJrZcvAuJr09HTaunUr7dixw2bDwBFfOYvCcVwvAI8AaA+gM4DrAF4hogLbu7it3r8bgJlE9OyD/akAQETzxK5p164dJSUlOePxVaJXr144cuQIAKB169Y4f/48OGG4CEP279+PPn362HXN5Mn866JF/HuOAxYudIE4s+cB/MiWkSP5as7Sc3v0AI4fr3iPLl2AhAR+1I05KhWg0VSuIzQUuHnTLulupWFDfhSRo/j6AkOHAjduAI0bA6dOAb1782VdVMSPBDtwAOjTh19K28/P9t89MxNo04Zf0nvTJv6eUVHA+fNAgwaOa64JvPzyy/j+++8BAMePH8fjjz/OWBGwYcMGDBs27C8i6lzpyZVZDgDDwRsG1YP9WAALbbE6tmwA/gVgpdnzllo4bzSAUwBOhYWFucCu2s/EiRP13sKXX37JWo7DsEjKY08ow7x1O3q0wWuIjjZkJ7N3IToph5EEbA0nRUYalgwfNIj3DsQmvXXp4pw+JUuZ4Vh5DSUlJXTx4kX3P9gCmZmZpFKpJFc3/N///Z/NHoMt8xhaAZgN4BLHcYkA/gFgEMdxT3McZ9sAeetYamJXcGOIaDkRdSaizvXq1cPBgwcFg8GMjh07AgB8fX0xfPhwplqqgvG49L59+Va7q5PyHDvGzzeIiwOefZZ/nTzZ8tyBBQv4hDRbtgCRkfzriy8CO3fyY/ETE4G7d/mEPgBQt27lz/fyEn+elDh2DIiNrfy8S5cMSYWOH+c9sNq1+fJSqYB9+/j9uDjeA9u6lZ/DEBdneK1dm/cgbOX4cUPZL1pkOYmSu1i7di2OW3IrGbBixQpojNzVxMREhmoM5Obm2n5yZZYDRv0KAIIAPAMgC8B3AOJtsT6V3L8bgL1G+1MBTLV2jaenJ73yyivON6l2cvbsWQJAb7zxBmspVYLFiCQxL8CSlyKmLySEb7HGxfHDJe0d719dOkq9vSv/LvZ89+7dqz4qiUg6/Qvl5eXUvHlz+uCDD9gIMNPSsGFDk75HqSyX8yAntdM6nxMBpADYA2AxgF8A/J8tN7dJAKACcA1AUxg6n9tWco0kOnrLy8vJy8uLTgvrRFdj3N35bE/FJCwTXasWf25QEP9eGJHk6Gbv+kAsSEy0/3v5+vLlGBvL71ua+1HVxoAwDFZI9uPunODGbNiwgQBpjArctm0bBQQEUGhoKAEglUpFHh4ekshJHRsb6zzDQHxFrATQFsAgAAPwoL/BWRuA/gCugB+dNL2y8z09PUmr1bqk8Oxlcg0ZhuHu1p89FZMQyzZetC0qyuAtBAURtW1rfwXq5eXa7+gMHJmkZ7wplabzQ4RXYXJhYGDlkwstIZX+Ba1WS23btiUAJIUEXklJSVRUVETPP/88AfxKwu+9957dowRdQb9+/ZxrGKS2SWlJjLy8PNYSqgyLzmfzhdhq1RJPEymWhczPz/JxIcRkS8V55ozrvmNVccRbEFJ8Whu6K+R+tnVyoTlZWVkUHV1WJY/DWWzfvl0fsgkMDJRMJsUuXboQADp69CgRkSR0PfroozXbMLQTFn2RcQrmeYGNZxe7+pnGISwvL8vzCsSWih40yDAXIiiIqFkz2ytQISbv6yvNZRwyMpwzo1tYJsS84hdL/mNLxT5kyBAaNeoe8/4FnU6nr4CFLTs72/1CLCD0M9ibKMuVtGjRomYbhk6dOjmzvB56WHQ+iz2zfn3bzxXyORsnpuE4vrNWyO0sDOG0tg0bxhtDKRgIwTBbm9BmbRNyMFtLelSVMNJPP/1EQAMKDNS41cO0xK+//mpiFADQiRMn3CvCAhqNhpRKJQGg+/fvs5ajp3bt2rJhkLEfVrOfbQknGc+UFryGqramhU2h4JfQMM9c526E/hMhRFbVlWTbtq3Y6UzkeBgpPz+fGjVqRMBCeumluybGlIXX0Lt37wqGYePGje4VYYFbt24RwKewlQpardauRfSqZT4GGdfgynwM1p4H8LOff/uNHwtvaV1/4dw1a/jXdu34/At16vDzIYQtOpo/n+P48f+ennyuAgEfH8PnwqtOB5SX87OD33uPn8tx65brvrc5mZn8M8eNA1JTDdqI7LtPaChfBhzH56M4d47/HdesMfyeQv6L0lKgY0cgN5fPf2HL/INp06YhLS0NQBds3VoLe/fy17KYv3D79m288MILWL16NQCgVatW6Ny5M65eveo+ESJILUcLAOTl5fGegK3YYj2ktskeg/OR0uxnS16Dq5aiNt68vQ2pQIU8Ba7ugH/2WX5YqZCmUwgB8bmodRZ1chxR3br8eyF1py2b0OnMcYY0qrb+zsePHxdanAQ0oICAcrd5ltb4+uuvCQCNGDGCysrK6Pjx4+zEPIAPt/FpbKWC0aKfssfgToQClRJEBI1Gg/T0dNy9e9fquUKLPCSEb1WOGsXPLna210BEKCsrQ0pKikk2sYwMvvqKi+Nn8Jp7DcJM6UmTDNckJABqNb++T1yc4XNbs6AZw3GE4mJ+3SVPT75VfeIEMGOG8zwIwTM4c4Z/fe89YP9+YPNmvtVNZFhjSKcDLC8KwJ+Xnc2/v3KFf61fv6IHNXkyf67wfutWQ7a8H36wni3PnPT0dMQ+mIKtVn+Ef/4z122epTUuXboEAIiMjISHh4ck1iSSosdg16xnoHp6DEqlkoqKipxlTKvMhAkTKDg4mA4fPsxaChUXF5NOp6MNGzZQo0aNKC4uzqY8Ea7ugC4tLaXMzEx67LHHKCoqipYtW0ZEFUdEBQURDR1qOYewvV4Dx/Heh1LJr8AaHFzZ+YYWulLJdwArFHz2s4YNTSdzCSvCGr9W9pmwrHlUFH9/pZLIw8PYQ6j6JtzPfOvShe+/qMpopJKSElqz5jSpVDr6+ec0/W/G0mu4f/8+nT592uZMhe6gqKiILl26JKkRSSUlJbR7926bPQbmlbwjGwCKj493ZrlViddee40A0MKFC1lLodTUVAoPD6dWrVrpO+QA0L1792y63lUd0Fqtlvr376/XM2fOHCISr+zr1bPcGWyeOaxWLb7j2NOTKCzMUAGHhjpeuQqLzwmVbK1a/KunJ68pLo4/5u/PvxpP9BI60YXPoqL48NCgQfzrpk0VjZe9+lQqw+KBo0fzBkup5NOAGv9mxh3CjoaQzImO5o2tcUezvNx29WDSpEk13zCsWrXKiUVWNb755hsCQEOHDqWLFy/qW8OsmDdvnolRAGBz7llXzoDOycmhJk2aEIAKM8bN+ziEisx8XoO5PmETG57p42PIneyIkRBWbDW+v1pNNHAg//7JJ/nXzZv54Z8qFVG/fvwx4dXPj/8ujqYbrcpmPDx16FBxw2ELGRniK7ZKfZVally7do21BCouLhayTdZsw/DOO+84s9wc4s6dO/Tuu+/S/PnzCQDVqVOH/P39ad68eUx1lZaWUkREhN4oeHh42HSdeeWcmMi3mp05O/ivv/4itVpNw4cPNzlua0hJzMNQKnnPQa3mO3N79+Zb7GKzpu31INRq0nsNCgVfyTdpwh9TKIjatePLSqHgz/f1NYSHnnrKcB9HvQSAN25CitPwcD5M5enJb7VqVVyzyHiyopgHZe8y26wntVVHBg8eTPn5+Uw1nDhxgpYuXVrzDcOzzz5LRER37951WuE5wvDhwyu0zqXgzezbt0+vJzAw0KZrjP/xhX21msjZS9D897//pf79+5scszekJOY5iM0WFou927OZV66CsQgLq3iutRVRbTEM9mSjCw01raiN10UKDOR1VmW0WUaGwdCyntRW3UhOTiaFQkGJiYmspRAR1XzDEBoaSmvXrqWhQ4c6s9zs5vr16+Tp6WliGHbv3s1Uk8BLL71EQlnZgrUZxs6uAJYvX27xuK0hJTGt7dvz54stqufjw7fcO3SouqEQPAhL7xs1cs79zbfYWL58hFCW2Pfo0MHgdZkP/7W3tS80EMxXj5a9hsqJi4sjALR161bWUojoITAMwjZu3DhnlptDGGdyA0AJCQmsJRERUVpaGvn6+lKLFi3svtbVYQOxRcWshZSMR/hYOl/Yj442tJiDgw2dpY4sSieFTaz/RFhe2/y7BwUZVqN1xvLaQUHiBkjuWxAnPT1d32hkHV4WeGgMw+eff+7McnOI27dvk5+fn15ThtDclQALFiyg9u3b23WN2GQ3SxWzs6ksKY/xMs/Wzu/e3bohsCe0ZMtQ0qouX2GrMRBGFlnra9m7lz9PSBNSlbCP3K/gOG+//ba+Tnj11VdZyyGih8gwbNmyxZnl5jAzZ84kAMRxHJWXl7OWo6e0tJRee+01u64xb4ULxyxVzK7CUkc4x5muFip0rhqPshHzHoSQVFWNhD0bx/GhK0ufiR339eVDUsIid8KaUMOGGZIbmY8sMvcSjL+3cVnYOwJJ7ldwnOzsbPL19dXXU0888QRrSUT0EBmGP//805nl5jD5+fkUHBxMwcHBrKVUwN6liK31Nbgzw5u1EJHwamyorHkPwsJxmZmGCWYJCXzFJ8w3EDMcwiquYpW5rZvYSq/GxkBsOGhoqO1egjMmK1bnfgUp5D4QGorCJpUcMjXaMBiHbTIl1HxZsmQJ1dRcEVLK8CZMbBNSfVryICz1VQg5JsRm/3boYFjh1V4jwHG8cbE2p8LS+UFB4sagfn3xcujSxTAU1VlegkB17lcoKiqi77//nqmGgoICYYlrk62wsJC5rhptGIRZvWq1WjIpPon4sM1oS5lmqjks+xyILIe2hJm/wufmHoS1CtXYSIjNc1AqDSN6oqIMLfq4OIN3YUu/Qv36/L0CAw2pSNVq8eU5hAxs5iGjuDjTYbvmQ1GduaRJde5XePfdd+nTTz9lqmHPnj306aef0pAhQwgAderUiTw9PZmn9/z7779rtmHo1KkT9ejRg1q2bOnMcnMKUskg5UxY9zlYq+SJKvcgxCp/41nBwlIRtkyI4ziD0Rg2zDCzWphcJ8wyVqttGxbbpYupMbBmrITEOs4aimpMde9XOHXqFCkUCpo5cyZrKURE9OKLLxIAWrduHZ09e5ZOC6MBGPH777/XfMOwf/9+6tOnjzPLTUYEKfQ5GOOIByFgzUgQVTQUQgu/qjOojfs5jOdoCBW7NeNnvn6VED5y9sKH1blfoaysjDp06EAA6KOPPmIth4iIoqKiCACdPHmStRQi0ufHrtmGQRCJ5sAAACAASURBVKfT0erVq51ZbjJ2YCncYD5KyFU46kEIWo2NRWXehHHYSRgZJTT87N03NgTWvkf37qY6jcva3Lg4q0VfnfsViIg+++wzEmL5U6dOZS2HNBoNqdVqsmcBS1ezbNmymm8YiKQx+uBhRKzPIS7OfcNZjbHVg7C0cqw9I5vMO3jt3bfVEBjrFAycJS/D+Ps72slsqbO+OngIxly5coW8vLz0huH9999nLYmuXbtGAKi+pSTmjPj0008fDsMgwwZLFbGlPMLuwhYPwjgEI3wHwZCJeRVVWbrb2hYaamqMxEJFRKYGztp3dbSTWfCIHM3el5ubS6WlpfY/3EnodLoKuZ+lsMDmnj17SErzF4iIxo0bJxsGGddhbXYyUcUWp7tCTALWDJdx5Wfcl2DNqxA+N/eGbDlmvi/mtYiFiirrE3EUYx3G5WD8PSrzGq5evUoDBgyompAqsnLlSjIfFjrJ/MdnwOLFiwkAxZkXLEP+/e9/y4ZBxn1Uli/aUgXqSiozXIJG4wpRzKsQMxa2HDt92roRMPZaXBEqMsbaLHFHluQ+fvw41a1bl8aPH181YVWgpKSEJkyYQB9//LGJYZDC+mljxowhAPTFF1+wlqKnV69esmGQcR9iw1mttcDdjS0hGLGOXUvGwlJM3vyYsESFsG8pZGPeWndVilVLfRiOdmBv2rRJ37EqhZWEf/jhBwJA3bp1o6+++orGjh3LWhI99dRTBIB27drFWoqepk2byoZBxn1U1qkq1qnp7hCTLZqNvQoiy8bCvEPY0jHzEUmWjACRcxLoVIa1PgwBW7wSnU5Hs2fP1rfMvby86P79+84T6iCvv/46AaBZs2YREUliEcuwsDACQFeuXGEtRc+DDnrZMMiwxVrLVKfTuT3EVBm2GgvzDmFLxywtUeEOIyBgbcSRIzpKS0tp5MiRJiGbvn37Ol+4neh0OmrYsCFJKQ98YWEhASCVSiWZBTWLioqE3002DDI8JSUlTDLdiYWYJkzQ0JQpiyURYhLYtWsX3blzp8JxMWPh6GarETh8+DC98847NGLECIqJiaGuXbtSdHQ0HThwwKbrnTHiSKCsrIxiY2OJ4zgTw7BkyRLbb+Iizpw5QwCoXr16klkeJyEhgQBQREQEayl6Vq1aVfMNQ2RkJGk0GiLiWwxFRUVOK0BHOX/+vD6v68WLF6msrIyxIt6lvnbtGp08eZKGDRvm9ueLVaqtW+cQsJD69btIROxDTEVFRTR69GgKDg6mjRs3SmJ+THp6OgUGBuor4aioKLp8+bJN1zpjxJElHkyQ0m/Jycn238TJCBPbXnnlFdZS9GzatIkA0HPPPUdEJIm0nh999FHNNwwcx9EzzzxD2dnZlJycTGPGjHFmGdpNeno6hYSEULt27ej69es0bdo0fbyTFaWlpdStWzeqXbs2DR06lAAwX3WSiGjChAkENCAghzw9w+nYsWPMRzHt2LHDpMKLiYmhGzduuOfhIhQWFlLbtm0JAMXGxoquzGnJiFZ1xJEYRUVF9N5779H8+fMdygroCrKysmjt2rV0/Phx1lL03Lp1i3788Uc6ePAg6XQ66tatG3Nv5t69e7Rr166abRiUSiUBoPDwcJoyZQoBoJ9//tmZ5WgXycnJ1LJlSwJAdevWpRYtWpCHhwedOXOGmaa8vDzq27evSYUXFBRE6enpzDQREY0dO5aAhQ82UJ06dSg5OdnmUUyu8CbOnTtH3t7eJmXl5+dHS5cuZfoP/fPPP9NXX31l1YMRmyfhykXwdDod/fTTT867YQ3mwIEDBID+/vtv1lKIiGq2YWjXrh116tTJ5B+5fv36lJWV5cwytIvc3Fzq06ePiabo6GhmISWtVkvbt283ySIFgP7xj38wC5UsX76ceKN+1KFRTMIxZ3sThw4donXr1tHGjRvp+++/p//973/0448/0s6dOyktLc15D7ITc6NkbhQrmywnUN2WuKhJxMTEEADauXMnaylEVMMNQ6dOnej06dMmMVgA9MILLzCp9HQ6HR06dIgGDBhgosd4CJ27OXToEHXu3LmCHgC0dOlSJpqI+GXJN27cSMOHD6fg4GC9pl69elFKSqnV1i4Lb0JKWJpVbW5EXTUPQsZ+Ll68qP/7njdvHms5pNVqa7ZhiIyM1I8TNt++++47Z5alTeh0Ovrll19owIABFUZusA4p/fXXX/Tmm2+Sv7+/XpO3tzddvHiRmSYBrVZLJ0+epE8++YS6du1KbdrspYkTTQ27cWu3qt5EdTEclnSKzaqujnkTHhbefPNN/f/c8OHDWcuhvLy8mm0YOnXqROXl5bR9+3aKiYkhhUJhEhtmGc/7+++/6d1336WgoCBJhJQECgoKaOXKldSlSxcCQJ07d2auyZxHHy0Tbe1WFju3ZYa1NcPhbqNh7XliazCJzao2PkcOGUmD7Oxsk36rjh07spZEqampNd8wGHPjxg2aOXOm3ovo3r27fjgrK4qKimjFihXUvn17piElSyQkJNCbb75Jn3/+OWspNlNZ7Lwyb6Iyw1EVo2Htc7HPxJ5nbQ0mY6MolldaDhlJgzlz5phEDry9vZmPTDp79uzDZRgENBoN/fzzz/T888/T/PnzHS5AZ6LT6ejo0aM0fPhwunDhAms5JhQXF7OWYDPWYue2jMSpbGkOR41GZZ9b+sza8ypbg8n4PNk7kCYlJSXUoEGDCmHuq1evMtV15MiRh9MwGJOVlSWJiUrGsPZiaiqVVZy2rP7qqNGw9rm1JbwtPU9Mp6uW3q6pJCQk0PXr15k9/48//qAFCxbQO++8QwCoZ8+e1KRJE+Yjk2r8PAZ5SQwZYyobiWPL6q+OGI3KPrf0mbXnyZ5B1RFyP9s6S9yVTJw4kQDQ/PnzqaCggM6dO8dUz7p162TDICMjYOvqrwK2Gg1rn1tLfyr2PHmoadWZN28eAZDEqLvnnnuOpLLiABHR0qVLbTYMKsjI1HCOHRP/rEcP4PhxYPFi0+PduwMLFgAjRgAhIfyxkBDglVf44wsXWv+cyPJnW7YAGRmWn2dNp0zlXL58GTNnzgQA6HQ6tmIApKSkAACaNm3KVsgD8vLybD5XNgwyDzWOGg0AiI+3/rnYZzdvVk2zTEV0Oh3i4uJQWlqq32cJEeH69esAgCZNmjDVInDv3j2bz5UNg4yMCJW14OUWvnRYtmwZjh49qt/XarUM1QB3795FQUEBfH19UbduXaZaBOzxGBQu1CEjIyPjcm7cuIH333/f5Bhrj8HYW+A4jqkWAXs8BqaGgeO4lziOO89xnI7juM4stcjIyDiORqPhR7O4GSLCmDFjUFhYaHKctWEQ+hekEkYCgIyMDJvPZe0xnAMwCMARxjpkZGQc5MqVK5g+fTqTlvHJkydRp04d9O3b1+Q4a8MgeAxS6XgGDJpsgalhIKKLRHSZpQYZGRnHICJ888036NChAzp06MBEQ9euXbF27Vr4+fkBAGbMmIHOnTszNwxS9Bju3Llj87msPQab4ThuNMdxpziOO2XPF5SRkXE+mZmZiImJwVtvvQUfHx8MGjSImZby8nLs27cPAPDKK6/gt99+Q3h4ODM9gPQ8hnPnzqGsrMzm810+KonjuP0AGlj4aDoR7bD1PkS0HMByAHiQZ0BGRoYB27Ztw+jRo5GTkwMAGDlyJNRqNTM9x48fR35+PiIiItC8eXMAgL+/PzM9gPQ8hi1btth1vssNAxH1cfUzZGRkXE9eXh4mTpyINWvWmByPi4tjpIhn9+7dAID+/fsz1SFARJKa3EZE2Lx5s13XyPMYZGSMKCkpgZeXF2sZOH36NLKzs+Hj4wMfHx/4+vqavHp6erpVz4ULFxATE6Ov8AR69eqFiIgIt2ox5+effwYAxMTEMNUhcOfOHdy/fx8BAQEoKiqCl5cXvL29melJTk5Gjx49kJycbPM1rIerDuQ4Lh1ANwA/cxy3l6UeGXawGOpoiZkzZ2L8+PG4ceMGUx1+fn54+eWX0b17d0RHR6NVq1YICwtDUFAQ1Go1vL29MWvWLLvixlWhTZs2OHXqFJ588kmT42+88YZbni9GSkoKLly4AD8/P/Ts2ZOpFgFjb2HVqlU4c+YMUz2tWrXCtGnT7LqG9aikH4kojIjURFSfiJ615brs7GwcOXIE+fn5oucUFRVh+/btbqtwdu/ejT/++APl5eWi56Snp7tFi0BCQgKOHTsGjUZj8XN7hq85i7S0NPz0008oKioyOf7WW28hMTHR7XoAIDc3F0uXLsX+/fvxyCOPYOnSpWjevDlee+01XLlyhYkmT09P0TDEE088gfj4eMyYMcOtnsP+/ftx8OBBqFQqhISEoE6dOhg4cKDbnm8JIYz0zDPPuN2LEkP4vwoPD8eKFSsQHx/PWJF9k9sAVM/VVWGU/KJly5Y0ePBgmj9/Pv3666+UnZ2tX00wIiKCHn30Udq/f78DaxHaR/PmzQkA+fr60jPPPENz5syh48ePU2lpqf6cESNG0BtvvGGi0ZUMHjyYAFBQUBC9/PLLtG7dOsrKytJ/3rlzZ5o/fz6Vl5e7RQ8R0YIFCwgAqdVq+sc//kGLFi2iy5cv0+uvv05KpZKmTJlC9+/fd5seIqLffvvNYv5wAKRQKGjw4MF0+vRpt2q6e/euScpaAFS/fn1at24dszwjt2/fpt69e9PSpUtpxYoV9PbbbzPRYUxSUhJNnTqVtm/fzlqKnvPnz9PcuXPpgw8+kEy+5/T0dGG115q77HbdunUpOjqaPDw8LP4zh4eH08CBA6l169b6Y08//TT9+eefzixrPWVlZTR69Ghq1apVBS3e3t7Up08fmj17No0ePVpfUX/99dcuT9zz4YcfUrNmzUz0cBxHjz32GM2aNYu6d++uz0ebmJjoUi0Cq1evpk6dOlUoJ7VarX/fvHlz+u2339yih4goMTGRXn31VXr88ccpICBA1EgMGDCAfv/9d7fp2rNnD3l6epJCoaCJEyfSvXv33PZsMTQaDel0OiopKWGaDKc68PzzzxMAat26NWspRKRvlNVcwyDkYygtLaWEhARauXIlvfXWW/TYY4+ZJOC2tL3wwguUlJTktMI25+bNm7Rp0yZ64403KCIiwqqWDh060LFjx1ymhYhPLXrp0iVauHAhPf3006LGVKlU0rRp09yW7vPWrVu0Zs0aGjx4MAUFBVnU9Nprr1Fubq5b9BDxBv7BUGiTrW7dutS1a1eKjY2lGTNmUHJyslv0JCUlUffu3d3urchUnfT0dFIqlfrGWH5+PmtJ9MknnzwchsES5eXldO7cOfriiy9EK2SO42j48OH0999/O1TA9pCRkUGbN2+mN998k1QqlUU9w4cPpwwho4uLyc/Pp23btumTiJhvERERdPToUbdoEVi0aJHob9WgQQP63//+55bwyY4dOyguLo4+++wz2rp1KyUkJFBeXp7LnytGfn4+8wTyMo4xa9Ysk7/jQ4cOsZZEU6dOfXgT9ahUKkRGRmLixIkA+E68kJAQhIaGIiQkxOR9amoqmjRpAoXCdX3wISEhGDx4MFJSUkQ7gdetW4ft27fjk08+wfjx46FSue5n8ff3R69evTBjxgyLn1++fBk9e/bE2LFjMW/ePJdPFDp//jz27duHmJgYKJVKqFQqKJVKk/e7d++Gj48P+vXr51Itzz33HJ577jmXPsMeWE/SknEMrVaLlStXmhyLj49Hr169GCniKS4utvncGmcYAH5E0uLFixESEoLatWszX/a2sLAQvr6++O677+Dn5wd/f3/4+fnpN2Hf29vbpUZKIC0tDdOnT4dCoaiwKZVK/fu0tDS0adPGpVratm2rH1kiI1MT2LdvX4XhzqdOnWKkxoA9hoEjksb4cXvo3LkzSaGgZWRkpEdBQQFTb2vcuHEICgrCf//7X2T+f3v3HhTVmeZx/PuCqCiGi1wMCoaIchtUbqu4klgxrkTFDbmoq0OIcYLxEsXcNilJrNTEmlljWZEy5U5Sy2xmdLJxYqx1klljMrMETcyOEY0aaSyiBhluGhAZkfu7fyA93QjSDTSnW59PVVefPn0O5+FA96/Pe06/b0UFc+fOpaSkhJKSEsNqAsjMzOQ3v/nNMa11r0McuEwnekIIYYtXXnnF0O3n5uby85//nIaGBqCjqfjXv/71Lb/jNBjsOWKQYBBC3DY+/vhj3n//fUNrcHNzo6mpibq6Otzc3PDz8yMlJQUPDw9D65JgEELccRobG8nOzr5pNDcjVFdXAxAQEIC7u7vB1XSQYBBC3HG2bdvG999/T3Nz86D1IdWTqqoqAIKCggytw5IEgxDijlJaWsobb7xhfty1L67B5ozB0NjYaPOyEgxCCJf3wgsvWH0irq+vN7CavzclOVMwdJ4Mt4UEgxDCpf3pT3/i97//vdU8o88zdB4xBAYGGlqHpdraWpuXlWAQQrislpYW1q1bd9N8ZwkGZzpiuNUwBV1JMAgh+q2lpYX9+/cP+nZNJhPZ2dlkZ2cDHV3QgARDV21tbXKOQQgxeE6dOsX06dPNb4aDKTY2lqeffpq//vWvALz22mu89957clVSF4cPH8aeXi5uy76ShBCO19LSwpYtW3j99dcZOXIkS5cuNaQOrTVffPEF0DEGdVRUlF1vgo7QefLZWc4x7N27167lJRiEEHY7deoUTz75JIWFhQA89dRTjBw50pBaTCYT1dXVBAYGEhkZCWB4x5nOdMSgteajjz6yax1pShJC2Ky1tZXNmzeTkJBgDgWlFKtWrTKspvz8fABmzZpleCBAxz66fPky4BxHDMeOHTM3tdlKgkEIYZPTp08zffp0cnJyrDqEe+ihhwgPDzesrs5gMHq8g06XL19Ga42fnx8XL140uhz2799Penq6XetIU5IQTqylpYWVK1dy7do1goKCGDNmDGPGjLGaDgwMHJQO2nx8fHj++ed56aWXKCsrM89fu3atw7fdE8vzC7NmzTKsDkud5xdGjRrFhx9+yEsvvWRoPS+++CIVFRXs27fP5nXu6GC4dOmSeYAcIXpSWFiIm5sbU6dOHfRte3h4sH79eqZNm0ZTU1O3ywwbNoycnBxefPFFhg0b5rBaxo0bx7Vr1ygrK8Pd3Z22tjYmTJjA3LlzHbbN3hQXF1NVVUVAQABRUVGG1WGp8/xCU1MThw4dMjwYRo0axblz5+xaxyWbkmprazlw4ABHjhzhu+++o6ysjPr6etrb2+36Oc3NzYSEhLBixQry8/PtXt/Sn//8Z/Lz8ykqKuLHH3/s01UR1dXVvPrqq/zwww99rsPSyZMn+eqrrygvL+/T73bmzJkBqcNSWVkZhw8f5tKlSzbvI3svtbPXlStX+PjjjyksLKSyspK2tjar5wMCAoiPj2fGjBns2rXLruvB++rSpUu8/vrrpKWlkZqa2m0oKKXIyMjAZDKRk5Pj0FAAOHToEKtXrwZg586dzJw5kzVr1gzKqIM9sbwayRnOL8Dfg+Hy5ct8+eWX/XpfGSj2dKAHLjqCm1Kq26KVUtx11114e3ub73ub3rx5M0ePHgUgNDSUZcuWkZGRYfenj6ioKEwmk/nxkCFDCAwMJCgoiKCgIKvpro/9/f3N4zynpKTw5ZdfkpqaSlZWFvPnz+9zM0FGRga7du0COj5Vjh8/nnvuuYewsLCb7gMCAm56YS1atIiqqio2bNhAWlragHQfvH37dvOXkXx9fYmIiDDfJk2aREREBOHh4QwfPty8ztKlSzlz5gwvv/wyjz/++IB3Y3zo0CHuu+8+82N3d3fGjBlDcHCweXzwDz/80HxC0d/fnxUrVrBy5UrCwsIGtJZO1dXVVle0uLm5Wb3BLFiwgM2bNzN58mSHbL87Z86cYeHChcybN4/c3FwOHDjAtGnT8PX1HbQauvr000955513WLhwIZmZmYbVYemLL74gJyeHw4cPAx0f0GJjYw2tqbi4mOTkZGpra20awQ2ttcvdfHx89OzZs3ViYqKeNGmSDgoK0sOHD9fAgN0SEhL0W2+9pauqqrQtMjMz9YwZM3R4eLgeNWqUXdtSSumAgAAdExOjQ0JCrJ67++679caNG/X58+dtqsNSTk6OTkhI0H5+fr3WMGLECB0dHa3nzZun16xZo9988029atUq8/MTJkzQubm5ur6+3u46LOXl5en4+Hjt5eV1y/0RFhamU1NT9fr16/XixYut6vjVr36lGxsb+1WHpa+//lrPmTNHx8TE2LSvLOucP3++/uSTT3Rra+uA1dNp06ZNevfu3bq4uFg/99xzGtAzZszQBQUFA74tW9XU1OiWlhbDtu8q5s+fb/4/efvtt40uR2utdUxMjAa+0Ta8x7rkEUNPYz43Nzdz9epV6urqzPe3mq6rq+PIkSNcuXLlpp81cuRIZsyYwQMPPMDq1au566677KqxoaGB6upqqqqqzPeWN8t5NTU1vf48pRRz584lKyuLBQsW2H0UcfXqVS5cuMCFCxc4f/78Tfe29qPi4+NDVlYWa9euJSQkxK4aLGmtKS8v5+zZsxQXF1vdLly40Ovhd3BwMM899xwrV67Ey8urz3V05/r161RWVlJeXk55eTnFxcW8+uqr3S4bEBBAXFwcjz76KCtWrHDYoCzLli1j8eLFpKWlOU2TiehedXU1wcHB5ibJJUuWGD6qHEBERARnz5616YjhtgoGe124cIHIyEiamprw9/dn5syZpKSkcN999zF16lRz846jtbS0cOnSJSoqKnj44YetrvgACAkJISkpicTERJKSkpg2bdqADnautebKlSs3hcUf//jHHk9aubu7s2TJEn7xi1/0KyC609TURElJiTk0du7cSWlpabfL+vr68uyzz7Ju3TpGjx49oHV0evbZZ9mxYwehoaHExcURHx9PXFwccXFxjB07dlDeqNvb2w1tyxe2y83NZf369ebHY8eO5eLFi4YH+r333sv58+clGHqzZ88erly5QkpKCpGRkYb/4d59911ycnKsQiAxMdGQb09WVFQQExNDbW0tSinCwsKIiYkx36Kjo4mMjGTEiBEOreOrr74iJSWF9vZ2hg8fTnh4uPk2ceJE8/TYsWMd8mm9tbWVgoICpkyZ4rDgEbeXpKQkur4/nTt3zmHno2wVEhJCWVmZBIOrqampwdfX1/CAAvjss8+orKwkJiZmUAKgJ59//jlDhgwhPDyc4OBg+dQsbqmtrY3m5mbDLkE3mUz89Kc/JSIigt/97nfExMRw/fp1Nm3axBNPPGFITZ3uvvtuKisrbQoGeZU5ET8/P6cIBYA5c+aQkZFBfHy8YaEA8OCDDzJr1izGjRsnoSB6tWvXLkpKSgzb/vjx4zl69CgzZ84EIDk5mTNnzjBlyhTDaupk+W313sgrTQhxW2hqamLTpk1UVFQYVoOnpydKKerq6gDw9vZm2LBhEgxCCGGEd999lx9++IHy8nKjSzEHg71XMzpSa2urzctKMAghXN61a9d44403AAw9YujUefm3t7e3wZX8nRwxCCHuKLm5ueauKJwhGCybkpyB1lqCQQhx56itrWXLli3mx9KUdDN7+2uSYBBCuLQtW7ZY9V7gDEcMztaUZM/RAkgwCCFcWGVlJdu3b7ea50xHDBIMQog7WmNjo11XvgyEvXv38swzz5gvB/Xx8aGiosKh3bTbwtmakiQYhBCD7uTJkzz99NMO60SwJ2vWrGHbtm3U19cDcODAAZYvX95tx5iDydmakuwNbAkGIUSftbe3s3XrVpKSkpg+fboh39yvra3l3LlzDB06lLi4OHbu3ImPj8+g19FJa+3yTUl39NCeQoi+Ky0tJTMzk/z8fDw9PVm2bJkhdZw4cQKA2NhYhg4dCmBo1zINDQ20tbXh4eHh8FH1bCVNSUIIh9Jas3v3biZPnkx+fj7QMdqfUZ/SCwsLAYiPjzdk+11ZNiM5S99n9jYlyRGDEMJmNTU1rFq1ij179ljNz8rKMqgiOH78OOA8weBszUggTUlC3LaMHqynvLycefPm8e2331rNj46OJjk52aCqnO+IwdmuSAIJBiFuWyaTidTUVAICAggNDWX8+PE33UaPHu2w5ovg4GCOHz/Oz372M/Ly8szzs7KyDGsyuXbtGiaTCXd3d2JjYw2poStnuyIJXKwpSSn1JpAGNAPfA8u11sZeZ9bF8ePHOXbsGAsXLiQwMNDocmhqaqK+vh5/f3+jS7nj/fjjj4M6qtuECRNYvHgxW7duNX9K7ioqKoqdO3dy//33O6SGffv2kZeXh5ubG5MnT6aoqIiMjAyHbMsW3377LVproqOjDRucpytpSuq/z4BXtNatSql/A14B/rW3lRoaGjh58iQeHh54eHgwZMiQHqfd3d379WkmOjqatLQ0Vq5cycyZM3nkkUdIT08nNDTUajmTyYTWGk9PT4YPH46npyeenp54eHgM6KepoUOHkpqayujRo1m0aBHp6en4+fl1u+zFixdpamrC29sbb29v8xUbA+mtt95i1qxZTJkyxabfs6amhqtXrxIYGDhgAwCdOHHC5u13p6GhgdLSUvz8/PD19cXDw8Om9d577z0++OADli9fzpIlSwb05Ovf/vY3Dh48yOnTp823s2fPmgeY7yo0NJSNGzfy5JNPOuTvDFBUVERmZiYAv/zlL5k9ezbbtm3r8f9vMDhbMxJIU1K/aa0PWjz8GnjMlvWKiorsGviit/CwZbq9vZ2CggIKCgrIzs4mMTHRHBKRkZGkp6djMplu2rabm5s5JLqGhi3zu3suOTmZHTt2cPDgQZ555hnmzJnDokWLePjhh63enDZu3Mhvf/tb82NPT098fHzw9vY231tO32qej48PXl5eN7VxNzY2EhcXR2xsLE888QRLly4lODi4x7/F7t27WbduHQBeXl4EBgYSFBREYGCg1XTXe19f3x7b1/Py8jhw4ABZWVlkZmYSEBBg8/8GdBwVdo64BR0vaD8/P/Nt9OjRgUn5WAAABCJJREFU3U5PmjSJb775hr/85S9s2LCB9PR0li9fzuzZs/t9LqCuro5HH33Uap5SivDwcEpLS2lubgYGJxA6lZeX4+7uzmOPPcYLL7yAUoqtW7c6dJu9GTZsGDExMSQlJRlahyVvb28SEhKYOHGi0aWYjRgxgoSEBI4dO2bT8k4z5rNS6g/AB1rrXT08nwV0XvrwE+D0YNV2B/AHLhtdxG1C9uXAkv05sCK01qN6W8jhwaCU+hwY081TG7XW/31jmY1AIvCItqEgpdQ3tgxoLWwj+3PgyL4cWLI/B5at+9PhTUla6wdv9bxSKhNYAMy2JRSEEEI4ltFXJaXScbL5fq11g5G1CCGE6GB0lxg7gFHAZ0qpE0qpf7dxvXccWNOdSPbnwJF9ObBkfw4sm/an05x8FkII4RyMPmIQQgjhZCQYhBBCWHHZYFBKvamUMimlTiql9imljBuZw8UppR5XSn2nlGpXSsmlgX2klEpVShUrpUqUUi8bXY8rU0rlKaWqlVLyfaV+UkqFKKX+VylVdON1vr63dVw2GOjoTuMnWuvJwFk6utMQfXMaeAQoMLoQV6WUcgfeBh4CooF/UUpFG1uVS/tPINXoIm4TrcDzWusoYDqwprf/TZcNBq31Qa11Z5eBXwPjjKzHlWmti7TWxUbX4eL+ASjRWp/TWjcD/wX8s8E1uSytdQFQY3QdtwOtdYXWuvDGdD1QBIy91TouGwxdPAX8j9FFiDvaWOCixeMyennxCTHYlFL3AHHA/91qOaN7V70lO7rTaAV2D2ZtrsaWfSn6pbuuXeVacOE0lFJewF4gW2t99VbLOnUwSHcaA6e3fSn6rQwIsXg8Dig3qBYhrCilPOgIhd1a6496W95lm5IsutNYKN1pCCdwFJiolApTSg0FlgD7Da5JCFTHQCX/ARRprbfZso7LBgN9705DdKGUSldKlQHJwCdKqU+NrsnV3LgQYi3wKR0n9/Zorb8ztirXpZR6HzgCRCilypRSK4yuyYX9I5ABPHDjvfKEUmrerVaQLjGEEEJYceUjBiGEEA4gwSCEEMKKBIMQQggrEgxCCCGsSDAIIYSwIsEghBDCigSDEEIIKxIMQgwApZS7Umr7jf7uTyml7jW6JiH6SoJBiIHxCnBOax0D5AKrDa5HiD5z6k70hHAFSqmRQLrWOuHGrPPAfANLEqJfJBiE6L8HgRCl1Ikbj/2Azw2sR4h+kaYkIfpvKvCa1nqq1noqcBA40cs6QjgtCQYh+s8XaABQSg0B/gn4g6EVCdEPEgxC9N9ZOgZZB9gAfKK1Pm9gPUL0i3S7LUQ/KaV86Rhz3J+OMQSytNbXja1KiL6TYBBCCGFFmpKEEEJYkWAQQghhRYJBCCGEFQkGIYQQViQYhBBCWJFgEEIIYUWCQQghhJX/B4c5IK5LQ1uCAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:16<00:00, 1.83it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXdcVGf2/z93GkNvIogoCioWVBQNgr0Qe4lGs7EkMVHTs9mSZJPNd/PLJptEd5PsJllTNJvVNU0T7B1bAiKKig0EURGEEaTXYdr5/XG9AwMzwwAzcy9y36/Xfc3MrWfuwPO5z3nOcw5DRBAREREREeGQ8G2AiIiIiIiwEIVBRERERMQEURhEREREREwQhUFERERExARRGERERERETBCFQURERETEBN6FgWGYXgzDHGMYJpNhmCsMw/yWb5tEREREujIM3/MYGIbpAaAHEZ1jGMYTwFkAC4gog1fDRERERLoovPcYiEhFROfuva8GkAmgJ79WiYiIiHRdZHwb0BSGYfoAGAEg1cy2NQDWAIBcLo/u0aOHU20zBxGhsrIS9fX18PPzg4uLC98mQavVoqqqChqNBl5eXnB3d+fNFiKCWq02LgDg5uYGb29vu11Dq9WitrYW9fX1AACpVApvb2/o9foWi8FggLkeslwuR7du3exmEwBoNBrU1NSgoaEBABAYGAgAZu3ibNPr9cbjGYZBUFCQXW1qD1qtFmq1GvX19dDr9ejevTukUinfZoGIUFtbi5qaGvj6+grifw9gf9/y8nK4urry+r/XnOrqahgMBlRWVpYQUUBr+/PuSuJgGMYDwAkAfyOiBGv7BgUF0dtvv+0cwyxQVlaGrVu3oqioCHK5HPPnz8eQIUN4s6eiogJHjhzB5cuXAbANcHx8PKKiohxyPa1WC4BtVJui0WiQlZWFjIwM5OTkQKfTGbf16tULI0aMwIgRIzp0bb1ej4yMDKSmpqKgoKBNx8rlcnh7e8PLy8u4BAQEIDIyskM2WaKiogJnzpxBQEBAq78F19hVVlaioaEBYWFhDrGpvdy9excBAa22KU6lvr4erq6ufJthgl6vF4R4NoeI8Oyzz54lolGt7SuIHgPDMHIAPwP4tjVRAMD700FWVhZ27NgBtVoNPz8/LFmyxPhE6GzUajV+/fVXpKamQq/XQyaTISYmBuPGjYNSqXTINQsLC5GQkIA1a9YAaF0MhgwZgkGDBsHLy6tD1zUYDDhz5gySkpJQU1Njdh+GYdCnT58WjT/32VH3xBI+Pj6Ij4+3aV+GYeDh4QEPDw8HW9U+hCYKAAQnCgAcIgr19fWQy+WQydrfZDMMY/O+vAsDw1r7NYBMIvqIb3usQUQ4evQokpKSAAARERF46KGHeBEqvV6PtLQ0nDhxwuhGGTp0KKZMmQIfHx+HXJOIkJSUhOPHj8PFxcUpYtAUiUSCmJgYDBo0CEVFRbhz5w6KiopQVFSE0tJSEBGICNHR0bz23kRE7I1cLseWLVswa9YsdO/e3eHX410YAIwFsALAJYZh0u+te4OI9vFoUwvq6urw008/4ebNm2AYBlOmTMHYsWPbpML2IjMzE4mJiSgrKwMA9O7dG9OnT0dwcLDDrllRUYGEhATk5+cDYJ9gEhIaO3eOEgNzcL2A/v37G9dptVrcvXsXd+7cMYoEH7+NiIgjkMlk6N69OzZs2ID4+Hg88MADjr2eQ89uA0SUBEDQ/8EFBQXYunUrqqqq4O7ujkWLFqFv374Ov65er8eZM2cwZswYox0HDx40Ns7+/v6YNm0aBg4c6FA7Lly4gP379xsHUjl8fX2NT/COFoPWkMvlCA4Odqg4iojwyciRI3HmzBns378f165dw/z58x3mduRdGITOmTNncPDgQej1evTs2RNLlixxSiNoMBiwbds21NbWYuDAgS0GlidOnIhRo0ZBInFcxHF9fT327NmDjAzzU0pqamoQGBjIuyiIiHQFgoKC0KNHD6hUKuTk5OCLL77AvHnzMGDAALtfSxQGC2i1WuzZswcXL14EAIwePRrTp093SrSBwWDAzz//jKysLCgUCnz22WdOG1jmaGhoQFJSEhQKBUaNGgWZTAapVAqZTGay1NbWOtQOERFnU15eDqVSKciB7REjRkClUgEAamtr8f3332P06NGIj49vESHYEURhuEdTn3TzUNQ5c+Zg2LBhTrNj+/btxqd0jUYDwPEDy81xcXGxOZpGROR+wt3dHV999RWioqIQExNj1wa3owwdOhSHDh0yCfY4f/48tFot5syZY7cHV1EYANy5cwfFxcUYNmwYr6GoRISdO3caXUYcUqkUgYGBdp0YJiIiYh6FQoEHHngA+/fvx+nTpzFp0iRERUU51G1rK0qlEoMGDcKlS5eM6+bOnWv3B1f+vynPaLVa/Pzzz7h16xaOHDmCH374AWq1GhEREVizZo1TRWHPnj24cOGCyXqpVIqgoCBUV1fj7t27TrFFRKSrEx0dDV9fX1RXV2P37t34/PPPcfXqVb7NAsAOQgMwRuXt3bvX7m1Dl+8xHDp0CCUlJSgpKQEA3kJR9+/fj3PnzsHHxwc9e/ZESEgIQkJCEBQU1KFJLSIiIm1HKpViypQp+PnnnwEAJSUl+PHHHxESEoL4+Hj07t2bN9tCQ0PRr18/PProo0hISMDly5exdetWrFq1ym5zqrp0i5OdnY20tDSTdQ899BCGDh3qVDtKS0sRFhaGCRMmCHbWq4iII8jPz4dOp0NoaKggXDVNGTJkCE6ePGkc7AWA27dvY9++fZgzZw5CQkJ4sYthGCxevBgMw2Du3LkoKirC3bt3sXPnTixZssQu1xDWL+FEampqsHPnzhbrd+3a1UIsHI2/vz8GDhwoioJIlyM4OBiJiYn46KOPsG/fPuTl5ZlNdMgHDMNg2rRpJuu8vb2xbNky3kSBQ6FQGF8feeQRuLi4IDMzEykpKXY5f5cUBiLCjh07UFdXZ1ynUCgwcuRIPP744xg1qtUcUyIiInZAKpViyZIlxjxY33zzDf75z3/i4MGDbU6Q6AjCwsKMyQx9fX1RWVmJTZs2obq6mmfLGvH398f8+fMBAImJibh161aHz9klheH06dO4fv06ADaVw/z58/GHP/wBc+fO5f1JQESkq+Ht7Y1FixYZx/Sqqqpw6tQpbNy4Ef/6179w/PhxGAwG3uybNm0aAgICsGrVKgQGBqK0tFRw4jBo0CDExcXBYDDgp59+6rBtXU4YioqKkJKSgri4ODz//PN48sknERUVZeyaiYiIOJ/w8HBMnDixxfqgoCCMHDmS1/GHHj16YMGCBXBzc8Njjz0mWHGYOnUqQkNDUVNTg23btnVITLucMEilUrz00kuIj4+3e3EWEREhc/XqVSQkJODIkSM4c+YMsrOzcefOHWN2Xr6ZMGEC+vXrZ7Lu1q1bgnApcTm4hCwOEokEDz/8MDw9PZGfn49Dhw61+1yCKdTTFkJDQ+mNN97g2wwRkU7H2bNnsW/fvhZPk1wBI19fX8yePZu3yZT19fX46quvUFlZib59++LGjRsA2FQQM2bMEEzPvq6uDps3b0ZRURH8/f3x+OOPw9PTk2+zALCRXv/9739hMBiwaNEikyJUzzzzjE2Ferpcj0FEpCsTHR2NFStWtMgDpNVqUVFRgbi4OF5n2Lu6umLJkiXw9/fH8uXLjfnJzp8/j6+++gqFhYW82dYUIfccevXqhQcffBAAsHv37nZNfhOFQUTEydTX1+P27du4cOGCsUSqM+nTpw9WrVrVwpWq0+mwZ88enD59ukWKdWfSo0cPY5z+mDFjsHr1agQEBKC0tBRff/01kpOTBRHSKmRxiImJQWRkJDQaDbZu3drm31N0JYmIOAC9Xo+ysjKUlpaipKQEpaWlxoULk46JicGMGTN4s1GtVmPbtm1Gd42XlxeqqqoAsEkUo6Ki8MADD8DPz483Gzl0Oh0OHTqEM2fOAGDF7aGHHhJEynehupU0Gg02btyIu3fvYtCgQViyZInNriRRGETue8rKyuDp6em0LJlEhEuXLiEpKclqNz46Ohrdu3eHv78//Pz84O3t7fToG4PBgIMHD+L06dN4/fXXkZOTg9TUVOTl5Rn36devH2JiYhAeHs57Vbzs7Gzs2rULtbW1cHV1xdy5czFo0CBebQKEKw6lpaXYsGEDGhoa8OCDD2LTpk2iMDgLrVYrqNS8ADuzW2gzqcvLyyGXy51mV2FhIZKTk3Hnzh28+OKLJtu0Wi3Ky8tRVlYGmUzWIhrGHhARrl27huTkZJOG1hJSqRQ+Pj7w8/ODn58fpk2b5rQ8WWlpaRg8eDDc3NwAsBmHU1NTcfnyZWOKZ39/f8yZMwd9+vRxik2W4LIW5OTkAADGjBmD6dOn82oT0FIcVq1a5fC6KbaQmZmJrVu3QiKRoKCgwCZh6JS5kvR6Pd8mGMnJycHOnTuxdOlS9OjRg29zALCRJwcPHsT8+fMxZMgQvs3BjRs3kJqaimvXriE2NtbhdR6uX7+OpKQk5ObmAmDdDsnJySgrKzMunMuE2+4IYWAYBgMGDMCAAQOQn5+PkydPGjN0+vj4IDo62sSm6upqo7tJoVA41c3UfLZ/UFAQ5s+fj/j4eJw9exZpaWkoLS2Fu7u702yyhIeHB5YuXYrTp0/j8OHDgvm/48YcNm/ejNDQUEGIAtA4+e3u3bs2h/52SmFQq9V8mwCAFYUff/wROp0Oly9f5v0PtL6+Hrt27TI2Prm5uU4ThoqKCqhUKmO3XqPR4OLFizh9+rTRnSKVSh0m6gaDAVeuXMHJkydx584dk225ublGkeCQSCTGp3NnzHbv1asXHnnkEZSUlODkyZO4fPkyRo4caXxCB9h7Vl5ejtLSUsH8jbu5uWH8+PEYO3Ys8vLyEBAQwLdJAFjRjYmJwcCBAwVVp8TNzQ1PPvmkYMJqOaZOnQqGYfDLL7/YtH+nFAYhPLU0FYVRo0a1SLblbG7evInt27ejuroaLi4umDVrltOqzuXl5eHHH3/EhAkTUF5ejtOnTyM9Pd3YuHl6emLUqFGIjo62+2+n0+lw7tw5pKSkoKKiwuw+crkcI0aMMPry/fz84OPjw8ts2m7dumHevHmYPHlyi4gkhUKBwMBAp9UAaQsSiYR3F5I5hCQKHM4SBZ1OZ7Orsa1/651SGPimuSjMmjWLt0E5vV6Po0ePIiUlBUSEkJAQLFy4EL6+vk65/oULF7B7927o9Xqkpqbi4MGDxlDCkJAQxMTEYNCgQQ6rlS2TyTBkyBAEBQW1iAAqLy+HXq+HVqtF7969BeFW4xDCwKRI5yYvLw81NTUOeQAUhaGN8C0KpaWl8Pf3B8AWD0lISIBKpQLDMJg4cSImTJjglCdhIsKRI0eQnJxsXFdeXg6pVIohQ4YgJibGmEbA0bi7u8Pd3b1F8RSDwYCKigqTEFERkfuFHj164O9//zv0ej1GjBhh13OLwtAG+BaFoqIibN++Hc8884xxgFmr1cLHxwcLFy5Er169nGKHRqNBQkICsrKyWmyLiorC7NmzeQ9rBNjuM+c6EhG533B1dYW/vz927doFvV5v13IBojDYCN+i0NDQgK1bt6K8vBw//PCDsVEeOnQoZs+ebbeSfq1RWVmJH374ocUAL8D+oRYUFODChQuIiopyij0iIl2Znj17oqSkBHv37oVer0dMTIxdzisKgw3wLQoAsGPHDpSVlQEAsrKynD7ADADV1dU4duwYevToYYwG8fLyMr4KbS6HiIi9qKurM4kgEwq9evXChQsXAAAHDhyATqfD2LFjO3xeURjMUFtbCyKCh4eHIEQhOTnZGILKERYWhvDwcKfa4enpiQULFjj1miIiQuDmzZsoLi7GpEmTBOEm5Wgeap2YmAi9Xo8JEyZ06LxiEj0z/PLLL8jIyBCEKOTm5uLIkSMt1ufn5yM1NZXXylYiIl2F/v37IyUlBVu2bBFUIENAQECL8Nhjx47h2LFjHTqv2GNoRnl5Oc6ePQsvLy9UV1fzKgrV1dX46aefjOGfbm5uGDRoECIjIxEaGiqoJxcRkfsZhUKB/v37IyMjA1999RUWL16Mnj178m0WJBIJgoODjRM4pVIpVq9e3eH5HaIwNOPo0aPQ6/UoLy8HAIwcOZIXUTAYDNi2bRv0ej2ioqIQGRmJvn378lriUESkKxMZGYmMjAxUVlbim2++wYwZM+waCdReQkJCoNVq4eLighs3buDcuXOYOXNmh84pCkMTVCoVLl++bLLuypUrAIAZM2Y4dXD19u3bGDduHMLDwx02OUxERIgUFxeje/fufJvRgv79+0OhUECj0UCv12Pv3r3Iz8/HnDlzeA286Nu3L6KioqDT6fDll18iLS0NDzzwgHG+U3sQHz+bkJiYaPJZIpEgMjISkyZNcvoP37t3bwwYMEAUBZEuR0VFBTZs2ICbN2/ybYoJMpkMERERJusuXryIr7/+2hgxyAdhYWHw9/dHYGAgoqKiYDAYcPjw4Q6dUxSGe9y4ccNYsARgMxI+99xzmDNnjpi+QETEiQwYMAAymQybN2/Gli1bzM6Z4Yum9ZMBIDQ0FPPmzRNMivvJkydDLpcjKysLt27davd5RGFAY3oHgP2hV61aZaw7KyIi4ny4pJTXr1/Hl19+iYSEBItJEp1JeHg4lEolvL29wTAM8vLyoNPpBJNN1dPTE3FxcQCAQ4cOtbsEqigMADIyMqDX67Fs2TI88cQTgog2EBHpyvTq1cvEbXPp0iV89tlnOHDgAK/holKpFAMHDsScOXMQFxcHIkJCQoJg0qQDQFxcHDw8PFBYWNhizNRWRGEAW+v26aefdkixFhERIXP58mXk5uYaq7QJCa6GAIder8fp06exa9cuXhviSZMmoV+/fpg8eTKCg4NRWVmJPXv28GZPcxQKBSZPngwAOHLkSLt+W1EYwD6diHMCRLoivXr1wvbt27F27Vps2rQJv/zyC/Lz8wVRJTEgIKBFzq3IyEg88sgjvFZH4+YISKVSLFy4EHK5HFeuXDGmphACI0aMQPfu3VFZWYnU1NQ2Hy8Kg4hIF8bb2xvLli2DTCZDbm4ujh07hv/85z9Yu3YttmzZgqSkJBQUFLTbV91RJk2aBJlMBjc3N8hkMly6dAn79u3jzZ7m+Pv7G+cM7Nu3zzj/iW8YhjGW0P3111/b7H4ThUFEpIvTvXt3LF261KQamFarxfXr15GamoqKigreetReXl6IiYnByJEj8cgjj0AmkyEtLU1Q4jBixAgMGjQIGo0GP//8s2DS1PTr1w9hYWFoaGjAiRMn2nSsKAwiIk5Gr9ejqqoKBQUFyMrKwtmzZ3HixAns3bvXmD7Z2fTq1QuLFy9uMbM+MDDQKTWxrTFu3DgMHz4c/fr1E6w4zJ07F15eXigoKGhzI+xIHnzwQTAMg7S0NJSWltp8HCOUG9sWQkND6Y033uDbDJFOSnl5OW7evImRI0c67Zp6vR4pKSlISUmx2K2XSCR4/PHHW1SicyYXLlzAjh07ALDuCCKCXC7H+PHjERcXJ4gJl0JIbmmO3NxcbN68GQDwxBNP8Po7NmXXrl04f/48IiIicPz48bNE1GoeD7HHIOI09Ho9r93smpoa7Nu3D5999pkxqqWmpqZNT1LtRSqVYty4cXjsscfQv39/s/sQEXbv3o3t27fj1KlT0Gq1DrerOcOHDzf6ph9//HEMGTIEWq0WR48exfr16zs0acpemOs5CIE+ffoIMoS16aQ3W+mUwiAUHx4A1NfXY9u2bYKYfMNRV1eHb775Bvn5+bzZoNVqTRqRGzdu4IsvvsDp06edbktDQwOOHj2KTz75BGfOnIHBYMCVK1fw0Ucf4cMPP8SBAwecZktgYCCWLl2KlStXtijFSkQoKSnBxYsXceTIEd6ezuPi4hAbG4vAwEA8/PDDWLFiBbp164aysjLB/O81FQc+I5Saw4WwBgQECOZecZPegoKCbD6mU7qSvL29ad26dXybAQDYunUrMjMzERYWhhUrVvBtDurq6rB582YUFRUhODgYq1evdroNBoMB33//PYKDgxEdHY2DBw8iIyMDAFvAfPXq1U7p+ut0Opw+fRpJSUmor683u49CoUB4eDiWLFnicHvMkZ2djSNHjqC4uBijRo1CVFQUCgsLUV9f3+FiKx2BiFrMIbh27RoGDhzIm03mKC0tFVyGgvr6eiiVSkG4tzj0ej0kEgmeffZZm1xJnTK7qlByF50/fx6ZmZlQKBSYM2cO3+aYiIK/vz9+85vfON0GIsLOnTuRk5ODiooKnDp1ChqNxuinjo2Ndfg/jMFgwIULF3D8+HFUVVWZ3cfLywvLly9Ht27deP0HHjBgAPr3749Lly7hypUr6NmzpyBm3je/J9yMX6EhNFEA2NrnfNFc0Dna2vvslMIghAGw0tJS7N+/HwAwa9Ys+Pr6Ot0GIoJWq4VCoWghCo8//jgvAnro0CFcvHgRAFBSUgIAGDhwIGbMmNHh4iG2otPpEBgYiFmzZqGmpqbFUltbi+rqaly6dAlTpkxxik3WYBgGw4YNw5AhQ/g2RaSTk56ejqFDh5qEHrcHQQgDwzD/ATAHQDERRba2P9/o9XokJCRAq9ViyJAhGD58OC92ZGRkoL6+HoMHDxaEKCQnJ+PUqVMm69zd3REbG+s0UQBY91BwcHCr+zU0NHToOvn5/vj44zkICirHo48m4fvvx+HOHV8sXXoC33030ez677+fgFWrDmPfvmgwDDBz5jls2BBv8RzdulVCqdThqaeOwNvbvDusOZWVbti0aRIef/yYzcfY+xwdPT48NRWjt++CZ0UZqn38cOahebgeE9Pm83Q1ysrKkJiYiBkzZnToPIIYY2AYZgKAGgCbbREGvsNVExMTkZycDG9vbzzzzDO8DH7p9XqsX78erq6u0Ol0vItCeno6du7c2WK9m5sb+vTpgwcffNCp4mAPuMYtPj4dX33FRuqsWXPI2KhXVyuhUvmBYQghIaW4fdsfRAzkch20WpnF9R4e9VCr2WycSqUGNTWuFvcFAJlMj5Ejb+DSpd4tbJg58xw2bpyG3/1uN0JC2Fm3W7fG4tSpAYiNzcbixSnt+u4dPUdHjg9PTcXEb7+FXKMxrtMqFDixbJkoDq1w4sQJHD9+HMuXL0d4eHiL7c8884xNYwyCEAYAYBimD4A9tgiDUqkkvmKE1Wo1ioqKAABBQUFwcXHhxY7q6mqT4iAymQxBQUG8uNnq6+tRXFwMgI3Fd3FxgaurK5RKJa+VrWxFpwtAUdH78PHZCJXqUzAMEBT0AoqL34fB4AWG0UCvZ33ZUmkp9HoPAAwABRimDkRuTc5WD8AVgBqAssV6H5/1qKh4DkAdAALg3uQYS+eovfcqNbGBYRhIJNXQ6/3AMLUICVmKu3f/H9Tq4WCYehAZ0LfvTMhkJW2+H7du7UXPno+joOC/CA2d3aZzdPT4YzdvoqeZxG8FMhkm9+1r83m6IlVVVSgvL4dUKkVwcHCLCYvXrl27vwafGYZZA2ANALi4uNjkKrAX3ICOVqtFWloaNBoNevfujb48/ZHq9Xrk5uaaxLm7uLhAJpOhe/fuThWH2tpalJeXIyQkBD4+PvDw8BBUNIY5Ghr8cOXK26ivD8XgwW8hK+s16HTuKC7+F4i8QAQUFX0Kvd4bvr4pKC+PNR6r1/tDIqmHweACgBAYeAQlJeOh03lDJqsEAOh0SshkagDqZusVqKlZCoZpgFSqubdOD3f322hoCGhxDoZhIJVWgEgCvV7awgbuvbf3OVRWjkRJyadQq3sBkIDIA1JpJQoKtsPVtRC9e29GZuZbGD789/DwaCxIZY6cnOfRo8dhhIVVwmBIhEbzMnr3Xm/z/e3o8T2uXTO/Xqdz6v99a1ga6OUTIjI+uFZWVrYYt7pm4d6aPZEQFgB9AFy2Zd/o6GhyFnq9np5//nkyGAy0cOFCAkAxMTGk0WicZkNz3n77bQL7uGlcQkJC6D//+Q/pdDre7BIy588T+foSxcYSrV5NJJUSAUT+/kQMQzRzJvu56TJzJrufVEoUEMAuDMOeByCSSIiWLSNyc2M/K5Wmx3OfuVdXV9NXbvH0bFzX/BxffNH4XipttJezR6kkcnEhCg83PY6zCWC3BwQ0niM2lkilMn+fCgvZ71dY2PjZz8/y/vY+nohI2zO05Y8BkDYk1PaTOIG3336bampq+DbDhC+++MKkXfj6669NtgNII1vaY1t2csYiVGH49ddfCQA988wzBIA8PDwoJyfHaddvTlFREXl4eBh/eB8fH1q3bh3V1dXxZpMQKSwkmjSJaNQotqEaOLCxMVcoTBvP5gLg78+u79fPtPFu2th6e7MNrosLu7+rK3u8qyvRiBGmn7nzjhjR+J5bP2JE4+emx3DrIiIar9mvH5FcbtpeyuWsDQsXNjb8AQFEkZGN+8hk7GtISOM9WL2aFQhvb1OhePlldmnKyy8T/e53tt33jh5PRLR5xhZqkLmZfNEGmRv9b8YW20/iBF544QVauHAh6fV6vk0x8t///tdEGNzd3U3aK1EY7MTzzz9vcqP/+9//Ou3a5njxxRcJACmVSnr11VeprKyMV3uExPnzbEPn7c0+ybu4sE/XXPvi7t74PjKysfFsLgBNG1+Fgm1sIyMbn9LNPMw6bXF3b+y5cL2FgQMbxc7cIpGw+wGN94P7Xtz20FCi9HQiHx/z5xg71rbfYOzYjh3PneNRbKGbCCU9GLqJUHoUW9p0Dmewdu1aAkB//vOf+TbFyA8//EDNvQljxowhrVZLRJ1MGAB8D0AFQAvgNoCnrO3vLGHQ6XQUGBhocpO9vLxo+fLlpFarnWJDU65fv05KpZKeeuopys/Pd/r1hQjXM5g0yfQpWSJpfMLnGsOFC9n13HuFolEEmgpAUwGxZXFkg+Xp2XbxWL268ft4ezfeD4Zp7FmYWyIjiby8WBGx5m4SYfnuu++M7cKWLcLozezYsYMAkIuLCwGgN998k37++We6efMmEXUyYWjr4ixhOHLkSAv1XbBgAVVUVDjl+s35/vvv6cqVK7xcW0gUFhJNn050+DD71KxQmH9i9vVtHA8AWJcP91mhIAoMFEbj314sPZ1Kxv9oAAAgAElEQVQ3XzhhlEiI1qwxvScDB7LbOQHhxiq4XsThw+x9u3CB3+9aWVnJrwFm4NzMXEN88uRJvk2iAwcO0FNPPUX//Oc/CQDNnTvXZLsoDHZgzZo1xh9eIpHQunXryGAwOOXaIuYpLGQbLB+fxrEAiaSxJzBwYON7oNFN1Nw335kEoK3YKhgAO4bRXFS5MQlOTAG298GnOKxevdr41CsUbt26ZfLQ2L17d8rNzeXVpvLyctLr9VRQUEAMw5BCoTB5kLVVGDpldlVnoNVq8dNPPwFgK1wdOXIEr7zyiuDC07oC6emAnx8wejQwciSQlwfExgKlpUBICGAwsAvANmdNs1qrVOyruQzWY8e2bCqTkhz/fRxNUpLpd7I23/H6dWDxYoBhAC7Ked489tXdvfEe6/XAmDHA5MnAnTuO/w7NCQ4ORlxcHC5duuT8i1ug+TyB4uJizJs3DzU1NbzZ5OPjA4lEguDgYIwbNw4ajQa7du1q83lEYbDAkSNHUFZWhrFjx+L8+fOYNGkS3yZ1OVQqtiEaPx4oLwfOnmUbpYgI4NAhdp+7dwGlsrFhy8kBmqadr601Paen5/0lArZQVdX4nceONd2m0wHffstu4wrHZWez95i7d7dvs/etvp69Z336AHFxzhWIyZMnQ6VSYcKECUgSyA8nk8nQo0cP42cfHx8EBQXh008/5dGqRhYvXgwA2LZtW9sPtqVbIbTFGa6kJ554gl5++WVe5yt0RQoL2YFPX182sohzczR1b3CDw97e7BhD83kBTRdPT76/kXCxxeXEDVq7ubVcHxrqvAFqtVpNSqWSADYib+fOnc65cCuMGTOGBg8eTAzDkFwuJ5WARuzNuZMgupLaDxFh6dKl+PjjjztFSof7BZWKdRelpLA9hO+/Z59ogUZXkVLJvpdKgcpKQK1mn2Sb0tRFZCHrtghMXU6W3E0GA3vP3d1N9zEYgFu32N8rMRHo1g24l1TXIbi4uCAuLg4Am5Zm4cKF+Oabbxx3QRuJjY3F4cOHMXfuXGi1Wnz55Zd8m2SkQ+4kW9RDaIsz5zGIOBYuwig9vXECVtNImqYDx81nBYu9A/vTloFrrjfHzcb29HRsD+Kdd94xGewFQB988AGvASHc/IDExEQCQEFBQdTQ0MCbPc355JNPTKKTIPYYRIQO10M4cgR45BHWlw0AEgnb9ABszyAign1vroSu2DuwL0lJwPXrNyCXKwCYv6ESCeDtDWg07PvSUmDSJKC6GoiMZAMFHNF7mDx5sslnLy8vbN26FXv27LH/xWyEq3swZcoUDB48GHfu3DEGrQiBRYsWgWEYHDx4EJWVlTYfJwqDCC+oVMADDwAFBezAcdMB47Aw1n0BsAOily+bP8fYsV1nANmZhIWF4dlnnwXgDaDlDTYYWDeeTMb+dgCQnAz4+rIiUV7ORo/ZWxxGjx4NN7fGTLY+Pj749ddfMXfuXPteqB0wDIMXX3wRAPDJJ5/wbE0j7XUnicIg4lTS0wEfHzay5fZt9omzKf7+7JOnud4BYNpDEEXBcbz55pv36nqMB5tivOXTpk7HCrdSyb42/c248FZ7Ri4pFAqMGzcO69atw7Bhw5CXl4f33nvPfhfoICtWrIC3tzdSU1Nx+vRpvs0x0p7oJMHUY2gLo0aNorS0NL7NEGkDRIQ7dxhERLANP4dCwTYwXGNvDk9Px7mJ7t69y1vd55qaGnz44Yeorq6GUqk0Li4uLlAqlRg9ejSioqKcbhfHX//6V7z11lsm6xgmGURxLfZ1c2sMeW1SXwcKBXDmDDBsmH1sOnjwIKZOnYpTp05h/PjxUCgUuHz5Mvo3nbzCI3/4wx/w0UcfYfny5fjf//7HtzkAgMLCQoSEhEAul0Oj0dhUj4H3geT2LOLgc+fi5MmbFBl522yenvBw6+GmjpyJvGfPHho5cqTjLmADKpWKZs6c2WJQdfjw4byngaiurqbu3bub2JWQkNCmAWqAyMPDMYPSjz32GAGg6dOnCyYjwfXr1wUZujp+/HjuN7x/B58NXOyiACAibNq0CRUVFXybYsIXX3yBvLw8Xm3g3EbjxgUjI8MXCQkEmYydRcU9oF+/3jLcFGh0GTnCXVRXV4fnnnsOc+bMwfXr1/HKK6/Y/yI2EhQUhL179+Kzzz4zKRF7+fJl6LkZZzzh4eFh7DEEBgYCAK5evWoS5tp8whyHa5OCdDU1wPDh9p81vW7dOnh5eUGtVvM627gpYWFhmDt3LkJDQ5Gbm8u3OUYWL16MgIAA2w+wRT2Etnh4eNhRSztGcnIyAaDevXsLJi87Z5OPjw9VVVXxYkNhIZcZ1HBvKTe+VyoNvPQQiIjS0tIoIiLC5Cl42rRpjr2ojWRkZNCIESMIAG3YsIFvc4iISKPRUL9+/Sg5OZl2795tdh9bexByORtybM+cS9nZ2YLpLXCUlpYKpi3gqK+vJ51OZ3OPgfdGvj1LSEiIPe9Zh3jkkUcIAL322mu82sH9IWq1WoqKiiIA9Prrr/NiS2EhUY8eXINgaLJoiWG0vAiCTqej9957j2QyWQu3zYABA6igoMCxBthIQ0MD/elPf6IbN27wbYqR48eP29T42pqocOBAJxgtYhZbhaFTDj4PGzaMLjpymqWNFBQUIDQ0FESEmzdvonfv3rzZ8t5772HVqlXYunUrXnzxRfTq1QuZmZlwd3d3qh3p6Ww0SkMDwDAGEDEAygD4gY1uaYkjB5c5CgsLce3aNZPB3aaLu7u7oGa5EwmvnnBrjBvHhq2aQyJpnL0OsHNXpkxxjl1dnQMHDmDGjBkAAIZhbBp8ljncKgegUCj4NgEA68fX6/VYtGgRr6IAAD/99BNOnjxpTDD28ccfO1UUVCpg6VI2AqWhAQDonijkAPCCOVFw5jyE4OBgQRWSb43OJgpA42/p5WUaeQY0igLDsP2GqVPZSXK//GK/iCWRlhgMBrzwwgvIyMhoU7vZKQefhYBarTbmReEmtvBFWVkZ0tPTsXfvXlRWVmLo0KEYOXIkapunFnUQ6enspLSkpObZTHUA+gMINNnfkQPLIvxTVWV5UBpoDDyorASWL3eOTV2V69ev4/r1623OsCoKQzv58ccfcffuXQwbNgwTJkzg1ZZffvkFTV2Cly5dwrBhw5Camurwa6enA6NGsZObuIR3rOueAdDSNePpKQpCVyApybw4cCMNHJcuAUePOs+urgbncm9rKnBRGNqAwWBAXl4eiMg47f2ll17ivdt/7Ngxk88BAQE4fvw4pjjYiatSsf/8ej2bHgEAXFwAS24jEvMZdSm4sNbWhm6mTXNsZlZnIrQx2wsXLgAAUlNTcebMGZuPE4WhDRQVFWHu3Lk4dOgQzp07Bz8/PyxdupRvs0yEoU+fPkhOTkZ0dLTDr/vCC0BdHftep2NdBOz4giliTqOuzQMPWN9OBMyf7xxbHIler8cPP/zAtxkmcMIAAJ999pnNx4nC0Aby8/Nx8eJFzLtX+3DlypWor69vU9ZCe3P37l1jucNhw4bh5MmTDk0PoFIBM2YAP/4IJCSYbjP3sCS6jkQsuZWakpvb+V1Kt27dwjvvvCOoCbhNhaEtoiUKQxvIz88HAGjuJYP58MMPMWjQIF5nPZ84cQIAMGHCBJw4ccKk1KAjeOsttjDLo4+yn6150caOFV1HIixJSdZrTwNspFJndillZ2cjMzMTe/fu5dsUAEBlZSVu3bpl/KxpmsSqFURhaAPNU0woFAps374doaGhPFnEupEWLFiAAwcOwMfHx6HXSk8HNm40HUC01EsQo45EmtNatBIALFjgHFscQda93PFr167l2RKW5nO92jIWKgpDG+B6DBwbN240lhvki379+mHbtm1wbZqcxgFw0UdEphOVmuOMyWoinZfW3Eo3b9rmUtLpdIIb6M3OzgYAJCcnI9nSTD8ncuHCBSxZsgTx8fEAxDEGh9FUGF5//XWsWLGCR2tYXn75ZWMVKUeyeLFp9JE5goNFURBpnaQk65FKDz3U+jlycnJw8OBB+xllB7KaVJv6+9//zqMlLIsXL8aPP/6I4cOHA2DnO9mKKAxtgBOGBQsW4N133+XZGhZnhMoePgzk5LDvdTq23KY5+vZ1uCki9wnWIpWqqoANG6wfr1Kp8PrrrwtqoJfrMQDAzp07kZmZyaM1jRlxe/XqBQC4zdXOtQFRGNpAfn4+oqKi8L///Q+S5qXH7lPS04EHHzRdZy4btBh9JNIWkpIAa3ESzzxj/fg7d+4gPT0dW7duta9h7aS2traFq/kf//gHT9aYEhISAkAUBofAjejv2rULHh4ePFvjPGwppytGH4m0h7Awy9sMBuCnnyxvv3OvsMObb74JrVZrZ8vazrVr10w+BwUF4dtvv0VBQQFPFjXCCUNz4bKGKAw2UlZWhoSEBGO3rCtw+DBbl9kSYs6jrkG9uUpKdqC1gWguJNocnDBcv34dGzdutLNlbSc7OxsrVqzAmjVrAADPPvsscnJyoLZUvNyJiK4kBxIUFISYmBi+zXAaKhUwc6bl7QqFKAhdheTkZOzbt88h505KAiwlAdbpLEco3WlSCu6vf/2r0xJGWmL69OnYvHkzRo1iM1rn5OQgJCQE4eHhvNoFAN27d4dMJhMHn0U6zrJl5scSOEaPdp4tIvzi4uKClStXori42CHntzZcZylCqakw3Llzx5i7jC+8vb0BsOHjQEvXEp9IpVL07NmzTceIwiDSgsOHgWZ5+UwQcx91LZRKJYqLi7Fq1SqHzB2oqrIcvlpVZb5O9J1mK9euXdumJ2JHwaWjyeHC+AQCN85gK6IwiLRg0SLL2yQSURS6GkqlEgCwe/dubGgtjrSdWAtffeGFlutUKpUxMrBv376YMGEC1q9f7xDb2kJwcDCUSiVKSkp4TZXTnLaOjYrCIGLCDz+0rL7VFCdXCu1yFBYWCmLAsikubC51AMDvfvc7k3h9e5GUBFiavL99u+lnrVaLAQMGYM+ePQDYdPi7du3CG2+8YXe72opEIhGkO0nsMYi0G5XKeiSIGJbqeNzc3BAXF4dNmzZBb22Qx4lwPQYAqKurw/Llyx0SImouZTvAhq429RwxDIOjR48iPj4eSqUSt27dQmlpqWDmFnHCICR3kthj4IHS0lLB5W0pKiqCrrGkmk089ZTlbe7uHXMhHTp0CFVVVai21h3hgRs3biAjI4NvM4z4+Phg+fLleOKJJ5CSksK3OQBYYXB3d0fPnj0xffp0bNmyxSFRQNZ6o2+91fheJpNBoVBAJpMhKioKbm5ugmqE+/fvD4lE4rDB+vbQ1h4DiKjTLS4uLiQUDAYDeXt7k7u7O5WUlPBtjpExY8aQq6srpaSk2LT/oUNczlTzi6dnx+xZsGABRUREkIuLC508eZJycnI6dkI7sXTpUvL19aWCggK+TTFSX19Phw8f5tsMIzU1NfTrr79SYWEhGQwGh16rWzfzf3/+/ub3v3PnDul0Oofa1FaqqqqooaGBbzNMUKvVVF9fTwDSyIY2tlP2GKSWkvXwQElJCSorK8EwDPz8/Hi1RafTQaPRQKfTIT09HfX19TYX7Xn4YcvbFIqOu5DUajWysrLQ0NCA8ePH4+7dux07oR04d+4crl27hm3btiE4OJhvc4wolUpMmzaNbzOMuLu7Y9y4cejRo4fDc3NxFQGbU15ufn1gYKCg2gMA8PT0hEKh4NsME1xcXExcgq3RKYVBSDed68L269eP99rPRIQpU6bg8OHDUKvVCA0Nhb+/f6uJxg4ftt7w22POQtMB1TfffBNjxozp+Ek7iJ+fH06dOoWpU6fybYrIPSwNXTQfZxBxLKIwdBAu8sCR5TRtRS6XIzs7G3PmzAHARkjMnTsXf/vb36weZ6230NGxBQ5OGGJiYvDnP/+54ye0A3369BHMgKUIS1vDVkUcg+MT+TsAubVk7k6G6zEIQRgAoEePHkY3zc2bN1FWVoZNmzZZ3D893XpvwV7tplqthru7O7Zs2SKo309EWCQlsTU/zAVk7djhfHu6Kp3ycUmIPQYuRI1vgoKCTD6/9tprVsc+rBVFsWd4akNDA/71r38J5j6JCBdLUboCid7tEojC0E4qKysBCK/H0FQYgoKC8NJLL1ndPzfX/Hp7z3CeOXMmnnzySfudUOS+xVKVQCcUKhS5hygM7eSpp57Cli1bjD2GsLAwJCcnt3nugL1pKgx/+ctf4G4lODw93fJ57P1P+O677/I+OC/SObDkaeyMHsgzZ86gSiCzQpvnl7JGpxQGIfiou3fvjhUrVhh7DqNGjcKHH37olPrL1uCEITw8HKtWrbK6729+Y3mbvbOnulrKdyAi0gxLM6AtrRcya9euFUxqjK+++srmfQUhDAzDzGAYJothmByGYf5kw/7OMMsqERERJp9VKhVee+01nqxphBOGd99916qAqlRAk9rlJri5iYnyRPjD0rQEgU1XaJVr164hISEBWZb+0ZyIRqPBF198YfP+rQoDwzDfMwzzGsMwMxmGCeiQdebPLwXwbwAzAQwG8CjDMIPtfR1701wYJkyYIIhCPkFBQYiKisKSJUus7rduneVtAqiUKNKFuVfawOb1QuUf//gHiEgQwpCQkACVSmXz/rb0GL4AUAdgEYDDDMNsZxjGs532meMBADlEdIOINAB+ADDfjud3CAMGDDD5LITeAsCGq77//vutxucnJ1veFmB3+RcRsR1Ls58trecgAeUru3PnjjFM3BHZaNvKzZs3sXXrVpv3t0UYegM4AeAZIooC8BOAt9tnnll6Amhapfr2vXUmMAyzhmGYNIZh0vLz83HMWiUZJxAaGmocBI+MjMRMa3UwnUi/fv0wffr0Vvdrpmsm9O1rR4NERNqIpbGE1nqybWn4HM2nn36KhntfRAg9htdffx0PW5vJ2gxbhGEAgHcBXGUY5jyABwEsZBhmqp1cS+YGDFpIPxF9RUSjiGhUcXExwsLC7HDp9iOVSo0x+a+88oogxj0ANvOkLbY0z3HPIY4viAgVa66k4uJivPLKK84zxgrV1dUmRYOys7MF0ZspLS21eV9bhOETIppHRP0ATAGwBYAbgGUA7FEh/DaApsnCQwAUWjvAx8cHoaGhdrh0x4iIiECvXr3wqLUiBgLF0tOXOL4gwifp6ZYnstXXWz7uvffeQ35+viCKHG3YsMGkelttbS0KC602aU4hPz+/9Z3uYUts5SGGYXwBZALIAjAQwPdE9Nv2mdeCMwD6MwzTF0ABgN8AWGrtgO7du9vp0h1jwIABGD9+vCDCZ9uKtzdQUmJ+vYgIX6xYYXmbpWGz3NxcfP755wDYOiR8PjRqNBp89NFHkEqlJoWWsrOz0bNnCw+5U7l9+7bN+7YqDEQ04l7k0EAAEQASARxot3Utz69jGOYFAAcBSAH8h4iuWDvG09OeY9/tJzY2ttNm5qypadt6EZGm6PV6h6S7zsw0v14ut5ye5a233oJGowHADvryKQz5+fn48ssvUVBQgKeffhpTpkyBTCZDVlYWJk+ezJtdnG22YtM8BiLSE9EVIkogoj1EZNfpvUS0j4gGEFE4EVlPBSog5s2bBw8PD77NaBf3/o9sXi8iwlFXV9emyVJtwZIr3lJP9vLly/jf//5n/NyW2b2OIDw8HLNnz0ZeXh4A9uHxwIEDNgWEOBq79hhELCOUAef2IJGwOe6b09kmEYk4n1deecVqqpX2kp5u/m8SsDy+8Oc//9lkYJdvYeBomkONYRj0FUCon917DCL3H5aGRcQxBhFr7Nu3D+vXr29TNTBbWbzY8jZz4wsnT57Erl27TNa1ZRKXIxFa1mWgbT0GURi6ICqV5Sew1iYRiXRdiouLsXLlSgBwiDDce8hugbnxBSIyWwlQCD0GIhJUAS8OsccgYpV16yxHeIjhqsLCYDCgurqabzNARFi9ejWKi4sBsDWE7Ym1TL/mZuLr9XokJCQYZxcHBgbi3//+N8rKyuxqV3u4e/cuqqur4enpiQCBpBEgIrHHIGKdM2cs+3Kt1PQRcTKJiYmYPXu2ICZHbdy40cRtY+8eg7WCUebc8zKZDD4+Pjh79iwAIDo6Gs899xz+9a9/2dWu9tC0tyCUcciSkhLjTGxbEIXhPsdco5KUBHTrZn5/Z1TJ0uv1uHLFakSyUzEYDIJJjcyxbds2xMfHY+bMmfDy8uLVFiJCYGAgnn76aQCAr6+v3YXBUsEoudz6TPxz584BYIUBYHOF8Y0Q3Uht6S0AYH/0zrbI5XLSarUkFJ566inq2bMnpaam8m2KkfXr11NoaCh9/PHHZre7uRGxwYGmi5ubY+ypra2liooKGjJkCE2dOpXGjh3rmAu1g3Xr1pGXlxcVFhbybYqRhoYG+vDDD0mtVvNtihGNRkNHjx6lq1evUmJiot3Ou369+b9FgCg42PqxDQ0NdP78ecrNzbWbPR2loaGBrl69SlevXuXbFCMajYauX79OANLIhja2U/YYtFqtIAaZOMrLy1FQUCC4p85bt24hLS0NAPtU3BRLYwmOmsdw7tw59OnTB1euXMGRI0dQW1vrmAu1g9mzZ2Py5Ml4+2175obsGAqFAr///e/t7svvCHK5HJMnT0ZERIRdJ3Y+95zlba1FeSoUCkRFRQkiRQ6HQqFAREREi9T8fCKXy9uUX65TCgPQjq6RA+G6jDmWwip4gOtanz17FllZWXj11VdNtlsKS3WUK2ncuHF4/vnnjZ/b4u90NIMHD8aOHTuwcuVKQdnVFfjhB8vb7F13XMR2Oq0wtCX0ytFwscpC6DHodDo8+eSTOHToEAA25e/o0aNbZFa0FK5KBFy86Bjb3nrrLYwaNQoABJHsrDkxMTGCekK/31GpAGv5Jx0wh07ERjqtMIg9BvPIZDLExsbi//7v/wCwY0jV1dXGkp8c1ur4LFrkGNvkcjm2bNkCV1dXQQqDiHNZtszytuBgy7mRRBxPpxUGscdgmZUrV7aoMNdcGKqqLM9+dqS+RURE4KOPPhJdNl2c9HTAWq0tAWSQ6NJ0WmEQUo8hODgYrq6uKCsrQ1lZGYjIJOWus5HJZHj33XdN1jUXBsB6Cc+jR+1tVSNPP/00pk2b5rgLiAgalQqIi7O8XRxb4J9OKwxC6TFwBTi4XsPJkyexcOFC1PCcv/rhhx82DkAD5oXBWnr4hQsdYRULwzD497//7bgLiAiW9HQgNNR60Z37fWzh9OnTfJvQKp1WGITSY/j2228xaNAg4+DuggULkJKSAm+es9ExDIMPPvjA+NmcMIwda3msobIScGREcDdLM+xE7ltUKmDcOOtpV8aOvb/HFlJSUvC3vwm/skCnFYbCwkLodHYtC9Eunn76aahUKmPPQa/XCyZ+edq0acZ4c3PCYC01BgCsWuUoy0S6GioVEB0NWJu+4u5+f7uQbt26hQULFggmf5I1OqUwyGQyGAwGQUxy8/LywrPPPmuyrvnAL5+8//77cHNzM5tWISmJfUKzxN69jgtdFek6pKezg8mtZcS2FinX2ampqcG8efNQXFyMXr16tX4Az3TKn4KrsXz79m0QEe8RLr/97W+hUCiMn4XSYwCA0aNH4/nnn7eYzCspybpPd/58Bxkm0mVYvBho7V/0fnYhGQwGLFu2DBfvPWWJwuAguEY4JSUF8+bNM5bR44sePXrgscceM34WUo8BYCeWWcPak1purmMjlETubw4fbj382VEupNraWuzbt8/+J24jb7zxhklmWlEYHAQX8fP73/8eR48eRXh4OM8WAX/84x+NT+VC6jEAaLUMY1WV2GsQsT8qFTBzZuv7OcKFVFpaimnTpvHuTdi0aRPWrl1rsk4UBgfRdI7A0KFDIRGAczIiIgILFiyAVCptU7IqoWDtFtbUAMOHOzZKSeT+gZunEBpqPffW2LFsChZ7u5Dy8/Mxfvx4pKamYuLEifY9eRtITk7GmjVrWqwXhcEJDB8+nG8TjLz66qsICwszjoF0JqqqAE9Py9svXgReecV59oh0TlQqIDYWSE1tPSzVEe6jzMxMxMXFITMzE8OHD4cfj5Wn3NzckJSUhMGDBxvX+fr6ttqDFwKdUhia9hCEJAxjxowx+4TQWaiqYnPUWGLLFjFKScQyXPTRrVvWw6AdNbP51KlTGDdunHGO0+TJk+1/kTYwYsQISKVSZGRkwNPTE5s3bxZUenBrdEph8Pf3N74fNmwYj5a05Le//S3fJnSI1nLUxMaKLiURU2pra/HCCxsQHU1oaGh0S1qqaumIB+b9+/dj6tSpJjWf+RYGAPj0008BAE8++SRWrFiBL7/8kmeLbIMhAdSTbSuRkZHElYasrKzkvfTh/YZUav2JDwC2bQMeftg59ogIE61Wi48//gFvvhkGgyEaen1juU8XF/Mhqo5wIX377bd44oknTCa8SiQSlJWV8ZqBgJuzoNVqkZ2dbUybwycMw5wlolGt7dcpewxKpRLx8fHo27evKAoOwJYnukceEXsOXRUiwk8//YTw8EV47bWHodWOgl5vWsfCWaJARAgLC8PmzZshk8mM60eOHMl7WpoNGzZAo9Fg5syZghCFttAphQEAXnzxRUGNL9xPVFVZnxENsD2KyEhRHLoax48fx5gxY7B48TvIz08AoASgAGDBb3QPT0/HjCswDIPY2FhcuHABOp0OQ4YMgaenJ+9uJK1Wi88//xwA8NJLL/FqC0dFRYXN+8pa30WYzJo1C+Xl5Xybcd+SlAR4eQHV1Zb3KS0F+vQBRo4EEhIAM+mYROyEXq9HQ0MD1Go11Go1unXrZjLb3tFcvHgRf/rTn7B//3kA3wEYDUAKQAtADoZhQ0+b46joo6ZcvXoVH374IQBg48aNOHv2LO8h49u3b0dBQQEiIiIQHx/Pqy0cO3futH1nIup0S3R0NBER6fV6EnEsY8cSsf/y1peQECKVyvbz5uXlUXV1teMMbyM7duyg8+fP822GkYSEBJyeU9wAACAASURBVAoICCBPT0+Sy+UEgACQUqmkzz77jAwGg1PtOXq0lDw86sjF5UcC6gkwEKC/92r+b8LT0/F2GQwGmjZtGgGgJ598kojYdqG+vt7xF7fC2LFjCQB9+umnvNrRlNmzZxOANLKhjeW9kW/PwgmDkDAYDIITKr1eTzU1NR0+jz3FQafTUXZ2Nr3//vv0zjvvdNg2e1BfX0+vvvoqyeVyWrdunSB+x/z8fOrdu7dREADQiBEjKCMjw+m2FBayjTwrAtp7i6HJKz+iQES0d+9eAkA+Pj5UXFzsnIu2wvnz5wkAeXp6UlVVFd/mEBFReXk594Bx/wqDi4sLFRUV2fO+dYitW7fSkCFD6Oeff+bbFCOZmZkUFxdHjz32mF3OZ4swAEQuLkSxseYFQqfT0RNPPEFeXl7Up08f8vT0FMQ/8/bt200a4EmTJlFeXh6vNtXW1lJQUBABIIZh6LXXXqOGhgan2nD+PJGvL5G/P/vbhoYa7gmBgQCNxb+BsWOdZ6NOp6P169fTN99847yLtoJOp6Ndu3bRF198wbcpRvR6Pf3yyy/3tzAAENRN/+ijj4wNilDIzs4mhUJBAOjXX3+1yzkt9RyUStPPEglRaGhLcdBoNPTQQw+ZNMK//e1v7WJbR7h48SIplUoTu7y9vem7777j1a4LFy5Q79696fjx406/9vnzRFJp42/q7U3EMMS760ikY9gqDJ1yHgPDMDR16lQkJibybQoAdrQ/JCQEtbW1uHDhgmAm3b355pv429/+hmHDhuHs2bMoKyuDTqdDsLXpza0wbhyQnNxyvVTaMi+OQgG4ugK//AKEhlbiD3/4A37++WeT6Ai5XI6srCz05bH6+9dff43Lly9DrVabDPCq1Wo8/PDDWLlypcW05Y7k9u3b8PDwgI+Pj1Oup1IBK1cCa9eyg8ZNi+rIZIC3N1Bebn6Oi6fn/Zs2+37C1nkMvD/9t2cBQBKJRBBuCI7nnnuOANCqVav4NsVIbW2t0U/9ySef0KOPPmqXLjfrbza/cE+ZEonpk6RKRXT16lVatGiRyZM5AFq+fHnHv6xIhzh/nu35eXkRRUSwv5tMxr4qFI3v+XYdiXQM3M+uJC8vL4LA3EkZGRkEgFxdXamkpIRvc4wkJCQYo1kA2G3MwdqAtItLy3X+/qy/+sIFopSUFJo4caJRGBiGEVREUFehsJBo+nSiw4cbBT083PLvKrqNOj+2CkOnnODm6+sLANi2bRvPljQyaNAgxMfHo76+Hl9//TXf5oCI8P777+O7776DTCaDWq0GABw7dozrdXWIpCS2iTA3EY6b9SqVsq8SCTvnobycnfPw+9+PwfffH8O+ffswdOhQEBFef/31DtskYhvp6YCfH1uD+dQpYMkS1g3o5QVcv87u4+JieQb8/VxtTeQetqiH0Jbhw4eTTCYTnDtp9+7dBIB69+5NWq2WiMjp8eZNyc/Pp8GDB7dw3Vy7ds2u17HmWmo+MA2wg5ghIWz00sSJBvrkk63Uu3dvOnr0qF3tEmmE6x2kp5v+XjNnNv4m7OCy9UV0G3VucD/3GGQyGaZOnQqDwYCEhAS+zTEya9YshIeHIy8vD7t27UJaWhr27NnDmz0hISH49ddfERsba7L+2LFjdr1OVZXl3sO9jooJRMDt22zO/lOnGHz44WKcOJEFKdfFELEr6elAWBiQksLmuKqubsx8euAA+zpgANCtm+VzeHqyv5ujZzF3RYgIly9f5tsMEzqlMADA4sWLAQjLnSSRSPD8888DAN577z3MmzcPWVlZvNrk5+eHxMREzJo1y7jO3sLAkZRkvdgPYJqK2WBgl7w8ICZGiQULJoj1HuwEV0XNzw9YvJgV6IAAICuLdRkRselMiFhXX1YWcPeu+XOJriPHUVdXh8cffxxpaWl8m2KKLd0KoS3R0dFUUlIiKHdSbW0tvfzyy7Rq1SoTt81LL73Et2lExM4heOyxxwgABQUFOdzFZWlw2s3NNHJJKmUHpZtGNSUmEk2axC5tSbPRlTl/np1r4O3N3r/QUNPIsBkzGt9LJESRkab3XRxcdj7Z2dk0dOhQUigUVF5e7pRr4n6OSuJSYkyfPl1Q0Unbt28nhmFMhGHBggV8m2VEr9fTH//4RwJAmZmZDr9ea6k0XFxMGy9u8fVltykU7BhFYiLrHxdFwpTCwkYBjYxsvH/cTGVu7AAg+vHHRuFtbSxBFAXHs337duKiK+fNm+e063YJYdi4cSMBoKlTpxIROT1lgDk++OADE2EQYl6ndevW0eeff+6061kbnHZ1ZRsrhYL97O5Oxp4FJxpyORtfHxIi9iKahpgqlex94+5d88adu38uLkQBAeJcBCGg1Wrp1VdfNWkjvv32W6ddv0sIQ1N30q1bt2ju3Ll2u4HtxWAwGF02AKh79+58m2SWW7duOf2arfUgZLLGxowTEw8P9jU0tFEkuF5EV3A3mXMReXs39gokksZ7Fhlp2lvw9bUuBl1REC5dukQXL17k5doqlYomTZpkIgpKpdKpifbue2HIzMyk3Nxcio+PN/rNAQgiM6ZarTam3QVAarWab5MEhyWRaOrm6NPHdJtc3vje3599EnZxIVq+nG0sPT3ZENj09M7nemouAJZcRAzTGGIaEmJ6fxYuNO09uLqav8dd0VWUl5dHK1eupH79+vHiWbh27Rr16dPHRBQA0MMPP+xUO+57YTh58iRJJJIWN7qurs6e97HdFBUVUWhoKAGgnJwcvs0RJK31ILy9WTeTt7dpQ9ijBxndTdw+3DFSKdGIEazrSalkfeu+vsIRjMJC1hZfX8sCEBDQOMbS/J7MnNn4fbkxGIZpdMcFBlq+n11REEpLS+mVV14hFxcXp7ttmqPVauk3v/mNSXu1bds2p9rQKYQBwGIAVwAYAIyy9TjOlfSXv/ylhTA4a3TfFi5evEgeHh7ixK1WsDYG0Xzx9W1sGP39iZYtM78fl9qBm2DXVDC41ODp6Y2NdHMBaW09NyDe1nOsXt1ovzUBaDrG0tRF1K9fo2i6uLD7tXbPupq7iIiorq6OPvjgA/Lx8TG2DVFRUbx6FPbv308ASCqV0sSJE8nd3Z1qa2udakNnEYZBACIAHG+PMGg0GnrggQdMhEElMP/B7t27acuWLXyb0aloTSiaztLlGkpOKKTSxlxNcXHUwqXCCQYnFFwjze1j6/qAALaxb+s5OBHgGvTmAhAQwH63pqGkzV1E5maTd2URaIpWq6WNGzdSz549Wzw0HjhwgDe7ioqKKDAwkADQO++8Q/n5+caKc87EVmEQRNpthmGOA/gjEdk0y8PT05Oio6MBAPX19UhLS4PhXi7gmJgYKJVKR5naLnQ6HWSyTltemxfOn/8UVVVDre7DMGoQudz7ZICvbyrKy2ONn11db6O+vjdkskoABJ3OFYALAB2aljtnz6M0vtq6vn//D3Ht2h/aeA6Cm9tNMIwetbVhkEprodd7AQD8/I6joiIGBoPrvaM19+zUQS6vgVbrb/FeSKW1GDduttX75SzUajUqKipQV1eH0NBQp85or6mpQX5+PkpKSoxtAgD4+Phg+PDhTrOjOZcuXUJZWRm8vb0xfPhwMAwDvV7v9Nn+J06csCntdqcRBoZh1gBYAwAymSy6af7+mpoalJaWAgB69uwpNsL3ITk550DkYXUfqbQIRC4wGLwBVAPwBFesHqgD4AaA4OGxGzU1c+8dUwaAgV7va/N7mawIGk0YJJJaGAzukEhqWz1OIqmAweAFQAo3twNQq8fBYHAHwIAVACnw/9u796CornzR49/V0N2AyLN5iApENCo+4wMBw0MjvmLU4GPiqDGJJnFOTs2dW7fOzJ1M1f3/1qm6c07unRormdxoTHJ9RA0m0RAwKpkoQqKIgA+ICDQI8hABeXb3vn+03bEFlCjduxvXp4pSujfdv9pK//b67bXWDxM6XRVmswGzOeTec4Pz8fmJ8eM3Pdb5HE5ms9mhh4XJZEIIQWRkJDqdzuXx9PX1UV9f75AYxowZo0osAO3t7bS0tKDRaIiKilJ165fy8nL3SAxCiFwgcoCn/qIoSta9Y07xK0YMMTExyrvvvuvw2L59+7h69So7d+4kIiLiCaOWPMEf/vA63d2P/mXXaMz4+PTR2WkdXSQklFNYGIeiaNBq++jr09qP9fbuw2TSDvq4TteLRiNQFIWeHut76/W99r8/7DX0+h56evR4eZkJD7+Dt7eFmhoDj0oAAHFxN/m3fzv6yONcpaqqipKSEiorK+0XZTbe3t5s2bKFmJgYl8d169Yt9uzZQ2dnJ9HR0VRXVzNt2jTWr1/v8lgAGhsbef/99zGZTKxfv55p06apEofNzp07h5QYnH5prSjKEme/B8Dq1av5+9//jslkcsXbSW7gP/7jo36PDZQsLBYvOjt/uUorKHjW9gxmsxdarYnIyFbq64Ps3w/2uKJoCAuzdqCrqQlFqzWj1ZqxWB7+GrW1IfT0WEtMZrM3N28OXBZytwQwmMjISEpLS/slBSEE69atUz0pxMXF8corr/Dpp5+yePFil8cC1hLyoUOHMJlMzJo1S/Wk8GuMmJqLn58fa9askYnhKTdQsoDBRheaexv5eVFTE2Z/1GLxsv850OP3P9bXp7GPCobyGjZDTQA9PT3s27cPk8mEv7//Q79cWaLo7Ox0aNFqs2rVKqZMmeKyOGwGSgre3t6sXbuWwMBAl8cDcOLECRoaGggODnbYxNITqJoYhBAvA/8bCAO+FkIUKYqy7HFfb+LEiZgfbDwsSQyeMB7U3NxMQUEBqampjBqsU40L6fV6UlNT+fjjjwc9JiAggPT0dGbPnu303tR9fX3885//5MyZM5hMJvR6PWazGZPJxKJFi5gzZ45T338ggyUFQLWkUFFRQX5+PhqNhnXr1ql2f+N+165dG/KxqiYGRVGOAEeG8zXVurGjKIoqDeMfxmKxYDab0Wq1jz7YRcxmM3fu3CEkJETtUOx6enooKSkhKiqK8PBwLl++TFFREYmJiSQnJ6PX6x/9IsOsra2Nb7/9lps3b9LS0jLgMb6+vqSkpDB//nyXTLhoaWlh79699pHCzJkzycjIYO/evcTGxpKamur0GB7U2to6aFJQS1dXF1lZWQCkpaUxduxYVeMB62dBTk7OkI/3yFJSU1MTt2/ftrf4VFtraytHjhxh5syZ2KbRqs3WxKijo4PNmze7TXLIz8/n5MmTJCUlkZqailarpaKigoCAAMLDw1WJqa6uzt5QycvLCyEEJpOJvLw8CgsLXfrha6PX6yktLbXHpNVq7e1ZtVotSUlJLk9aQUFB6HQ6wsPDWblypf0+wvz581X7fx8YGMikSZPo6Ohwi6QA4OPjQ3JyMhUVFaSkpKgdDmDtFZOens6lS5eGdLxbTFf9tXQ6nZKammpv1qO2S5cucfjwYbRaLW+99RaGh7XCcpE7d+7wj3/8g46ODmJiYtwmORw/fpyCggLA+ku9bNky2tra+OGHH9i+fbsqQ/+6ujrOnj1LXV3doFfntnLNrFmz0Ghc09+qpKQEg8FAWFgY+/bto7Kykrlz56pa5rpz5w6jR4922TkYCkVRMJvNbpEU7ueOVYShzkry2MRgMBjYvn0748aNUzscAA4fPsylS5cYM2YM27dvd4s2lc3NzezevdvtkkNNTQ3Hjh2jvr4esJZEurq6MBgMvP766/j5+akW25kzZx465DYYDCxbtoyJEye6LCaLxcKxY8dYuHCh24ySJc80ohNDSEiI4uPjw7hx49i+fbva4QDWOvWuXbtobW0lOTmZjIwMtUMCBk8OapfiFEXhxx9/5LvvvrOXSACioqLYtm2bKjfrmpubOXLkCL6+vg+d/aPGPQdJGg4jOjFER0crer2eu3fvsmHDBuLj49UOCbBeCX/00UcoisLWrVuZMGGC2iEBAyeHTz75hJdeeknVstfFixfJzs6mq6vL4fG4uDg2bdrkFqMuSRpJhpoY3KdQ+CsIIUhLSwMgNzfXbaaojh8/3j4z44svvuj3gaeW0NBQXnvtNfz9/amqqmLPnj1UV1dz4sQJ1WLq6uqis7OTcePG9bsC//nnn/niiy/wxIsWSRoJPDIxAMydOxeDwcDt27cpLCxUOxy71NRUxo0bR3t7O0ePus8K1vuTQ21tLQBXrlzBaDSqEo+vry9JSUn89re/5Y9//CM7duxgyZIlxMXFodPpKCkpITs7W5XYJOlp57GJQaPR2Ov4eXl5bnN1blvQotfruXLlCj/99BMAvb29ql4B19XVkZOT41DPB37V3GZn0Wg0jB07loULF7Jlyxb+9Kc/8cYbb+Dn50d1dbXa4UmSyymKwp07d1R7f49NDADPPvsssbGxdHV1kZeXp3Y4dkFBQfYl8NnZ2TQ1NXHmzBlu3LihWkxjxoxh+vTpjB492uHx6urqX7Ui0hU0Go29LBcdHa12OJLkUuXl5XzwwQeqlsg9OjEALF26FIDCwkJu376tcjS/mDlzJjNmzKCvr4/PP/+cs2fP2hcsqUEIwfTp03nnnXdYsWKFwzz4EydOyHq+JKnMaDSye/duPvvsM8aNG6fq7gAenxjGjBnDzJkzMZvN5Obmqh2Og7S0NPR6PQ0NDfT29nL58mWHPeLV4OXlRUJCAr///e9JS0tDp9Nx69YtiouLVY1Lkp5WTU1N7N+/nw8//JCqqiq0Wq0q24vcz72WCj6mxYsXU1ZWRllZGUaj0S0WvRUWFnL8+HGHK/HOzk6uX7/u0sVRg9HpdKSnpzN//nxOnz5NXl4e06ZNc7vVo5I0UrW3t3Pq1CkuXLjg8DmRlJSEv//Dm1I5m8ePGMC6tUJiYiKAfSZLRUWFqlfn8+fPZ8uWLf1W8apZThrIqFGjWLlyJZs3b3arUpwkuYKiKFRVVXH37l2Xvm9TUxO7d+/m/PnzDknBz8+P5ORkl8YykBGRGACef/55Ro0ahdFopLCwkC+++IJbt26pGtOECRN4++23HXZXvHLlitusu7hfSEgIYWH9+wZI0khkNBr55ptv+Otf/8rFixddvveUwWDgd7/7Xb9uk6mpqW6xsn7E1A30ej1paWkcO3aMY8eOAdZ//MjIgbqKuk5AQACvv/462dnZFBYW0t3dTUVFBZMnT1Y1Lkl62ty8eZOSkhLKysrsW4ePGTNGlSY6ZrOZAwcO0NDQgI+PD93d3QQHBzNv3iMXJbvEiEgMXV1dfPrppzQ0NDg8bjQa3eJEe3l5sXLlSsaPH8+XX35JaWmpTAyS5ALt7e0UFhZSWlrab+dcHx8fNm7c6PL7amazmf3791NeXo6vry+vvvoqX3/9NQkJCW6zDcyIKCX5+vrym9/8pt+WzWqt6h3MjBkz2LFjB01NTfT19akdjiSNeP7+/oSFhQ3Y8jczM5OgoCCXxjNQUoiMjGTRokVMnz7dpbE8zIhIDACjR4/mtddec6iTNzc3u82KaJvw8HC2bdtGT0+P2qFIklOZTCZaWlqorKzk4sWL5OXlcebMGZdOChFC2Pflul9qaiqTJk1yWRwweFIA6/1Id+rdMCJKSTb+/v689tprfPzxx/ayUm1trVtMD72fXq93ixtMkjRcLBYLp0+fpqGhgba2Nu7cudPvwzg2NpaNGze6rMnP3bt3ycrKory8HICIiAgaGhqYMGEC6enpLonB5mFJwR2NmBGDjZ+fH9u2bWPMmDGA+5WTJGkk0mg0zJgxg1u3bnHz5s1+SWHOnDls3boVX19fl8RTUVHBrl27KC8vx8fHh/Xr17N27VoCAwNZt26dS6/OPS0pwAgbMdjYTv4nn3wiE4M04nR1ddHY2EhoaKhqLT4f1NDQQEFBAe3t7Q6PCyFYtmwZCxYscEkcJpOJ3Nxczp07B0B0dDSZmZkEBgbS19fHhg0bXNoh0BOTAozQxADWGQdbt27l8OHDbtl7VZIel4+PD6dOnaKyshIfHx9CQkIwGAyEhoYSGhqKwWAgJCTE6W1cLRYLV69e5dy5c1RVVdkf12q19PX1odfrWb9+vctKuY2NjRw6dIiGhgY0Gg3p6ek8//zz9t99rVbrsKbI2Tw1KcAITgxgreWvW7fOLRuFS56jo6ND9S0K4JebuS0tLYSHh1NZWUl3dzd1dXXU1dU5HBsYGMiyZcuYOnXqsMfR1dXF+fPnKSwstG8NrdPpmDVrFgkJCRw/fpzbt2+zadMmly2aLCgoICcnB5PJREhICJmZmS5NAg9yx6Twa2ZCjvhPS1f1DnbHUYnZbEaj0bhVXCaTid7eXpcO5x+lt7cXo9FISEgIgYGB/c7X5cuXKS4uZuHChUyePNkl57O7u5vz58/T3NxsTwZtbW2P/Lnw8HCSk5OZPn36sM+J7+7uJicnh+LiYvv0z+DgYBISEnjuuefsEyoiIiJYt26dS/6Ne3t7OXTokH3r+NmzZ7NixQpVeobbuGNSAPjyyy+HfKxHJoaWlhYaGxvdZgsHs9nMwYMHeeaZZ1xWSx2K3Nxc6urq7DVWd1BcXMzx48eZPn06CxYscItfmPr6evbu3QtYFyMGBwcTEhJi/9Lr9RiNRvbv34/BYCApKYlZs2Y5dTGSoij9mihpNBqCgoIIDg4mNDSU4uJie+Ol6Ohonn/+eSZOnOi0xKXT6SgvL8dkMhEXF0dCQgKTJk3q9362rfBdQavV0tvbi4+PD6tWrWLatGkue+/BaDQaAgMD3SopAPYJOUMhPHEffp1Op0yZMoU333xT1SsDm/Lycj777DMAli9f7hbJoaenh7/97W+0t7fj4+PDiy++6BYLaL755hv7jUGwfqAtWLCAKVOm2KcxVldXExwc3K+pkLPY+l+3tLTQ0dExpJ/x9/cnMTGRefPmOW3qcU5ODgEBAYSEhBAaGkpgYKA9GbW2tvLee+8xefJkFi5c6LIdhSsqKggKCsJgMLjk/Yaivb0di8XiNhc/YE3sbW1tbhUTwM6dO39SFOWR20F4ZGLw8/NTgoKCiI+PZ8OGDWqHA1i32bbt0eQuyaGzs5OsrCz7MHvmzJmsXLlS9TUUzc3NFBYWUlRUZF/oFxAQwPz585kzZw7Xr1/n22+/5ZVXXiEqKsqlsfX29tpLN7YyTl1d3aAbMur1eubOnUtiYqLLEhlYZwF5eXm51Qe05P5GdGIYO3asYhtCLl26lKSkJLVDAtwzOQD8+OOPZGdnYzKZCA4OJjMz0y16VvT09HDx4kUKCgpobm4GwNvbm8jISIxGI1qtlrVr1xIfH69ajIqisGfPHodZN4GBgfYZQLZZQGFhYQQEBKgWpyQNxYhODDExMcratWs5ePAgGo2GV199lZiYGLXDAtw3OTQ2NnL48GHq6+vRaDSkpaWRkpKCEAKLxUJXV5dqc+IVReHnn3/m3LlzVFRU9Hs+PT2dtLQ0FSKz3n+4du2afTqoK6aBSpKzDDUxeOzK5/j4eJKSkrBYLHz++edDrg072/z58+3b+D5YT1dTWFgYO3bsIDExEYvFwsmTJ9m9ezetra20trZy6NAh1fo+CyGYOHEimzdv5oUXXuj3/KlTpzh06NCAG6E5W2RkJKmpqcTHxxMRESGTgvRU8NjEALBkyRJiYmLo6OjgwIEDqvdTtnHX5ODl5cWyZcvYsmUL/v7+VFdXs2vXLn744QcqKys5efKkqvFdu3aN/Pz8AZ8rKSnho48+cpsLAEkayTy2lPTuu+8C1sVH77//Pu3t7SQmJrJs2TKVo/uFu5aVoP+NaZtNmzbx7LPPqhSVVV9fH21tbfbN2Gx/2hZTrVy5kpCQEFVjlCRXUxSFnp4efHx8Hvs1hlpK8sh1DPfz9/dn/fr17Nmzh/z8fMaNG+cWc5nBOnIAOHbsGN988w2APTncuXNH1alsfn5+vPjiizQ1NTk0MDly5AhvvfUWwcHBqsWm1WrtN3Yl6WnX2tpKUVER169fZ9OmTS55T48uJdlER0eTkZEBwNGjR2lsbFQ5ol8MVFaylb7UHK21tbVx6NChfl2turu7OXDggCr1fEmSrMxmM6Wlpezdu5f33nuPvLw8Fi9e7LLdaT1+xGCTmJiI0WiktLSUAwcOuM3iN+g/crh8+TJ1dXWUlZWpNrqx9aK+ffs2JSUllJaW2ntY1NfX8/XXX7NmzRpVYpOkp1VDQwMXLlyguLjYocnYwoULiY2NdVkcIyYxAKxevZpbt27R2NhIVlaW2yx+A8fkYJsT/9133zFlyhRV+7wGBweTkpJCSkoKTU1N9iRRVFTE+PHjmTNnjmqxSdLTwmQykZWVRUlJSb/noqKiWLRokUvjGRGlJBudTsfGjRvR6XSUlZVx9uxZ+3Nqz1i6ePFiv3/0lpYWzp8/r1JE/RkMBtLT03nnnXfYuXMn7e3t3L17V+2wJMmlTCYTRqPRpX3Zvb29efnll/ttW6PVasnMzHT5xeOIGjGA9cNtzZo1HDx4kNzcXKKioggKCqK4uJiUlBTV4po0aRL19fXU1tZiNpvtj58+fZpZs2a5TdnLJiIigoiICLXDkCSna21txWg02r/q6+vJyMhw6e4AFouF3NzcfhePy5cvV2USxohLDPDL4rezZ8/y+eefExsbS01NjUPTDlfz8/Ozd7I6efIkly5dQlEU7t69y9mzZ1Vb2StJT5uamhqqqqrsieDBUXFGRoZLp5Z3dHRw8OBBqqur0Wg0LFmyhO+//56YmBjVSrkjMjGAdfFbXV0dVVVV9ix8/fp14uLiVI0rKCiIl19+meTkZHJzc6moqODMmTPMmzfPbdo0StJIptfrKS0tpb6+vt9zixYtIjk52WWxVFdXc/DgQXszqPXr1xMTE0NDQ4NLty9/0Ii6x2DT2trKwYMH7Ruz2bhTPT8iIoLNmzezbds2DAYDeXl5aockSU8FnU434Dqd1NRUUlNTXRZHfn4+e/bsoaOjg+joaN5++237nm+rVq1StZnViBwxBAUFsWDBif3TcAAAB+ZJREFUgn7tDq9evUpnZ6dbdQ+LjY3lzTff5OrVq5hMJtmCVBoxenp6uHXrFiaTacAvs9mMyWQiICCAGTNmOL3M293dTV5eHgUFBZjNZoQQ9rVECxcudNnMn97eXo4ePUppaSlgnWqfkZFh70cCqP45MGI/hWJjY9m5cydfffUVZWVlgHXRSHFxMYmJiSpH19/kyZPVDkGShpVWq+XcuXP2D8CBPPfccyQkJDg1KZjNZgoLC8nLy7OvDZgxYwaJiYl88MEHLFiwgCVLljjt/e/X1NTEgQMHaGxsRKfTsXr1arfZqeF+IzYxAPj6+rJhwwaKioo4fvw4vb29XLhwwS0TgySNNL29vUyYMIErV644zMQD62SMl156iSlTpjg1hsuXL5Obm2tf4R8TE8PSpUuJioqir6+PefPmsXz5cqfGYFNWVkZWVha9vb0YDAY2btzoNu2JHzSiE4PN7NmziY6O5vDhw9TW1lJbW8vYsWPVDkuShk1bWxs3btwgIiICg8Gg2qLJ7u5urly5QmlpKZWVlf0SAkBcXBxr167F39/faXHU1taSnZ1NTU0NAKGhoWRkZDiMzLVarX27GmeyTUW1rauKj49nzZo1bjdF/X5PRWIACAkJ4Y033uD06dMUFRXJxCCNKAEBAVy4cIEbN27g5eVFWFiYfS1KREQEkZGRTru3NlgyEEIQGxtLZGQk+fn5eHt7k5GRQUJCglPiAOvEk9zcXHv5ys/Pj/T0dObOnetQw7dx9n2NgaaiukvHyYdRNTEIIf4deAnoBX4GXlcUpdVZ76fRaFi0aJF9TyBJ8lQ9PT32rcltX7Yblmazmfr6+n7TMcPDw1mxYsWw7LnzqGQwbdo0pk6dyqhRoygrK+PGjRtkZmY6rXTy4I1lb29vFixYQEpKimo9zgebiuoJ1B4x5AB/VhTFJIT4n8CfgT85+02flhW9iqKotqBvMLbZIANdvanFZDLR0dHB6NGjh1yCOX36NDExMU7b2MxkMlFVVdWvL4Xtq6enZ8ivFRkZSUJCAjNmzHii2S5ms5lLly4NKRncLyIigh07djilvGWxWCgsLOT06dMON5ZfeOEFVbe1z8/PJycnB4vFQnR0NBs2bHBq6WwoLly4MORjVU0MiqJ8e9+3+cD6ofxca2srjY2NbnXj5quvviI8PNypw+Rf6/vvv6empoaMjAzCw8PVDgew3oA7fvw4U6ZMYdq0aTzzzDOqJ4n6+no+/PBDwNrfIyAggNGjRxMYGEhAQID9KzAw0J489Ho9e/bssf+bz5w5c1jbfvb09PDJJ58M+ry3t3e/OPV6PSdOnACso+OpU6eSkJBAdHT0sMWVnZ1Nd3f3I5PB/Zy5pYMQgqKiIrq6uhxuLKutqqoKi8Uy4FRUtTQ1NQ35WLfp4CaE+BLYryjKgL8NQoi3gLfufTsd6L8NofS4DMDQ/9dIDyPP5fCS53N4TVYUZfSjDnJ6YhBC5AKRAzz1F0VRsu4d8xdgHpCpDCEgIcSPQ2lPJw2NPJ/DR57L4SXP5/Aa6vl0eilJUZSHrhwRQmwDVgEvDCUpSJIkSc6l9qyk5VhvNqcpitKpZiySJEmSldp3RP4PMBrIEUIUCSF2DfHn3ndiTE8jeT6HjzyXw0uez+E1pPPpNjefJUmSJPeg9ohBkiRJcjMyMUiSJEkOPDYxCCH+XQhxRQhRLIQ4IoQIUjsmTyWE2CCEKBVCWIQQcmrgYxJCLBdCXBVCVAgh/rva8XgyIcT/FULcEkLI9UpPSAgxXghxUghx+d7v+X951M94bGLAup3GdEVRZgLXsG6nIT2eEiATkG3kHpMQwgv4G7ACiAc2CSHi1Y3Ko+0GXLMf9shnAv6boihTgUTgnUf93/TYxKAoyreKopjufZsPjFMzHk+mKMplRVGuqh2Hh0sAKhRFua4oSi+wD1ijckweS1GUPKBF7ThGAkVRbiqKcv7e39uBy8BDt5f22MTwgDeA42oHIT3VxgI1931v5BG/fJLkakKIWOA54NzDjlN7d9WH+hXbaZiAT10Zm6cZyrmUnshA29jKueCS2xBC+AOHgD8oitL2sGPdOjHI7TSGz6POpfTEjMD4+74fB9SpFIskORBCaLEmhU8VRTn8qOM9tpR033Yaq+V2GpIbKAQmCSGeEULogFeAoyrHJEkIa1OWD4HLiqL8r6H8jMcmBh5/Ow3pAUKIl4UQRiAJ+FoIka12TJ7m3kSIfwWysd7cO6AoSqm6UXkuIcT/A84Ck4UQRiHEdrVj8mALga3A4nuflUVCiIc2u5ZbYkiSJEkOPHnEIEmSJDmBTAySJEmSA5kYJEmSJAcyMUiSJEkOZGKQJEmSHMjEIEmSJDmQiUGSJElyIBODJA0DIYSXEOI/7+13f0kIMUHtmCTpccnEIEnD48/AdUVRpgHvAf+icjyS9NjcehM9SfIEQohRwMuKosy991Al8KKKIUnSE5GJQZKe3BJgvBCi6N73IUCuivFI0hORpSRJenKzgf+hKMpsRVFmA98CRY/4GUlyWzIxSNKTCwY6AYQQ3sBS4EtVI5KkJyATgyQ9uWtYm6wD/Ffga0VRKlWMR5KeiNx2W5KekBAiGGvPcQPWHgJvKYrSpW5UkvT4ZGKQJEmSHMhSkiRJkuRAJgZJkiTJgUwMkiRJkgOZGCRJkiQHMjFIkiRJDmRikCRJkhzIxCBJkiQ5+P+RMp8y01cvqwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:18<00:00, 2.45it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXd4FFX3x7+TRhqB0EMJEAvSS5BeFFQCglRBEEFEQMFXmqL4Inb0RxURUcCC8IIKCkoHBRFCByF0AkhNQoD0nt35/v5YZ9hNY5Ps7p3A/TzPPMvs7sz9spm5Z869556jkIREIpFIJBpuogVIJBKJxFhIwyCRSCQSG6RhkEgkEokN0jBIJBKJxAZpGCQSiURigzQMEolEIrFBuGFQFKWGoijbFUU5pSjKCUVRxorWJJFIJPcyiuh1DIqiBAEIInlYUZTSAA4B6EXypFBhEolEco8i3GMgGU3y8L//TgZwCkA1saokEonk3sVDtABrFEWpBaApgH15fDYSwEgA8Pb2Dq1fv75LteVHfHw8/vnnH9SuXRuBgYGi5QC4rSkoKAhBQUGi5QAAYmJiEBUVhcDAQNSuXVu0HCQnJyMmJgZJSUnw8fFBvXr1nNZWWloaTCYTAgICcn2WmZmJlJQUJCcnIyUlBZmZmQAARVHQtGlTKIpSpDZVVcX169dx8+ZNZGVlFUu/NfXr14e3t7fDzmdNdnY2YmJiUL169Vz/b5LIyMhAamoqUlNTkZaWhrS0NABASEiIIe69jIwMxMbG4tatW6hSpYph7r3MzExcvHgRnp6eiI+Pv0my4p2OMYxhUBTFH8DPAMaRTMr5OcmFABYCQEhICA8ePOhihbnZuXMnHn/8cZDEsGHDMGXKFNGS8Pnnn+PVV18FSfTu3Rvz5s0rcufiCM6dO4fnn38e165dAwD07t0bX375JTw8XH/pmc1mrF69GtOnT8fZs2cBAN7e3hg2bBhmzJgBX19fh7Z348YNvP3221i0aBH+/PNPtG3bFsePH8fOnTvx119/YefOnYiOjrY5xtfXF61atUL79u0xYcKEPI2JvZhMJuzduxebNm3Cpk2bcOjQIZvPAwMD8fzzz8PDw0PfPD0989339PREz549UbZs2SJrciQZGRmIiIjAgw8+aBhNAJCYmAgAKFOmjGAlt1FVFenp6fD3979k1wEkhW8APAFsBjDBnu+HhoZSNCdOnGDZsmUJgCNHjqSqqkL1qKrKKVOmEAAB8IMPPhCqSVVVfvHFF/T19SUAVqlShevWrROiJS0tjQsWLOB9992n/z7lypXjO++8w9jYWIe3l5WVxU8//VS/PgCwc+fONvvaFhgYyKeeeoozZszg3r17mZWV5XA9GtevX+fSpUv57LPPskKFCgTAvXv3Oq09ifEAcJD29Mn2fMmZGwAFwPcAPrX3GNGG4dq1awwODiYA9ujRg9nZ2UL1ZGdn88UXXyQAurm5cdGiRUL1XLlyhU888YTe+fXv3583b950ertHjx61aefWrVv84IMPWLFiRV1LrVq1OG/ePKakpDhFw+bNm1m3bt1cBkDbqlevzoEDB/KLL77gsWPHaDabnaLjTpjNZu7fv59bt24V0r5EDCXJMLT796aJAHDk361bQceINAyJiYls1KgRAbBFixZO62DsJS0tjU899RQB0Nvbm2vWrBGmRVVVLl26lGXKlNGfyn/44QeXtP3777+zdOnSjImJ4cWLFzl27Fj6+fnpHXLTpk25YsUKpxnxc+fO6X+HvLaGDRvywoULwj1Lyb1NiTEMRdlEGYbMzEx27tyZAHj//fc7ZRiiMMTFxbFdu3YEwLJly/Kvv/4SpiU2NpZ9+vTRO8Ju3boxKirKJW1///339PDwIAD27t2b7u7uuo7HH3+cW7dudWqHHBMTw8mTJ/PFF1/k008/zSeeeIKtWrVi3bp1WbVqVfr7+xMAZ82a5TQNEok9SMPgYFRV5eDBgwmAFStW5Llz51yuwZqrV6+yQYMGBMCqVavy2LFjLms75/DHmjVrWKlSJQKgv78/Fy1a5JInY1VVOW3atFxP525ubhw4cCAPHz7sdA32YjKZmJCQIFqG5B5HGgYH8+abbxIAfX19uX//fpe3b82pU6f0OY46derw4sWLLms7NTWVEyZMIEkmJCRw6NCheofcoUMHXrhwwSU6srOz+dJLL+U5bPPbb7+5RINE4kp+/PFHJiYmFusc0jA4kPnz5xMA3d3dhUXWaOzdu5fly5cnALZs2ZI3btxwWduqqnLgwIGsXr06f//9d9aoUYMAWKpUKc6ePdtlE6kpKSns0aNHvuP5lSpV4oEDB1yiRSJxFWvXrmXFihW5YMGCIs+VScPgIFavXk1FUQhAeLTPhg0b9PDPrl27unzie/r06bk64ebNm/PkyZMu03D9+nW2aNGC/v7+bNKkCZ9++mlOnjyZX3/9NXfs2MGoqCg5wSu5K1FVlS1btiQA1qtXjxs3biz0OaRhcADh4eH09vYmAL7zzjsuadMa66eCJUuW6JOqzz33nFPj3fNi06ZNdHNzszEKY8eOdbmOS5cuMSYmRnb+knuSrVu32tyDTzzxBCMiIuw+XhqGYnL69GmWK1eOADh8+HCXd0SRkZGcOXMmSXLGjBn6hfD666+7PPY9MjIyz8VZZcqU4aeffio7acldhZGvZ1VV2bFjx1zBFiNGjGB0dPQdj5eGoRhER0ezdu3a+pCNq5+KVVVlWFgY27Zty4kTJ+oXgIhwx6SkJNarV8/mQvT19WXfvn25bNkyxsfHu1yTROJMsrOz+frrr3PBggWMi4sTLScXf/31V66HtODgYE6ZMuWOcw/SMBSR5ORkhoaGEgBDQ0OZnJzstLby4+eff7b5o3t4eHDp0qUu12E2m9mrVy89dcOQIUO4Zs0apqamulyLROJKLl26xMDAQHp5ebFfv3787bffXP6AWBBdunSx6SPefvttu46ThqEIZGVlMSwsjAAYEhLCmJgYp7RTECkpKXq0j7YNGDBAyJP5okWLOHr0aG7dutVQN4VE4grWrFljcx9WqFCBr776Kg8ePCh8uOnAgQN68Ic29zdt2rQ7HicNg52cO3eOO3bsoKqqHDZsGAGwfPnyPHPmjMPaKAzaeomcW//+/ZmUlORSLaIvfolENP/5z3/yvB/r1asnfD1Tr169uGfPHi5ZskSPnJwzZ06Bx0jDYCcvv/wyn3nmGU6dOpUA6OPjwz179jjs/IXh1KlT9PT0zLWC9+jRo0L0SCTOJjk5mZcuXRKWTPBOZGRksGnTprmCLkT1Edb8888/+sPbV199petbsGBBvsdIw2AH169fp7e3t+6Kubm58ddff3XIuQuLqqp6HiZPT0+OGDGCkZGRQrRIJK5CVVVOnjyZ3t7erF+/Pnv16sXXX3+dCxcu5Pbt23n16lXhnuvZs2f1fFfa1q5dO165ckWorpx89tlnur5vvvkmz+9Iw2AH1vULALBVq1YMDw8XMp7+ww8/0NfXl+PGjTPcBSeROJv58+frwyE5N19fX77//vtCDcSyZcsIgIMHD2aVKlX0OYeiLDJzJv/3f/9HAFQUhcuXL8/1uTQMdyA5OZmBgYG5LsJOnTq5/EndZDJxwYIFwrO1SiQiWb16tb6gNOf8mmivgSSHDRvGv/76izExMXzsscd0fW+++abwmizWvPvuu9RS+Pz88882n0nDcAfmzJljc/FVrFiRS5cuNcQFKJG4iqSkJJ44cYIbN27kwoULOWXKFC5ZskSYnvDwcH1hqfXWpk0b/vrrr0LnIlJSUvQ0NCaTie+//74+DG2koSVVVfnGG2/ow9Lr16/XP5OGoQCysrJsQkJHjRplyIUsEokjiYqK4vjx4/nkk0+yYcOGea5mr1y5spAwbWtOnz7NWrVqEbAkirTWWa9ePX777bfMzMwUqlFj27ZthhxaUlWVr776KgFLkkutUp80DAXw/fffE7BU1dq9e3exziWRFIVjx47xiy++cHm7V69e5SuvvEIvL688x/PLly/Pp556ilOmTOFPP/3EU6dO0WQyuVxndHQ0mzZtylmzZjEpKYmzZs1itWrVdJ3VqlXjzJkzXR7CnRdGHVpSVZUjR47Uoy3/XTEtDUN+P1bLli05Y8YMh00yG+EiyInokqN5cePGDaanp4uWYUNMTAxPnDjhkraysrK4cuVKPvLIIwTA2bNn659lZmbyn3/+4a5du/jDDz/w66+/dqqWy5cv8+WXX7YJj85v8/b2ZmhoKIcNG8azZ886VZc1SUlJ3LFjh76fmZnJb7/91qamdtmyZQsMz3QVeQ0tZWRkiJZFs9nMIUOGEIAWWXX3Gob69esX+YeKjY3lpUuXinx8To4dO8b777+f4eHhDjtncYmIiGBQUBBXrFghWorO6tWrWalSJU6aNMml7WZlZeWqWWEymbhhwwb27t2bHh4efPTRR52qISYmhh988IHNE6/WeTRt2lSvfme9+fv7O1WTxsWLFzlixAi9NOqcOXP4v//9j2+++Sa7devG6tWr2+g6ffq0S3QVhNls5q+//so2bdoQgJB0MfmhDS29+uqroqXoZGdns3///ppXc/cahqCgIEf+bkUmLi6O9913HwFwyJAhouWQJA8dOqRP3nXp0kX4ZHp8fDyfe+45vWN55JFHXOZhRUVFsV27dty3bx9JS/6bd955x2Z+yc3NjU899ZTDx6xVVeXu3bs5aNAgu57KFUVhUFAQmzdvzl69enHMmDEu9UQvXLjAF154gePHj8/1WVxcHHfs2MF58+YJGVYqCFHh5QVx/fp1Q3gL1mRlZTE9Pf3uNgzNmjVz5G9WJEwmk55XqXHjxoZILLdnzx6WKVOGANitWzempaUJ1bNp0yb9KblUqVKcNWuWyzqWXbt2MSgoiAA4d+5choWF2cTJ165dmx9++CGvXr3qlPYjIiL42muv8bHHHmOFChXyNAa9e/fmnj17ePnyZcN0bjJb7t3NXW0YRNR8zsnkyZMJgOXKlXNZneOC2LFjh746s3fv3i5/YrE2jElJSRw1apTeAT788MMuq/Kmqio/++wzfWjEevP09GT//v25detWl4Y9qqrKa9eucf369fzoo4/49NNP84EHHqC/vz//+ecfl+mQSKRhcCIrV67UhyG0MDCRbNmyhT4+PgTAZ555xuVPn/v27eMbb7xBkvzzzz/1Whaenp786KOPXDYkkpqaysGDB+cyCB4eHpwxY4ZL62PbQ3JyMq9fvy5ahqSEkpCQwJ9++qlQx0jD4CSOHTtGPz8/AuCMGTOE6dBYu3atHnr4/PPPu3wMOCoqilWrVuVjjz3GcePG6cM1jRo14pEjR1ym49y5c2zUqFG+Y/h9+/Y1XESURFJc6tevz8WLF9v9fXsNgwckdhMfH49evXohNTUVAwcOxMSJE4XqWbVqFQYOHAiTyYSXX34Zn3/+Odzc3FzWfmZmJvr06YOoqChERUXh999/h5ubG9566y1MnToVXl5eLtGxYcMGjBgxAh4eHmjevDkqVqyob5UqVdL/nZiYCG9vb5dokkhcQZs2bfDiiy8iKSkJ48ePd9yJ7bEeRttEeAxGmGy2DrNdtmyZHjM9fvx4l0cfWdev0DZFUYRkpxU9yS6RiGLJkiX6/ffOO+/csR+AHEpyLKInm81mM1u2bMmrV69y8eLF+pDNW2+9JSQkde7cuXkO2fj5+fGXX35xuR6JxJkYJWosJxcuXLC5/8aNG1dgfyANgwMxwmTz//73PwKW7K/aRfDBBx8I0fL777/T3d3dxlNo164dZ86cyXPnzgnRJJE4kwsXLvD11183TI4mDVVVcy2cfOGFF/Kda5SGwUEYYbI5LS0tVx3omTNnCtFy/vx5litXjl5eXnzyySe5aNEi4UnXJBJX0K5dO7Zo0YLnz58XLcWGAQMG5PLcn3766TyNmL2GwXUzlSWIlJQUAMaZbJ4zZw6uXLmi77u5uWHHjh347bffXKrDbDbjp59+wpdffombN29i3bp1ePHFF1G5cmWX6pBIRDBkyBDs378fTZs2xcqVK0XL0Wnfvr3N/qhRo/DCCy8gMTGx6Ce1x3oYbXOmx5CamsrevXsbYrKZtGSZzFlW0NPTk2PGjOG1a9eEaJIYk9BQyxhAixaildydJCQksFSpUvp9OHLkSENkPDh69CgBsGPHjgTABx98MN8hL8ihpKLx7bffEgD79OljiJXNWtpcwFKRafjw4bx48aIwPZLiExVFli5tufvatSv6Obp0IaOjb78H3N5KMkZKEZKTnMM29evXd1l23vwwmUwcMGAAMzIy+MADDxAAZ82aled3pWEoIq1atbJJsCZyZXNERATd3NyoKAqfffZZl6Y8ljiOnJ34uHHF78THjSMDA0kt553mLXh7F91ryMvYiPBCrl27xkaNGnHhwoWGm+zdsGFDrvF8Hx8fLl68WGjCSi0Fztq1awmAAQEBea6ql4ahCGgumfVWtWpVvvvuu0LWCXTp0oV9+/bl8ePHXdq2xLFYd+JRUbZGoSheQ1SU5XyHD5Plylk6cmsjU1SDk9PYWJ/L1V6IVtS+Ro0a/OKLLwyTrTQ7O5uVK1e28eK///57XrhwQXgmY/J2vwGAI0aMyPW5NAxFYPTo0TZGwc3NjZMnTxZyUcbGxvLQoUMub1diS3GfmHN24iNG3O5orT2HwjBunGXT/l2+vOUc2m1RFM15GRtHeCFFxXpYBLBUbJs3b54h0ppMmDCBAPSsuQMGDDCEUdA4efIk3d3dqSgKDx8+bPOZNAyFJDk5maVLl9YvxJCQEO7atcvh7UhKFo4Y8tE6cWuj0Lq1rfdgr9egdeBRUbf389JXWM05jc348bbnEOE1rF+/PpcHHxQUxDlz5gid9D169CgbN27MkydP6qHsRqgiZ83YsWMJgO3bt7cxWtIwFJJFixbZRBskJyc7vA2J8bEeZy/uE3POTtzaMGgU1muw7sA1cg5NFcaY7dy5k9OnL2VAQDYvXszUdWvHF8cLcQRPPvlkLi++W7du/OOPP1wrJAdagshly5YRsNQbyfl0LpK4uDiWL1+eAPjjjz/q70vDUEiaN2/OypUrc926dQ4/t6TkYD3OXtwn5pydeNu2xevECzpH27aF06ZhMplYr95mArPp5eXF0NDQfyPhVAKqzTBqYXTmNZFdFM6ePWtTAc/b29tw9+iLL75IALz//vuZmJgoWo7OggULCIDBwcG6hyUNQyE4dOgQ+/bta7h8/RLXYj3O7ognZkd34s6ibVu1QINVFAOW10R2UcN033jjDWrriQBLfY3ly5cX7j/pRNLS0tiwYUMCYP/+/Q0z32AymfRU9O+99x5JaRgKxfXr1w3zx5SIw/oJ3xHj9vaiqiqjoqL4+++/87PPPhOSYsRsNttU3dO2MmXK8NixY4U6V14T2WTRw3STkpJYo0YN3rp1i6+99hoBS36u+fPnF0qXMzl9+rQ+32AkXdu2baMWUnv58mVpGCT3Jq1b3/mJNCMjg9u2bbN5L+d8QHGfmPNCVVVeunSJGzdu5KxZszh8+HC2bt1ar9MNgAMHDix6A8XEbDbniszTVtL+9NNPdpdDzWsiu7hhuhERESQtv+G0adN0bR988IFhHuq0RJdeXl6Giijs27evfm1Jw3CPY5SbxZqsrCyn11q+Uwe+fft21qlTh++++y5Jy9PoxYsX85zU1To1R7Fu3To2b948V8drvYWFhXHy5MlcuHChkNW/qqryP//5jz42HRISomtr1qwZd+/eXeDxeUVNOSpM15oFCxboqedF1CPJDy1TwX333ceEhATRckhaMsNapfK4ew1D48aNHfm7FYv4+HgOGDDAUBkXExIS2LlzZ4aHhwvToKoqY2Nj9f0jR46wSZMmnDt3rkPbsZ7k1LwFP7/cT6SxsbEcMmSI3sk99dRTbN++PT08PNi9e3eXzQeoqsq//vqLPXv21Du2vLZSpUo53YgWpHHcuHHs1q0bMzMzOX/+fFapUoUAuGPHjgKPzcvAOiJMNy9WrFhBDw8P/ve//y36SRxMWloaGzduzLCwMN68edPl7ed3zbz11lvafMPdaxjKly9f5B/O0QwdOpQA+Oijj4qWQtKSBLB9+/YELHWXRXUuH330Eb/66itmZWXx/fffp4eHBwGwXr16zM7Odlg7d4oiMpvNXLx4McuVK5dnB6woCjt16iTkifPs2bMcPXo0fXx89CGIxYsXc+rUqXz99dddrscaVVW5ZcsWfT8lJcWuCV97I68c4TWQlrT4RvEWNGJjY4Xddz/88EOec1Tp6ek0mUx3t2Fo0KBBsX48R7FmzRr96e7kyZOi5TAzM5PdunWjlspDVPI/7Xfp27cvmzVrpnfCL730EpOSkhzWTl5RRK1bWz6zeA8q/fz252kQPD09uXTpUt66dctheorKzZs3+dFHH7FKlSrcvHmzaDkOxxFhuhL7mD9/Pvv27Zvv53e1YTDCHMONGzdYqVIlFpTJ0JVoGRa1jLCi8itFRETkShMeHBzslGSE+UURmUwmzpo1i1osfn7DNX369Mm30pUIMjIyZAU8SbH4/PPPCYArV67M8/MSZRgAfAMgFsBxe74v2jCoqsp+/fpRW3IuqnM5efIkd+3aRVVV9Ukvf39/7t+/X4ieGzdusFatWjadb0BAgFO8qcJEEZnNZqanpzMhIYHXr1/n5cuXGRkZyePHjzMlJcXh2iQOYNkyZlerSTMUZlevSS5bJlpRiUAzDJUqVcpzXVZJMwwdADQrKYZhxYoVBCyF70U+4Q0aNIjDhw/XFwCVKlUqVximq8jMzNQLheTcgoODefTo0XyPtSfENCeuiCKSCGLZMtLX19a6+/oy7vNlxa5j4UgcOSzqKDTDAICDBg3K9XmJMgwWvahVEgxDVFQUAwMDKTpx1unTp+nm5kZ3d3cClvS/v/76qxAtqqrmWhwVEhLC8ePH888//7zjZHNRxptLyqpiSRGoWTPPP+6t0jUNNTfxwQcfGK5o1rx582zuw5x9gr2GwQMlBEVRRgIYCQDBwcFCNJDEiBEjEB8fjyeeeAKjRo0SogMAPvzwQ6iqqu936dIFjRo1EqLliy++wFdffYUWLVqgZ8+e6NmzJ+rVqwdFUfI9JjoaGDYMuHnTsu/nB6SmAu3bAzt33rnNXbscJF5iPC5fzvPtssm279t7rTgLVVXRv39/7Ny5E15eXuKEFMBLL72EDh06oGzZsoU70B7r4YoNBvYYtInTr7/+moAlTcCVK1dcqsGaM2fO0M3NLdeQTefOnV1eB/rWrVv8+uuvC92uFmaaV4ip5N4mu1rNPD2Gf2DxGBwV6lpcPvvsMwLg2LFjxQqxQtNkvQ0bNkz/HHZ6DG4OMkx3LYmJiejbty927NiBcePGAQDmzZuH6tWrC9P00Ucf2XgLtWrVwi+//IKtW7eiatWqLtVSrlw5vPDCC4VqNzoaWLIE0H7C0FDLa+vWltf27R0sUlKiWNHwI2R5+Nq8lwpfvIWP0Lo1MGnS7fdFXiuBgYEAgLlz5+Lnn38WJyQPPD09AQDvv/8+6tSpg9jY2MKdwB7r4YoNBvUYli9fTgD6Aq1evXoJXVATGRmpzyv4+vrygw8+YFpamjA9RUGbONae+vIqJSm5d2nblhyIZfwHlqikf1CTA7HM5rowgtewbt06m+i7yMhIcWL+5bPPPuPHH3+s57zKuSocJWnyGcAKANEAsgFcBTC8oO+70jA8/fTTNm5ZWFgYp06dyvj4eJdpsOb5558nAD7zzDO8fPmyEA3FwTrMVC56ktiDURfI7dq1y6ZvaNKkifDSo1q/tHHjRgKWVOXW2GsYDDGURHIgySCSniSrk/xatCYAyMjIwMaNG23e27lzJ5o0aVL4yRwHcP78eZw4cQJ//fUXVqxYgRo1arhcQ3GZPh0YOhQICrp9a48bB4wfb3u7SyQau3YBM2bMhL9/aezffyCXaRCFNpSkceTIEX24WRRav/TII4/Az88PR48exeV8JvMLwhCGwaj88ccfSElJ0fdDQkKwd+9e9O7dW4geT09P7NmzB+1L8CD8gQPAp58CinJ7+/RTYP9+0cokRqZ+/fpISUlBWFgYTp48KVoOgNyGISgoCH/88QdWr14tSNFtvL298fjjjwMA1q9fX+jjpWEoAOs/8GOPPYYDBw6gQYMGwvQEBwfD3d1dWPv50aaNpYO3x17t2pX3gIAMP5UUhHbfxcXF4fHHH8c///wjWNFtw9C0aVMAQO3atREZGSnswTEn3bt3BwCsXbu20MdKw5APZrMZv/32GwBg/Pjx2LhxI8qVKydYlTHZs8fyKjv3kg9JrFy5Upv7MwzVq1dHQEAAACAqKgqPPfYYoqOjhWry9vbGyy+/jD///BO+vr7YvXs3IiMjhWqyplu3bgCAbdu2ITU1tVDHSsOQD+Hh4UhKSsJ3332H2bNnw8OjxKwFdAnR0UBYGNC8uWXfz8/yWoJHuSQAFEXBwYMH0bNnT8TFxYmWo6MoCurXr6/vX7hwAU888YRwjZ9//jkCAgLQt29fAMCSJUuE6rEmKCgIDz/8MDIzM/HHH38U6lhpGPJh//792LFjB4YOHSpaiiGZPt0yL3DokGVfm4qRXkPJZ/DgwVi7di2aNm2KPZo7aAByDuMeP34c3bp1s5kHdDVubpYuVOsnli5darPGSDRFHU6ShiEfXn31VbRs2VK0DEMiF6jd3TRs2BCNGjXC5cuX0aFDB8yYMcMQnV1Ow/DNN99g8+bNKFWqlCBFt3n00UdRo0YNXL58GX/++adoOTo9evQAYJmALszfUBqGfDBq7hMjoIWcHjtm2e/QwfK6e7flVXoN9mG0cXxrnnvuOQCAyWTCpEmT8NRTT+GmlthKEPXr18dDDz2EadOmAQDmzJmD0qVL66t886J5c0tghLOf8dzc3DBkyBAAwHfffefcxgpBkyZNUK1aNURHR+Pw4cP2H2jPYgejbaLTbt/LyAVqjiMrK4tjxozh22+/zcOHDxuqROXVq1dz1aSuXr06d+3aJUxTbGwsjx07xvT0dAYFBREAf/nllwKPceU1efbsWT0jgZFScmuZj995552StcBNUnKQC9Qch6enJ94zdNXOAAAgAElEQVR55x0sWbIEzZo1Q0hICMaPH4+dO3fCbDYL1VatWjV06tTJ5r3AwEAsXbpU2IRvxYoV0aBBA3h7e+ONN94AYMkFxHwuOC0wwtvb8upsr+GBBx5AmzZtkJaWhlWrVjm3sUKgrWco1DyDPdbDaJv0GMRR1DoIZrOZqamprhFZCLKzs3n+/HmhGg4fPkwfHx+bp/NKlSpxxIgReVbhchXfffedjaZ+/foZxqtJS0tjlSpVCIBr1qzJ8zsiMvd+9dVXBMCOHTs6vzE7mTx5Mr29vbW/Y8nJlVTYTRoG51CUSmr2MmnSJO7YscPxJy4CV65c4eLFi9mvXz+WKVOG33//vWhJerJGbfPz8xM6bENaKpT5+Phw2rRpeh1vkcWpcjJ79mwCYNOmTXMZrNBQy7WsdRXafosWztUUHx+vd8IXLlxwbmN2kJqaylKlSvGxxx67+w1Ds2bNHPnbFQtVVTl//nwmJCSIlsJLly4xKyuLqqryvffeK3R1KWeNxy5evJgA2KlTJ65atcqxJ7eTpKQkTp06lQ0bNsyVr75Pnz5CNOVk0qRJuiYPDw8eOXJEtCR+8sknNJvNXLZsGQFwwoQJoiXppKamsnLlymzbtm0uzyqv69hVXsMzzzzD++67zxAPQuHh4QTAHj16sFKlSne3YQgICHDkb1csVq9eTQCsW7eucDf7jTfe4Ndff8358+cTsNRazszMvONxUVHUa+n6+TnWa9i2bZueshwA27VrJ+x3Sk5O5sqVKzlo0CAGBATomj7++GMhenJiMpkYFhbGxx9/nOvXrxcthyRt/lYHDhwQqCRvrl27luf1JDIwIjExUXhfoPHpp5/qfUFWVtbdbRiCg4Md+dsVGbPZzMaNGxMA58yZI1SLyWRi1apVGRQURC8vLwLg//73P7uOzZnb3lE30JkzZ/T62NpWp04dbtq0qfgnLyYZGRncuHEjR4wYwUWLFomWoxMXF8evvvpKtAxJEYmOjhYtwYZnn31Wv/f+TcV99xqGJk2aOPK3KzI///wzATAoKEh4sZxNmzbZdMAtW7bkhQsX7vjkkjPsNDraMXMNN2/e5P3336/r8fb25pNPPskvvvjCcAXUJRJHkJyczJEjR4qWYcODDz6o34O9e/e+uw2DyMnn1NRUqqpKs9msj1fPnTtXmB6NZ555JtfYec2aNXnw4MECj7P2FsaNu11NrTheQ2ZmJjt27MiaNWty9OjRXL9+vXDDKZE4m/DwcPr4+DAuLk60FJKWiXDr/uDfyo92GQaZGa6QbNq0CbGxsahQoQKOHTuGqlWrYuTIkUI1JSQk5MoB369fPyxatKjAgkJaaguNTz+1vM6ZUzw9ly5dwvz581GvXj0oilK8k0kkJYQjR44gPT0d3333HcaPHy9aDg5picz+pTBrY+QCt0ISERGBcePGYdK/FcknT54Mb20FjSB+/PFHZGZmAgB8fHywcOFC/PTTT3esMqctVrMeTMq5WK0oPPDAA6hfv740CpJ7iiNHjgAA5s+fb4jcUgcOHIC7u7ue3kerG2EP0jAUkmPHjiEzM1MvFHLkyBFMmTIFWVlZwjRpuVkaNmyIgwcPYsSIEXZ1yrKamqSkcvPmTVy5ckW0DBs0w3D+/Hls2bJFsBrAw8MDhw8fRuPGjQEA8+bNs/tYaRgKSUREhM3+ihUr0LVrV2FJ986cOYO9e/di9OjR2LdvH+rVq2fzeUHV1WQ1NUlJ5eTJk/jss89Ey9AxmUw4pmWVhMVrEM1rr72GRo0aoVKlSgCA2NhYu4+VhqEQpKam4vz58/q+l5cX1qxZg7Zt2wrTtHbtWqxevRrz58+Hj49Prs9ldTXJ3cipU6ewcOFCJCUliZYCwPKAlpGRoe+vX7/eEOVHAaBy5coAgOvXr9t9jDQMheDEiROWUC4A7u7u+Omnn/QEVaIYPXo0evXqlednWhIxzV7IOgmSu4VTp04hKSkJixcvFi0FwO1hJA2S+PLLLwWpsUV6DE5GcxUVRcH333+Pnj17ClYE+Pr65vuZFpTw0kuWV+k1SIoCixqF4EROnToFAPj000+RnZ0tWI3FMFjXpR4zZgx27tyJ9PR0wcqkYXA6mmH48ssvMWjQIMFqCkbzFho2tISkalXWpNcgKSx//fWX8CI9OdEMw5UrV7By5cpCHx8dDQQE5D//VliaN2+OkydP4qGHHgIADBgwAOHh4QUWEXIVcijJyURERGDWrFnC1y3Yg+YtREQAQ4bcrrImvQZJYTl16hRmzJghWoZOSkqKTUTSzJkzC+3VTJ8OJCdb/u2Ie2LAgAEoXbo0qlWrBgC4du0aFEWBh4f4pWLSY3AiJNG3b19MmDBBtJQ7Eh19+99aCGpxF61J7l2uXr2Kzz//vFBPnM7kzJkzNvt///13oeosR0ffXsyp4ShP2towGAVpGJzM6NGjRUuwi+nTLQvV8lu4JpEUhitXriAtLQ2ffPKJaCkAbg8jWTNz5ky7j58+/fa/x42zvDrKkzaiYdCGkqRhcAKKopSYlbxy4VrJxQgTqTm5evUqAGDBggWG6PBOnTqF9u3bIyQkBADwzTff4OGHH7ZrHsTaW2jdGvg3gQEAx3gNRjQM5cuXh6IohSrJKg1DCSevBWxy4VrJZenSpYiKihItwwbNMGRmZmLatGmC1QA9e/bE9u3b9RQPXl5eePfdd1GhQoU7HmvtLezebald7kivwYiGwcPDw67fxhppGEo4cgHb3cWtW7cwZswYw4SIktQNAwAsWrQIly5dEqgIaNGiBdzd3XWP4cKFC3Yfe+DA7X9be9OOwoiGAbg9z2Av0jCUYNq0sbxqI1wyFLXko6oq1qxZg59//lm0FACWzL1paWn6fnZ2Nj788EOBim5z3333ASicYcjPmy5O0khrNMMQFRVlGOMOSMNwT6F5C1oSVek1lHy0rJxjxowp1Jiws8iZqC44OBjLly+3SQ0jCs1jMIIWDX9/fwQEBCArK8tQaz+0CWh7kYahhKJ5CwDwxx+3/y29Bvsx2lg+cDtnfmxsLCZOnChYjWV+oVOnTnjxxRcBAIMGDUJ0dDRKlSolWFnRPAZXYMThJOkx3CNo3sK4cUDTpo4Pu7sX2L17NyZOnAiTySRaio51Hv/vvvsOW7duFajGksN/y5Ytek6wo0ePIiAgANWrVxeqCwBq1KgBd3d3XLt2zSaBnWi030YaBokwtLBUR06g3SuEhYXhiy++QFhYmGHcfmvDoCgKRo4ciZSUFGF6goKC4O7uruf0P3r0qDAtOfH09ERwcDAAGCaTKWBMj0EOJQngypUrLp9oGjcu/0VsO3fuxM2bN/Wqbkbh9OnTOHHihGgZOv7+/ggLC8OePXtw9uxZ0XIAWIaS2vw7Tjhy5Ejs2LHDEE/D999/P3x8fJCWlmaYVNeAZTjJy8sL0dbL/QVTrVo1KIqChIQE0VJ0Cusx3LEotBE3Hx8fB5TKLh6qqnL//v3MyMhgqVKlWKFCBaakpDi1zdatLSagXTuybdu84yratiVHjx7NihUrskGDBgwPD2dWVpZTddnD2bNnWaNGDY4fP160FBv27t3Lmzdvipah8+effzI9PZ1XrlwRLSUXMTExVFVVtAwbEhISaDabRcuwITU1ldnZ2aJl2JCVlcXMzEwCOEg7+ljxGZ6KgBESUymKgu7du2Pw4MHIzMxEzZo1UapUKURGRuKBBx5wSpvWaxYKclD697+BGzcs28qVK/UnUJEoioJTp07Bz89PtBQbWrZsKVqCDR07dgQAQ4zh56SwwxGuoEyZMqIl5KKgVPiiKGyW1xI5lOTt7S1aAgDLBTB79mwAQExMDAIDA502WViYNQs3btz49zvtMd16qadA7r//fsMZBYlEkjfSMBQD62XmSUlJqFatGkaMGOGUtgqzZuHGjRsICgrCTz/9ZIh88BKJpGQhDUMxKF++vM3+jBkznNIRF3bNQmJiIlatWoUqVao4XItEIrn7kYahGFgbhkceeQTdu3d3SjuFWbOgqir++9//GmJeQSKRlExKpGFISUnBpEmThOcisTYMs2bNcnpabnvWLCiKglGjRjlVh0QiubsRH95TBP755x8EBwcLr4+gzTE899xzaNasmdPa0TwE6yps48ffnoi2RvRvIpFISj4l0jB4eHhg+PDhomWgfPny8Pb2xkcffeS0Ntq0uT2UlNNTaNvWac1KJJJ7GEMMJSmKEqYoyhlFUc4pivLmnb5fuXJl+Pj4uEJagZQvXx4TJ05EjRo1nNaGZhQAS/UpWXhHInEMzZtbvG6DLWUxBHf0GBRFWQHgCIAIWFbN3XCkAEVR3AHMB/A4gKsADiiK8hvJk/kdU7FiRUdKKDJ169ZFt27dnHZ+bf7Y3R0wmy0TzwZa+S+RlGgOHbK8ypK3ubHHY/gSQBqAvgC2KoqyWlGU0g7U0ALAOZIXSGYB+AFAz4IOcHd3d2DzRadx48YICAhw2vk1b0FrIibGskkkkuLRvLnlVQtwlF6DLfYYhmAAOwC8RLIJgFUA3nOghmoArKuBXP33PRsURRmpKMpBRVEOait772Y0b6FSJWDoUEvhcsDiNUgkkuKheQvp6ZZX6TXYYo9heBDAhwBOK4ryN4AnAPRRFKWzoiiOGNPJK4wmVxwqyYUkm5NsbpShJGeieQvZ2cCkSZbC5YD0GiSS4qJ5C6Ghtq/O8BpOnz7t+JMWkd1aJ2IH9hiGz0g+RfJ+AJ0ALAPgC+BZABuKpNCWqwCsZ2+rAzBeaS1BxMcDVavahqYaJP2RRFIi0byFgwdtXx3tNZDEK6+8Ypj09x9//LHd37UnXHWLoiiBAE4BOAPgIQArSI4tmrxcHADwgKIotQFcA/AMgEEOOneJhQTatQPCw3N/Jt1eiaT4OHvJz8aNG/HHH3/g1q1bqFq1qnMbuwMRERFYt26d3d+/o2Eg2fTfyKGHANQB8DuATUVWmPv8JkVRXgGwGYA7gG9IGqeai0C0Yl5aVFKVKjIqSSIpDtowUosWwL59zmvHZDLhtddeAwBDGIZPPvmkUN+3ax0DSTPJEyR/IbmOpEOL5JLcQPJBkveRdN5qsRKGjEqSSByLq0JUv/76a5w6dQoAhJeNvXz5MhISEjBy5Ei7jzHEAjdJbmRUkkRSONauXVvg564KUU1KSsLUqVP1/Vu3bjmnITsJDg7Ghg0bCpW2RxoGgyKjkiQS+/nmm2/wyy+/FPgdV4WoTp8+HbGxsfq+aMOgUZgIKWkYDI6MSpJICubgwYMYPXp0gRkRXBWieuXKFcyaNcvmPaMYhjNnztj9XWkYDAqZf5I8GZUkkVi4efMm+vbti8zMTFSqVCnf77kqRHXKlCnIysqyeU8aBolD2bXLNmmeTJ4nMQIkkZqaKloGzGYzBg4ciMuXLwOwL4eaotzeHE1WVhYGDBiAo0ePAgDKlCmDjh07Cp98BoDMzExcvHjR7u9LwyBxOaILLOWF2WxGXFwcog0UDxwVFWWIDlgjMzMTffv2RadOnZCRkSFaDq5cuYIuXboAALy8vAo0DHk9YGmbo/Dy8kK3bt30sfyWLVti69at6NWrl+MaKSLnzp2DqsW/2wPJErd5eXnRbDbTKAwePJjBwcH8+++/RUvRmTFjBkNCQrho0SLRUnS2bNnCevXqcdiwYaKlkCRTU1NpMpnYoUMHtmjRgg0aNOD+/ftFy6Kqqly2bBlLly7NlStXipZjw9y5cxkbGytaho6qqtyzZw/Dw8N5/PjxXJ9HRZFdupDR0a7VdObMGR45csR1jd4Bs9nMixcvEpYM2XfsY0tkoZ6srCzEx8fblNYUSWxsLC5fvowrV66gSZMmouUAADIyMnDhwgWcPXtWtBQdX19fnDx5Eh4exrjsNm3ahDFjxuDWrVvIzs4GALi5iXeiFUWBoigwmUz4+eef0a9fP9GSdF599VXREmxQFAWtWrXK9/MmTYDYWNemrFcUBQ8++KBrGrMTNzc31KxZ0/7vO1GLU7EOBxNNtWqWZLDXrl0TrOQ2ISEhAIDz588LVnKbRo0aAQBOnTqFrKwsZGZmwmRy6FrJQtGnTx+0bdtWNwqAMQwDAAwaNAjh4eE4ceKEIYZtSiLR0RajAMgw78JijLugCBjJMFSvXh2AMQ3DhQsXBCuxkJqaitKlSyMkJATZ2dnYsGEDOnbsKFoWPv/8c5QtW1bfN0qtDwBo2rQptm3bhri4ONFSSiSa8+7nZ3mVi0Ptp8QahuvXr4uWoKN5DFevXhWs5Db33XcfAIvHQANM9s6aNQutWrXSM0327t0bV69eFT6sVKVKFZu4c6N4DBoVKlQQnmenJGLtLaSkWF6l12A/xroLCoGRPAYjDiVVqFAB/v7+SE5ONkQc9dixY3H27Fmb30jztEQzbNgwdO7cGYCxPAZJ0dG8BS2VjEwpUzikYXAARjQMiqLYeA2iKVOmjJ5tUsMohkFRFCxcuBC+vr6G8xgkRUPrHvbssaxZ0FLMSI/BPkrsXWDEoSQjGQbAdp4hOztbeIz+q6++igoVKuj7NWrUKODbriUkJAQffPCBNAwSCUqwYTCSx1ChQgV4enoiMTHREAuS9u7dix07dqBWrVoALGGZrVu3RmRkpFBd/v7+eOONN/R9o3gMGmPHjpXj+XcJrljQdjdTYg2DkTwGNzc3vUMxgtdQvXp1PPbYY/jss88AAN9//z0OHTqEunXrClYGjB49GpUrVwZgPMPg7u4OPy2ERVIiaN7cMlTkrBTa9yol1jAYyWMAjDWcVL16dQwcOBBms1l/r3z58nblknE2vr6+mDx5MgDjGQZJycNVhXcchdlsxvr160XLuCPSMDgIZxqGNm0sT0Xt29t/zMSJE232jeAtaIwaNQrVqlWThkFSLFxVeMdRkMTLL7+M48ePi5ZyR0qsYUhOTka6VnHDAFivZYiPj0dERITDzq1FVOzaZX9URePGjfH444/r+w899JDD9BQXb29vTJ06VY7nS4qFqwrvOAKSeO2117Bo0SI0bNhQtJw7UiINg6enJwBjeA3bt2/HmDFjkJCQAABYs2YN6tat67A5EK3EpxZeX5g4bOvwUCN5DAAwfPhw/e8okRQWVxXecRTvv/8+Zs+eDeB2ahgjoxhhVWxh8fX1ZXp6Ovbt24cWLVoI1ZKdnY1atWohKirK5v3r168XWDjEXrS88YGBlmpugGVVZ5Uqdz6WJBo3boxjx45hw4YN6Nq1a7H1SCRGQLsvrLuvvN5TVVV4CPLs2bP1od2yZcsiLi4OijMKQtiBoiiHSDa/0/ekx1BMPD098dJLL9m8V7VqVYcYBc1bqFQJGDq08Ks3FUXRvQajeQwSiSPIr/AOSXz33XcIDw8XI+xfFi5caDPf16hRI2FGoTCUSMOg5dcxgmEAgBEjRtgMizR10Lp7bW4hOxuYNAnYvduyX5icL8888wzuv/9+BAcHO0STRGIEClqnkJSUhMGDB+Ott95Ca+1pSgDLly/P9dBYEuYXgBJqGLRO+Pr16zh48CB2Ca51WaVKFfTt21ffd3RNhvh4oGpV26ei6dPtO9bLywvz588X7k5LJK5g//79aNq0KZYvX47nnntOWJLG8+fPY+nSpahfv77N+9IwOBFtdfGXX36JFi1awMfHR7AiYMyYMfq/HWUYSKBt27w/K0wExhNPPOEQPRKJqzhyBKhQAbA3uE9VVUyfPh1t27bVU80PHTrUiQoL5r777sPGjRv1iWatqFhJmHgGSujks6IoumgvLy8kJyfDy8tLpCSQRJMmTRAREYHIyEjcf//9QvVIJK4kKioKZcqUcdjKcV9fSxiqjw+Qllbwd2NiYjB06FBs2bJFf69FixbYt2+fQ7QUlVOnTqF+/fpwd3fH8ePH8eyzz2L79u0oXbq0ME139eSzNU2aNBFuFADLRO8rr7yiF6ORSO5mzGYz9uzZgylTpqBp06Z477334Ovr65BzHzlye21CenrBXsPmzZvRuHFjG6MAAM8//7xDtBSH999/HyQxbNgw1KlTB+vWrRNqFFRVtf/L9hSGNtr2r8dAABwzZkyxC2U7ipSUFHbv3l20DInEKcTFxXHFihUcPHgwK1SooN+DnTp1YlZWlsPa8fGxTCMHBFhefXzy/+7p06e5dOlS+vr66nq8vLx469Yth+kpCsePH6eiKPT09OTFixeFatH4/fffCeAg7ehjS6THEBgYqP/74YcfFqjEFj8/P8yYMUO0DEkR+fnnn0VL0CGJKVOmYMWKFUhMTBQtB5mZmXjrrbcwaNAgLFu2DDdv3gQA1KlTB6tWrXLYYkVrb0H7bxfkNdSpUwfHjx9HWlqa/jTes2dPlCtXziF6isp7770Hkhg+fDhq1qwpVIvGt99+a/+X7bEeRtsefPBB/engxIkTjjOpxURVVdESbFBVlZmZmaJl2KCqKmNjY0XLsEFVVR47dox+fn787bffRMshSWZlZbF3794EQE9PT3bt2pULFy7k9evXhWm6cuUKK1WqpN975cqVY2RkpEPb0LyFRx6x7D/ySMFew759+wiAbm5u3L59O9u2bcv169c7VFNhOX36tO65XL58WagWjcTERHp7e9vtMQjv5IuyeXt7MyQkhP7+/jSZTI78/YrE0qVL2bhxY27YsEG0FJ3Dhw+zffv2HDdunGgpOsnJyRw0aBBr1arF+Ph4xsTEcNu2baJl8dtvv9U7u9KlS/PkyZOiJTExMVHXZL0FBwdzyZIlQh5CVFVljx49WL16dXp6enLHjh0Ob6OgFQr5afr00085ffp0khZDkZ2d7XBdhUFVVa5du5azZs0SqsMaVVUZHh5+dxsGABw4cCAf0R4rBPP+++8TAPv37y9ais6hQ4cIgN7e3oyOjhYthySZkZHBZs2aEQD79u3LCRMmcODAgaJlce7cuTad7wMPPMD4+HihmlRV5QsvvEBPT0926tSJM2bM4LFjx4R7paqqcuzYsVyyZIlTzl9YwyApHHe9Yejduzf/+9//OvI3KzIXL14kAJYqVYpxcXGi5ej06NGDADhhwgTRUnQiIyNZunRpAqCiKPTx8WFSUpIwPeHh4XzggQdyPZl37dpVqDdqNpu5adMmJicnC9OQH1evXhUtQVJE7nrDULZsWcM8CZPko48+SgBcsGCBaCk6Bw8eJAD6+PgwJiZGtBz+/fffnDp1Kq3niADwu+++E6pLVVVGRETwvffeY5MmTXRdb775plBddxNRUWSXLqSBbtl7EnsNQ4mMSipVqhQSEhJw5swZ0VJ0tFWWS5YscXnbWiGfli2BsLDbeZRCQ0Px5JNPIj09HTNnzgQAnD592uX6NOrUqYOYmBicPXvW5v1ly5YJUmRBURQ0bNgQU6dOxd9//40LFy5g1qxZCA8Px6pVq4Rquxto08aS0mXzZvtTuUgEY4/1MNqmRUZMnDjRkca0WCQnJ9PPz48AePr0aZe2bT0OGxhIjh9/+7P9+/cTAH19fbl3717Wrl1b+Dj18uXL6e/vrz+ZK4rCa9euCdWUH4mJiaIllHisr89y5aTXIBLczR5D2bJlAQDr1q0TrOQ2/v7+6NevHwDXeg1aam4tXVTNmsCSJbe9hocffhhdu3ZFWloaOnTogH/++QfR0dEu05cXAwcOxKFDh9C4cWMAloeT5cuXC9WUHwEBAaIllGhyFpry8pJeQ15Y+mzjUCINg7+/PwICAnDmzBlERkaKlqOjLcNfunQpzGazS9rUUnOPGmV5PXIEGDLEcvOFh4cjODhYzz6blZUFADhx4oRLtBXEgw8+iL179+Lll18GIH44SeIctOvzyhXLa0yM7YOLBNi0aZPwDNE5KZGGQVEUhIWFATCW19ChQwfUrFkTV69exbZt25zenvY0Fhpqudm08oa7d1v277uvLT755BOkpKTYHGeUYuTe3t744osv8OOPP+LChQs4duyYaEkSB2JdaCoo6HahKek1WCCJGTNmoH///mje/I557VxKiTQMANCjRw8AxjIMbm5uNpPQ6enp+Oqrr5zWnvY01r69pcLbwYOW/f37b3sNgwYNwvz5822OM4ph0Ojfvz8OHz6MkydPipYicSDa9RkbawmO0PZjYgqXNv5uJD09HYMHD8akSZPw+OOPG6J0gA32TEQYbQsNDeXNmzfp5uZGDw8PJiQkOGxypricO3dODxHt2rUru3Tp4rS2Cq5jRbZte/u706ZN0yd7W7Zs6TRNEomGXKyWN5cvX2ZoaKh+Py5dutRlbeNunnwGLIUv2rRpA5PJhM2bN4uWA5J48803MXnyZPj7+yM9PR0bN25EfHy8E9sseLMetnzzzTfx+uuvA7DMMRQqBa/knic62jYU2h4KujZFYTKZkHanAg9OZNeuXWjevDkOHToEwFKm+MknnxSmJz9KrGEAgO7duwMA1q5dK1iJZd7jP//5D/7880+bMf2EhASBqm6jKAr+7//+DyNGjEBKSgouX74sWpKkhHC3rEPYtm0b+vTp47BMsIVl0aJF6NSpk02t+kcffdQmW7RRKNGGQZtn2LBhA8xmM0jCZDIJ01OtWjX873//g2JVnNmZHkNhURQFCxYswIABAww3zyAxLtrcAFAyI4ouXryIfv36oXPnzujRo4cQw3DgwAH8+uuveolPjd69e7tci13YM95ktC00NJSkJZVB7dq1CYA7duzgqFGjDFEUY+rUqfr4oYeHh/AFZTnJzMzkwYMHRcuQlABat7YM/ri7W16rVLFdQGlkUlNT+fbbb2vpphkcHCw0DX1qamqudDCuXtiJkpArCcDTAE4AUAE0t/e40NBQHjp0iH/88QcHDx5MAKxYsSIBGMIwmEwmdurUSf/jp6SkiJYkkRQJbVYgKur2v42+ellVVf7www+sUaOGTSf85ZdfCtU1btw4AuBDDz3EKVOmsFWrVi7XUFIMQ10AdQD8WVjDEB0dzcDAwFxZMY1gGEgyJiaGVapUIQBeubkj7t8AAB1PSURBVHJFtJxcaE+C7dqJViIxKto1UqmS7b49XkNiYiK3bNnicm/577//ZocOHXL1CzVq1BDqLWzfvp0A6O7uzn379jE1NZXLly93uQ57DYPQOQaSp0gWKRNelSpVMHfu3FzvW4/vi6Ry5cr44Ycf4ObmZqh5Bg1t3HjXrsJHm0juDQq7DuHKlSuYP38+unTpgipVqsDNzc3l92PVqlUxfPhwVK5c2eb9yZMnw8vLy6VaNJKTkzFs2DBdR4sWLeDr64uBAwcK0WMX9lgPZ2+ww2MAMBLAQQAHg4ODSVpcxm7dutk8GVy6dMmRBrbYTJs2zSmVroqD9uTn53d7eKCkjBtLXMed1iGoqsojR47wvffe0wswadu8efOE6Z49e7aNlmrVqjEjI0OYnhEjRhAAGzduLLzULowylATgdwDH89h6Wn3njobBetMmn0lLHdqAgADDGgaz2WyouhHk7Zu7JI0bS4qGs+ogfPPNN6xZs2auIRsAHDlypLCAi6+//lrXMX/+fAYEBAg1Uhs2bCBgqdt99OhRYTo0DGMY7BJRDMNAkgsXLtQvBqMU3zYqmrfQujU5bpxl/LikRZvcS2RnZ9NsNhfpWO1v7QyP0GQy8f/+7/9yGYUOHToIeypetWoV3dzcCICzZ88mSb7zzjtMT08XoufWrVsMCgoiAE6bNk2IhpzcU4ZBVVV27txZGgY7sPYWAgOl15AT0bWec3LkyBEGBATQ09OT/v7+LF++PKtWrcratWvzoYceYuPGjdmhQwdu27Yt17HWQz+O/tuuWbOGlStXtjEKtWrVYmxsrOMaKQRbtmyhl5cXAfDtt9/W3y+qUXUEzz77LAGwVatWzM7OFqZDQ1XVkmEYAPQGcBVAJoDrADbbc1xOw0CSFy5coJ+fnyEjgIxEQePG48ZJr+HFF1/kc889x7///lu0FJJkRkaGzbqYnFvnzp159uzZXMc5a/3BrVu39BBxAGzbti2rVq1KPz8/YUMlu3fvpq+vLwHwP//5jyHWDa1atYqAJWfamTNnRMshSf70008lwzAUdcvLMJDkvHnzhBmG7OxsQ1yQ1mRmZua7hqJt27yNg3XiPWeQmprKEydO2LyXc9/VxMbGcs6cOVyzZg1nzZqld3qdOnXi+vXrhTx1njt3jl27dtU7vJxbpUqVuGzZsnyvOWfMI504cUIPwfb29uasWbNoMpkYFhbG1atXF/3ExeDcuXMsW7YsAXDIkCFCPQSNGzdusEKFCgTAuXPnipZDkszKyuIDDzxwdxuG/Kyw2WwWEn1w+fJltm7dWugkV05MJhOffvpptmrVirdu3RItR+eTTz6hm5sbhw4dyosXL9JkMrFChQpCJ+b++OOPfJ/IAbBu3bpcuHAh09LSXKYpPj5eHy+vV68ea9WqpesZNWoU4+Li8j22OOsPCiIzM5ONGjVi69atbcrXnjx5sugnLSbZ2dkcNmwYe/bsaYjhGtJy782cOZNdu3Y1hKEiLX3j8uXL727DAIDdu3d35O9WLH788UcCoJeXFw8cOCBaDkny6tWr+srPBg0aMCoqyuFtaB1Oixb2R768+eab9PDw0H+v0aNHEwDLlSsnbPgmIiKCL730Ert06ZJr3Nx6q1ixIt955x1ev37daVqso4h+++03Xr16lSTZpk0bNmzYkLt3777jOQoaLiyuRxgVFUWTyVS8kzgYs9ksPAw0L4w2gkDy7jYM2pPUxo0bHfmbFYuXXnqJAFi7dm3DTGBevnyZderUIQCGhITw/PnzJMmUlBSH1LCw7nACA+1/Go2MjOTAgQNzdbyBgYE8dOhQsXUVlYyMDDZs2NBGU82aNRkWFsYJEyZw8eLF3L17t9Pqf+QXRaSqKufPn8+srCy7zlOQYZDc29zVhqFatWoELDlH7L1ZnE16ejqbNGlCAOzTp49hnhZiY2P1xUdBQUE8duwY16xZw4kTJxbrvFon5uNjeW3SpPBj2NYx59pWtmxZ7t+/v1jaisqWLVv4xhtvcMmSJTxw4ACTk5Nd2r4zo4gkJQtVVZ0SZntXG4ZmzZoxJCSEAPjpp5868ncrFmfPnmXp0qUNNelEWvLWdOzYUX8q79ixIz08PHjq1Kkin9M6kqkoUU3r1q2jj49PnkM2ZcqU4d69e4usrSRSkrOYShzL1atXOWjQIGkYCruFhoZy9erVeiciKnY6L7T5Bk9PT2FPvnmRlpbGHj162HTATzzxRJE8G60TCw21DCGFhlKfayjMk25qair37NnDzz//nMOGDWOjRo3o7u5OAAwICLBrPF0kjlxV7IwoIknJ44cffmBgYCDHO+mp4K43DNaL2l566SVH/nbFRptQrVWrlj7foE0iisBsNnP9+vXs1atXrqfzX3/9tdDns/YQxo3L/V5Rr2mLwVFZt24c69W7xJEjpxounYiGI1cVOyuKSFJyuHXrls28W3G8+YK46w0DSR47doxubm50c3PjkSNHHPbjFZf09HQ2bdqUANi7d29ev36drVq1EjbvoKoqt23bxkceeSSXYQgJCSm0y1rQ5GZxIl+KOpldEEWJnLIHR84HODOKSGJ8Nm/ezKpVq+r35COPPOK0tu4Jw0CSY8aM0X9Mo0z4kpaFN1pyv3r16hGAIVbT7tixg4899piNcfjoo49Ey3LIZHZeONPYOGo+QEYRieX06dNC+o7U1FS9/7LeVqxY4bQ27xnDcPPmTb1gz6pVqxzy4zmC1NRUvvXWWzZ/cGeNGxaF8PBwhoWFEQB9fX2FpxIp7mR2Xjjb2Mj5gJLN8ePH2bdvX06dOtXlbcfHx+dZUKhChQpOXaR7zxgG0pIKQxvT11anivQe4uPj+eijj+b6o1eqVMkw4bUa+/btY/fu3Tlw4EBhGhw1mZ0TZxobOR9Qcjl79iyfffZZKorCKlWquDwsWUNVVU6ePNmmj3j99ded2uY9ZRiys7NZv359AuCHH37I5ORk4Wlus7OzOXXqVCqKYvOHX7dunVBd+XHo0CEmJSUJadsZk9nONjZyPqDkcfHiRQ4fPlyPfAPAr7/+Wpie7du361q0OcnIyEintnlPGQaS3Lp1qz4sMmDAAD700EPF+gEdxbZt2/Sc7ADYv39/0ZIMhzMms51hbO6kVWJMrl27xjFjxtDT09PmIa1Ro0bC0ntcunSJFStWJABOnDiR58+fZ1hYmNPbvacMQ1xcHCMjI/nwww/b/OGNsr4hNjaWXbt2JQCWKlWqwARoEsfgDGMjKTqZmZncvHkzN2zY4NJ209PT+eqrr+oZWK23rVu3ulSLRlpaGkNDQwlY0qZryf+uXbvm9LbvKcOwe/fuPP/wolIB54XZbObMmTPp4eHBr776SrQcicTpJCcnc+XKlRw0aBDLlCnDevXqMTEx0eU6zGYzR40aZdM3iErCqaoqhwwZQi0P140bN1za/j1lGEhLpatKlSrZ/PEnTJhQrB/RGezbt4/PPfecaBkSiVO4fv06Fy9ezO7du7NUqVL6vRgYGMhz5865XI/JZOILL7xAwJLNNzg4mO7u7k5bQHYn5s6dS8BSwEdE+Po9ZxhI8syZM3qqaQBs0aJFkX9AZ5KYmGiYPO0SiSMwmUwcO3asXkPCenNzc+OWLVtcrik7O5uDBg0iYCkstGnTJs6YMYOvvPKKy7WQtpPNy5cvF6LhnjQMpGVS599KRfTw8Mi3gplEInEsZrOZI0eOzGUYZs+e7XItmZmZ7NOnDwHQz8+P27dvJ2mJTHL18A2Ze7JZFPYaBg/cZQQHB2Pnzp144oknEBERgb1796Jz586iZUkkDiMuLg4xMTGIjY3FjRs39M1638vLC5999hnq1KnjEk1paWmYPHkyFi5caPP+kCFDMG7cOJdo0MjIyEC/fv2wfv16BAQEYOPGjWjTpg0AoGbNmi7VAgDp6eno06cPbty4gc6dO+OTTz5xuYZCY4/1MNpWkMegERcXx1atWvHdd98tlEWVSIzOjh07WKZMmVxP5trWoUMHlyYf3L17t+6lu7u7880339SHcp2ROrogUlJS9JQv5cqV48GDB13afk5ETzbnBPfqUJI1ycnJ/Pjjj+3+0SSSnBiljrA1CQkJfOWVV/I0CuPHj3fZ6vqMjAy+8cYb+rxC3bp19VTzDz/8sEvCL61JSkpi+/btCVjKsIqsI64herI5J9Iw/Iuc5JUUh48//pgNGjTg4MGDOXPmTP7+++9CnvpUVeWuXbs4dOjQPAsc+fr6OjX5Wk4OHTrEBg0aEAAVReFrr71m4x24Ol16fHw8W7ZsSQCsWrWqsKgja4ww2ZwTaRgkJQ6z2WyoDLkmk4kXL160SYmsbdWqVeOTTz7J//73v1y5cqXT6nzfuHGDs2bNYt26dW3a79ixI3v/f3v3HhTFtecB/HsURUHQi4pagmV8AderUWMSLEtJ5Kps1leANYmPMmJAo5HsusaNoYwalXixssnqhsRHNvFVSVQ2rIToxavEGMvVxFcIidGLIohvFoJBYBjmu38M08UAKmFmumfk96nqkhl6pn91ZPo3ffqc33n2WQJg//79mZOT45Lj12cymbhy5Up6eXkRAPv27csjR47ocux7uXXrllZSolevXoYMi63PXW4211VQUCCJQW9696U2RXFxsdvFVVRUxOPHjzc6WsxsNnP8+PHcu3evrgni4sWLXLduHV999VXGxsYyPDycwcHBdjV1Gttat27NmJgYZmdnOz3e8+fP87nnnmPbtm214wUGBnLJkiX85ZdfSJLLly/npEmTWFpa6tRj38vFixe1GbsAuGDBAsNH/d24cUOrk9a3b1/m5+cbGg9575nNRrJYLLbqCw9vYvDx8dGGn7kDs9nMMWPG8KWXXtKqu7qDefPmsVu3bkxOTnbZN9rfa/369Vr3Q79+/RgdHc0VK1YwLS2NFy5c4IwZMwiAw4cPZ2Zmpi4JIisr654n/4CAAHbp0sXuucDAQCYlJbGgoMBlMeXn51MpRaUUo6KimJaWxqqqKrt9zp49q2tXaUlJCXv27Mng4GDDyknUV15ezoiICIaGhup+T+NeKisrGR8f7/SbzVeuXGn258FsNnP16tUPd2JA7djko0ePNquRnO3EiRPaN7tBgwa5Rf9mTU2N1ucKgH5+fly8eHGDJUb1vkG3adMmDhw48IHfxm3bk08+yf3797s0QVy+fJkLFy7k2rVruWPHDmZnZ/PChQssLy8nSW1J1PDwcO7YscOl9fLr2rp1q1t8A67rzJkzul2hNFVZWRlv3LhhdBgN3L592ynvU1lZyVWrVjExMdHh93qoE0NAQAAB64Lx3333ncON5QynTp1i3759tQk1O3bsMDokWiwW7tu3z25JzzZt2jAuLk5LXhEREVy/fr3usVVWVvL06dPctm0bFy9ezHHjxrF79+73TBAjRozggQMHdL8HUVZWxoSEBMOHPYqWKTs7m6GhoVRKaV2IjnioE8OwYcMYExOj1WBxl/Wef/31V06dOlU7mblT19Lx48cZHR1ttz7E5MmTtZuar732muEjuE6cONGgNLJt8/f358CBA5mcnNygS0WIh83Nmze1+Q8AGB0d7ZT3fagTw2OPPcaqqipOmDBBG7Ocm5vrlIZzlMViYWpq6j27loxOFOfOnWN8fLzdTU3bNm3aNMNOuiaTiXFxcZw5cyaTkpL44Ycf8quvvmJOTo7bdV0I4So1NTXcvHmztlyxbTt+/LhT3v+hTwykdSTQ2LFjCYA9evRw+epHv8epU6fYr1+/Bl1LK1as4LFjxwyOzjp0rW7BQdsWGRkpJ2LRot2+fduQwS05OTkcOXJkg8/kU0895bRjNDUxtIIHa9euHdLT0xEREYFr165hzJgxyM/PNzosAMDQoUNx8uRJTJ06FeXl5ZgxYwbi4+Px7bff4oUXXkBpaalhsd25cwezZ89GYWFhg98dPHgQo0ePRlFRkQGRCWGcq1evYvHixejfvz+6d++u+/EtFgsmTZoEPz8/u+eXLFmieyyGf/tvzlZ/HkNZWRlHjBhBAOzTpw8LCwsdzqzOUr9rybbFxMQYOpmroqKCubm5TE9P57p165iQkMCnn36aQUFBBMDg4GC36Z4TwpXy8vI4d+5c7TP6+uuvGxZLSkqK3Xli8ODBTj1PoCV0JdVVUlLCYcOGEQAHDBigTckvKSlxi9m0W7ZsaXCJmJqaanRYjSovL2dOTg6//vprt2g7IVwhJyeH06dPt1tDIjg42LBJezt37rQ7N7Rv397poxtbXGIgrX2DgwYNIgAOHDiQt27d4tq1a5mRkdHshnSG9evXN7qAibe3t9uMqBKipcjNzeXkyZMbHf2WlpZmSEwHDx7URuSlpKSQtN6PdHZBxBaZGEjy+vXrDA0NJQAOHTqUYWFhHDJkiOFDMQsLC7l27doGNW9CQkJ4584dQ2MTQm8Wi4UnTpzgG2+8ofuXo+rqamZkZLB37952n8WoqChDrpDPnj1Lf39/AuDChQu1GFwRS4tNDKS1Ho9tsplt27179+9uRFewWCz8/vvvmZiYqJVamDVrltFhCeFy1dXVzM7O5sKFC7URcUlJSbrHYbFY+Pbbb9udH9q2bcvz58/rHktBQQF79uypzVUwm80uPV6LTQxFRUV88803taGiti0sLMzljf57mUwm7t27l7Gxsfz888+NDkcIp6uoqGBGRgbj4uLYuXNnu8/khAkTdL+Sr6mpYWJiohbD0qVLCYDLli3TNQ7Sev/TVgBw5MiRusxxarGJoaamhtu2bdOycN1t27ZtzWpMPbhbFVQhHFVaWqqtplZ/CwkJ0X2+TFVVFZ9//nmtNIxtjYSJEyfqPvG0srKSERERBMDQ0FAWFxfrctwWmxhsysvLuWrVKvr6+mp/jH369NFtdSsh3E1NTY1uBQBt7t69a1fMEbXlTc6dO6drHGVlZVqS8vX1ZVZWlvY7ve/x1dTUaKVzunfvzkuXLul27BafGGyuXr3KOXPmaDWCNm3a1OTXCuFpzGYzL168yKysLKampnLRokWcOHEiw8LCGBsbq+tQzJMnT2pdJbZNKcXMzEzdYiCtazbY1kfo2rWr4YU3Fy1aRADs0KGD7st9SmKo58yZM4yMjGRQUJB024iHzoYNGxgSEnLPIoQJCQm6LRhTf5W3fv36aWsfJycn6xKDTV5enna/8ZFHHjHkBnNd7777LgHQy8vL7qpFL5IYGmGxWPjll18a8h8ihCuZzWbOnj270aSwZs0a3YZh/vTTTxw+fLh27FdeeYW//fYbb9++zalTp+o6HPT06dPs1q0bAfDRRx/VfR3q+nbt2qX1XGzdutWQGCQxCNFC/PDDD5w5c6b2Dd22eXl56XYCqqmp4TvvvENvb28CYFBQkN0qbxaLRVv4SA+HDh2in5+fVoTO6MKQhw8f1kpurFmzxrA4mpoYvCCEaLKKigpER0ejoKAA/v7+6Nixo/Zv3Z+7deuGmJgYtGnTxiVxkMThw4eRkpKCffv2AQBatWqF0NBQnDt3Dn5+fkhLS8PYsWNdcvy6Ll26hBdffBHffPMNAGDWrFl477330KlTJ20fpRR8fHxcHgsA7NmzB9OnT4fJZEJsbCy2b9+Odu3a6XLsxuTm5mLy5MkwmUyYN28eli5dalgsTdaU7OFum1wxCCOdPXu20fUsbFtMTIzLRpqYzWbu3r2bjz/+uHa89u3bc8GCBczLy+PmzZvZo0cPXW5qWiwWbtq0iR06dCBgXQv7iy++cPlx7+f999/Xumvmz59v+NylK1euaJP5Jk2aZHg8kK4k4eksFguPHj1q+BDj69evc/fu3UxMTOTQoUMbrXsFWBdlOnTokEtiuHv3Lj/44AO7Gf2dO3fm8uXLefPmTW2/rKwsXr582SUx1FVUVMRnnnlGiyU6OtouDr1ZLBYuW7ZMi+ett94yvABkaWkpBw8eTMC6XrieXWn34hGJAcA6AOcA/ADgCwCdmvI6SQwtx9y5c+nn58cpU6Zw48aNzM/Pd+nxLBYL8/Ly+Mknn3DOnDkcMGBAgwTQunVruwmUAQEBTE1Ndcmon+LiYq5atYpdu3bVjte7d29u2LDBsCqgn376qbbCWMeOHbl9+3ZDT8LV1dWMj48nALZq1YobN240LBabqqoqRkZGEgD79+/PW7duGR0STSaTx9xjOABgKUmzUuovAJYC+DeDY2oWk8mEtm3bGh2GnZKSEvj6+rpVXNeuXUN+fj7MZjPMZjOqq6u1nxt7HBgYiDt37iA9PR3p6ekAgLCwMERFRSEqKgqjR492uP+4sLAQGRkZOHLkCI4cOdJgkaL27dsjPDwco0aNwqhRoxAeHo6UlBQkJyfj5ZdfxsqVKxEQEOBQDPVdvXoVKSkp2LJlC8rLywFYF39asmQJYmNj4eWl/0e3uLgY8+fPx65duwAA48aNw0cffYSgoCDdY7GpqKjAtGnTkJ6eDm9vb3z22WeYMmWKYfEA1gV34uLicPDgQQQGBmL//v3o0qWLoTEBQFJSUtN3bkr20GMD8CyAnU3Z19fXl5s3bzb8UrGu8ePHc/z48czMzDS8kqvNvHnz6O3tzSeeeILz58/nxx9/zB9//PGe/ZynT5/m/v37Xdqu9RcicXTr1asX09LSHIp5z549du/ZqVMnTpw4kSkpKTx27Fij62CvXr2aOTk5jjTFfZ06dUqLZ+zYsTxw4IDhf++XL1+mv78/fXx8mJqaang8pLXUfkhICDt27MjDhw8bHQ5Ja9WFyMhI+vj4GD6ZzsZisTAuLq7JVwyK1pOy4ZRSGQA+J7njHr9PAJBQ+/BPAH7UK7YWoAuA20YH8ZCQtnQuaU/nCiHp96CdXJ4YlFJ/A9DYAqpJJP+ndp8kAMMBRLMJASmlvic53LmRtlzSns4jbelc0p7O1dT2dHlHJck/3+/3SqlZACYAiGxKUhBCCOFaht58VkpFwXqzOYLkXSNjEUIIYdXK4OP/JwA/AAeUUmeUUh828XWbXBhTSyTt6TzSls4l7elcTWpPt7n5LIQQwj0YfcUghBDCzUhiEEIIYcdjE4NSap1S6pxS6gel1BdKqU4PfpVojFLqn5RSuUopi1JKhgY2k1IqSin1i1Lq70qp142Ox5Mppf5LKXVTKSXzlRyklApWSmUrpX6u/Zy/+qDXeGxigLWcxp9IDgZwHtZyGqJ5fgQQDeAbowPxVEqp1gDeB/APAP4I4AWl1B+NjcqjfQIgyuggHhJmAP9KMgxAOIAFD/rb9NjEQDKLpLn24f8CMK5gi4cj+TPJX4yOw8M9AeDvJC+SNAH4DMBkg2PyWCS/AfB/RsfxMCB5jeSp2p/vAPgZQM/7vcZjE0M9cQD2GR2EaNF6Aiis8/gKHvDhE0JvSqneAIYCOH6//Yyurnpfv6OchhnATj1j8zRNaUvhENXIczIWXLgNpVQHAGkA/plk2f32devEIOU0nOdBbSkcdgVAcJ3HQQCuGhSLEHaUUm1gTQo7Sf73g/b32K6kOuU0Jkk5DeEGvgPQXyn1iFKqLYDnAew1OCYhoJRSAD4C8DPJf2/Kazw2MaD55TREPUqpZ5VSVwCMAJCplPqr0TF5mtqBEK8A+CusN/d2kcw1NirPpZT6FMAxACFKqStKqTlGx+TBRgKYCWBM7bnyjFLqmfu9QEpiCCGEsOPJVwxCCCFcQBKDEEIIO5IYhBBC2JHEIIQQwo4kBiGEEHYkMQghhLAjiUEIIYQdSQxCOIFSqrVS6j9q693nKKX6GB2TEM0liUEI51gK4CLJgQDWA5hvcDxCNJtbF9ETwhMopXwBPEvysdqnLgH4RwNDEsIhkhiEcNyfAQQrpc7UPg4A8DcD4xHCIdKVJITjhgB4k+QQkkMAZAE484DXCOG2JDEI4bg/ALgLAEopLwDjAGQYGpEQDpDEIITjzsO6yDoA/AuATJKXDIxHCIdI2W0hHKSU+gOsa453gXUNgQSSFcZGJUTzSWIQQghhR7qShBBC2JHEIIQQwo4kBiGEEHYkMQghhLAjiUEIIYQdSQxCCCHsSGIQQghh5/8BcXM6px7ZMQwAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:09<00:00, 2.47it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXdYFNfXx79DERGRooAF7Bq7KHaNJTH2xG6MJho1tsQC1iTGrm/URMQWNZaoUTHRHxoVu7HHhoiK2AuEXqT33TnvH5MdWeoiy9wF7+d55oGdnZ37dWTvufece88RiAgcDofD4WgwYi2Aw+FwOIYFNwwcDofD0YIbBg6Hw+FowQ0Dh8PhcLTghoHD4XA4WnDDwOFwOBwtmBsGQRCcBEE4LwjCQ0EQHgiCMJ21Jg6Hw3mXEVjvYxAEoQqAKkTkKwiCJYDbAAYQUQBTYRwOh/OOwnzGQERhROT73++JAB4CqMZWFYfD4by7mLAWkBVBEGoCaAHgRi7vTQAwAQDMzc1dGjVqpKi2vAgLC0NoaCjq1q0LKysr1nIgiiJCQkIQGRkJR0dHODg4sJYElUqFkJAQREdHw9bWFrVq1WKqh4gQGxuLyMhIJCcnw9zcHEr9PaWkpCA5ORl2dnbyOVEUER8fj7i4OMTHx0OtVkMQBDg7O8PISNmxW9b/Kw2CIEDjWWjUqBHMzc0V1ZQVIkJoaCjCw8PlczVq1EClSpWYacpKcnIynjx5Ajs7Ozg6OrKWIxMfH4+YmBjExsZGE5FdgR8gIoM4AJSH5EYaVNC1devWJdao1WqaOnUqASBBEGjr1q2sJZGvry81bNiQAJCJiQmtXLmSqZ6MjAxyd3enChUqyJpmzpxJoigy0fPvv//SDz/8QPb29gSAAJCVlRW5ublRWlpasbadnp5OCxcuJBMTE1q/fj0FBwfTpk2bqFevXlSmTBlZDwCqW7cuzZw5k6Kjo4tVU1bUajVt376dKlasqKVFczRu3JimTZtGT58+VUxTdu7cuUNNmzbV0iUIAp09e5aZpqzExsZSzZo1CQD179+f4uLiWEuSWbJkCVWrVo0A+JAu/bEuFxX3AcAUwCkAM3S53sXFRc+PrXCkp6fTiBEjCACVKVOGDhw4wFSPSqWilStXkqmpKQGg+vXr082bN5lqOnXqFDVo0ED+Avfs2ZMePnyouA5RFOnixYs0ZMgQMjY2lvU0adKEtmzZQklJScWu4c6dO9S8eXO57f++oFqdW/v27enHH3+kgIAAxQ2nn58fdejQIVeDAIAcHBwoMDBQUU3ZCQ4Opm+//Zbmzp1L8+bNo0WLFtHy5ctp5cqVtGfPHmaDDQ2iKNK8efNo2bJl9PLlS6ZacuPrr7+mJ0+e6GwYDCH4LADYBeA1Ebnq8plWrVqRj49P8QrLg+TkZAwZMgQnT56EhYUFDh8+jO7duzPRAgBBQUEYNWoULl68CACYNGkSfv75Z1hYWDDR8/z5c8yYMQNHjhwBANSpUwdr1qxBv379IP1X6x9RFHO4XJKTk7F3715s2LAB9+/fBwAYGxtj4MCBmDJlCjp37lxsejRkZmbi//7v/7Bs2TKoVCqt98qWLYuPPvoI/fv3R79+/Zi5/JKSkvDHH38gMTERqampSE1NRUpKivy75qhTpw5++uknxV1bJQVNP1rcf1Nvy+vXr2FrawtBEG4TUasCP6CL9SjOA0AnSCOTewD8/jv65PcZVjOGmJgYat++PQGgihUrMh+V7927l6ysrAgA2dnZ0dGjR5lpSUxMpO+++052i1hYWNCPP/5Y7C4aHx8fWrx4sfz62bNnNGPGDLK2tpZHvHZ2djRv3jz6999/i1VLVvz8/MjZ2TnXEbggCHTmzBnFtHA4GlCSXEmFPVgYhuDgYGrcuDEBICcnJyZuEQ2vX7+mzz77TO5o+vXrR+Hh4Uy0iKJIe/bsoapVq8p6Pv/8cwoJCSn2tv/8808yNzenmTNn0okTJ6hv374kCIKso23btvT7778Xu3HKiiiKtGvXLqpXrx7VqlWL6tSpQ/Xq1aP69etTgwYNqFGjRtS4cWN6//33KTQ0VDFdHA4RNwx65cmTJ1SjRg0CQA0aNKCgoCBF28/K33//TU5OTgSAypUrR5s3b2bmX/Xx8dHyTbu4uNDVq1eLvV21Wk0LFy6U29XEVvBfzGfUqFHMZ3McjiHCDYOe8PX1JTs7OwJAbdq0oaioKMXazkpaWhrNnj1bHhG3bt2aHj9+zERLREQEffXVV7IWOzs72rp1K6lUqmJvOykpiYYMGZLDPePo6EjLly+nyMjIYtfA4ZRUuGHQA+fPnydLS0sCQB999BElJiYq0m52/P395VUtRkZGNH/+fMrIyFBcR0ZGBq1Zs0aOa5iYmJCbmxvFxsYq0n5QUBC1aNEiV799mzZtKCwsTBEdHE5JhRuGInLo0CEyMzMjADR06FBF/dQa1Go1eXh4yDpq1aqliKsmN06fPi3vkQBAPXr0oICAAMXav3btGjk4OGgZgwoVKlCjRo2oR48eNHbsWNq+fbtiejickgg3DEVg+/btZGRkRABo0qRJirhIshMSEkIfffSR3AmOGTOG4uPji73dlJQUrdfPnz+nAQMGyDpq165Nhw8fVjSuERMTQz/99BPt2LGDTp8+TQEBAYo8Cw6ntMENw1uycuVKuROcP38+k8DuwYMHydbWlgCQra2tYhvoIiMjacCAAUQkLT/9/vvv5dlKuXLlaPny5ZSamqqIFg6Ho3+4YSgkoijSrFmzZKOwdu1avbdREPHx8fTll1/KGj766CNFln1q2nZxcSE7Ozvat2+f1u7cESNGKLoHgMPhFA/cMBSCzMxMGjNmjBxQ3bNnj17vrwtXrlyhWrVqEQAyMzOjtWvXklqtVqTtlJQU6tKlS46AbosWLejy5cuKaOBwOMUPNww6kpKSQv379ycAZG5uTt7e3nq7ty5kZGTQDz/8IMc0mjdvTv7+/oq2369fvxxGYfXq1UxiKxwOp/jghkEH4uLi5JGytbU1XblyRS/31ZXHjx9Tq1at5DQJs2fPVnT1k1qtlpMBZj+qV69Op0+fVkwLh8MpfnQ1DAZVj0FJIiIi0KtXL/j5+aFKlSo4deoUmjZtqkjbRIRff/0VM2bMQEpKChwdHbF7925069ZNkfY1GqZOnYp9+/bJ58qWLYu2bduic+fO6Ny5M9q1a6eYHg6HYzi8k4bh5cuX6NGjB549e4Y6dergzJkzxVo8Jjw8HJcvX8bQoUMRGRmJcePG4dixYwCA4cOH45dffoGNjU2xtZ8bCxYswO+//45evXrJhqBVq1YwMzNTVAeHwzE83jnDcP/+ffTs2RNhYWFwdnbGyZMnizXlcWZmJoYNG4YmTZrA3Nwc48aNQ2RkJCpUqIBNmzZhxIgRxdZ2XiQkJGDAgAFYuHAhTEzeuT8BDodTAMzrMbwNb1uP4Z9//kHfvn0RFxeHzp0748iRI8VejtPNzQ0eHh4oX748kpKSAABdunTBrl27UKNGjWJtm8PhcLKiaz2Gd6bqxvHjx9G9e3fExcXhk08+wcmTJ4vdKHh6esLDwwOAVBDFyMgIK1aswLlz57hR4HA4Bss7YRj27t2L/v37IzU1FV9++SX+97//FXtB83v37mHcuHFa50RRxKlTp+Dr61usbXM4+iYuLg7p6emsZXAUotQbhnXr1uHzzz+HSqXCrFmzsGPHjmL3q8fFxWHQoEFITU2VzwmCgPfffx+DBg1CtWrVirV9TsnCkN25mZmZ2LBhA9q1awdTU1PWcnLw9OlTpKWlsZZR+tBlTauhHbrsYxBFkebPny+vy1+5cqWuS30LTdYU2Gq1mvr27SvvTejcuTOtX79esdQWGgwxyVxUVJTB5VqKj49nVrxdFEXavXs3/fnnn1rng4OD6dy5c0w0aRBFkby9valBgwYEgDp06EB79uxhVhQqK5mZmeTl5UUfffQRNWzYMEfiR9b4+PjQixcvWMvIgUqlKt0b3Jo0aVLgA5g0aZJcv6A40zHfvHmTatasSdevXycioqVLl1KXLl1ow4YNzEo3Xrt2jezs7Gj//v1M2s+Nw4cPk729Pc2ePZu1FCIiSkhIoP/7v/8jW1tb+uCDDxRvPygoiHr37k0A6NKlS3T9+nX64Ycf5HoTNjY2lJmZqbguIqJ79+5pZfbNejx58oSJJiIp4/CiRYu08ngBoH379jHTlBVfX1/65JNPCACtWLGCtRwtLl68SBMnTizdhqFq1ap5PoC0tDQaOnSonHPo0KFDb/UgdeHly5dyjYAJEyaQWq1mVntZw5EjR8jc3JwAUP/+/ZmP8GJjY2nUqFHyl7hr167MOjwiqQLcypUrqWLFirKm9u3bU0JCgiLtq9Vq2rx5s1wACoBc+EhzmJubM6njHR4eThMmTJDTs2Q/evToQffu3VNUkwZRFOn8+fO0cuVK+vTTT6lu3bpy1l9DGJ2np6fT8ePHafPmzfT999/TX3/9xVqSTGxsLHXr1o2WL19eug1Dy5Ytc30AiYmJ1L17dwJAlpaWdP78+bd9lgUSGxsrF67p1q0bpaenF1tburJ161b5Sz169GgmVd6ycvLkSXl0Z2ZmRu7u7oolBszeTnJyMv38889ymVYA1LZtWzp58qRixvPZs2fUtWvXPFOQTJ48mby9vZm4Rry8vKh27dp5GgX8VxOE9UAjK3FxcXThwgV69OgRaykGTUJCgvx9KNWGIWuMQeOfjYqKojZt2hD+q0F8+/btIj7OvElPT6du3boRAGrUqJFipS3zQhRFWrRokfwF/v7775l+gRMSEmjChAlaZTcfPnyoWPuHDx8mT09PIpKSJLq7u2tVf2vVqhV5e3sr9oxUKhW5u7vLM7nsh42NDT1//lwRLQWhVqspLi6OXr58Sbdv36YzZ87Qn3/+SZs3b6b/+7//YxaP4eiHd8IwXLhwgSpUqEDPnz+Xg2Q1atSgx48f6+1BZkcURdk14uDgwPyLkpmZSePHj5eD3Rs2bGCq5/z581SzZk0CQKamprR8+XJFXUf79u0jY2Nj+uWXX2jt2rVUuXJluQNu2bIlHT16VFGjmZaWRgsWLKDu3bvThx9+SB988AF169aNunbtSl26dKHOnTvT+++/T6NHjzaIWSendFPqDUNmZiY1adKE8F/tXwDUuHFjCg4O1udzzMHixYtlP/DNmzeLta2CSE5OloNdZmZmdPDgQaZapk2bJnfCzs7OdPfuXUU1bN26lQRBIABkbGyspUXpcqQcjiFS6g3D2rVrtabjNWvWpOjoaH0+wxzs2rVLHpkfPny4WNsqiOjoaGrfvr2cMvzSpUvMtFy9epXq1asnd8jz589XfPTr7u6ew0XTuHFj8vLyUiyuweEYOqXaMDRr1kyeJWQ96tWrR35+fvp8jjLnz58nU1NTAkAeHh7F0oauvHz5kt577z0CQI6OjooW9snayaalpdHcuXPlgGXDhg3p1q1bimkhklx7mllc9qNOnTrk4+OjqB4Ox5Ap1YYh61JDQCrHOW7cOHr69Kk+n6FMQEAAWVtbEwCaNm1asbShK3fu3KEqVarII+KgoCDF2v7nn3/ot99+IyJpE0/jxo3lGdTs2bMV37yWvU635nBwcKDu3bvTjBkzaN++fdyFxOH8h66GoURmV/3PjwwzMzOMGzcOc+bMKbakdBEREWjXrh1evXqFTz75BF5eXjA2Ni6Wtgri77//xoABA5CYmIjOnTvj8OHDitVxCAkJQatWrfDZZ5+hQoUKWLZsGdRqNerWrYudO3eiY8eOiujQIIoiZs2ahYsXL6JZs2Zo1qwZmjZtiqZNmxZrGnUOpySja3ZV5qP/tzmMjIxoxowZxZ5mIjk5mVq3bi0vcUxKSirW9vLD09NTdmUNHjxY0dF5SkqKVglS/DcynzJlCrNnkpmZyXSjHIdTEkFpdiU1b95cn88qV1QqFQ0cOFBeAhsWFlbsbebF6tWrtTpjlUqlWNuiKNLnn3+eY2fumTNnFNPA4XD0g66GoURmV1Wi6tjs2bNx6NAhWFlZwdvbG5UrVy72NrMjiiJmzpyJmTNnAgB+/PFHrFu3TlFX1urVq7Fnzx6tc6mpqZgzZw5u3bqlmA4Oh6McvK5jLmzYsAFr1qyBiYkJvLy80LhxY8U1ZGRk4Msvv4SnpydMTEywfft2jBo1SlENJ0+exNy5c7XO1apVCwMHDsSAAQPQsmVLRfVwOBxl4IYhG0ePHsX06dMBANu2bcMHH3yguIaEhAQMGjQI586dg4WFBQ4ePIhevXopquHJkycYPnw4RFGEs7OzbAyaNm0KQRAU1cLhcJSFG4Ys3L59W+4MFyxYgNGjRyvSLhHhwIEDGDZsGMLCwtC7d2/cvXsXdnZ2OH78OFq1KngRgT5JSkqCu7s7Fi1ahAEDBqBmzZqKts/hcNjCDcN/BAYGol+/fkhJScEXX3yBRYsWKdb2n3/+iblz56JZs2bo1asXAgMDUadOHZw8eRJ169ZVTIcGCwsLbN68WfF2ORyOYcANA4D4+Hj07dsX4eHh6NKlC7Zu3aqYuyQhIQFubm4ICwtD27ZtkZCQgFatWsHb2xv29vaKaMgOdxVxOO8277xhyMjIwODBg/HgwQM0aNAAhw4dgpmZmWLtL1iwAGFhYQAgG4Xz58+jfPnyimngcDicrJTI5ar6gogwadIknDt3Dvb29jh+/LhiO4kB4M6dO1i/fr3WOR8fH/Ts2ROBgYGK6eBwOJysvNOGYfny5fjtt99QtmxZHDlyBLVq1VKsbVEUMXnyZIiiKJ8rV64cpk+fDk9Pz2JL8cHhcDgF8c66kvbu3Yv58+dDEATs3bsXbdu2VbT9rVu34saNGwAAGxsbTJs2DVOmTEGlSpUU1cExPFQqlSKbODmcvHgnZwwXL17E2LFjAUg7ewcNGqRo+5GRkfj2229RrVo1uLu7IygoCIsWLeJG4R1HpVJh48aN+O6771hL0YKI4Ovri9WrV0t5dAwIIkJ6ejprGVozf0NCFMW3ej7vnGF4/PgxBg4ciIyMDHzzzTdwdXVVXMOOHTvg7u6OFy9ewM3N7Z0JNBvil4eIkJyczFoGTp06hebNm2PKlCmoVasWHjx4wFoSAgMD8eOPP6JJkyZwcXFBSEgI1Go1Mz0xMTGYMWMG+vbti9atW6NGjRooX748Ll68yEyThrCwMPTq1QvNmjVD7969sWLFCoMwokZGRlixYgX69++PLVu26P5BXRIqGdpR2CR6Fy5cICKiiIgIql27NgGgfv366SU7Z1JSEo0ePbpQtSCKuz5ARkYGDRs2jK5evVqs7RSGpKQk6t27N23dupWZhlevXlFUVJT8+tq1a9S+fXv67LPPmGl6+PAh9enTJ9eaEizqSMTGxtLWrVupS5cuuRY/Kq6aJ7oSExNDs2bNIjMzM1nT7t27mWrSkJKSQiNGjCAANGfOHNZyZNRqNQ0cOJC6d+9eurOr2tra6vxQUlJSyN7enu7du0dt27aVi8InJibqfI/8mD17NgGgdu3aGUxBGDc3NzkrrCEUmI+KiqI2bdoQALK3t6eEhATFNQQHB1OdOnXo3r179PLlSxo+fLjcsdjb21NMTIyiemJiYmjatGlatak1hyAI1KxZM0U0hYYS9exJpEke7OvrSytXrqS+ffuSpWV9Ak4Q4EAAqGPHjhQeHp7jM7ndp6DzRSUwMJBGjx5NLi4uFBsbq9+bFwFRFGnlypUG8b3LSnJyMoWEhJRuw9CoUSOdH8jmzZvlusgAyMnJiUJDQ3X+fH7cu3ePjI2NSRAEun79ul7uWVQOHDggV7W7cuUKazn08uVLql+/PgGg6tWr08OHDxXXEB4eTg0aNCAANHDgQHm0aWZmRnPnzqW4uDjFtGRkZNDatWvJxsYm1xE5ALK0tNR7uda8OmhXVyIbGyI3t5yfmTZNTRUqZFLXrr40ZMgQeUCV22fyuk9u5/VpLB4/flz0m7xDlGrD4OLiotNDUKvVcqekOTZt2qQXa65Wq6lDhw4EgCZPnlzk++mDR48eUfny5QkAubu7s5ZDfn5+VLlyZQJATZs2LfbCSrkRHR1NTZs2zdH5Dh8+nF6+fKm4noyMDAoODiZ/f3+6fPkyHTlyhHbv3k1r166lRYsWkaurK40ePZpmzJhR6Lob+XW4eXXQNjZEvr5EtrY5ZwDZ3xNFkYKCMnOcz+s+eZ0vbmPByZsSZRgA7AAQCcBfl+t1NQxHjhzJdUQ2ZcqUIscXtm7dKrshDGEqm5SUJNdgHjJkCHO31vnz56lChQoEgDp37szkGcXGxlLLli1z/P9/+eWXpFarFdejDwrb+Ws+k1cH7er65vfsM4Dc3svtfGGu1dlY7NlDmdVqkBoCZTrWINqz520eFycbJc0wdAbQUt+GIXsArW7dunTu3LnCPMdciYyMlF0Be/fuLfL9ioooinLQq379+hQfH6+4hsjISPn3AwcOUJkyZQgADRo0SNEypBoSEhKoXbt2uQ4MzMzM6IcffmBuPHOjoJFzYTt/zWfy6qA1XtXQ0JwzgOzv+fnlPG9jQ2Rlpdu1trZE48cXbCxiN+4hKldO6p40R7ly3DjogRJlGCS9qKlPw+Dj4yN3BCYmJvTdd99RSkpKIR9j7owePZoA0IcffmgQncvGjRsJAJUrV47u37+vePuaTlgURdqwYYNcF3ry5MmKliHVkJycTJ07d5b//52cnOjTTz8lDw8PunHjhsEFBrOSn8+/sJ1/1s/k10FnvUf2GUDW91q0yHm+RQvp0OXa8eOJzMwKNhYxljW0jYLmqFEjr8fG0ZFSZxgATADgA8CnevXqBT6Azz77jABQmzZt6O7du4V/gnlw/vx5AkBlypQxiMDXjRs3yNTUlADQHkYjqpkzZxIAGjVqlNwZL1myhInRVKlUtGDBAnJzc6MDBw5QcHCw4hoKIr8VPHl1/ESF7/zDwvLu5KtWzb3v7dhROnJ7z9Iy9/OFubZqVW0tuRkLNYTcPywIRX/47zilzjBkPQqaMQQGBpK1tTWtXbtWryPW9PR0eXXLwoUL9XbftyUqKoqcnJwIAH399ddMNNy/f19ryaWRkRH9+uuvTLSUFPJbwZOXz/9tOn83t7w7+Y4di+/flxd5acluLKLL18j1wkzHGsqLLmW804bh7NmzFBgY+BaPLX+WL18uxypY+M2zolKpqEePHvKsKC0tTXENoijS+++/r+W/r1KlCm3cuFHRJaCGRn5xgoJW8OTW8ROVnM6/sOSm/TPsoWRBO8aQblKOfu/FYwxF5Z02DMXB8+fPqWzZsgSATp8+rXj72Vm4cCEBoIoVKxaLEdSFXbt25QjslilThiZMmEDPnz9noskQyC9OoMsKnqzXat4vyZ1/YenYUTIOLyGtSnqJGvQZ9pTKf6vSlCjDAMATQBiATADBAMbld73ShkEURerVqxcBYJo+QcOJEydIEAQSBIFOnjzJRMPr16/J3t5eNggWFhY0a9YsJnsVDAld9gbkNit4lzp+DjtKlGEo7KG0Yfjzzz8JAFlZWVEY4x04r169IltbWwJAixYtYqbj66+/lmcsixcvVjylBGvy20msy96ArOdym1lwOMUBNwx6Ij4+nqpUqUIA6JdfflGs3axoAuhpaWnUunVrAkC9evVitknLx8eHqlevTmvWrKGkpCQmGliT307ivOIEfFbAYQ03DHpi2rRpcoCXxZp8tVpNM2fOJCKiyZMnEyDlHIqOjlZciwZfX18mwW4leZsAMp8RcAwdbhj0gI+PDxkZGZGRkRH5+voq0mZ2zp07RwBo3rx5cnD35s2bTLS8S7xNAJnPCDiGDjcMRUSlUlGrVq0IALlmHwYqyMiRI7VW/bByZ71LvG0AmcMxdHQ1DO9cBTdd2bx5M3x8fFCtWjUsWbKEiYa4uDj873//0zq3a9cuLF68mGklrdLOqlXA6NFAixbAqFHS6+zvVakiva5SJec1HE5JhxuGXAgLC8P3338PAFi7di0sLS2Z6Ni/fz/S0tK0zllbW2PixIkwNjZmoqk0ERYG9OoFhIdrn9u1C5gzR3o9Z470WnPNrVuAhwcgCG8ODw/g5k3l9XMMh9TUVNy5c4e1jBw8ffoUr1+/LvTnuGHIhRkzZiAhIQF9+vTBoEGDmOnYsWOH/HuZMmWwZs0aHD9+HJUrV2amqTSxapXUoRdmRnDlSu7Zga5cUV7/u4gh1g0HAHNzc4wfPx43btxgLSUH/fv3R2pqauE+pIu/ydCO4owxnDp1igBQ2bJl6cWLF8XWTkHcu3dPjis0bNiQ7ty5w0xLaSSvOAIPIBs2SUlJNHnyZHr16hVrKTkYOXIkWVpa0uXLl1lLkcnIyCBjY2MaNGgQqVQqHmN4G1JTU/H1118DABYsWIBatWox0/Lbb78BACZNmgQfHx84Ozsz01IaySuOwGcEho2FhQVq1KiBBg0aYPHixYUfCRcj7du3R2JiInr27Ilz586xlgMAMDU1Re3ateHl5YXp06fr/kFdrIehHfqeMbi7u5MoijR//nx5hM4yZ78mi+uhQ4eYaSgt5FW43saG6MGD15SRkWGQK4uKWmGwqMTFxdHs2bNp6dKl9Mcff9CdO3cMZjNjQkKCvPu/Ro0adPDgQYOoi3L79m15lm9mZkbHjx9nLYmIiPr06ZN1ZSNfrqoLGRkZZGlpSd9//71c1+DixYt6u//bEBgYaJB1BEoieRWunz5dpEGDBsm1OgxlI9qdO3dowoQJtHz5ctZS6MWLF1SvXj25UxEEwWCWSy9btkzW5eTkRH/99RdrSZSZmUnlypUjQCoO9v7779PTp09ZyyJXV9d3wzC0yF4yqghcuXJFa5/AqFGjCn2Pffv2GUTd56zs2bOHgoKCWMvQYseOHXTt2jXF2ispcYSUlBTauXMntW3bVv47bNOmDRsx2YiMjKQ2bdrIhuH69eusJRGRNKOxtrYmU1NTmjp1Kms5Ml26dKEaNWpQ/fr1KSEhgbUcIpIqPDZs2JAqVapUug2DhYWF3h6aJn111qNmzZoUEBCg0+fv3LlDAKhy5cpMUmbkxsuXL8nExITKli1LUVFRrOUQkbSL3NTUlExMTBQbReW1Q/nRo0fKxnq7AAAgAElEQVTyyA4AmZqaMktdHh4eTuPHj6eaNWtq/Q126dLFINwjRFLAt0+fPvTdd98xy8+VG4sXL6br168zd7tlZefOnfT6teSiNBT8/PwoPDycUlNTS7dhqJq95FMR6Nixo9YXslq1aoUqBTplyhQC2FVQy43x48cbRIrw8PBwIpJ8wnXr1i3W55Q9lpDXDuXAwHRq2bKl1v955cqVaceOHcy/zNHR0XTmzBlasWIFTZ8+3aA6vIyMDINbCWTItbsNlVJtGBo1aqSXhxQfH69VlrJx48aFcr+kpqaSjY0NAaDbt2/rRVNR0cwWBEHQedZTXPTo0YP+/fdfGj16NAGgJk2aUEpKSrG0lT2WkFdCOxeXi7nOEBcvXsw8pTqHU9yUasOgr+DzkSNH5M6hc+fO9Pr160J9ft++fQSAnJ2d9aJHH0yYMIEA0PDhw5nqCAoKIgDUrFkzeV+Iv79/sbSVWywhrzgCcFnWM3LkSDp37pxBuUc4nOJEV8NgovvC1tLHmTNnAADDhg3Drl27ULZs2UJ9fvv27QCAcePG6V3b2xAYGIgdO3ZAEATMnz+fqZY//vgDAHDv3j0AwKhRo1BFs51Yz+S2JyH7voPo6Gg0a9YMjo6OGDt2E4YPHw5ra+ti0cPhlHh0sR6GduhrxtCwYUNyc3N7qxHjixcv5PXKhZ1pFBcTJ04kAPTpp5+ylkItWrTI4bJp1aoVhWqc/kUgazxB12ynZ8+epXv37hW5bQ6nJAM+Y8if0NBQfPXVV5gxY8ZbfV6zM3nQoEGwsbHRp7S3IigoyGBmCw8fPsyRUOzrr7+Gu7s7zMzMinz/rDmOiPLObeTu/uYzH374YZHb5XDeGXSxHoZ26GPGUBS/skqlIkdHRwJAZ8+eLbIWfTBp0iQCQMOGDWMtRd5BDoAsLCzI09NTb/fOHk9o3Tr3WALPbcTh5AR8xpA/RkZvnybq9OnTCA4ORq1atdCtWzc9qiocz58/R82aNREaGirHO1jPFogInp6eAIDGjRvj4MGDaNCggd7unz2eIAg85TWHkx+pqakwMzMrVJ/3zhqGoqDphMeMGVMkA1NU9u/fj8zMTERFRSEzMxNDhw5FkyZNmOkBAB8fHzx79gyjRo3CL7/8AgsLC73dW1Mr4cED6fWcOUCTJtJPnomcw8kdX19fxMXFoW/fvjp/hmdXLSRRUVE4cuQIBEHAl19+yVSLv78/lixZgq1btwJgP1sAgEOHDmHbtm3YuXOnXoxC1mI6vHoah1N47t+/Dw8Pj0J9hs8YCsnvv/+OzMxM9OrVC05OTky1+Pv7g4iQmZkJIyMjfPzxx+jZsyc2bdrEbCYzdepUvS5LzRpovnULuHpVqpiWlY4d9dYch1MkIiMjYW9vz1qGFvfv38fZs2fxQDPV1gE+YygERCS7kb766iumWjIyMvDo0SP5tSiKqFatGtzd3Zm6t/RpFDSuo3PnpJ8HD/JaCRzDZu3atQgKCmItQ4v79+8DANatW6fzZ7hhKAQ3btxAQEAA7Ozs8PHHHzPV8vTpU6hUKvm1s7MzvL299erTZ01exXQ4HEPl4cOH+Pnnn1nLkCEi+Pv7A5C8HbrCDUMh0MwWvvjiC5QpU4apFs1/NgDUr18fp06dKhU7eTUxhbt3pVnCnDnS+TlzpNfh4Wz1cQwHafWlYfHs2TNs3boVkZGRrKUAkPZrxcbGAkChqt1xw1AAmZmZAICkpCTs378fgGGkwNAYBicnJ5w5c8bg/JpviyamMGYMDzRz8qcwI2AlICK8ePECaWlphQ72FhcaN1Jh4cHnAjh27BiSk5ORkZGBpKQktGvXDo0aNWItC/7+/rCzs8PZs2dRvXp11nL0QtaYQps2wJ07PNDMyRt3d3c0adIELVu2ZC0FABAREYHk5GQAwMaNGzFnzhzms/isnoXCwGcMBRAVFYUxY8ZgyZIlAN7MFlhPY4ODg3H69GnUr1+fqQ59kjWmMGUK4ObGA82cvImOjsaMGTOYfxc1PHv2TP49ISEBGzduZKhG4v79+7C0tCz057hhKIDo6GioVCoEBgYCAH788Ue0aNECr1+/ZqZJpVJh/fr1cHZ2ZqZB32hmCzymYHgQEaKjo1nLyMHr169x8eJF/PXXX6ylAJAyEWTFw8NDnkGwwsnJCQ8ePEClSpUK9TluGAog+xciODgYW7ZsQcWKFRkpAkxMTNCuXTtm7eubsDCgfXtgyBAeUzBEBEHApEmTtFbBsSYtLU0Ops6ePRsZGRmMFeU0DNHR0di2bRsjNRLLli2Dk5NTod3N3DAUQHbDsHbtWrRp04aRmtLJqlVASAiwdauU+0hzeHjwPEiGwr179zBv3jzWMmQ0K20AyYWzYcMGhmre6Khdu7a8j+jnn3/GnTt3DMKg1qhRo1DXc8NQAFkNw6hRozBx4kSGakofGhfSzZuAra30ujTGFLIuw9Wk+ChJ2NvbY9WqVThw4ABrKQC0DQMALFmyhLm7q2PHjvDz80Pt2rUBAD169MDOnTthYsJ+jQ+fMegZzR9bs2bNsGnTJgiCwFhR6aK0bmLLbggWLnyzDPfGDaBduzfvZTUWiYmJ8PX1hSiKrP8JWjg4OACQEkcWJrVCcZE9xpeSkoLFixczUiPxzTffwNLSUs4mnDUzAWv4jEHPREdHw8rKCl5eXihXrlyu17x+/dpgVkZoiIqKglqtZi0DgPSlPX36NGJiYpCUlCSf9/MDNmwANLkIWQScb9y4obeRZlgY0K2bdGQ3BLt3A/v3S//mbt2AoCDg889zGosXLywxZIgFHByaIyYmRi+69IG9vT2sra3Rp0+fQm2UKi5iY2Px3nvvoUWLFrCwsMCdO3cwYsQIgzCo7733HoyNjRFuQNPCQi9p16Vog6EdZmZmRa9YoSMVKlSgI0eO5Pm+KIpkZWVFFhYWFB0drZiugujYsSOVLVuWrl69yloKJSUlkampKXXo0IHKlClDZ8+epefPn5Ozs0hmZkRubm+udXXVfl3cDBo0iMqVK0fXr19/63toSo2OH09kZvbmOHWKSBCIBg4kKltWer9JE+m9gQMlZ5mn55trBEF638pKJHv75BzlSVly8+ZNiomJKVKBK33y4MEDiouLo4iICMrMzGQtR4u4uDhKS0tjLUOLtLQ0SklJ0blQD/NO/m2OcuXK6fOZ5UlaWhp9//33+V4THR0tVyoTRVERXQWhVqvJ0tKSAFCYAfQuqampWrWfy5YtS/36jScTk9xS4ilXfS0+Pp7MzMxowIABFBsbW+jPh4YSde1K5OhIVKGC1OFbWhKVKSP9ntUQjBz55mfZstJPY2Pp/ezGQmMkHB2J/Pze1LfmcIqKroahRLqSTE1NFWnH2NhY3tiWF5olarVr1zaY+MOrV6+QmJgIe3t7VDaACjbZs72am5ujatU1mDJFMgWurtqb2ZQKOB87dgxLly6Fl5dXoXaoauIHCxcC164BwcHS8lqVCvjkE2lFVa1akvuoeXPp9Zs2gcGDpUyxn3wC+PsD9etL15QrBxgbA97e0rngYMndpHEzGZBnglMCocK4u3WxHoZ22NnZ6dGGFo19+/YRABowYABrKfI038vLiwDQRx99xFiRRGZmptaMwcPjD7KxkUbcRNJPW1vlR8WFnSXkNkMwNZUOQPrZpIm2SymvmtSao1w57RlFgwbSTMLS8s19e/eWfn7+eTE9CM47wZkzZ/iMQSk0M4a6desyVgIcPHgQv/zyC+7evQsAaN68OQD26TuMjY3l33v06AF//6GoUOHNSJrVZrbCzhLatwf++Ud7hiAIwHvvAebm0s9Hj6T9GOnp0nHrVv73TUmRrtu7V/r56BFgZgbUrSvdTxCAU6cAU1PA05PPGkoaRIRXr16xlgEAhUrRUSINA+uU11nRGIY6deowVgLY2dnhm2++wU8//QRAWi734YcfwsfHh6kujYvNwsICW7Zsgbe3gMBAqXMtCZvZwsIAFxcgMBDIzJQ66cePAVGUXD7m5kBqquQWyr6XqWPH/OYLuScFTEmREgj6+0tGQhSBtWsBtVrKIcUpOVy+fNkg9n4EBQXhxo0bOl/PDUMRMSTD4OjoCEBaHgpIPnRTU1O0bt2apSwAUpxh+fLlMDOribQ0wNc354Y2Q9zMFhYmZXoNC5NeEwG1a0vGoGxZqfPOPiswNgbKl5eOu3cBa2vg3r3c73/lSv5GIi1Nij1s3QoYGQH/+1/e9+IYHj/99JNB7GcoX768nO9NF0qkYTAkV5Imo6IhGIZq1arlOFdQ8FwpOnXqhClTpmDhQqBChZKTC2n2bMl1pMHICIiJkWYIeS3nV6uBpKQ3R3y8FIT+++/827pyJf8ZhGaJ/uDBb/dv4ShLQEAAjh07hsePH7OWAltb28L1m7oEIgztaNGihf4iMkUgOTmZAJCJiYnBrKW2tbWVg7wff/wxazkyT548odBQKcBqbS3tVWAVdNaV0FAiI6M3jh9z89wdQvXq5R9gznocOKB7+1Wr5n0fQ31mnDeMHTuWAFDFihVZS5FBSQo+C4LQSxCEx4IgPBME4duCrmdZ7B4A4uPjkZCQgBcvXgAAatasaRD5UAApza4GQ5ktAEC9evWwcKH0+99/SzucBcGwZw3jxr0ZpQO5zxCcnICnT3W/52ef6X5trVp5vzd7tu73eVd4/vy5XHGRNWFhYdizZw8AICYmhnkep8JSYA8rCIKnIAhzBUHoLQiCnb4FCIJgDGAjgN4AGgH4TBAE9iXS8kGlUqF58+bYvXs3AMmNFBAQgNOnTzNW9ibOMHjwYIOr13DsmLTypmVL4PVryZ1kqEHnsDDgxIm8369aVRq7//tv4e6rUkl7GHThyhVpj8f48VIQ+r33ABMTwMaGr1DKjaVLlyI0NJS1DADAunXrtFKBG0KcoTDoMvTeDCAFwGAAZwRBOCQIQuFLAuVNGwDPiOgFEWUA2A+gvx7vr3cqVqyI5ORkefXP33//jcaNGzOfyQCSYRAEgXlCseyEhUmB1Dt3gJ49pZxBmuCzIQadC1r9U6sWsGLF2927MLOGW7feLH99/FgyLLGx0kxGMwPjAE+fPsXvv/+OoKAg1lKQmJiITZs2aZ0rjYahOoCLACYRkTOAgwD02etUA5B13BX83zktBEGYIAiCjyAIPlFRUXps/u3QZFAEgMzMTDg7O+PDDz9kqEjC0dERw4cPR+PGjVlL0UKTRVWTYnvXLsN2Ix0+nPt5B4c3K6i+++7t7l3YWUPVqjnPE0kzMI7E0qVLIYqiQRiGbdu2IT4+XuucIRiGxMREna/VxTDUB7AMwCNBEO4A6AFgkCAIH+rJtZRbHokcO7KI6FciakVErezs9O7RKjRZDQMAzJo1yyBSYtSsWROLFi1iLSMHt25JbiMPD2nEu2aN4bqR/Py0Ywu58bazBQ2ff677tbksNsv3/LvG48ePsXfvXgBgbhhEUcTTp0+xfft2uT/o0KGDQRiGkJAQna/VJWK6joiiAEAQBBsArSDFA0YCWAGgqIvkgwE4ZXntCMAwHIX5kNUwODk5YdiwYQzVvGHIkCEoW7Ysaxk5uHJFyocESEbBzU0KPru7s9WVG198kfd7MTFS2uwLF4rWRnq67tfWry8ZVgsLaSns9etA27ZSDQvOm9kCwN4wGBkZ4ZdffsGLFy9ARKhatSouXbqE//3vf0x1Afo3DKf/MwgPATwG0ACAJxFNfzt5ObgFoJ4gCLUAhAAYDmCEnu5dbGQ1DG5ubgazt8IQjQLwplLb339LCehWrgQ++ECqwWAAef60yG/ZuUoFXL1a9DYKE47y8pJ+aurKa9YUsHQlhYeHG0SCxkePHsHT01N+zdowaMi6v8nY2NggBo6FCcwX+OdJRC0A1AEwC8AlABsAzHxbcbncXwVgCoBTkIzPn0RUYIkoYpz/R2MYrKys8NVXXzHVUhIoSTGGgkp662NFpIWFbteFheW9kS6/5azFSVRUlMG4K5csWaJVnMdQDIMhZUTQoO8ZA4hIDeDBf4feIaLjAI7rev3z58+RkZEBMzOz4pCjEzVq1ICZmRkmT54MS0t9LtIqndy6pT3SXrNG+pnbTl/WXLkClCmjHwOQG1WrArp8RzU5mgApkd5nn0kzrrZtJSO7ZUvx6CuI6dOnG0QVt4CAAOzfv1/r3L+FXT9cTBhSck0Nep0xGCJly5ZlahQAKWNokyZNMHXqVKY6SgqaNfmurkBoKFCjBjBhgmEuVQUKnjVoMDaWciZp0GX9ga4j/VWr3uRo6tlT2vvh7CzFJ1i5kby9veHp6WkQJTSfP3+OI0eOoG/fvgCkzL3Jyck5VgSxwJBS5WgozIyBeXqLtzmaNm1apG3h+uLEiROsJZQYQkNJrsHg6iqlxTAzM+zUDh075p/eQhBynsuaQqMo1enu3JHqMhgbF+0++iQ+Pp4cHR0JAPXt21d5AXlQv359AkC3b9+ma9euUaim0AdDmjRpQgDo5s2brKXItG3bVueUGIaRx6GQGEp21V69erGWUGLQxBiAN0HoDh2kTVqsXCIFceUK0KlT3sFmojdpwzUD6LwG0h076jY7CgsDxox542pq1gzo2FEFU1MTuLuzXc317bffIvi/jIJqtVp5AbmQkpKCZ8+ewcjICA0bNoS5uTlrSSAig4wxFGpXuC7Ww9AOFxcXPdpRjhLkNfp2cGCtTHcsLfOfDehjRO/q+qadRo3UBjNbuHTpklYVvh49eigvIhdu3bpFAKhBgwaspciEhIQQALKxsdHpWiVQq9VkYmJSspLocUo/V65IsQUbG+mnq6tUpyAuruTk/ElI0NUsvF3sRLOkt2pVwNiYYGbWD1Wq/AE3N+262ErHZdLS0nKsvDOUGcP9+/cBAE2bNmWs5A26zhYiIyMxd+5cJSQhKioKquxVpPKBG4ZSjiiKCA0N1UroxYpVq4BRowgpKSnYuVOU6xO0bs3WOIiiiICAAHYC8KZ0aJ8+wLNnBLVawJ07xxEW9inzXeJRUVHYsWMHPv9vu3adOnUMIvgMAPf+q1pU0gyDWq3GiBEjFFvdVajAM1AyXUmmpqYGU/+AiGj8+PFUpUoVunbtGmspFB8fT8nJyeTp6UnVq1enKVOmkKOjI6lUKqa61Go1ubik5BnEdXNjp+38+fPk6OhIv//+u+Jth4YS9exJNHKk9ByaNJHcSS9fppGFRSrdvh1Crq5sn4+GtLQ0Onv2LMXFxdG6detYyyEiSdOdO3coMDCQtRSZtLQ0evToET1+/DjPa+bNm0cAaMKECYpoysjIoOfPn+vsSmLeyb/NAcCg/hCGDRtGAOi3335jLYXi4+PJyclJXj0CgKytrVnLIiKimTNnElCZgBhav/4ghYZKq5MqVJBWLLFeoaRSqUgURUXbdHUlsrKSVh+NGEFkYpK7c4pFXIFTPBw9elT+bn733XeKtq2rYSixriRD2eEIAA0bNgQAPHz4ENeuXcOhQ4eYaalQoQLmz58vrx4BpLJ+hsCKFSvg6LgewC5kZARi1Srgyy+BsWOlhHDt2rF1KRkbGyuSCDEsTEoLcveuFFPo21dazbRvn5RyIysdOxpuPWxO4Xn58iW+yJKMq2LFigzV5IMu1sPQDgC0b98+fRrSt+Lu3bs0YMAA+vzzzwkAVa5cmYyNjenQoUNMdalUKmratKk8KjGkVVxt2mTkuTpJEIgUmlkzxdVVmiG1aEE0frz0+/jxJaPcKeftSU1NpZYtW2qt7lLaywA+Yyh+mjVrhvj4eLmEX3h4ONRqNfO1y8bGxnDPstDdxsaGoRptbtwwxa1bPmja9BxcXSWzEBoKZGRIKR9275ZG0r16lZzVSrqQfZawf7+U3jslRdrfsXhxySh3ynl7pk2bBl9fX61zhjpjKPGGIavLhAXz5s3Lca527doMlGjTvXt39OvXD4DhuJI0tGrVCmXKdICHh9QRVq0q1WjYt09azjpmjLQCZ8GCkm0gNMYgPFzq6G/elP5to0dLZUOdnYHz56UVR1WrGn65U87bc+vWLcTGxqJDhw5a5w3VMDB3C73NAYA6duxIQ4YMoVWrVulzplVoRFHUbDWX3UmGwqNHj8jExIQmTpzIWkqeZE2VQSSlghAEotOnpZQZ1taGsSJHVzSrjMLC3riMNO6iU6ekf5ufX94b/niQWf+o1Wry9vZmLYOIiHr37k0AaODAgWRiYkKPHj1StH2UdlfS1atXcfDgQebrlwVB0Jo1GMJsQcN7772Hr7/+2qBcSdnRpMqoUkV6vWuXNJI+cEB63bevdK6kuJc0M4MFCyTd585J7rEhQ97MEnbtkoLJRNob13iQWf8QEaZMmQI/Pz/WUhAcHIxTp07B1NQUW7Zswc6dO1GpUiXWsnJHF+thaAeyBG+U2lKeH6IoUrNmzQgAffHFF6zlaBETE0Pbtm1jLSNP8ho5V6kijbRtbaWfLVpIo25NgFYzKmdNVi2a2Y+vrzTbGT9eOqf5nc8SlEUURXJzcyMABjFjWL58OQGgQYMGMdOA0r6PAQDZ2toqvu48L/bv308AaNGiRayl5MCQNgPmh6urdGTPxKrZ/HX69BtDoaSRyN5Gbu4iNzdt/Rpj4Or6xsBpPm8oG9ZKO99//708gAwODmaqRRRFqlOnDgGgY8eOMdPxThiGrl276vOZFQmVSkX169dnsnu2tJDf7KFFC6kzHT9e6nR9fXMaCaKcI/i8OvT83sv+OmvnT5QzduDrK8VCrK3fGDONMWjdms8SWLB06VLZKFSqVIn5APLixYsEgKpUqcJ0oPZOGIapU6fq85kVmR07dtDVq1dZyyjx5Ody0RiGsLCcRiK3EXxuHXpB72V9nbXzt7WVAsfZ3UVEkuFq0aJg/Zzi5+eff9baK9C9e3fWkmj06NEEgL799lumOkq1YbCysiIA9Ouvv+rzmRWZjIwMSkhIYC2jVKFxzxC9cTFpNoNlNRKaUXr2EXxuHXp+7+XX+bu6Sp1/dncREZ8ZaIiPj2fa/oYNG7SMAgCaNWsWU00JCQlUrlw5ApBv/iQlKNWGoV69egSArl+/rs9nxjFA8hp9t26dc8dwXiP4rB16Qe/l1/lrltL6+fHYQXbUajWtWLGC9u/fz0xDQEAADRgwQF4Iojn27NnDTBMR0bZt2wgAderUiakOolJuGFxcXKhJkyaUmJioz2fGMXDyc9Fk7cQ1yfmsraVOO2uHnt97RPl3/hqj4ebG3UVZiYmJoX79+lG5cuUM4jup2StgZ2dHAMjf35+png4dOhAA2rFjB1MdRLobBkG6tmTRqlUrWrFiBbp3785aCocReZXc7NhRqu+gQRCkLvviRaBrV+n3vN7TlM7UvL55M++yntnbfFf3H9y4cQPDhg1DUFAQPvvsM+zbt4+pnqtXr6JTp06wsLCAv78/Bg4ciFu3bsHEhE0V40ePHqFhw4awsLBAeHg4ypcvz0SHBkEQbhNRqwIv1MV6GNphSEnhOIZBXiN4fR3v4kwgP0RRpLVr15Kpqanssjl69ChzTV26dCEANG/ePCIiCg8PZ6ppzpw5BIDGjh3LVIcGlPYZg4+PD2sZHM47SXx8PL766iscPHhQPmdra4uwsDCUKVOGma5z586he/fusLKywsuXL5nv+M/MzISTkxMiIiJw5coVdOzY8a3uExYWhiqa1ABFRNcZQ4lNicHhvIuIoohz584hMDCQSft+fn5o1aqVllEAgKFDhzI1CkSEH374AQAwa9Ys5kYBAE6ePImIiAjUr18/R/I8Xfnrr7/g4eGhZ2UFww0Dh1MCiIiIwMqVK1G/fn1s2LAB1atXZ6KjTp062Lt3L1q0aKF1fuTIkUz0aDh+/DiuX7+OSpUqYfr06Uy1aNixYwcAYMyYMW9VAGrjxo0YNGgQOnXqpG9pBaOLv8nQDh5j4LwLqNVqOnXqFA0ePJhMTEwIADk4OFBkZCRTXV5eXgSATE1NycHBgZycnEitVjPTo1arydnZmQDQzz//zExHVsLDw8nExISMjIwKnc9NrVbLsQkTExO97Y169OiRzjEGNqF6DoeTJ2FhYfjtt9+wbds2vHz5Uuu9HTt2wM7OjpEy4N9//8W4ceMAAD/++COsra3x5MkTGBmxcz54eXnBz88PVapUweTJk5npyMqePXugUqnQt29fVK1aVefPpaenY8yYMfD09AQAtG/fHpaWlnrRdPToUZ2v5YahlENEitQxLgwRERFwcHBgLUPm0qVLOHLkCBwcHHIc9vb2MDY2VlTPv//+i1u3buUwCpMmTUKfPn0U1ZIVlUqFkSNHIjY2Fr169YKbmxtEUURISAgzTWq1GgsWLAAgFc0qV64cMy0aiEh2I40dO1bnz8XFxWHgwIG4cOGCfK5Hjx5601UYw8DcLfQ2h4uLCz18+FAv0yt9oVar6ezZswaVEiM9PZ3Wr1/PfMleVl6/fk1du3alX3/9lXliMw2PHz+m8uXLa+2WrVy5Mm3evJkyMjKYaNqxY4eWnnr16lFSUhITLRo06SYqV65MERERTLVo+OOPPwgAVa9endLS0ljLISKiGzduyMn70tPTdfpMYGAgNWrUKEc6jxs3buhFU0xMDBkbG5func+Wlpbk6OhoMH8I/v7+1LBhQ6pVqxZ5eXmxlkNEUrbXDh06kJWVFU2ePJm1HJlFixbJf/QDBw6k6Oho1pLoxo0bsmGwtLSkZcuWMe+EY2NjqWXLllSvXj0yNjbWWwdRFFJTU2nKlCl0+vRp1lJkMjIyaMuWLfTnn3+yliKTmZlJR44cod9++02n60VRpM2bN9OECROobNmy8vfDxsaGVCqV3jRduHChdBsGzYMLCAjQy0MrCr6+vtSvXz/5P9MQNrKIoki//vor2draEgAyNjY2iBmWKIpaOfIBULVq1ejvv/9mLY3Gjh1Lrq6uFBUVxVqKjFqtpiVLlhhkjQ+O/jl06BABIHNzcwJAQ4YM0XsbuhqGEqL9wzcAACAASURBVLnBTRAEAoDDhw+jf//+TLUQETZs2ABXV1eIoojKlSsjJCSEaTAOkDYhrV69Gu7u7khOTsYnn3yCv/76i6kmIkJaWhpSUlK0jrS0NLRu3ZpZ2gIAiI2NNYi179l59uwZatasyfTZvAuo1WrFY0lZSUxMRMOGDRESEgIPDw/cvXsX7du3x/jx4/XaTqlOiaGZbq1cuVJfhrTIeHt7y+4IHx8f1nJkIiIiyM3NjczMzOjChQus5XA4Boe/vz/Nnz+fqYbp06cTAHJxcSGVSkWRkZHFUnUOOs4YSuQGt3r16qFq1ap48uQJaykyffr0wT///IPq1avD29ubtRwZe3t7uLu74+nTp3j8+DFrORyOwaBWq7Fq1Sq0bNkSbdq0Yabj9u3bWL9+PYyMjLBlyxYYGxvDzs4O1apVY6apRBqGMmXK4OTJk4iMjGQtRYumTZvixo0biImJYS0lB05OTpgwYQJrGRyOQfDkyRO8//77mDt3LqpUqYLevXsz0aFWqzFx4kSIooipU6fCxcWFiY7slEjDAEid8I8//shaRg4qV66MVatWaYLkHA7HgBBFEevWrYOzszOuXbsGQNofwiq+sHHjRty+fRvVqlXD0qVLmWjIjRId0WrcuDFrCbliZmbGWgKHw8nGq1evMGbMGK0NZGXKlCnUJjR9EhwcjHnz5gEA1q9fr7cdzvqgRBsGDofD0YV//vkH/fr1Q2xsrNb5oUOHwt7enomm6dOnIykpCZ988gkGDBjARENelFhXEofD4ehKhw4dEBgYiEaNGmmd//rrr5noOXr0KLy8vGBhYYH169cbXNoaPmPgcDjFzs2bN5GUlIQPPviAmYbFixcjICAAFStWhCiKqF69Otq3b6+4jqSkJEyZMgUAsGTJEmYp1PODGwYOh1NsXLp0CcuWLcODBw/w6NEjZjp2796N1atXw9jYGAcOHMDff/8NJycnJiP1RYsWISgoCM7Ozpg2bZri7esCNwwcDkevEBHOnDmDZcuW4fLlywAAT09PZsHVmzdvyku1165di27duqFRo0awsLBQXIufnx88PDwgCAK2bNlisDvaDVMVh8MpcRARjh49imXLluHWrVvy+S5duuDTTz9loik0NBQDBgxAeno6xo8fL8cUWKR91+xZUKvV+Oabb5huqisIbhg4HE6R+eeffzB58mTcu3dP67yxsTE2bNjAxGWTlpaGgQMHIiwsDJ06dWKmQ8OWLVtw8+ZNVKlSBcuXL9f7/RMTE/U2K2O6KkkQhKGCIDwQBEEUBKHgxE4cDidPiAgqlYpJ2+3atcPatWtzVJebOnUqmjRporgeIsLEiRNx8+ZNODk54eDBgyhTpoziOjSEhobiu+++AyC5s6ysrPR27+joaHzxxRc5CjsVBdbLVf0BDAJwibEODqdEkpKSAm9vb3zzzTf4/PPPkZmZyUSHKIrYuXMnoqKi5HMODg5YtGgREz0eHh7YvXs3zM3NcfjwYeYVA93c3JCQkIA+ffpgyJAherknEWHfvn1o2LAhQkND0axZM73cV7456wPABQCtdL3excVFX8kGOZwShSiK9PjxY/Lw8KAePXqQmZkZAaCaNWsyq9SXkpJCH3/8sVxLwMPDgwDQrl27mOg5deoUGRkZEQDav38/Ew1ZOX78uPxsXr58qZd7BgYGUp8+feS6JkePHtXpcyhJhXp0MQwAJgDwAeBTvXr1wj1FDqeEc+vWLZoyZQrVrl07R/lHKysrevDgARNdsbGx1KlTJwJA1tbWdPXqVRJFkUaNGsWkdOuTJ0/I2tqaANB3332nePvZSU5Oppo1a+qtTIBaraYNGzZolaKtX78+qdVqnT5vMIYBwFlILqPsR/8s1/AZA4eTD4mJifTtt99q6vbKh4mJCZ09e5aJptDQUGrWrBkBoKpVq9L9+/fl93StdaxP4uPjqWHDhgSA+vXrp3NnWZzMnTuXAFDTpk2LXD/84cOH1LFjxxwDg40bN+p8D10NQ7GvSiKi7sXdBodT2klLS0NISAjUarXW+c2bN+PDDz9UXM/z58/Ro0cPvHjxAvXq1cPp06dRs2ZN+X2lA71qtRojR47Ew4cP0bBhQ+zdu5d5FcX79+9j9erV8p4FU1PTt75Xamoqtm/fniPXk42NDUaPHl1UqTngy1U57zxRUVFYtGgRBEGAqakpTE1NYWJiIv+ueV29enUMGTJE0SWPRARPT09Mnz4d0dHRMDMzg6WlJaKjo/Htt99i3LhximnR4Ofnh169eiEiIgItW7bEiRMnmCWi07BgwQIcO3YM1tbW+Ouvv1ChQgWmekRRxMSJE6FSqTBp0qQip94wNzfHqlWrEB8fj4CAAPn8hAkTdN6ol31QkS+6TCuK6wAwEEAwgHQAEQBO6fI57krSnbS0NNYStDh27BgNHjyYVq5cSRcuXKDExETWkoiIaNu2bTmm6FmPiRMnUmxsrKKaXr16Rb1795Y1dOnShR4/fkwjRoygoUOHMnGVXLx4kSpUqEAA6IMPPqD4+HjFNWRn//79BICMjIzo1KlTrOUQEdHmzZsJADk4OOjt7+ann34iAGRmZkbDhw8nExMT+vfff3X+/K5duwwnxlAcR/PmzXV+GEpx48YNCgoKYi1DC5VKRT179qTAwEDWUmTu3r0rBwc1X+amTZvSV199RVu3bqWIiAjFNZ09e5batWuXq0Fo2LAhXb58WXFN3t7eZGFhIQeXf/31V9kQHDx4kFJSUhTXdOnSJdLUWx80aBClpqYqriE7/v7+ZG5uTgBo9erVxdpWUFCQTgH18PBw+W/c09NTL217eXmRIAjySqvo6GgaO3aszp/PyMjQLFwovYbBzMyMTpw4ofNDUYK2bduSra0t/fXXX6ylyAwfPpyMjIyoUqVKzAKU2dGMerIe5ubmNHr0aLp8+TKTlSwXLlzIoalMmTK0ePFiZjOukJAQqlChAg0aNIhCQkKYaMhOYmIitWnThsaPH08qlYq1HCKSgtzjx48v1lVQjx49opEjR9LixYt1uj4zM5N+/vlnGjx4sF403bp1SzZ+S5culc8nJyfrfA+VSkV79+4t3YahUqVK1KJFC7p27ZrOD6Y4SU5OptGjR1OnTp3I2dmZPDw8mK+IUKlU8tpyzch81apVTDrerAQHB5OzszMBIBcXF9q0aRPFxcUx1ZSenk5eXl60ePFiAkDvv/8+PXz4kKkmIjKomZ6GxMRE5n9D2RFFkTIzM/V+34cPH9KIESPIyMiIHB0dC9URa3QVlcDAQKpcuTIB0Ivx09UwCNK1JYtWrVqRj4+PXnODlDaSk5Ph6+uLyMhIREZGIiIiApGRkejatSuGDRvGTNfr16+xePFifPnll2jRogUzHbkxffp0NG3aFGPHjmW+ooXDjocPH2Lp0qXYv38/NP2jp6cnhg8frqiOhIQEdOrUCffv30fnzp1x+vTpIpcNFgThNhEVmH6oRBsGDkefpKen83rd7zABAQFYunQp/vjjD2TtFzt16oRLly4puhpNpVLhk08+wYkTJ1CvXj1cu3YNFStWLPJ9dTUMfFjE4fwHNwrvLvHx8Vi/fj1OnDihZRQEQcC6desUz8rq5uaGEydOwNbWFt7e3noxCoWBGwYOh/POY2VlhTVr1qBTp05a57/66ivFXZ7r1q3Dhg0bYGpqikOHDqFevXqKtg/wDW4cDoeDxMRE9O/fH+fPn4e1tTVMTEyQmZmJZcuWKarj2LFjcHNzAwBs374dnTt3VrR9DdwwcDicd5qYmBj07t0bt27dgoODA06fPo1Nmzahfv36iu7o9vP7//buPaqqMn8D+PMCgqkZiEqKlwwaDbUSS5N0cKqlaJmhY+EkpaJTWqwsU5mlo+bUNAwa6VgMtkKlHMSleAksL3iPn4KWiJp4YzQvCEJcFTic8/z+QPZwFBSFszfQ97PWXp0D56z3WW+yv/vy7vc9jICAAFgsFvz1r39FYGCgbm3fTAqDEOI369KlSxgyZAiOHTuGrl27Yvv27fD09MRbb72FRx99VLccFy9exIsvvoji4mKMHTsWH374oW5tV0fuMQghDFNcXIy4uDjs27dP97YzMjIwaNAgHDt2DD169MC+ffvg6ekJAHj88cd1mwiwqKgII0aMwMWLF+Hj44OoqChDlyAFpDAIIXSWk5ODFStWYOTIkWjbti0+//xz9O/fX9cMx48fx8CBA3H27Fl4e3tjz5496NSpk64ZgP/NCvvTTz/h4YcfxoYNG9C8eXPdc9xMLiUJIWzu/Pnz2LBhA9avX4+9e/dqM31269YNa9asqdOU1Hfr4MGD8PPzQ05ODgYOHIj4+Ph6XYP5bsyYMQObNm2Cs7MzEhISblkz2yhSGIQQNlNSUoKJEyciJibmlt+1bNkSGzdu1HWM/u7duzFixAgUFhbCz88P69atQ4sWLXRrv6qIiAiEh4fDwcEB69atQ48ePQzJUR25lCSEsJnmzZtjxYoVeOGFF2753cqVK9G7d2/dsmzevBl+fn4oLCzEmDFjsHHjRsOKwpYtWxAcHAwAiIyMxLPPPmtIjppIYRCiiburBVrqWW5uLsaPH4+EhASrn8+dOxejR4/WLUdsbCxGjhyJkpISBAUFISYmRvdV5iqlpaVhzJgxMJvNCAkJwcSJE23eJknEx8ff3Rca2yYL9QhRvaysLG7bto1hYWEcN24cn3zyScOmqI+Pj2eHDh20qdVnzpxJABw5cqSusw8vW7ZMW8vg/fffN3R22MuXL7NLly4EwD/+8Y827weTycT//Oc/7N27d+VMy0132m0pDEKQV69eZUxMDENCQjhs2DBtJ4wq61wYsaJZfn4+g4KCtBwDBgzgyZMnWVZWxscff5wFBQW6Zam6/seCBQsMLQrFxcV86qmnCID9+vWz6WJLJSUljIyMrFychwA4btw4KQxCNHVlZWUMCQmpduW5Vq1acdeuXbpnSkxM1I6IHR0dGRoaarWoT2Zmpi45LBYLZ8+erfXH4sWLdWm3JmazmaNHjyYAdu3a1Wb9UFBQwLCwsFsOElq3bs3Lly9LYRCiqSsrK+OyZcvYpk0bq53AAw88oPsiVkVFRXznnXe0DN7e3kxLS9M1QyWz2axlsbOz44oVKwzJUdWsWbO0HbSt+qWkpISTJk2ig4PDLQcKS5YsIUkpDEI0VeXl5Vy5cqXVZYLKzdXVlYcOHdI1zw8//EBPT08CoL29PefNm8eysjJdM1QymUwMDAwkADZr1ozr1q0zJEdVX375pdY333//vU3bslgsDA4Otvo38cQTT2gr3NW2MMhzDELc5JtvvkFmZiaUUrCzs7P6b+VrOzs7jB49WtcHkiwWC9asWYP58+cjPT0dAODp6Yn58+cjOjoaqamp2L59O3r16qVLntLSUsybNw9hYWGwWCzw8vJCdHQ0+vbtq0v7NyspKcHYsWOxYcMGtGjRAuvXr8eQIUMMyVIpMTERU6ZMAQAsXboUQ4cOtVlbZrMZU6dOxbJly6CUQqtWrVBYWIiIiAg4ONzlrr421aOhbXLG0HilpqYyNjaWW7duZUpKCs+cOcPc3FzD18iu6siRI3Rxcan22j0Aenh4cOfOnbrlsVgsjIuLqzqyhF27dmVUVJR2JPjWW28xPT1dt0yHDh1iz549CYBKKc6cOZPXr1/Xrf2bFRYW8rnnntMupf3www+GZal0/PhxPvDAA9poKFu6du0aX375ZQKgk5MT161bxzfffJOTJk2y+hzkUpI4f/68Yaf0NcnPz6eXl9ctO1ulFF1cXPjwww/T19eXSUlJumcrLy9nUlISZ8+erd1ArbrZ2dlx+vTpd70o/L2yWCxMSEhg3759tQzu7u6MiIhgaWmp1Wdvfm8rZWVlnD9/vnYd28PDg/v27dOl7Zrk5uby6aefJgC2b9+eP/30kyE5Tp48yaVLl7K0tJRZWVns1q2bNjy36g34+vbrr79y0KBB2j2MykEHO3fuZHZ2tva57Ozspl0YevTowZiYGJt29t0oLy9neHg4P/vsM65YsYLbtm0zdFhcpU8//ZQODg7s3r07X3rpJc6YMYNfffUVs7KyDMu0detW+vn5VXskrpTihAkTePHiRV0zpaSkMDAwkG3btq3xLKFnz548cOCAbplSU1M5YMAArX03Nzd+9tlnhh6Vnz17lt7e3lqmt99+m0VFRYblISue23jssccIgJ07d9b1rKmy/X/961/s378/lVL87rvveP36dfr4+Gg34W3ZRxcuXGCvXr0IgB06dGBqamq1n7NYLBw1alTTLgxOTk6GjXioSeUfzBtvvMELFy4YHYckteFxlduIESO4d+9eQ4vW3/72t2p3vL6+vrrfNK0UHx+v5ejSpQunTJnCTZs2sVmzZnRwcODcuXNZUlKia6ZTp07R3t6erq6uDA0NNXwHTFYcmbq7u7Nz587ctm2b0XFIVlxC8fX15SOPPMJz587p1ubq1av54osvWo0ACgkJIVlxVjV58mS6u7vb9CDn+PHj7Ny5MwHwd7/7HTMyMmr8rNls5j/+8Y+mXRj69OlzL/1oU5s2bWJycrLRMaykpKTQ0dGREyZM4LFjx4yOQ7LiSLjqOGsPDw/GxcUZWqyuXbvGTz75hGlpaVqO9PR09u3bt8YjMD1s2rSJ+fn5hrVfncOHDzMvL8/oGFby8/N1eT7i6NGjHD9+PO+///5bDmyeeeYZ7X4PWXGEbstMSUlJ2jDlfv36WV0yup0mXRjkHkPtnDt3rsGcvVSVm5tLFxcXLly4UPcj8drKy8uz+kMXwmQyMSoq6pbnRtq0acPz58/rliM+Pp733XcfAXDYsGF3dTZZ28Igw1WbsC5duhgdoVomkwnp6ekNZu756hg1P79ouCwWC9LS0pCbm2v18+joaHTu3FmXDMuXL8fkyZNhNpvxxhtv4Msvv7TJWhYyu6rQXfv27Rt0URDiZmfOnMEzzzyD8PBw2Nvbw8fHB0DFQjvVTSle30jik08+wcSJE2E2mzFr1iwsX77cZgscyRmDEELcxpo1azB58mQUFBSgS5cuiImJwbVr1zB37lx8/PHHNm/fYrHgvffew5IlSwAA4eHhmDZtmk3blMIghBDVuH79Ot577z1ERkYCAEaOHImoqCi0adMGOTk5WL16tc2XJC0tLcXrr7+uLX8aHR2NgIAAm7YJSGEQQjQCJKGU0q29EydO4JVXXkFaWhocHR2xcOFCvPPOO1oGV1dXmy9JWlBQAH9/f+zYsQOtWrXC+vXr8fzzz9u0zUpSGIQQDQpJnDlzBvv378f+/ftx+fJlLFmyBO7u7rq0v3LlSkydOhXXrl2Dp6cnYmNj4e3trUvblTIzMzFs2DAcPnwY7du3x+bNm3Wdg0oKgxDCUHl5eUhJSdEKwYEDB5CTkwMA6NixI/bs2aNLUSgqKsLUqVPx9ddfAwACAgIQGRmJ1q1b27ztqk6dOoWhQ4ciIyMDHh4e2LJlCzw8PHTNIIVBCGGYXbt24eWXX0Z+fv4tv3vwwQexY8cOXXaKqampePXVV5Geno777rsPS5YsQVBQkK6XrwDg4MGDGD58OLKzs+Ht7Y3NmzfDzc1N1wyADFcVQhho8ODBWLly5S074Hbt2iExMRHdu3e3afskERERgf79+yM9PR1eXl5ITk7GpEmTdC8KW7duxeDBg5GdnY3nn38eu3btMqQoAFIYhBAGuXDhAiZMmAB/f/+KaRhucHV1RWJiIry8vGzafl5eHsaMGYOpU6eitLQUQUFBSElJ0W09i6pWrVqFF154AcXFxQgICEBCQgLuv/9+3XNoavN4dEPbZEoMIRqvgoICzpkzR5vWwcHBgcHBwWzTpg2dnZ35448/2jzDgQMH+NBDD2nrY69atcrmbdZk0aJF2vQa06ZNs+naJJC5koQQDYnJZGJERATbt2+v7QhHjRrFkydPkiT79Olj84kozWYzFy5cqM2K2qdPH619vZnNZn7wwQdaX4SGhtp8MsnaFga5+SxEE2UymZCTk4OcnBxcvXrV6vX169cRHBysy9QkJJGQkIAZM2bgxIkTAIB+/fph0aJFGDhwoPa5uLg4PPTQQzbLcfXqVYwfPx4JCQkAgODgYISFhcHJyclmbdbEZDJh4sSJ+Oabb2Bvb4+oqCi8/vrruueoUW2qR0Pb5IxBiJp9/PHHbN26dY2LDnl6evLIkSO6ZDl48CAHDx6std2tWzeuXr1a92nWd+/eTXd3dwKgs7Mz4+LidG2/qsLCQg4dOpQA2KJFC27evFm3tiGXkoT4bTKbzRw+fHi1RcHf31+X9RTOnTvHcePGae06Oztz0aJFuk+zXl5ezgULFtDOzo4A+PTTT/O///2vrhmqysrK4lNPPUUAdHV15f79+3VtXwqDEL8xv/zyCz/66CN6eHjcUhDs7e0ZFhZm8yP1vLw8zpo1i05OTgTAZs2a8f3332dOTo5N263OpUuX+Oyzz2p9MHPmTEPXQD979iwfeeQRAmDXrl154sQJ3TPUtjDIPQYh7mDjxo04d+4c7O3ttc3BwcHqvb29PQYMGIBOnTrpmq20tBTffvstvvrqK2zduhUWiwVAxRPDTk5OyMjIgJubG2JjY+Hr62uzHCaTCZGRkfjwww9x9epVAMArr7yCv//977o/tQtUPBMQGBiIrKwstGvXDtHR0fDz89M9R6XU1FT4+fkhMzMTvXv3xvfff4+OHTsalueOalM9GtomZwxCT6dOnaKbm1uN1+xdXFy4fPlyXa+bHzlyhNOmTaOrq6uWo1mzZhw9ejQTEhJoMpk4YsQIDho0iJcuXbJZDovFwvXr12tHwgDo4+PDpKQkm7V5O2VlZQwJCdGyDB482KbrLtfGzp07tXs+v//97/nrr78algVyxiAaIrPZjC+++AJ5eXkoLy9HeXk5TCaT9rpye/DBBzFr1iy0bNnSsKwkkZqaiu+++w4uLi64cuXKLZ959dVXsXjxYl2eUM3Ly0NMTAyioqJw8OBB7ec9e/ZEUFAQxo0bZzXKaMyYMQgICLDZ1NDJycmYPn069u3bBwDw9PREaGgo/P39dX9qGADOnz+PsWPHIikpCXZ2dpg3bx5mz54Ne3t73bNUWrt2LV577TWUlZVh1KhRWLVqFZo3b25YnlqrTfWw1QYgDMAJAEcArAfgXJvveXt789ChQ/VdTOuspKSEa9euNeR66s0yMzMZFxfHzz//nHPmzGFQUBCHDx9Ob29vfvHFF7qPCqlq9+7d2sNN1W2BgYGGHVXl5eVx7dq1DAoKYseOHWvM6O7uzo0bN9o8j9lsZmJiIl977TU2b95ca79169Z88803mZycrPv/y7NnzzIgIMBqzePFixeztLRU1xxVbdiwgS4uLgTADh06cOfOnYZlqbR06VIqpQiAU6ZMYXl5udGRGsfNZwBDADjceB0KILQ232vVqhV37NhR3312z06fPs23336bLi4uDAkJMToOSbK0tJSjRo2y2pm1bNmSa9euNTRXcnIyp02bxrZt296ys23Xrp0hwwgzMjIYGhpKX19f7cGnys3NzY3jx49nbGwsnZ2dtT9yW4/suXLlChcsWMBu3bpZ5fnDH/7Ar7/+msXFxTZtvzp5eXn84IMP6OjoSAB0dHTkjBkzDL00UlJSwnfffVfrn2HDhjErK8uwPGTF5bXZs2drmRYsWGDogVil8PDwxlEYrIIA/gBW1eazjo6ONJlM9dtrdVBSUsIOHTqwX79+ho56uJmvr6/V+HG9xq7fzvTp02scRnnlyhVDMsXGxmo57Ozs6OPjw48++oiHDh3SpifIzMxk9+7duXfvXl0yHT16VMvUqVMnzpkzh6dPn9al7ZpkZ2dr18r/9Kc/MSMjw9A8JFlUVEQvLy86ODjwn//8p02nk6gtk8nE4cOH087OjsuWLTM6jiY4OLjWhUGR/5u8ykhKqW8BxJL8pobf/xnAn2+87QXgqF7ZfgPaArhqdIgmQvqyfkl/1q/uJO84O5/NC4NSajuAB6v51WySG298ZjaAJwGMYi0CKaUOknyyfpP+dkl/1h/py/ol/Vm/atufNh+VRPK2i5Qqpd4A8CKA52pTFIQQQtiWocNVlVJ+AGYB8CV5zcgsQgghKhi9UM9SAPcD2KaUOqyU+nctv7fMhpl+i6Q/64/0Zf2S/qxfterPBnPzWQghRMNg9BmDEEKIBkYKgxBCCCuNtjAopcKUUieUUkeUUuuVUs5GZ2qslFJjlFLHlFIWpZQMDbxHSik/pVS6Uuq0UirE6DyNmVIqSimVpZSS55XqSCnVWSm1Uyn1842/83fv9J1GWxgAbAPQi+RjAE4C+IvBeRqzowBGAdhjdJDGSillD+BzAMMAeAEYq5TyMjZVo7YCgHHzZDct5QCmk3wUwNMA3r7Tv81GWxhIbiVZfuPtfgD6ToTfhJD8mWS60TkauX4ATpM8S7IMwGoAIw3O1GiR3AMg1+gcTQHJyyR/vPG6EMDPANxv951GWxhuMhHAd0aHEL9p7gB+qfL+Au7wxyeE3pRSDwHoA+DA7T7XoNdjuIvpNMoBrNIzW2NTm74UdVLdAgQyFlw0GEqpVgDWAZhGsuB2n23QhUGm06g/d+pLUWcXAHSu8r4TgEsGZRHCilKqGSqKwiqScXf6fKO9lFRlOo2XZDoN0QCkAHhEKdVNKeUIIADAJoMzCQFVsZzeVwB+Jvlpbb7TaAsD7n06DXETpZS/UuoCgAEAEpRSW4zO1NjcGAjxDoAtqLi5t4bkMWNTNV5KqRgA/wegu1LqglIqyOhMjdgzAAIBPHtjX3lYKTX8dl+QKTGEEEJYacxnDEIIIWxACoMQQggrUhiEEEJYkcIghBDCihQGIYQQVqQwCCGEsCKFQQghhBUpDELUA6WUvVJq8Y357tOUUg8bnUmIeyWFQYj68RcAZ0n2BLAEwFSD8whxzxr0JHpCNAZKqZYA/En2vfGjyzfqPwAAALVJREFUDAAvGBhJiDqRwiBE3T0PoLNS6vCN920AbDcwjxB1IpeShKi7JwDMJfkEyScAbAVw+A7fEaLBksIgRN25ALgGAEopBwBDAHxraCIh6kAKgxB1dxIVi6wDwHsAEkhmGJhHiDqRabeFqCOllAsq1hxvi4o1BP5M8rqxqYS4d1IYhBBCWJFLSUIIIaxIYRBCCGFFCoMQQggrUhiEEEJYkcIghBDCihQGIYQQVqQwCCGEsPL/UGVVpOEn9awAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:12<00:00, 2.20it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXdYFNfXx79DB1HAhlgQrGBX1BhLLIktRI1iCfYSY6ImEZPXRGNJjLGLRo3+oibGTmI3UeySBLtglyCxA0uTKnXLef+Y7LhL0V1Y9g54P88zD+zszJ0vs8s9c8699xyBiMDhcDgcjhYL1gI4HA6HIy+4YeBwOByOHtwwcDgcDkcPbhg4HA6Howc3DBwOh8PRgxsGDofD4ejB3DAIglBHEIQzgiBECIJwWxCET1lr4nA4nFcZgfU6BkEQ3AC4EVG4IAgVAYQBeJeI7jAVxuFwOK8ozD0GIlIQUfh/v2cAiABQi60qDofDeXWxYi1AF0EQPAC0BnCxkPc+APABANjZ2fk0bdrUrNqKIjk5GQ8fPoSnpydcXFxYywHwXJObmxvc3NxYywEAJCYm4smTJ3B2dka9evVYywERIT4+HgqFAra2tvD29oYgCKxl4dmzZ3j48CGUSiWaNWsGa2trpnru378Pd3d3pKeny+p7/uTJEyiVSqhUKtjZ2aFmzZqwsmLbnaWlpcHKygrZ2dnIyMhAlSpVUKlSJaaaiAiCICArKwtxcXFISUlJIqJqBp0ohw2AI8Qw0qCXHevp6Uly4MiRI2RlZUUAaNGiRazlkEajoaVLlxIAAkCffvopaTQappri4+PJ19dX0jR69GjKy8tjqun06dPk7e0taRo4cCAlJycz1ZSenk5TpkyRNDVt2pRu3brFVNPt27cJAA0aNIisra0JAC1cuJCpJi3+/v7SvRIEgdasWUOrV68mpVLJTNPRo0fJ0tKSateuTQBo5MiRNHLkSLpw4QIzTRERETRo0CBasmSJ9n5dIUP6Y0MOKu0NgDWAYwCmG3K8j4+PiW+f8Zw7d47s7e0JAE2fPp15B6xSqejjjz+W/lmWLVvGXNORI0eoevXqBICcnJxo165dTPXExMTodSj169enI0eOMNHyww8/SL8fP36c6tatSwDI0tKSZs+eTTk5OUx06TJ69GjpXgGgTz75hPl3SkuPHj30tAGgoKAgppqioqIKaGrbti3Te6bRaKhKlSq6msqGYQAgANgKYJWh57A2DLdu3SIXFxfpCVitVjPVk5WVRX5+fgSArK2taceOHUz1ZGdn6xmpLl260KNHj5jpycvLo8DAQKpYsSIBIDs7O/rmm28oOzubiZ7t27eTIAgUHx9PEyZMkO5Tq1atKDw8nImm/Dx48IAsLS31Orl27drRd999x9zjIyJq1qyZnrbPPvuMtSTKzc0lCwsLPV0HDhxgLYv69+9fJg1D5/8E3wBw7b/t7Redw9IwPHz4kGrVqkUAyNfXl/k/ydOnT6lz584EgCpVqkSnTp1iqufGjRvSP62lpSV99913pFKpmOn566+/qHnz5tI/hq+vL927d4+ZnnPnzpGtrS0BoMqVKxMAsrGxoQULFjD/LukyefLkAk+/vXv3prt377KWRkQkeaIAqEePHkxDSLpoPT8A1Lx5c+YPjUSkG0YqO4ahOBsrw5CQkECNGjUiANSpUyfKzMxkokPLw4cPpVh5zZo16fr168y0aDQaWrVqldTp1a9fny5evMhMT1xcnF4oxMPDgw4dOsRMD5H4eel2aACoffv2zMcS8qNQKKTPEQDVqVOH9u7dK5swkkqlkp7M3d3dKSEhgbUkie7du0v3jXXoVEtoaCg3DKVFeno6tW3bVnoSYD1Yee3aNXJzcyMA1KRJE6ahGoVCQX369JG+fOPHj6eMjAyzXT82Nlb6XalU0urVq6lSpUrS0/icOXOYG/H09PQC4Q/tZ3f8+HGm2vIzY8YMAkBWVlb0xRdf0LNnz1hL0iM+Pp4AkK2tLV25coW1HD3ef/99AkANGzZk6inrkpOTo2vouWEwFTk5OdJgl4eHB8XExJj1+vk5ceKEFC/v0qULUyP1+++/U7Vq1QgAubi40O7du816/ZCQEHr33XeJSAzTtGrVSnahD5VKRe+8804Bo1CjRg16//336cCBA7LpRJKTk8nR0ZF69OhBd+7cYS2nUG7cuEEAaPPmzaylFGDhwoWy1NapUyduGEyJSqWiwYMHEwCqXr06845m27Zt0hTZIUOGMBtAzczM1ItDd+vWjR4/fmxWDdeuXaNKlSqRl5cXjR8/Xrahj88++0zS5uPjQ/PmzaPLly/LIv6cn59++ol27dolm3tXGCdPnqTJkyezllEoQUFBVLduXVmNFxGJXqCdnR03DKZAo9HQpEmTCABVrFiR6YwRjUZDixcvljqYadOmMetYrl69Ko1tWFlZ0eLFi83+xHv//n2qUaOG3hO4tbU1ffnll7IKfezcuZP69+9PGzZsYO5pGoJcPJcX8c8//1Bubi5rGYVy6dIlWrduHWsZBTh06BC999573DCYgjlz5kixzDNnzpjlmoWhUqlo6tSpUge4YsUKJjrUajWtWLGCbGxsCAA1atSISYw3ISGBGjZsqGcULCwsKDg42OxaXoZcZstwzENGRgYzL/5FJCUl0dGjR7lhKCnff/+91OHs27ev1K9XFFlZWTRw4EDpiZjVTIeYmBjq2bOn1BFPnDiRyZN5RkaGNAkg/yaH6bocjlzRaDTcMJSEHTt2SJ3Nxo0bS/VaLyIpKYk6duwodXqnT59momP//v3S6snKlSszM5S5ubnUq1cvPWPQsmVLCggIoN9//51SU1OZ6OJwygrcMBST4OBgWeQ/evDgATVu3JgAUK1atejGjRtmue7Dhw+l3589e0YffPCB1Am/+eabzOLkarWahg8fTl5eXjR58mTas2cPJSYmMtHC4ZRVuGEoBufOnSMHBwcCQAEBAcxmZoSHh0sDq02bNjXbbJ9nz55R06ZNKSkpicLCwiTDZG1tTcuXL2c6iyYlJUVvvQKHwzEebhiMRDf/0ahRo5h1gsePHydHR0cCQF27dqWUlBSzXFej0dDw4cMJEPM/abNpenl5ySZ/D4fDKRncMBiBXPIfbd26VQpjDR061KwZNtesWVNgMPejjz5ivmKYw+GYDkMNA/MKbqxJTExEr169EBMTg06dOuG3334ze3EUIsKiRYswevRoqFQqBAQEYNeuXbC1tTXL9c+fP4/p06fr7WvTpg1mzpwJBwcHs2jgcDjy4ZU2DBkZGXj77bdx9+5dNG/eHL///rvZO0K1Wo0pU6Zg1qxZAIDAwEAEBgbCwsI8H01CQgKGDBkCpVKpt//GjRv45JNPkJSUZBYdHA5HPsiqtKc5yc3NxcCBA3HlyhV4eHjg6NGjZi9ZmJ2djeHDh+PAgQOwsbHB1q1bMWzYMLNdX6VSwd/fHzExMQAACwsLdO/eHcOGDcOgQYNQpUoVs2nhcDjy4ZU0DGq1GiNHjsSpU6dQvXp1HD9+HDVr1jSrhqdPn6Jfv344f/48nJyccODAAXTr1s2sGubOnYszZ87gjTfewLBhw+Dn5wdXV1ezauBwOPLjlTMMRIQpU6Zgz549qFixIoKDg9GwYcNSv65Go5HCQw8ePEDfvn0RGRmJWrVq4ejRo2jWrFmpa9DlwYMHcHV1xZMnT1CrVi2zXpvD4cibV26MYd68efjxxx9hY2ODgwcPok2bNqV+TbVajS+++AIAEB4ejtdffx2RkZFo1qwZLly4YHajAACenp749NNPuVHgvBS1Wo0jR46wlsExI6+UYVi9ejW+/fZbWFhYICgoCN27dzdJuxqN5oXvr1+/Ht9//z3279+Prl27Ij4+Ht26dcPff/+N2rVrm0RDfnJyckql3ZKQlpYGtVrNWoYeOTk5SEhIYKpBnEX4HI1Gg3v37jFSU5C5c+fixx9/RHJyMmspehw5cqTAvWNNXl4eawmmwZA5rXLbmjZtavT83dLKf/TPP/+Ql5cX/f3334W+HxMTIxXV0W7Dhg0r1TUKDx48IA8PD9q5c2epXcNYIiMjqVGjRjRjxgzWUiTOnTtHXl5e9OabbzJb5a7RaOirr76SXp89e5Z8fHyoZs2aZq2CVxSHDh0iAFShQgWqWLEi3bx5k7UkIhJTpHh6etLbb79NW7ZsYS1HYu3atbRs2TKaN2+eLD4/IqLTp0/TuXPnaObMmeV7gVuNGjWMujG6+Y8WLlxo1LkvIisri1q0aCF19oUxbNgwPaPg5eVF8fHxJtOQH4VCQfXr15equ8mhGMzJkyfJ2dlZKovKetFcZmYmBQQEkCAIUhlGFuk2NBoNTZ8+nWxtbSk6OppGjBghfU9q1qzJfMX5vXv3pM9Nu8mlEz5x4oSkqU2bNnTmzBlZFBeaO3eupGvIkCHMC3sRif9/2u96uTYMrVu3NvimnD9/vtTyH2nru9avX7/QzJ7/5T8vsDVu3JgiIyNNpkNLcnIyNW/enABQq1atzJZO40WsW7eOLC0tCQD169eP0tPTmeo5ffo01atXT0qpPmPGDMrKymKi5dtvv5W+E9rvqI2NDc2aNYv502Z2dja1bt260O/usWPHmGoj0n/gql27NrPMw/n5+OOPJV1ffvklazlERHT37l3dz7D8GgZDU2Lcvn2bKleuTABo5MiRJn163rZtm/SPHBYWVuD9rKws6cldu7Vs2ZJ27txZKsVbMjIyqEOHDlIBndL0SgxBqVTSlClTpL99xowZZq8Opnuf09LS6MMPP5T0NG3alC5dumRWPbqsXr26QKc7YMAAunfvHjNNumgferRbxYoVadSoUXT48GHm1dMSExOlYlHDhg1jWvM8PyNHjpS8dbkUacrOzuaGQUtp5j+6c+eO9IRXVBk/bfU3ANS9e3cKDg4uNVc3Ozub3nzzTQLEesePHj0qlesYSkpKilTUx9ramklh9M2bN0tPtsHBwVSnTh0CxFKkc+fONWseqvxs2bKlUE+yZ8+eemnPWbF582YCQHZ2djRkyBDau3cvM6+qMAIDA6lixYq0detWWYSPdPH19aVq1arJroyrq6ur1nN/dQ1DQkICNWrUiABQx44dTRrT1qam1j6tFPbFjIiIIDs7O/Lz86OLFy+a7NqFoVQq6d133yUAVK1atVIJURnD3bt3pXTdVatWLXJQvjT566+/yNrampYsWUJjxozRi0Vfu3bN7Hp02bdvH1lYWOgZBGtra+rYsSN98cUXFBISwlTfnTt3aOjQobRjxw7mYb/C0NZhf/DgAWsphdKlSxc6ceIEaxkFaN++PY0dO/bVMwxPnz4lIqL09HSp9GOzZs1M7mb+d3OpYcOGlJaWVugxu3btMksHrVarafTo0QSAnJyc6OrVq6V+zRdx6tQpKXV5s2bN6P79+2bX8O+//0rV5rSbra0tLVq0iLlrf+LECbKxsaEKFSpQz549af78+XTmzBlZPY3LYbLCi1CpVGYPSRrD7t27WUsoFH9/f4qKinq1DMOjR4+kNNXakIqHh4fJ3TldF5v1k6dGo5EGuuzt7Sk0NJSpnv/973/SzC9fX98ijWZpkpqaSt7e3npGwd3dnSIiIsyuJT+ZmZn0448/0qVLl5gbKM6rh7a/eqUMw9SpU8nKyop8fX2lkIqpp4ndvHmT7O3tCQBt2LDBpG0XB+20OGtrazp69CgzHUqlkj755BOpI/7ss8+YPNEplcoC9aC1W9++fc1WBY/DkTOvjGFQKBRka2urN3uisFlCJSEjI4O8vLwIAI0YMYL5gNeKFSuk6Zbmdl11//aUlBTq3bu3ZKB++ukns2rRRXcGlPbedOnShZYsWUK3b99m/plxOHLglTEMn3/+uV6HYG9vT/3796dTp06Z5EZqNBppCpqXlxfz+eWbNm2S/lZzd8S5ubm0YsUKIiKKioqSjGWVKlXozz//NKsWXdauXUsAyNnZmfz9/WnHjh2UlJTETA+HI1deCcOQlJREFSpUKDDfOjAw0GTTUzdu3CgZHNbpAHbv3i3NaFm5cqXZr//NN9+Qh4cHnTlzRlof0qRJE6Zz76OiomjmzJn0559/8tg9h/MSXgnDoLtWAACNGjWKFAqFyW7i9evXyc7OjgDQzz//bLJ2i8PRo0fJ2tqaANC8efPMfv0bN25I19cOMvft25fJIDOHwyke5d4wpKamkpOTEwGgFi1amHy+fHp6urQWYsyYMSZt21j+/vtvaeD7k08+MXu8XKlUko+Pj54R9vX1lfW0QQ6HUxBDDUOZTbv9ww8/AADWrFmDsLAwdO7c2WRtExE++OAD3L17F02aNJGuxYKrV6/C19cX2dnZGDNmDFauXAlBEMyqYdmyZQgLC9Pbd/jwYbzzzjtITU01qxYOh1P6lMkKbhqNBmlpabh79y6qV69u8vZ//PFHBAUFwcHBAbt370aFChVMfg1DiIyMRO/evZGeno6BAwdi06ZNUhU4c3Hnzh18/fXXevu8vb3x8ccfY9SoUXB0dDSrHg6HYwYMcSvkthmaRK84hIeHS9Nft27dWmrXeRmPHj2S8vv07NmTSW4flUpFr732GgEgQRCof//+dOLECT71k8Mpo8DAUFKZ9BhKi7S0NAwZMgS5ubmYMGECRo0aZbZrE5EUIoqPj0fPnj3x5MkTvP7669i/fz9sbW3NpkXLypUr8c8//2D69OmYMmUK6tWrZ3YNHA7H/HDD8B9EhPfffx/37t1D8+bNsWbNGrNef/v27ejQoQOqVauG3r174+7du2jRogUOHz7MJJSVlZWFatWqITo6moeLOJxXDEH0LsoWbdu2pStXrpi0zbVr1+Ljjz+Go6Mjrly5gsaNG5u0/RehUqnQpEkT9OvXDxcuXMC5c+fQoEED/P3336hRo4bZdHA4nPKNIAhhRNT2ZcdxjwHAlStXMH36dADAhg0bzGoUACAoKAhRUVEIDAwEANSuXRsnT57kRoHD4TChzE5XNRWpqakYOnQolEolJk2aBH9/f7NeX61W49tvv9Xb17VrVyQkJECj0ZhVC4fD4QCvuGEgIowfPx4PHjxAq1atsGrVKrNrCAoKwt27d/X27dmzBwcPHkR2drbZ9XDYEhERgUOHDrGWUQAiQkJCAmsZHDPxShuG1atXY//+/ahYsSJ2794NOzs7s16/MG9h0KBBiIiIwIIFC5itnygt5DieRURQKpWsZQAALl68iM6dO0OhUCAlJYW1HInExEQMGjQIJ0+eZC1FD5VKhV27drGWUYCsrCxZfteNwpA5rXLbWrRoUeL5vBcvXpRy//z222/FbicrK4vef//9YtV/2Llzp15x+pMnTxZbhy4qlYpGjRrFvHiPLkqlkvz9/ZnUfy6KtLQ08vf3p3HjxrGWQkePHpXqiLu5uVHDhg1lkXLkjz/+IFdXVymLrlxqGf/777/0+uuvU5UqVej06dOs5Ujk5uZS3759ZVfJ7dKlS7R+/frynSvJxcWlRDfp6dOnVLduXQJAU6ZMKVFb3333nVRP2JiFXyqViry8vMjFxYXWrFlj0sygCxYsIABUs2ZNys7ONlm7xSV/CdLExEQmOsLCwqR6vJcvX6Z69eoRAHJwcGBaQ3jXrl3SQ4p2q1ixIl2/fp2ZpmfPntGHH36op8nJycnkBbCMRaPR0KZNm8jR0VHSJZeHDZVKRe+99x5ZWlrSBx98IKsyqe+//z7VqFGjfBsGLy8vo2/Ms2fPiEj8YvXv358AkI+PT4lWFMfGxkppv48fP27Uub/99ht99NFHJu8kz507R5aWlgSAgoODTdp2cdBoNFIHY29vT3/99RcTHampqVSvXj1auHAhrVixQuqIW7ZsSf/88w8TTURiLQlBEApUnevdu7fJ65UbSmRkJHXv3p3q1atH3t7e1LJlS2rfvj116dKFdu3axUSTltTUVDp79ixduXKFbt68SVFRURQXF8dUk5Y7d+7Q0aNHKT09nbUUPdLT08nPz49iYmLKt2EoTkqM8ePHk0KhoOXLl0tPPyWtIzBu3DgCQP369TP63NTU1BJdu6g2PTw8CAAFBASYvH1j0Wg0NH36dAJAtra20tM6Cx1+fn5SvW5t5zt16lRmHpVGo6F58+YVWorU1dWVunXrRsuXL+fpRzgl5tmzZ5L3UqYMA4CfASQAuGXI8cYahtTUVLKzs6PevXtLtQT27dtnVBv5uXLlCgmCQFZWVhQZGVmitkyBRqOh4cOHEwBq1aoVk9xK+dHWy7CysqLff/+dmY41a9bodbw2NjYl/vxLgkqloqlTp5KHhwe9/fbb9Nlnn9GmTZvo7NmzzLwEORAbS9S7N5FCQUTbt5OyVl1SQyBl7bpE27ezllcuKGuG4Q0AbUrLMGirsGm3Dz/80Kjz86PRaKhLly6yeTInItq6dasUL4+IiGAthxYtWiTVXi7J4H5JuXz5coH4PQBq164ds7BWdnY2ZWZmMrl2aaPXuRu5b9o0IhcXom19thM5OIjdk3ZzcODGwQSUKcMg6oVHaRmGzp07F+gY2rdvX+wZFrt375ZmacjhCS8qKkoajNu4cSMTDQ8fPpQGcL///nvpPm/ZsoWJHiKilJQU8vT0LOAtDBw4kPbs2SOLgfmyzIs6d93nJUP2xcaKr8PDiR5b1NU3Ctqtbl1z/FnlmnJnGAB8AOAKgCvu7u4G34h///23gFHo1q0bRUdHG343dcjOzpbi+D/88EOx2jAleXl51K5dOwJAfn5+zGLSEyZMoAULFtCmTZuk+7x+/XomWohEr27gwIFSyvBu3brRxo0bZWHI5YyhT/dEL+7cK1cWjzd037Rp4kZEpIFQuGEQBPPchHJMuTMMupsxHoPuAJ+FhQXNnz+/RPPDtSGSJk2ayKL4/JdffkkAqE6dOsw6vaioKLK0tKQqVapIM2wCAwOZaNGycuVKatmyJS1dupSePHnCVIscMbSzL2rfyzr3adPE4w3Z98EHYluxseK+XLe6hRoGZe26pXErXim4YSBx/rw2lFC7du0Sx5QVCoUUsjl27FiJ2jIFp06dIkEQyMLCgv78809mOkaNGqXnkU2YMIHpbBq1Wi2LCQFywBgDYOjTvfb8F3Xu2vOcnF6+z86OaOLE5zq29tlOWYL+GEOulYM49sApEdwwENGff/5JAKh///6UlJRkxO0rnAkTJhAA8vX1LXFbJSUxMZFq1qxJAGjOnDnMdERERJCFhUWBcF2PHj142EYGGGoAtMca8sSvPf9FnTsRUevW4vayfW5uBR0Ef2ynBxBnJT1AXfLHdurUyTT35FWmTBkGALsAKAAoAUQDmPCi4w01DJMnT6bVq1eb5Ok1PDxcmp7KetaPRqOhAQMGEAB6/fXXmYa0hg0bpmcQHBwcaP78+eV21o1cKWpswFADUFhnX9jTfeXKogHQnq+lsM7dmI13+uahTBkGYzdDDcO///5r8A17ERqNhrp27UoA6NNPPzVJmyVh3bp1BIAqVapE9+/fZ6bjxo0bkkEQBIHGjRsnm1w65RVjxwYMMQBFdfaFPd1Pm0ZUsybv3Msq3DCYkL179xIAqly5Mj19+tSs19aiXaV98+ZNafXuzp07mWjRop3107VrVwoLC2Oq5VXB2LEBQwzAizp7bgDKF9wwmIicnBxpAHvNmjVmu64ueXl51LhxY4qPj6dmzZoRABozZgwTLVrCwsKoQYMGtG/fPp62oRQoaWhId58W/rTP4YbBRCxZsoQAkLe3N+Xl5ZnturoEBwcTAHJ3dycA1KBBA+aJusLDw2WRdqO8UtLQULt23ABwCmKoYeA1n19AfHw8FixYAAAIDAyEtbU1Ex3aYiSPHz8GAAwdOhTR0dFo0KABM02tW7dmct3yhkIBjBsH/PILoC3xrVAAW7YAp04Bb70FzJghdutbtgC3b4vHzJgBNGsGPHsGjBkDuLmJ+93cgNGjAUEALl1i8idxygHcMLyAOXPmICMjA3379kWfPn2YaMjJycH+/fv19i1cuBCJiYlYvXo1M8PAMQ1Ll4od+NKlQGDg831jxgCtW4ud/NKlomEozAD89hsQGwvkr0rbqZN5/w5OOcMQt0JumzlCSVevXiVBEMjS0pLu3LlT6tcrCu3At3azt7enX375hZkejvEUNZPImEFjHhrimALwUFLxISIEBASAiDB58mR4e3sz06Jb07Zhw4bYs2cPWrRowUwPx3gK8wq0+w31DHhoiGNWDLEecttK22PYv38/ASAXFxeTrJguLunp6dLUVD8/v1Ip7sMxHcbMJOKeQflDTqU8ddFdbAoDPQYLxnZJNmg0GgBAbm4uPv/8cwDA119/jSpVqjDTdPDgQahUKgQGBmL37t1wcnJipoXzcnQ9A919+b0C3f35PYPOnQtfPRAaav6/R65kZ2ezllAov/zyC06cOMFaRgG++eYbREREGHeSIdZDbltpeAwLFy6khIQEWrZsGQGgxo0bM5uequWDDz6g0NBQphrKM6b8fI0ZL1AoRA+AewbF46+//qJevXrR5s2bKS0tjbUciZiYGLK2tqZx48bJKk/Ypk2byNnZmU6fPm2wxyAQUWkYqVKlbdu2dOXKFZO22b59e1StWhVnz55Feno6Dh8+jLffftuk1zCWlJQUuLi4MNVQnpk3bx7Gjx+PunXrGn1u/mmmAQHi/pUrxd8FQezqtfu0aN/THWvIz4EDB+Di4oKuXbsarcuUXL9+HZcuXUJqaqq0BQQEoEGDBkx1AcCCBQswZ84c2NnZYcyYMVi1ahXs7OxYy8KIESOwc+dOuLm5ISgoCG+88QZrSYiJiUHt2rVhZWUFlUoVRkRtX3qSIdZDblvr/AlcSsizZ8+kWtAAyMvLiy5fvkyPHj0y6Pxff/1VVk8IRERBQUH0+PFj1jL02L59O126dIm1DCIiioyMJBsbGxoxYgStXr3a6PN1F6CZarwgOTmZRo4cSQBo8ODBJfjrTENeXh6tWrWKnJ2dCQDZ2dlJqVlYo1arqWfPngSAVq5cyVqOxMWLF8nW1pZ69uwpq4wArVu31mZwKL8rnytUqGDKe6Z1sfQ2JycnOnv27EvPvX37NgGgatWqyaJwDxFRdHQ0WVtbk42NDcXHx7OWQ0REd+8aPzNHAAAgAElEQVTeJXt7e7KwsGA6/ZdITIr41ltvSZ+1lZWVUckI84eNiso/ZEw58ODgYCmNOgDy9PSUTenRxMREmjJlCvXq1UtWq93j4+Np0aJFlJWVxVqKHocOHZLNZ6fl+vXrpFQqy7dhcHNzM+U9o2+//VbPKFSpUsXgpHDaCmrjx483qaaSMH36dAJAgwYNYqrj0aNHlJCQQCqVijp16kQAaPjw4Uw1ERHt3LlT7/N2dHSk6dOn08OHDwscW1RdY93UFCXNP3T06FEaOnQovffeezRy5EgaM2YMTZgwQTZP51oSEhJYSyiAnJ7KywLl2jB4eXmZ8l5Rnz59pE7Czc2Nbt++bdB5arWaateuTQAoJCTEpJqKS1JSElWoUIEA0OXLl5lqCQwMpMmTJ9OKFSsIALm6ujKd/ktElJqaSjVq1NAzDF5eXrR582bKzc0tcHxRdY0LG1DmcOROuTYMppyVpFarycnJiQBQ3bp1jarhcOrUKSm5nVzmMGtrXPfs2ZO1FOratStZWFiQra0tAaADBw6wlkRTp06VDMJrr71G+/fvL/Kze1ldYy3Gho04HFZww2Ag2mIzDRs2NHqwduzYsQSAZs2aZTI9JSE9PZ1cXFwIAJ0+fZqplqSkJL2Sny4uLvT111/T4cOHmWm6fPkyWVhYUN++fSkkJKRAGCJ/2KiwbKZ8mimnLMMNg4GsX7+emjVrRgojYwGZmZnk6OhIAJiX+tSyfPlyAkAdOnRgHnvdsmVLgQH9Fi1a0IMHD5jo0Wg0FBgYSNeuXSvyGENmGvGQEacsY6hheOVzJSmVSoSEhBi9wvnAgQN49uwZ2rVrBy8vr1JSZzi5ublYsWIFAGDmzJkQBIGpnoMHD+q9fvfdd7Ft2zY4Ojoy0SMIAgK0iw0KIX+q66LSWefPd8ThlEsMsR5y20w9xlAcevfuTWBY1U1LXFwcERH9+OOPBICaNm3KfLwjOztbGgAHQLNnz2auKT8vCxvxSmec8gh4KKn0iI2NJQsLC7KysqLExESmWt566y26c+cO1a9fnwDQ9u3bmeohIvrjjz+kFOFBQUGs5RQKDxtxXkUMNQyvfCipOOzcuRMajQbvvPMOqlatykwHEeHixYvo2LEjUlNT4enpiWHDhjHTo+XQoUOoXbs2Dhw4AB8fH9ZyCsDDRhzOi+HZVYvBtm3bAACjRo1iqiMuLg4ZGRlITU0FAKSlpaFVq1bYuXMnM00ajQZJSUm4fPmyrIyCQgH06QPExRXMeHr4sFgBTRCeb6tW8foHnPJDTEyMUcdzw2AkN27cwPXr1+Hs7Ix33nmHqZbIyEi918nJyejWrRv8/f0ZKQLy8vKwY8cO1NAWMJYJ2pTY8+aJ3sKMGeL+GTOAnBzRcOQfUeCprjnlgYSEBCxZssSoc7hhMBKttzB06FDm2RzzG4bBgwfj+++/Zzojyc7Ojvl9yY9u6GjrVmDw4MLDRhxOeeTWrVv4+eefpciCIXDDYARqtRo7duwAwD6MBOgbhm7dumHbtm2wtLRkqEie6IaOXFyAjRt52IhTOpw/fx5JSUmsZehx69YtZGZm4ueffzb4HG4YDEAczAdOnToFhUIBT09PdOrUibGq54ahZcuWOHDggOye1FmiHVO4fl0/dBQWBlSuXDB0xMNGHFNw48YNrFq1irUMPW7dugUAWL16tcHncMNgACtXrsTTp0/1Bp1ZLyADRMPg4eGB4OBgXvYzH9oxhXHjip5xxOGYmvv372Pt2rVIS0tjLUXi5s2bAIBHjx4ZfA43DAYQGhqK3r17Y9++fQDkEUbKzc1FZmYmjh07Bjdtr8cBoD+mcPMmn3FUXjlw4IDkzcuF+/fvIy0tDT/88ANrKQDEaIfWYzAGbhgMIC0tDWFhYcjKyoKNjQ3GjBmD8ePHM/1SxsfH49ChQ2jUqBEzDXJDGz6aN+/5mMLUqWI5TT7jqPwRHByMXbt2sZahx7179wAAgYGByMzMZKwGePz4MZ49e2b0edwwGICuW5iXl4f79+9j0aJFTMNJ7u7uaNeuHbPry5GlS4GLF8WZR7rTUbdsEdcvcMoXKSkp+OKLL5CVlcVaCgDx6VxrGJ4+fYoNGzYwVoRieQsANwwGoWsYBEHAjh074OrqylARJz/a8NHbbz8PGQF8TMFU3L9/n7WEAqSmpiI6OhrLly9nLQWAaKjS09Ol18uWLUNOTg5DRaJhcHV1Nbq/4obBAHQNw9y5c9GjRw+GajiFoZ2S+uiRuGDNzY2PKZiSb775Bnfu3GEtQw/tvPwlS5YgOjqasZrnYSQtCoUCv/zyCxsx/9G4cWPcvn0bHTp0MOo8bhgMQGsYunfvjjlz5jBWw8nPtWvA2rXA2LHi2EFsbMEpqXxMoWRUqlQJ/fr1k9Uc/ZSUFABAVlYWZs2axVhNQa/K2dkZixcvhlKpZKRITHdfpUoV1K1b16jzuGF4CTk5OcjLy0P16tWxY8cOvoBMhowfD1haiqEkgIePSoPatWvj/v37GDx4MPLy8ljLAQC9lbzbtm3DJcZu4f379zF69Gh07doVALBhwwbs27cPT58+ZaoLADcMpiYtLU0aVyhqWmhycrLsps0lJiZCrVazliEREhKCtLQ0k8/UUCjEKam5ucDKlcaHj27cuGFUqoDSRqPRYM2aNRg+fDjTJ8381KlTBw4ODqhevToeP37MWo6UHrpdu3ZwdHREWFgY87VFo0aNwpYtW+Dj4wNLS0vExcWhTZs2ssgbZqxhYF5boTibra2tCTKTG0ZkZCTNnj37hce4uLhQhQoVmNdm0KVz585kZ2dHoaGhrKUQEVGjRo2oQ4cOZGNjQ6dOnaLw8PAStacttDNxYsG6zMYwceJEsre3pz///LNEekyJRqOh48ePs5ahx4MHDyguLk42BZeUSiXduXOHkpOTSalUspajR2pqKuXk5LCWoUdOTg5lZWUZXI9BIJk96RpChQoVyFxzhNPS0lChQgVYWRVeuiIlJQWVK1eGvb09MjMzmT+1AKKxd3Z2Rnp6OmJjY2WxAK5JkyaIiIiQXi9fvhyfffZZsdsLCAB++QXIzgYePBDDRwoF0KwZcPs2YMhDGhHBw8MDDRo0wN69e+Hs7FxsPRxOWUAQhDAiavuy48pkKMna2tps13JycirSKADAgwcPAAD16tVjbhQyMzOhVCrx6NEjpKeno2rVqrJwYwH9z6xNmzb49NNPi92WqaamRkZGolu3bggODuZGgcPRoUxWcLOxsWEtQUI7Ra1evXqMlYhjHf7+/lI9hpYtWwIAkpKSmFaaAyAZVwsLC2zcuPGFxvZlzJsHVKoEREU9n5qqi6H5DatWrYpffvnF5AZdoQCGDxfHPV6ErS2wa5dh3g2HY07KpGEwp8fwMrRT1ORgGNzc3HD+/HmcPXsWgGi0PD09sWDBAowcOZKpNu1nFhAQgDZt2hS7HYVCXNlsbw8MGgQcPGhc+EgXUxtLhUKs9RAWBmg04vYiLC0BT09xtXaLFiaVwuGUCB5KKiFyMgxWVlaoWbOm9Prhw4ewt7dnWtFNi5WVFTw8PPDNN9+UqJ1588Sfp0+L4SRBYD819do1cd2Ejw9w4YLoKajVL9+UStHjef11oHt3nrajPKKd7i4HjCnvWSYNg5xCSXIyDIA4rVCXr7/+WhZrL6ytrbF+/XpUqFChRO0cPCh2vG3aAMnJYhiJ5crma9eAtm2BlBTRY9BoAAsL8aeLi+jZFLa5uIgL7ypWBLKygJCQ50aPU37Yvn07oqKiWMsAAPz4448GH1smDQP3GIpG1zA0bdoUQ4YMYajmOWPHjkWfPn1K1IZCAaSlAc7O4qwk3RXOLFY2a41C/uUiWjuclibOmipsS00VvZ2MjOfn/fIL9xrKExqNBoGBgXqz8ViRl5dnVFK/MmkY5OAxbNiwAbm5uVLxCw8PD7aC/kPXMHzzzTewsJDHRzx69OgStyGnMNK1a2LoSK1+PitKi3ZdWlFeg9ZbcHYGdIvu5eWJacI55YPg4GBERETIwjDs3bvXqJCWLHoNQRD6CIIQKQjCv4IgfPmy4+UQGvn555/Rrl07qNVqVKpUCatWrcKHH37IWpZkGFq2bImBAwcyVvMcU8z8+eMP+YSR+vV7PrhMVNA4aElJKegt/JfiBykp4hgD8Pz8vXu511BeWLFiBQDIwjC0aNECCoXC4ONfahgEQdglCMIXgiD0FQShWonUFd6+JYAfAPQF0ASAvyAITUx9HVPj7e0tlcxLT0/HV199hV69ejFW9dwwyMlbMAUKhdiJTpwoPnF/8AG7MNK1a0D+ZJ5FrRO1sSlYJKhixYLH6Z7PvYayT3h4OM6cOQNAHoahadOmsLW1Nfh4Q3qO/wHIAuAH4IQgCPsFQSjkq11s2gP4l4juE1EegCAAA0zYfqng7e2t97p+/foYMIC97Dp16qBNmzbo378/aykmZelScUHb5s3Ar78Ce/YAfn5swkj9+hl+bGHpjtLTX7zW4sAB4zVxxNCNXNB6CwDwzz//yCpvmSEYYhjcAfwJ4EMiagVgD4CSzTnUpxaAJzqvo//bp4cgCB8IgnBFEIQriYmJJrx88chvGAICAmQR4qpTpw7mz5/PfBW2qbl8GdixA1CpgF69xFDSxo3mDyMV5i28CCJRZ35CQwGdmcV6qNXAjRvF0/eqkpSUhM8//5y1DABiOc1ff/1Vep2TkyONRbIkOzvb4GMNMQyNACwA8I8gCFcB9AIwSBCEN00UWiqsByvgmBPRBiJqS0Rtq1UzeUTLaHQNQ+XKlTF27Fh2YnRwdXXF22+/zVqGyVm7VozDHzsmhpC0awf27DGvjsGDjT9n0qTC93t6Fn0O4/WIZY7ly5cjMjJSFk/mq1evLqBDDuEkU69jWE1E/YmoAYAeALYDcAAwAsCRYinUJxqA7uT72gBiX3QCETFPlezp6SnF7D766KMSz883FYIglDtvARBrLrRqBTRvLsbo161jMyMpX5Eugyhq/GH37qLPiYw0/jqvKgkJCVizZg3UarVRA6ylQVpaGk6cOIGhQ4cCABwdHWFjY1MuDcNxQRAeCoIQDGAegM8A7CKi8URkimr0lwE0FATBUxAEGwDvATj0ohNu3rypV26TBZaWlmjcuDFsbGwwlY8WliramgtXr4rhl0ePgA0byn7Jzv/7v6Lfa2eK/6xXhKVLlyIrKwsA8OTJk5ccXbrY29vj2rVrUraBzp07IywsDPb29kx1ASY2DETUGkB9AJ8D+AvAWojGwSQQkQrAVADHAEQA+I2Ibr/oHAcHB+MLT5QC3t7eGDlypGwymJZXli4VZ+rExoozko4dE1cXjxxp/hlJphpGUijEBHqFUbOmvEuR5uXlISQkhLUMAGJd5R9++EF6zdow2NjYQBAEvYWvzZo1w5QpU5jqAowzDAYl0SMiNYDb/20mh4iOwIiwVPXq1UtDhtE0adIEfn5+rGWUey5fBs6eFT0EAOjdW/y5f7/5tahURa9ZKIyKFcVZSLooFKJHUFSSvVoFpl7Ii+XLl8Pe3h7dunVjLQWLFy9GjnYxCNgbBi1yy4gAvAK5kipVqsRaAgDg/fffR9OmTVnLKPeEhj73Fq5eFX/u3AlkZoqroM1N/nUJL9p0jYJCAfTpI4aQtP+jtrbi2oyJE8XB9IkTgc6dzf83Gcrdu3cxf/58qFQq1lIQHR1dIP8PNwxFY3KPgVM4NYuab8gxOUuXAmPGiKkwxowRxxYsLQF/fyA+nrU6w1i6VMy+mpEhhsKIxJXcutNZN240vJ6EuSEiTJo0Cbm5ubKoR71o0SI4ODhArVZLhoobhqIp9x4D59Xj8mUxlKS7qdVAQgIbr8FYrl0Tp9x27CiGkKpUKXy2UqdO+uMLSqVSFk/nALB582ZpbIG1JiLC2LFj8eTJE7FGsSBg+fLlSEhIYKoLEJPnaSs7er5oTrKZ4R4Dp9wRGipmVM3P6tVA377iTCU5zgFQKIBx48TQkYUFcPw44OAAFLZGM79RSE9Px7Rp0/DTTz+ZT3ARxMfH6y0gY+0xCIKAdu3a4erVq1Cr1WjYsCE+++wzWeQHi4mJQV5eHqpWrSqbsLdGo0Fs7AtXAejBDQOnzKAdhM5PXp4Yt9+2zfyaikJrENzdgXPnxPDRwIFiuov/Zlbqkd8oREdHw9fXF23atJHFupSAgACkaLP/gb3HoOXGf0vEW/xXAk8OoRtDw0g5OTmw002vW4okJiYa9ZnxUFI5h4gQL6MgfEn0hIYC06Y937QJ9Ro3Fgeji1sFjYjw8OHDYmnKj3aAed48cTxh61Zx+qmlpZhKw5DwERFhyZIluHHjBnprp2AxJCMjAwMHDsSoUaMAAO7u7sw9Bi1aw6Ctby4HtIahfv36RR5DRJg9e7a5JBkVRgIgCixrm7W1NeXl5ZFcmDhxIrm5udH58+dJo9HQs2fPmGnRaDQUGRlJx44dI3d3d5o4cSINHTqUmR5dbt++TT169KA6depQVlZWsdro1KnoOUC2tkQTJxL17k2kUBje5tmzZ6l9+/YUGhpqlJbYWPFa1649v+a0aUROTqKW4cOJbGyILC0L19upU9FtZ2dn065duygxMdEoTaVJTk4OnTp1ipKTk2n37t2s5RCRqOnq1av06NEj1lIkcnJy6J9//qHIyMgij1mxYgW1bdvWbJry8vLo3r17BOAKGdDHMu/ki7MBoAcPHpjwthWPx48fk1KppKFDhxIAWrZsGQ0YMIDCw8OZ6po4cSLZ29sTxJxTNGbMGKZ6tPz9999kbW1NACgqKqrY7UybJhoAFxexc46NFTtiGxvxp7OzvoHQduDGGIsXoW1Pq6F1a/Gn9rXWIDg7EzVrJr4fG0tUufJz4xEQYBotnLLHhQsXyMrKit58802zX7vcG4aQkBBT3q9icfz4capcuTJ5eHhInTAASk1NZaorPj6eKlasKOn59NNPmerRZfPmzQSATp8+Xew2ivIaqlcXn85HjHhuIAICxI5Y23Hnf8LXNRqFeQAv8wqOHSMSBKLjx8XXI0aI19IahHbtjPcWOOWX5ORkqlu3LgGgQYMGmf36hhqGMjv4/OjRI8TFxSE9PR2NGjViouGtt95C/fr1cfnyZWlflSpV4OTkxESPlurVq2POnDmYMWMGAMDFxYWpHl3Gjh2L27dvI9qY3NX5CA0VF4HlH4hOSABcXYHDh8XXvr5i/QZAnNL6+utiac1x44CHD8V1BUTimgjd3wt7X7tv7lwxo6uvr1htbc8eMbmfNiHe9eviOouzZ8XB8vzkH0/gvDoQEcaPHy+l4GbdT7wQQ6yH3DYA1L17d3JxcaGrV6+a0J4az4EDB/S8hXbt2jHVoyUnJ4fq1atHAGjVqlWs5eihUqnoypUrJmlr2jRxi419Hlpq3Vp8Yq9cWT+UY2tLNGjQ8yd8Z2dxCw9//ruuB1DYPl2vQOuZXL36fL+VFfcQOIWzatUqvb5i2rRpZtcAAz2GMjsr6cyZM0hLS4OXlxdTHf369UPz5s2l1y+aiWBObG1tsXz5cgCAs7MzYzX6WFpawsfHxyRtaRe+1awp1lCuWVNMm2FvL1Z4i4oCHjwQZwmNHi16E02bAsHBYj0ET0+gdevnvwcHix6A7vvaffm9AgcH8XWNGuKCNW0hIV06dRJNA/cSXm0uX76M/8uXTpd7DKXgMQCgxo0bm9KYFptdu3ZJTwGzZs1iLUdCo9FQ9+7d6cCBA6yllDpFjTu4uYljC/mf7J2diSpVEn9eu6b/+urV5691973MK+DegTw5e/Ys0+unpKRQgwYNqGrVqnoeQ2BgoNm1oLx7DADQrFkz1hIAAEOGDEHDhg0ByGOBjRZBELBy5UpUqVKFtZRSJzRU7Jbz5xlSKMT8Q7m5omeQmyuOFXh6AvXrA2PHiuMHY8eKrz09Re9A+77uvpd5BdqNewfy4cyZM1i4cCFTDXZ2drhz5w6WLFkCQCy/a2lpKWuPocwOPgPyMQyWlpaYOXMmxo8fL5tQkpaWLVtCU1R+53JIYZ1y/oFq3d+vXtX/CRSeVjv/Pj6ILH+uXbuGAQMGYPTo0Ux1aFc3b926FQAwd+5c2NrawtHRkaWsF1KmDYNubJ81I0eOxNdffy0rj0GLhUWZdgxLDO/AXz0ePHiAvn37IiMjA40bN2YtB48ePcKff/4JW1tbDB48GM7OzrJJK1IYZbLH0JbJk4vHAADW1taYO3cuasm9ygqHU85JTExE7969EfdffhQ5GIbt27cDAAYMGCBNBrGyku9zeZk0DNWrV4etra3swjbjxo2DpalqP3I4HKN59uwZfH19ERUVJe1jbRiICNv+y/CozTcld+Rrsl5AlSpV0KhRI9lZ3Fc9ZMN5tVEqlbC2tmZ6/cGDB+stOLWzs0OdOnWYaQLEqaqRkZGoVq2aLJIiGkKZ7Mm0s204HI48iIqKwuLFi5ldX6PRYMKECTidr2pTw4YNmT+wab0Ff39/pobTGMqkYQDAay1zODLh5MmTeO2116Qp2ywQBAFbtmxBZGQkLC0tJWPAOoyUl5eHoKAgAGUnjASU0VASh8NhDxFh7dq1CAgIgIWFBfr27ctMi7aY0bJly6BWqzFixAh4eHgw06Pl6NGjSEpKgre3t8lW+5sDbhg4HI7R5OXlYerUqdi4cSMAoEePHswXbMXFxeHnn38GAHz55Zfw9vbG3bt3mWrSHXSWQyU+Q+GGgcPhGEViYiL8/Pzw999/S/sGDBjAUJHIypUrkZubi379+klT2b29vZnpSUlJwaFDhyAIAkaMGGH0+ffv30dMTAy6dOlSCupeTJkdY+BwXkVu3bpVYIDVnNy4cQPt2rXTMwoA0L9/f0aKRFJTU7F+/XoAwKxZs5hq0bJ7927k5eWhW7ducHd3N+rciIgIdOnSBW5ubqWk7sVww8DhlAHOnj2Lfv364c0330SrVq2YaMjNzcVvv/2GJk2a6O1v06YN8ymhP/zwAzIyMtCtWzd06NCBqRYt2hQYxqbkuHbtGrp27Qq1Wm3StVpiDj3D4IaBw5EpGo0Gf/zxBzp37ozOnTvjjz/+wNKlS1G5cmUmemxtbbFgwQK0a9cOwPMBX9ZhpKysLKxatQoAMHPmTKZatNy/fx9nz56Fvb09/Pz8DD7vwoUL6N69OxITE9GpUyeTjkvcuXPH4GO5YeBwZIZSqcS2bdvQsmVL9OvXD2f/y/rXtWtX5gnhwsPDpWyl+/btQ9WqVZmHkTZt2oSkpCT4+PigZ8+eTLVo0abAGDhwICpWrGjQOSEhIXjrrbeQmpoKAOiUP1VwCfnjjz8MPpYPPnPMilqtBgBZpQ45efIkrl69CpVKBbVaDZVKBSLCuHHjmEx5PHz4MJYsWYLbt29L+6ysrLBu3TqmM1vy8vIwduxYqFQqTJkyBe+++y4sLS3RsmVLppq0Balmzpwpi5k/RCSFkQxdu3DkyBH4+fkhJydH2sfSMDAvulOczcfHhxQKhYlKV5gGjUZjsnKVpkKlUtFPP/3EWoYeKSkp1KVLFwoJCWEtReLixYtkaWkpFVCpV68e/fXXX0w1bd68Wa+oy5dffslUDxHR8uXLpfuTkZHBWg4REW3btk0q2qVWq1nLISKic+fOEQBydXUlpVL50uP37NlD1tbWep+3nZ0d5ebmmkxTUlISWVhYGFyoh3knX5zN3t6eFi9ebLKbVlJSUlKobdu25O3tTRqNhrUcif79+5OlpSXt37+ftRSJ77//XvryDxo0iO7du8daEoWHh5OrqysBoI8++kgWnV5ycjJ1796dvL29ycPDgzIzM1lLoszMTAoICJCVUc/JyaGNGzfK6juel5dHhw4doq1bt770WLVaTQcPHqS1a9dqO24CQG+88YZJNSmVSgoJCSnfhgEAde3a1YS3rfhoNBr67rvvpA/02LFjrCUREdG///5LjRs3JgDk7OxM9+/fZy2JiIh27NhBvXr1omHDhtGkSZNo7ty5lJCQwFoWffPNN3T8+HHWMgqwePFi+v3331nLKNeY8sm8uMydO5cAkLe3Nzk6OtLMmTNL5TqGGgZBPLZsUaVKFUpLS8PTp0+Zr7bUsn//fkyePBlt2rTB4cOHWcsBAKhUKpw8eRLbt29HbGwsjh49ChsbG9ayZIlGo2GebK0w0tLSZPMdL48cPnwYcXFxmDBhAjMNjx8/RuPGjZGTk4OQkBBERESgTp068PX1Nfm1BEEII6K2Lz3QEOsht83Hx4fmzJlDe/fuNZ0pNQHJyck0btw4unv3LmspBcjIyKCnT5+ylsHhyAKVSkWzZs0iCwsLevToEVMtw4cPJwDk5+dHRGIUIjs7u1SuhfLsMbRt25auXLmC+Ph4uLq6spZTgKysLDg4OLCWweFwCiE+Ph7Dhw/H6dOn0blz5wKruM3J+fPn0bFjR9jY2CAiIqLUSwMb6jGU6emqcjQKALhR4HBkSmhoKIYNG4bY2FgAwHvvvcdMi0ajQUBAAAAgICBAVvXi5RdU5XA4HBNDRFixYgW6desmGQULCwsMGTKEmaZdu3bh4sWLqF69umzyO2kp0x4Dh8PhvIy0tDSMHz8e+/bt09v/5ptvonr16kw0ZWZm4osvvgAAfPfdd6hUqRITHUXBPQYOh1OuSUlJwbvvvlsguZ6/vz8jRcDy5csRExODli1bYty4ccx0FAU3DBwOp1TJyclBfHw8s+t7eHigQ4cOuHnzJgCgQoUKsLGxwcCBA5noiY6OxpIlSwCINSTklB5GCzcMHA6nVCAi7N69G2+88QbTCRl5eXnw9/dHZmYmhgwZgnXr1qFv375wdnZmomfmzJnIzs7GwIED0b17dyYaXgYfY+BwOCbn8uXLmD59OkJDQ7F06VKDM4yWBnPmzEFYWBjc3d3x448/olKlSswqu128eBHbt2+HjY0Nli1bxkSDIXCPgcPhmIzo6GiMHj0a7du3R2hoKFxdXTFlyhRmeqIA5B4AAB1+SURBVE6ePImlS5fCwsICO3bsgIuLCywtLaWaEuaEiDBt2jQAwLRp00xWhCclJcUk7ejCDQOHwykxmZmZmDdvHho1aoRt27ZJ+2fOnMksjJSYmCjVr5gzZw46d+7MRIeWoKAgXLhwAdWrV8dXX31V4vbUajXmz5+PI0eOmECdPjyUxOFwSsTly5cxcOBAxMTE6O2vVasWJk2axEQTEWHChAlQKBTo1KkTZs+ezUSHlqysLGl66oIFC0o8PTUmJgYjR47E5cuXERcXZwqJejD1GARBGCIIwm1BEDSCILw8sROHwymU9PR0Ztdu164dzp07VyA08tVXX8HOzo6JpnXr1uH333+Hk5MTduzYASsrts/AK1aswJMnT9CiRQuMHz++RG0dPnwYLVu2REhICPz8/ODo6GgilToYklCptDYA3gAaAwgB0NbQ83x8fEyXVYrDKaMkJSXRunXr6I033qCTJ08y06HRaGjSpEkEgGxsbAgA1a1bl1k66xs3bpCtrS0BoF9//ZWJBl2io6PJwcGBANDp06eL3U5ubi4FBAToFfQ5deqUUW2gLNVj4IaBwzGMzMxMCgoKon79+pGVlRUBoLlz5zLTo9FopM7K1taWTpw4QV5eXrRp0yYmerKysqhp06YEgMaNG8dEQ35Gjx5NAOjdd98tdhtRUVHk4+OjZxTc3d2NrlpX7gwDgA8AXAFwxd3d3aibweGUZZRKJR07doxGjx5Njo6Oep1Djx49SKVSMdM2e/ZsAkBWVlb0xx9/EBHRrl27KC8vj4meyZMnEwBq2LChLCrxXbp0iQCQtbU1RUVFFauNY8eOUcWKFfU+dwD01VdfGd2WbAwDgJMAbhWyDdA5hnsMHE4haDQa+vrrryXvQHdzdXVlWvt84cKFBIAsLCzot99+Y6ZDy8GDB6VOWA711zUaDXXs2JEA0Oeff16ithQKBTVo0EDv8//nn3+Mbkc2hsEgEdwwcGSCRqOhR48eUXBwMAUGBtLEiROpS5cu9NNPPzGr563RaGjevHl6nYKFhUWJ4tUlZdWqVQSABEEwqLZxaRMdHU1VqlQhALRs2TLWcoiIKCgoiABQtWrVKDU1tURtaT//atWqkaurK3Xo0KFY7ZR7w6BSqZj9o3LKD6mpqbRw4UIaOXIk+fj4UIUKFQp0wD/99BMzfenp6TRixIgC3sL8+fOZadq4caOk43//+x8zHVrUajX16NGDAFDPnj2NjrsbglKpNOr4rKwscnd3N8k9OnHiBAmCQIIg0LFjxygwMJDWr19vdDvPnj0rG4YBwEAA0QByAcQDOGbIec2aNaMvv/zS6BtT2qhUKgoLC5NFbFOLRqOh3NxcSk9Pp8TERKbGVKVS0fz582nChAk0cuRIGjJkCA0YMID69OlDAQEBzO7b3r17C43h2tra0v79+5loIiK6cuWKFD6wt7enn376idq0aUM9e/ZkNq6wfft2EgSBANDKlSuZaMjPkiVLCABVrVqVYmNjTdp2fHw8ffTRR3T//n2jzluwYAEBoObNmxttVHSJjY2l6tWrEwCaPXs2EYkTEFJSUoxu6z8vT/6GobibhYWFLNxXLYmJieTn50dOTk5MZ4joolaradCgQdI/sYuLC+3evZu1LNqyZYte5ysIAs2YMYNycnKYaqpUqZKerkqVKlFISAgzTbt37yZra2upc7lz5w4REc2aNYvi4+OZaDp27BhZWloSAFqwYAETDfkJCwuTxl9+//13k7Wbl5dHgYGB5OTkRGPHjjXq3JiYGMnzLMk0YqVSSV27diUA1K1btxI9DOTm5lKdOnXKt2FwdnamrKysYt8kU6PRaKhXr140depUWYW3PvzwQ8m9jo6OZi2HiIhWrFihN92OZeer5c8//5QGLQFQ9erVKTw8nKmmx48fU+XKlWny5Ml633WWM5BSUlLo9ddfp5kzZzLTkJ/MzEz68MMP6eOPPzZZm8HBweTl5UUAyNLS0ujZRDk5ObR8+XIaNWpUiXR89dVX0iSDknpCSqWStm7dWr4NgxwHn+Pi4koltlkSFAoFrVq1Sla6srKyaMSIETRq1KgSD8iZkqtXr5Kvry95enoWe1qhqYmLi2MtoQDZ2dmyevjRYorv+N27d+mdd97R8xxHjx5tAnXGc/ToUWlcwZSLF7lh4MiW69evs5ZQKDNmzDB5jJojf9LT02nGjBmSx6g78eDu3btm1/PkyROqWrUqAaCvv/7apG0bahh4dlWO2WnRogVrCYWyaNEiuLm5sZbBMTPJycmoVq0a3N3d9fYPHz4cDRs2NKsWlUoFf39/JCUl4a233mKW/I8bBg7nPyws+L/Dq0jdunXRpUsXvSylFhYWTDrl2bNnIzQ0FDVq1MD27duZlf3kabc5HM4rza1bt9C3b19kZmbC398fFy5cQMeOHdG4cWOz6jh8+DCWLFkCCwsLBAUFwdXV1azX14U/InE4HGbk5OQgJCSE2fXv3buHnj17IiUlBe+88w62bNmCsWPHmt1bePz4sVRUaP78+ejatatZr58fbhg4HI7ZefLkCWbNmgV3d3doNBomGmJiYvDWW28hLi4OXbt2xW+//QZra2t88cUX8PLyMpsOpVKJ9957D8nJyejduzdmzpxptmsXBQ8lcTgcs0BECA0NxerVq7F//36o1WpMmjQJPXr0MLuWpKQk9OzZEw8fPkTbtm1x6NAh2NvbAwBsbW3NqmXmzJk4f/48atWqhW3btslirIu9Ag6HU67Jzs7Gzz//jNatW+ONN97Anj17oFarUadOHSxdutTsetLT09GnTx9ERESgSZMmCA4OLnGpzeJy6NAhrFixApaWlggKCkK1atVMfg2FQoFffvnFqHO4YeBwOKVGWFgYGjRogAkTJuD69et6723cuNHsHXJ2djb69++PsLAweHp64vjx46hatapZNWh5+PAhxowZAwD47rvv0LlzZ5O2r1QqERgYiMaNG8PDw8O4kw1Z7CC3jS9w43DKDg8ePJASwWm38ePHm11HXl4e+fr6EgCqUaMG/fvvv2bXoCU3N5fat29PAOjtt982eXaC06dPU5MmTQgAderUSVqtDr7ymcPhsCY2NlbqALVbzZo1i5UdtCSoVCp67733pISSN2/eNOv18/Ppp58SAKpTpw4lJSWZrN0nT57Q0KFD9e53cHCw9D43DBzOK4pGo6EbN27QunXrKDs7m5mO8PBwql27tpQwccOGDQRAKgFqLjQaDU2aNIkAkKOjI128eNGs18/P3r17pXKo586dM0mbubm5tHjx4gL1RHx8fPRyW3HDwOG8QmRlZdHhw4dp8uTJ5O7uTpaWlnTixAlmevbu3UsODg4EgF5//XWKi4ujvLw8+vDDD82u5YsvvpDqa7CsekdEdO/ePXJyciIAtHz5cpO0qS3/Wrly5QI1Rfbt26d3LDcMHE45Jzo6mjZs2ED9+vUje3t7vQ6hOBW+TIFGo5GK1ACgkSNH6nktJSlaUxwWLVokpc8+ePCgWa+dn5ycHPLx8SEA1K9fP5Nnqd2zZ4/ed6Bp06YFxi64YeBwyjFHjhwptOocAPrkk0+YaMrOztYrQ7pw4UKmKbrXr18vadm2bRszHVqmTJlCAKhu3br09OlTk7Z95swZsrW1JQDUqlUrAkA7d+4scFy5NwxyKTzDebV4+PAhnTlzhrUMIhKNg4WFhZ5R6Nu3r9mfyonE2h+vvfYaASAHB4cCIQxzs2PHDql64dq1a5lqISL69ddfpWJQFy5cMGnb4eHh0kPCpEmTKDExkZo2bVpoUadybRg8PT1p165dJbqZpYFGo6HQ0FDWMopEjgVW5IxGo6Hbt/+/vfsPirL69wD+PgoGieQ3SzPUvihSmhlxLXOklFTG36KmaJPpdMMpukOiQZLVH/0yxdLsWtZkOuXvLLPGLMsuSxZeNIjQVKRMLTEyFI1FhH3e9w/gXFZUVtnds4uf18xOAvu4b0/L89nnnPOcs4dvvfUWH3jgAXbu3Jnt2rXT22yacubMGT7zzDN6S8v6XQdlZWVez5OXl1e3bSQ7derEvLw8r2eo79NPP9VbkL700kteec1ffvnlgv/uwsJCfeJ29z7ZBw4c0FOBx48fr4vBhabiNuvCEBQUxHnz5l1eS3rQwoULvfZGvFR79uzh22+/bTrGeVVWVvKzzz7j7NmzWV5ebixHdXU1c3Jy+Oqrr3LMmDFs166d04m3TZs23LVrl7F8JLljxw49Px0Ak5KSeO+99/K666675A3r3WHjxo16kLlv374sLi72eob66neppKamevzDUG5uLhMSEhgeHs5//vmnwc8rKip0187YsWPdmufo0aMMDw8nAN53330u7ZverAtD3S+EL8nOzmZAQADffPNN01GcWJbFN954g0FBQcZPavVVVVVx69atfPjhh9m2bVsGBgYyOzvbaCaHw8HFixfrE139R1BQEG02m7Fs5eXlfPLJJ3XXUUREhN4vOzk52etXqpZl6YFdAHzggQeMTo0lyZycHIaEhBAAExMTPVYULMvi119/zSFDhuh//4UGtuumyYaHh7v13o0TJ07wtttu01NST5065dJxzb4wjBgxwuVG9LTjx4/rS2lf6uIqLi7msGHD9ICU6a4kh8PBrKwsJiUl8frrr3c68S5evNhotjqFhYXs37+/U7aAgABu3rzZWCabzcaIiAi93eSsWbOcrqy83X1UUVHBKVOm6PZ58cUXjb+3du/eradrJiQknLd/vamqq6u5bt06PbOo7jFmzJjzPn/16tUEwFatWnHnzp1uy1FeXs6YmBgCYGRkJP/880+Xj232haFXr14uN4YnORwOffIFwC+++MJ0JJLkpk2b9L6xALhkyRKjeRwOB5966ik9IFj/MWnSJOMnlrKyMqampjbY91cpxbVr1xrJdOrUKSYlJeksPXv2dPvA5aU6duwY+/XrpweZN2zYYDQPWdO/37FjRz34XllZ6fbX+Oijj9itW7cG792rr76ahw4davD8ffv26auXN954w205zp49y5EjRxK1d5D/9ttvLh9bVFTU/AtDaGioyw3iSStWrHB6w5i+q5IkT548yRdffJFBQUG6G8TbSxCcj2VZfPDBB51+sXr06MHTp08bzbVhwwZ26NBBZ5o2bRqXL19OAMbGZbZv384uXbroOfjPPPOMS33InvTzzz/rTGFhYfzhhx+M5iFr+tm7du1KALznnns8NkZVWVnJlStXNvjgkJGR0eC55eXluptnwoQJbvvQ43A4+NBDDxGoWdZj9+7dLh9rWRbj4uKad2Fo3749Z8yYwZMnT7rcMJ60Y8cODh8+nCNGjGBhYaHpOCTJ06dPc+DAgYyIiOCUKVNMx9FSUlJ0P3nr1q2Nz/Ah/38q4d13382cnBySNWNG8+fPN5apoKCAgYGBjIqKYm5urrEc9R07doxdunThXXfdxaNHj5qOQ7LmSm/AgAGMjo726PngxIkTHDhwoFNR6N27N8+ePdvguXa7nY888gi7devmtkyWZXHWrFkEwODgYH733XeXdHx1dTVfeOGF5l0Y6m5wM939cC673U673W46huZwOJifn8+srCzTUbQzZ84wLy+PLVq08JnxGMuyuHnzZqe7RE3cC3Cub7/99rwnHpMOHDjgU+9xsub3zp0L0Z3ryJEj7NWrFwGwQ4cOnDlzJgE0us5RaWmp2zLMmzdPj3d9/vnnl/33XBGFQfivRYsWmY4gRKMKCgr0QoCRkZH89ddf+ccff3D69Oley7Bs2TJ9lbJy5com/V1SGIQQfq+0tJTr1q3zyIByYzIzM/WCd/369eNff/2lf+atq6aNGzfqrld3fJhytTDIDm5CCJ9y6tQpfPDBBxg5ciQ6dOgAy7LQqlUrr2ZYv3494uLiUFZWhvj4eGzbts1pp7e6/aE9yWazYdKkSbAsC3PmzMETTzzh8dfUXKkevvaQKwYhmpd//vmHa9asYXx8vL5zGTCzIOBrr73mdGe5J+6JaExubi5DQ0MJgNOnT3fbeCqkK0kI4etycnI4ceLEBsuGo7b7xptdSA6HgykpKfr1586da2SCS/31j8aNG+fWwuRqYZCuJCGEMVFRURg0aBCUUk7fb9++PT788EOvdSFVVlZi8uTJWLhwIQICAvD+++9j9uzZDXJ5WnFxMeLi4lBSUoLY2FisWrUKLVu29GoGAAjw+isKIUSt8vJy2Gw22O12/b0WLVpg7dq1CAsL80qGkydPIj4+HjabDSEhIfj4448xZMgQr7z2uTmGDh2KgwcPIjo6Gp988gmCgoK8ngOAXDEIIczYvn07oqKisHr1agQHB+OOO+4AALz88suIjY31SoYjR44gJiYGNpsNN9xwA7KysowUhYqKCowaNQo//fQTunfvji1btiA0NNTrOepIYRDiCmO322FZlrHXr6qqwrPPPosBAwbg0KFDiI6ORm5uLh599FHEx8cjLS3NKzkKCgrQr18/7NmzB7fccguys7N1cfKm6upqJCQkYPv27bjxxhuxdetWtG/f3us5nLgyEOFrDxl8FsJ1Z86cYWZmJp977jnGxMRw7ty5xrIUFRXpnd6UUkxLS9MDzPv37/faMjfffPONnvXTv39/t2+16SqHw8GpU6fq9Y8KCgo8+nqQWUlCXJmqqqqYnZ3Nl156iYMGDdKLKaJ2+qWJmTaWZXH58uV6xdGwsDBu27bN6zlIcs2aNWzVqpXePMfkEh9PPvnkZa9/dDmkMAhxhbEsi88//7zeRvLcx/33329kTn5paSknTpyoc4wbN86jaxtdzKuvvqpzPP7440bao0799Y+8td9Hsy4MkZGR7mwrt/G1xcXElae6upqPPfZYg6IQGxtrZNnuzMxMvdZQ69atuWzZMiNXLA6HgzNmzNDt8corrxhdhLP++kcffPCB1163WReGoKAgn1j98lxz5swxHeGCSkpKfG6lTn9VVlbGDz/8kImJiT6xbHidsrIypqSksGXLlk5FISoqyutL1J89e5bp6el6Y6Y+ffoYW5K+oqKCEyZMIAAGBgY2eSG6pvrkk0/0+kcLFy706ms368IAwGfWqK9TVFTEwMBA45upnE9VVRWHDh3qc8uU12dZFlesWOHxwbfLVVRUxEWLFnHw4MF6s5b33nvPdCySNW23evVqvYuZUooJCQkEavYaLi4u9mqewsJC9unTR2dJT0839qGktLSU9957LwGwTZs2/Oqrr4zkqJOZmamX/Hj66ae9/vrNvjC4c7s8d0hMTCQA7t+/33SUBmbOnMlOnTqZjnFB+fn5jImJYd++fX2meFVVVdFmszE1NZU9evRo0DWTmppqOiJJcs+ePYyNjdW57rzzTu7cuZPl5eW8/vrreeDAAa9lsSyL7777Lq+++moCYOfOnZmZmem11z/X4cOH2bNnTwJgx44dmZeXZywLSebl5emZUImJiUbe682+MCQkJLizvZrk8OHD+lPkli1bTMdxUrcheXR0tOkoDZSVlXHGjBm662PTpk2mI2klJSV85JFHzrtH9ejRo40OWpI1O/SlpaUxICCAAHjttdfynXfecdpsKD8/32t5jh8/znHjxuk2mjhxols3qrlU+fn5vPHGG/X2sZeyN7InFBUV6e1j3b3+0aVo9oXBlz4BJycn61+IJUuWmI6j5efn68XJhg0bZjqOdm7XBwDeeuutTic1X7Br1y6Gh4c7FYXbb7/d6B7VlmVx/fr1DAsL05kSExOd9grwtm3btuk8ISEhXLFihdErv23btulP5jExMcbuUahz9OhR/T6KjY1lRUWFsSzNvjAA4KFDh9zZZpfl2LFjTvPEZ86caToSSfLvv//Wm6QD4NSpU01HItmw66PuYXpAsL6Kigqmp6frK5m6/3bo0MHoe27fvn0cMmSIbrPo6Gju2LHDWJ7Kykqmpqbqq6q+ffuyqKjIWB6y5gq57up9/PjxRk/CZM1e0b1799b/v8rKyozmuSIKw6pVq9zZZpclLS3N6QQXHx9vOhKrq6s5dOhQp1xpaWmmY/Hw4cOMi4vTv7h1j/DwcJ+ZZfb999/zlltu0QOnycnJXLZsGa+66ipmZ2cbyVReXs6nn35at1vbtm25ZMkSo91Ze/fuZXR0NAGwRYsWfPbZZ43OerMsixkZGfo9lZycbLy7z26385577iEAdu/enX/++afRPKSfFAYAGQD2AfgJwEYAbV08jqi9i9Okv//+W9/JWffo3bu30UxkzbTZcz+RL1iwwHQskjXTGOPi4pyyLV261HQslpeXMyUlRX/6jYyM5LfffkuSzM7O5urVq72eybIsbty4kV26dNFtNW3aNKMnGMuyuHTpUt1FedNNN+l2MqW6utqpOzcjI8P4JIaqqiqOGjVKD3wfPHjQaJ66TP5SGOIABNT+eR6AeS4ex/nz53PgwIHubrtLMnfuXI4cOZKRkZFE7Q08ISEhRt+Uv/32G6dPn86xY8c6nXy9eRPNhTgcDk6ZMkUPlnbt2pUdO3Y0frlvs9nYrVs3/ek3LS3N6WZFE/8/f/nlFw4fPtzpA4fpE/Bff/3FMWPG6EyTJ0/miRMnjGaqqKjg+PHjidp7FHyhF8GyLE6bNk1f3fnKFOz09HT/KAxOQYCxAFa58tzg4GBalmV8UKmu+yM5OZkRERG02WxMSkpiSUmJ0VwkuWXLFkZERHD06NG85ppr+OWXX5qORLvdzkGDBjE4OJjZ2dl8/fXXmZGRYToWFyxYoAfAc3JyTMchSWZlZem594sWLfKJrraDBw8yNDSUbdq08YkPGmTNbKibb76ZoaGhxtZeOpfdbufgwYMZHBzM7du3m45DsqZY1U6pd6kwKNaclI1TSn0GYB3JlRf4+XQA02u/7AVgt7eyXQGuA3DcdIhmQtrSvaQ93etmkm0ae5LHC4NS6msAN5znR3NIbqp9zhwAfQCMowuBlFK7SPZxb9Irl7Sn+0hbupe0p3u52p4e39qT5OCL/VwpNRXASACDXCkKQgghPMvons9KqaEAngIwgKS9secLIYTwPNNbe/43gDYAvlJK/aiUWurice94MNOVSNrTfaQt3Uva071cak+fGXwWQgjhG0xfMQghhPAxUhiEEEI48dvCoJTKUErtU0r9pJTaqJRqazqTv1JKTVBK7VFKWUopmRp4mZRSQ5VS+5VSRUqp2abz+DOl1HtKqRKllNyv1ERKqc5Kqf9RSu2t/T1/orFj/LYwAPgKQC+SvQEUAkg3nMef7QYwDkCW6SD+SinVEsASAMMA9AQwWSnV02wqv7YCwFDTIZqJagCzSPYAcDeAxxt7b/ptYSC5lWR17Zc7AHQymcefkdxLcr/pHH7uLgBFJH8leRbAWgBjDGfyWySzAJSaztEckCwmmVv759MA9gIIu9gxflsYzvEwgC2mQ4grWhiAI/W+/h2N/PIJ4W1KqX8DuAPA/17seUZvcGvMJSynUQ1glTez+RtX2lI0iTrP92QuuPAZSqkQAB8BmEHy1MWe69OFQZbTcJ/G2lI02e8AOtf7uhOAo4ayCOFEKRWImqKwiuTHjT3fb7uS6i2nMVqW0xA+YCeA7kqpcKVUKwCTAHxqOJMQUEopAMsA7CX5mivH+G1hwOUvpyHOoZQaq5T6HUA/AJuVUl+azuRvaidC/BeAL1EzuLee5B6zqfyXUmoNgGwANyulfldK/afpTH6sP4ApAO6rPVf+qJQafrEDZEkMIYQQTvz5ikEIIYQHSGEQQgjhRAqDEEIIJ1IYhBBCOJHCIIQQwokUBiGEEE6kMAghhHAihUEIN1BKtVRKvV673n2BUqqr6UxCXC4pDEK4RzqAX0neCmAxgCTDeYS4bD69iJ4Q/kAp1RrAWJL/UfutgwBGGIwkRJNIYRCi6QYD6KyU+rH262sBfG0wjxBNIl1JQjRdFIDnSEaRjAKwFcCPjRwjhM+SwiBE0/0LgB0AlFIBAOIAfGY0kRBNIIVBiKYrRM0m6wCQAmAzyYMG8wjRJLLsthBNpJT6F2r2HL8ONXsITCdZYTaVEJdPCoMQQggn0pUkhBDCiRQGIYQQTqQwCCGEcCKFQQghhBMpDEIIIZxIYRBCCOFECoMQQggn/wdkBWu03rHwCAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:09<00:00, 2.06it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXdYFFcXh39D74qAqFgwthgLothiBUXsGruJNRo19hSxa9RoYon6qTFq7CUasRcUCxq7YsOGBWwgKNLrsix7vj82M7CisosLdzD3fZ55ZJaZ3dfdZc7cdo5AROBwOBwOR8SItQCHw+Fw5AUPDBwOh8PRggcGDofD4WjBAwOHw+FwtOCBgcPhcDha8MDA4XA4HC2YBwZBEMoJgnBKEIQQQRDuCoIwjrUTh8Ph/JcRWK9jEAShNIDSRHRdEARbANcAdCWie0zFOBwO5z8K8xYDEUUR0fV/f04GEALAha0Vh8Ph/HcxYS2QE0EQXAG4A7j8lt8NAzAMAMzNzevVrFmzUN3ehVKpxP379+Hs7AxnZ2fWOgAAtVqNe/fuoXjx4ihTpgyMjJjHfwDAw4cPYWxsjPLly8PU1JS1DgAgKioKiYmJKF++PKysrFjrAADS0tLw5MkTlCpVCg4ODqx1JB49egQLCwu4uLjI5jsVFRWFjIwMODs7w9LSkrUOACAhIQHx8fEoXrw47O3tWesAANLT0/Hy5UvExcXFEJFTnicQkSw2ADbQdCN1y+vY0qVLk1wYNGgQAaDu3buzVpGYPn06AaBatWpRZmYmax0iItq2bRsBoOLFi9PLly9Z6xARUUREBFlZWREACgwMZK0jMXToUAJAY8eOZa0iERoaSgDI0dGR1Go1ax2Jhg0bEgA6c+YMaxUJ8e9vxowZrFUkjh49SgAIwFXS4Xosi7AvCIIpgN0AthHRnryOL1myZMFL6UBwcDA2bdoEExMT/PLLL6x1AAChoaGYP38+AOD333+HiQn7RmFcXBy+++47AMCCBQtk07KaMmUK0tLS0LVrV3h6erLWAQAkJibir7/+AgAMHz6csU02Fy9eBAA0btwYgiAwtskmMjISAFCmTBnGJtmkpqYCAKytrRmbZJOZmanX8cwDg6D5lq0DEEJEi3U5Rw4XOwCYOHEiiAgjRoxAlSpVWOuAiDB27FgolUr0798fzZo1Y60EQPM+RUdHo0mTJhgyZAhrHQBAUFAQNm/eDFNTUyxcuJC1jsSWLVuQlpaGFi1a4LPPPmOtI3HhwgUAmsAgF9RqNaKiogDIKzCkpKQA4IHhQ2kCoD8AL0EQbv67tWctlRfHjx9HQEAAbG1tMWPGDNY6AID9+/fjyJEjsLOzw4IFC1jrAADOnj2LtWvXwtTUFKtXr5ZF3zQRYfz48QCAcePGoXLlyoyNNBARVq1aBQAYMWIEYxttcrYY5MLr16+hUqlgb28vm/EFILvFYGNjw9gkG30DA/NbbyI6B0A+bVMdUKvVmDBhAgBg0qRJcHLKeyynoElLS8O4cZolILNnz0apUqUYG2kG5sXuEF9fX9SoUYOxkYadO3fiwoULcHJywrRp01jrSJw7dw53796Fk5MTunXrxlpHIjk5Gbdu3YKxsTHq16/PWkfixYsXAOTVWgDk2ZWkUqn0Op797VsRZOvWrQgODoaLi4t058maefPm4fnz56hVqxZGjRrFWgeAZjwhJCQElSpVwtSpU1nrANDMzvD19QUAzJkzB8WKFWNslI3YWhgyZAjMzMwY22QTFBQEtVoNNzc3WV3sxPEFFxd5zW7nXUn/QdLT06W7zDlz5shiiuOjR4+kfnK5DDg/evQIP//8MwDNBU8uTf3Fixfj+fPnqF27NoYOHcpaR+L169fYtWsXBEHAsGHDWOtoIXYjff7554xNtJF7i6EodyXxwKAny5YtQ3h4OGrVqoUBAwaw1gERYcyYMVAqlRgwYIAsBpyJCN9++y0yMjLQr18/tG7dmrUSAM0dpjh7bMmSJTA2NmZslM2GDRugVCrRtm1bVKxYkbWOFnIceAbk22LgXUn/MWJiYjBv3jwAmm4SOVxY9u3bh4CAAFkNOG/duhUnT56Evb09fvvtN9Y6ElOnTkVqaiq6dOkCLy8v1joSarUaq1evBgB8++23jG20UavVuHTpEgD5BQa5txjkFBh4i6EA+fnnn5GUlITWrVvDx8eHtQ5SU1OlMY6ff/5ZFusDYmNj8f333wMAFi5cKJs1J9euXcPGjRtlNz0V0Mxwe/z4McqVK4f27eU1Ie/hw4eIi4tDqVKl4OrqylpHCzmuYQCyxxh4V9J/gLCwMKxcuRKCIGDBggWyWOQjDji7ubnJ5k7T19cXMTExaN68Ob7++mvWOgC0p6eOHTtWFmtOcvLHH38AAIYNGyaLViig+b6rVCrZLmwDslsMvCspb3hgKCCmTJmCzMxM9OvXD+7u7qx18PDhQ9kNOP/zzz9Yv349TE1NsWrVKtlcSPz8/HDu3Dk4OjrKZnrq06dPERgYiIiICBw8eBAmJiayWfwHaMYVfHx84O/vD0Az8KxSqZCUlMTYDJgwYQIePHig1WJ48OCB3v3ohoSIEBERASLSCgxZWVliyh+m6P3e6JI3Q25bvXr1PjBziH5cunSJAJC5uTk9ffq0UF/7bajVamrTpg0BoIEDB7LWISIihUJB1apVIwA0ffp01joSaWlpVKFCBQJAf/zxB2sdiX/++Yfs7Oyob9++BIB69OjBWkmLQ4cOibl1CADVqFGDSpUqRREREazV6JtvviFzc3PJrUGDBuTp6clai5o2bUrjx48nAGRsbExLlixh/rn6+/vT0qVLadKkSXrlSmJ+kc/PVpiBQa1WU7NmzQgA+fr6Ftrrvo9du3YRACpWrJhsEtLNmjWLAFCVKlUoPT2dqYtarZYSvc2dO5cAUM2aNWWTUJCIaMeOHVoX3t69e5Ovry89fvyYtRoREV24cEHLDwD99NNPrLWIiGjlypW53Pz8/Fhr0YQJE3J5LVq0iKlTZGTkm048MBiC/fv3EwAqUaIExcfHF9rrvouUlBQqV64cAaDly5ez1iEiovv375OZmRkBoJMnT7LWoTt37tDmzZspMjKSrK2tCQAdO3aMtZYWS5cuzXURGTVqFGstifv372u5lSlThlJSUlhrERHRxYsXc7kplUrWWuTv76/lJQgChYeHs9YiNzc3HhgMSWZmJn366acEgJYsWVIor5kXkydPJgBUp04dWdwBq9Vqatmypay6tVavXk3FixenLl26EADq1KkTa6VcTJw4Uesi0rx5c1lc3ESio6O1/DZu3MhaSSI1NZWMjIxk15JJSkoiY2Njrc9UDrzxXeOB4UNZtWoVAaCKFSuSQqEolNd8H/fv3ydTU1MCQOfPn2etQ0REGzduJADk4OBAr1+/Zq1DREQDBgzQuqjt2LGDQkNDZXXhzelYrlw5evXqFWslLTIzMyW/unXrUlZWFmslLapXr04AyMTEhF68eMFaR0KsDwGAVq1axVqHiIhOnTrFA4OhSEpKImdnZ+nCwhq1Wk3e3t4EgAYPHsxah4iIXr9+TQ4ODgSANmzYwFpHolKlSrm6acaMGSOri5v4WVpYWNDVq1dZ67yVYsWKEQA6deoUa5VciIP2PXv2ZK2ihTjIa2JiQjExMax1iIgoIyODbGxseGAwBDNnziQAVL9+fVlUrPLz85MqoLG8u0xJSZH6mgcOHEgAqGXLlrJ4j4iIXr58mSsoTJo0STZ+IrVq1SIAtG3bNtYq76RixYrUtWtX1hpvZcGCBQSATp8+zVpFC7FSWvv27VmraNG5c2ceGD6UyMhIqeSjHL54ycnJVLZsWQJAK1asYOpy6NAhmjRpEgUGBhIAMjMzo/v37zN1ysnu3bu1gsLcuXNZK70VR0dH+vHHH1lrvJdGjRrRw4cPWWu8lePHj1ONGjVkF/CTk5PJxMSEtmzZwlpFixwzuXhgyC/Dhg2T1aClOHjk7u5OKpWKqcvYsWPJxMSEypcvL6uBP5Hvv/9eCgpLly5lrfNWMjIyyMfHRxaTB97H4cOHWSu8k5iYGPr9999Za7yV1q1bU1JSEmsNLcLCwsQuVh4Y8sPdu3fJyMiIjIyM6N69ewX2OroSEhJCJiYmBIAuXLjAWkdaxCb2o65cuZICAgJkc+fWsGFDEgSB1q5dy1rlnaSkpFBsbCxrjSIP6/Uy7+L69eusFd7K2rVreWDIL506dSIANGzYsAJ7DV1Rq9XUunVrAkBff/01ax16+vRprv57a2tr2dxZpqamkqWlJf3111+sVTgc2ZGVlaVzYCiSuZLE7IWG5p9//sHBgwdhbW2NWbNm6XROamoq2rZti71792oirQHZtWsXTpw4geLFi+PXX3/V+TwiQvfu3bFq1Sq9k2e9j+PHj2vtlypVCmfOnNE5I+j333+P6dOnF9jnd/v2bWzfvh19+/bV+ZxNmzbh66+/Rnh4eIE45YcHDx6gW7duOHfuHGsVCSLCkCFDsGHDBoN+pz6UFStWYOHChYiIiGCtInHixAnMmTNHSkAoB0JDQ6XCWTqhS/SQ2+bg4GCwKCqSlZVFHh4eBIBmzpyp83lLliwhAOTh4WGQ7pRnz57R/v37KTk5mVxcXAgArVy5Uq/n2LdvHwEgR0dHg/Z19ujRQ2opVK9enZ48eaLzuXfu3JG66O7cuWMwp5zoOx01LS1Neo/lNFg4cuRIWU1LJiK6ceMGAaBSpUrJatqvuAA1KCiItYrEDz/8QABo3rx5rFUkxAwO+Ji7kqpXr27I94yIiLZv304AyNnZmZKTk3U6R6FQUJkyZQgA7d271yAeGzduJBcXF/r222+lxUX6DDirVCqqUaOGwVdrq1QqKl68OAGgFi1aUFxcnF7nt23blgDQiBEjDOb0ofz6668EgNzc3GRzsYuNjZVmxN26dYu1jsScOXNk06UpolAoyNjYmARBkE26DiKifv36EQBat24daxWJv/766+MPDIYeY1AoFFSxYkW9VyuuWbOGAE3mSUNdWMS1AeKm7wrnzZs3S6tpDTk4J2aY7dOnj96rwMW53ba2trJZ4RsbGyst4Dp69ChrHQkxWLVq1Yq1ihaNGjUiALRnzx7WKhK3bt0iAPTJJ5+wVtFCXLx46NAh1ioS4rWKBwY9WLx4MQGgTz/9VOcphJmZmfTJJ58QANq6datBPNRqtTQNVNwEQaAvv/xSJ6+MjAxydXUtkLuV2bNn08SJE/UOgJmZmVIL5pdffjGo04fw448/EgDy8vKSzYwqpVIpdW0dPHiQtY5EdHQ0CYJApqamspqGKbby5TKtXKR27dqy694Su7x5YNCRuLg4sre3JwC0f/9+nc/btm2bdLdiqPnoYWFhuWb99O3blzIyMnQ6f/ny5XoHOF3J75d89erVBIAqVKggm+mFz549k/L5y+mPV7zQVa1aVTZdW0REmzZtIgDk7e3NWkWLqVOnSivb5YSYSufZs2esVSTErkAeGPIgOjqaiLJzqDdv3lznO8esrCzpLnj16tUf7CLy559/agWFcePG6XyBSE5Olr6Qu3btMpjTh5CUlEQlS5YkALKaQip21/Xu3Zu1ioRaraYGDRoQANks3Fq5ciXFxsZSz549ZbVgcNeuXRQfH09du3Y1aIv9Q1Cr1ZSRkUEqlUrK/CqXGyEirQyrPDC8i5iYGGrRogU9fvxYunO8fPmyzueLs37KlClj0KyrX375pRQU5s2bp1cXx88//2zQ2VGGYMqUKQSAGjZsKBunW7dukSAIZGJiQo8ePWKtQ2fOnKG7d+/S+fPnCQDZ29vLZiB10KBBVKNGDbKzsyMA9OjRI3ry5AnzLLXTpk0jV1dX6UZoxYoV5Ovrq/eECEPj7e0tpWQRi2ixnu125coViouLo9GjR/PAkBdiQQ0x/5A+d45qtZrq169PAGjx4sUf5PHm85YuXZqMjIzozz//1OvcnAOpx48fN5jTh/Ds2TOysLDI1wB6QdK+fXsC5FMU5/fff6dKlSqRj48PAaCJEyeyVpIYPHiwVgvW1taWunfvzlpLXMGrtX311VestXImqiNjY2MyMTGhadOmMXXav38/2dvbU9WqVfUKDEVygduHcuXKFQCQFsWkpKTghx9+QHR0dJ7nnjx5EkFBQXBwcMCwYcMM5vTw4UPExcVh9+7dGDp0qF7nzp8/H4mJifDy8kLr1q0N5vQhTJkyBQqFAj179sTnn3/O1EVckHX69Gn4+/vDxsYG06dPZ+ok8vTpU4SFhSEgIAAAYG5ujqVLlxbYIkB9EARBa9/ExAQrVqxgZJONq6ur1r4gCJg2bRobmRx4eHhIP2dlZSErK0vvv2VD06xZMyQkJODhw4f6nahL9JDb9qEthnbt2uWa+aPrLB6xWtmcOXM+yOFNtm/fTv/884/e50VEREh35pcuXTKoU365fPkyAZrMq2FhYax1aNCgQaRUKqU+fDkl/hP773NuhmyJfghDhw7V8tq0aRNrJSIiCg0N1fLq06cPayUiIjpy5IiWV7t27VgrERFR3bp1c3rxrqS3oVarpeIyYlDQtWyh2A9sa2tr8PrP+Z1FNHz4cAJAX3zxhUF98otaraamTZsSAFmklU5MTCRBEMjT05MAUMmSJWU15VIMVuL27bffymY85ptvvpG82rZtKxuvjIwMEgRB+vstqJX0+vL69Wutz3Lfvn2slYhIO+MwDwzvIOfdhpGRkV6DQx06dJDV9LhHjx6RiYkJGRkZ0d27d1nrEJFmxgigKfVp6OCZH8S6ETnv4jZv3iybGhLirC0AskvFLaaft7GxkdXUSyKSxgflVsFNXEdUunRp2XyWBw4c4IEhL8T1B8bGxrR9+3adzxNzxVhYWMhm9a5Y3nDgwIGsVYhIs4JcLKvJuqCQyPz583N11Xh5eVFqaiprNUpNTZWcatasSYmJiayVtBBbo/rm6ioMxFapnNKGEGXnE2M96JyT+Ph4aQqtroHhPzf4fPnyZRgbG2P79u3o06ePzuf98ssvAIBvvvkGJUuWLCg9nbl58ya2b98OMzMz/PTTT0xd1qxZg8zMTPz+++8ICwtDtWrVDDow/yEEBQVp7Xt5eeHgwYOwsrJiZJTNs2fPAAAlS5bEoUOHYGdnx9hIGyMjIzRv3hzDhw9nrZILV1dXdOvWDbVq1WKtokX9+vUhCALzQeecFC9eHO7u7jAxMdH5HN2P/Ei4ceMGdu7ciW7duul8zoMHD+Dn5wcTExNMmDChAO10Z+rUqQCAESNG5JqlUdj8/vvvuHPnDrZs2QIAWLRoEUxNTZk6ieQMDK1atcKBAwdkERQATWCwsLDAgQMHUKFCBdY6ubC2tsbatWthZCS/+8eKFSvq9TdcWHh4eKBt27ay+zxbtmwJZ2dn+Pv763aCLs0KuW357UrKysrKV8I0cT63XDJLnj17lgBNkRzW3VqJiYk5m6nk4eFBr1+/NujCv/wSHR0tebVu3VoW3Uc5WbVqFfn5+bHWeCeRkZGsFd7J06dPWSu8lYSEBL1S6xQWhw4doq1bt/IxBkPx9OlTaYBXDoXR1Wo1NWnShADQ9OnTWevQ8ePHc/XhW1hYyCJj6eHDh6WgkJaWxlonF1FRUawVOAWAXGZv5SQxMZGSk5N1Dgz/ua4kfVm0aBFUKhV69+6NKlWqsNaBv78/zp8/jxIlSuCHH35grZOrSpW1tTUOHTqEli1bshHKQVBQELy9vbF//35YWlqy1slFqVKlWCtwCoA3FwbKAX3Hr+TXeSgjXr16hbVr1wLQrORlRUZGBk6dOgW1Wi2NLUyePBnFihVj5iSSMzDY2toiICBAFkEBAEqUKCHboMDhyBkeGN7DkiVLoFAo0KlTJ9SuXZuZx507d9CvXz+sXLkSwcHBcHFxwahRo5j5iKjValy6dAkAYG9vj5MnT6JJkyaMrbIZPXo0DwocTj7gXUnvID4+HitXrgTAtrUAANeuXUNkZCTGjBkDAJgxY4YsLngPHz5EfHw8HB0dceLECbi5ubFW0kKOTXoOpyjAWwzvYMWKFUhOToaXlxcaNWrE1OX69eta+8OHD0ft2rURExPDyEjDxYsXUapUKfzzzz+yCwocDif/8BbDW0hJScHSpUsBsG8tAJoWQ06qVq2KgIAAODo6MjLSEBERgTNnzshiUJ7D4RiOItliyMjIKJDnVSqVADQreePi4tCwYUN4eXm99xwiwowZM3Dz5s0CccrMzMStW7ek/cqVKyMwMBClS5d+73kLFy7EqVOnNHOSC4gff/xRr6CwYcMG7NixA1lZWQXmpC8nT57Eb7/9hrS0NNYqEhEREZg4cSJevnzJWgUKhQJpaWlQq9WYPn261neRJTt37oRCocCmTZtw9OjRArsm6MPt27eRnp6O8+fPw8/PD1FRUayVpL//58+f46+//tLvxKK22draGmx+b0569uxJKSkpVLp0aQJ0qwF9+vRpqZqbSqUyuJOYownQ1JcODw/P85ynT5+SkZERmZiYyGaRUkpKipTVNjAwkLUOEWnmm3t4eMgq1TUR0bhx42STTjokJIS6dOlCAQEBBIBcXFwK5HuuL/379ycvLy8qUaIEAaCQkBBKS0tjmrhuy5Yt5ObmRq1atZLyhd28eZOePHnCzCkoKIhmz55N69ev//iT6FWoUMGAb50GMWWum5sbAaBatWrpVG+5X79+BICmTJlicCei7GpVrq6uOme4/PHHHwkA9e3bt0Cc8sNvv/1GAKhBgwayWQB08OBBAkBOTk7My2k+fvyYjh07Rq9evSJLS0sCQNevX2fqRJR94yOW95wxYwYlJSUxT10u1u0Wt2rVqjFPDX7y5EktJysrK3JycqLk5GRmTgkJCdKi048+MNSpU8eQ7x0REZ07d07rQ61fvz4NHTr0vcVv4uPjpTc8NDTU4E5ERCNHjqTy5cvrfNeRnJwslfmUS+Ge9PR0vVphhYFaraZ69eoRAFq4cCFrHTp06BA5ODhIF7z27duzViIior///lvr78LY2JhKliypU8u1IHmz7KiVlRU9fvyYqdP9+/dzZQFYsmQJUycionLlyumddlsWYwyCIKwXBCFaEIQ7uhxvbGxscIf79+9r7QcFBYGI0KBBg3ees337digUCrRs2RKVKlUyuBMAREdHIzAwUOdEeZs3b0ZiYiIaNWqEhg0bFoiTvmzcuBFRUVGoVasWOnbsyNRFLJl58OBBXLt2DSVLlsS3337L1AkAQkJCEBsbi02bNgEAGjZsiEOHDiEuLo6p16tXr7T2BUGAn58fypYtW7AvvG0bVGVdoRaMoCrnCmzbpvXrN68B8+bNQ8WKFQvWKQ/KlCmjtV+2bFmMGDGCkU02+cpAq0v0KOgNQHMAdQHc0eX4gsiVJHa/iFuXLl3y7K8US+Zt3brV4D4iEREROh+blZUlFf3esWNHgTnpg1KplIqX6FP/oqD44osvKCYmhtzd3WU1tjBkyJBcd5uDBg1i3u02depULafly5cX/Itu3UpkZaXp0BA3KyvN4/8iFhECQA0bNpTFuAcRkY2NjeS1Zs0a1jpERDRx4sSiW6gHgCvLwNCxY0fpzWvatGmeSdeuX79OAKhYsWKySdAmJo0rW7YsKZVK1jpERLRx40YCQFWqVGH+x5uZmUkWFhZS8CxVqpRsPjsxMaK4dezYURYVwHLWfR4wYEDhBKoKFbSDgrjlGFscMWIEASBTU1PZlPYkIqpWrRoBoMqVK8vmb/DfrKpFrytJFwRBGCYIwlVBEK6+fv3a4M8vdiXVrFkTBw4cyHNl8bp16wAAX331lSxWIQOQ1l6MGjVKFvUQsrKypAJHkydPLpAuQH0IDQ2FQqHAw4cPAWjSeIwfPx7Hjx9n6kVECAkJkfabNGmCv//+W6/CKgWF2JVUt25drFq1qnBWkz9/nufjYo2IadOmoUaNGgXvpCNid9KsWbNk8TcIFOGuJGLcYlAoFGRkZEQVKlSgFy9e5Hl8WloaFS9eXDYzR4iI7ty5QwDI0tKSYmJimLqI6cl37txJAKh8+fKyuHsSfXJuX3zxBfM785x1I2rWrElxcXFMfXLSoEEDcnR0LNT6B5kuFd7aYsgsW0E6ZvTo0VSzZk3KyMgoNC9d+Oqrr3Se0VhYZGRkkImJCbVv3/7jazEUJKGhoShRogSOHTuWawDpbezduxcJCQlwd3eHu7t7IRjmzbJlywAAAwYMgIODA1OX77//Hv7+/pg7dy4AwNfXVxZ3T28uzvLx8cH27duZ35mLrYUKFSogICAA9vb2TH1yEhsbi507dxZqRbLtteZCaaJdZU9pYoUdNedK+6ampli3bh3MzMwKzUsXXFxcMGfOHFlVvTMzM0PVqlUxfvx43U/SJXoUxgaGLYajR4/SlStXdD7e09NTWsAiB2JiYqRps3fv3mWtQ5988gmZm5sTAHJ2dpZNP36XLl2kO/NmzZrJpqLb6tWrydHRkR48eMBaRQu1Wk1//PFHob9ukyZEfbGVnqACZUGgJ6hAfbGVmjTJPkZu75XI+fPnmU8YeBuzZ88mtVpdtAafAWwHEAUgE0AEgCHvO97QgUGfZl9oaKi0YEQuTf5ffvmFAFCbNm1Yq1BaWhoJgiBdgM3MzMjR0ZGWLl3KWo0qVqxIgKb8aGJiImsdienTp1NQUBBrjVyo1WpZXuQ4+pOenk5EpHNgYD+6BYCI+rJ8fX2afRs2bAAAdO/eXRZN/szMTKxYsQIA9GsqFhCPHj0Sgz0ATf6pXr16YezYsQytgOTkZDx58gQ1a9bE0aNH9a5oVZCMGzeOefff2yjstOVRUcDgwcDGjQAvbmdYLCws9DpePh1hRQCVSiUFhiFDhjB1OXLkCOLi4rB79268ePEC1apVg4+PD1MnAFqzawCgV69eWLZsGfPaCHfu3EHlypVx/Phx2V2E5ebDigULgCtXNP9y2CKLFkNRISAgAJGRkfjkk0/QokULpi4nT57EokWLkJycDAAYO3asLAa8cgaG1q1bY/PmzcynqQJAYmIiTpw4wessy5SoKGDTJuDkSaB1a8DXl7caWML+SlKEENcuDBkyhPlF+NmzZwgMDERQUBAEQYCRkRHWr18PlUrF1EtcD+Lh4YE9e/ZLv6mzAAAgAElEQVTA3NycqY+Ij49Poc6s4ejHggXAwIGAuzswYABvNbCGBwYdefXqFQ4ePAgjIyMMHDiQtQ6e51jsQ0T49ttvYWlpKYupl1WrVoW/vz9sbW2ZuuSEdVcW592IrQVfX82+r69mXwblKP6z8MCgI5s3b4ZKpUK7du3g4uLCWgfPnj3T2v/pp5/Qty/TMXxkZWUhNTUVAQEBcHJyYurCKTqIrQWx9lTp0rzVwBoeGN4DEeHBgwcgIqkbaejQoYytNFW1cma9/PLLLzFjxgyGRhri4+Oxb98+nTPBcv67REUBbdtqWgVBQcDSpYAgZG9Ll2oGojls4IPP7yEpKQne3t5YuHAhHjx4AGdnZ3To0IG1llY30ueff45169bJoqvE0dGReR1qTtEg5wykc+dY23DehLcY3kNMTAzCw8PRp08fAECLFi1w6tQp3LmjU9mIAkPsRnJ1dcXevXv1nqPM4bAk5wwkPpYgT3hgeA8xMTFa+zt37sTQoUOZT3l89uwZ7OzscOjQIZQsWZKpC4ejL3wGkvzhXUnv4c303mZmZti1axfz7pLIyEjs3LlTVumGORxdEFsLd+9q9n19gZo1+boFucFbDO/hzRbDsmXL3lvqs7AYPHiwLFY5F2XUajViY2NZa+QiKysLmZmZrDVykTPNSX4QB5tnzuQzkIoCRTIwqNXqQnmdnIFh4MCBGDZs2FuPO3r0aK4gUpCUK1cuz2NOnjypNUgtBy5cuIDg4GDWGgCAFy9eoHfv3rh16xYCAgI++MJnKEJCQjBv3jzs379fVgFi3bp1OHjwIJKSkvJ1vjjYfPiw4WYgERFWrFiRa+o2a06dOiUVg5IL4eHhuHbtmu4n6JJpT26bpaXlB2cb1AWxVmqdOnXemTpaLLJiYWEhZTBkjUqlImdnZ9mk4RZp1KgRAaA9e/awVqFTp04RALK3tycA9Ouvv7JWIiKidevWSdlpZ8yYQVFRUayViIjIx8eHAFCvXr3oyZMnep0bGUlkb090/TpRiRJEhvovieV169WrR69evTLMkxqAli1bkouLC0VGRrJWkdi4cSMZGxt/3IV6rK2tC+V1YmJiULx4cezevfud5TtPnjwJAGjcuLFsZgddvHgRr169QoUKFVC9enWmLmKKjpCQEFy6dAk2NjZo06YNUycACAsLA6BZewFouglr1aqFx48fs9TC5cuXpdbL3LlzcfbsWaY+AJCWlobTp08D0GQi1nfyRUENNu/atQs2NjaYPHmybCZhxMbGIiQkBFu3bkVpsb9MBly+fFkq5qUTukQPuW0VK1Y0YCx9N127dqWDBw++95jBgwcTAPrll18KxUkXvvvuOwJA48ePZ61CixcvprNnz5Kvry8BoMGDB7NWIiKiyZMna5X4NDExoWPHjrHWojp16kg+u3btYq1DRESHDx8mADRt2jSda5dERhL5+BDdvKlpLYg3z5GRhmk1qNVq6tSpk6xaxEREV69epbCwMNYaubh48SIR6V6PgflFPj9brVq1DPaGvY8jR4689/dqtZrKli1LAOjq1auF4pQXarWaXF1dCQCdOXOGtQ798MMPVKxYMXJ0dJSc1Go185q4vXr10goMGzZsYOpDRJSamkrGxsZkampK+/btY60j8f333+v9/owfrwkI7u6an9/83XfffZiTQqGghISED3uS/yAfdWAwdAW3/BISEkIAyMHBgfmFTkTsd3VyciKVSsVaR2pRiZurqyt5enoyL+Jer149yemnn35i6iJy9uxZMjMzowMHDrBW0SI0NFSv43OOKZiYaK4yb245y3RyCg9dA0ORHGOQC8eOHQOgqTvAOg23OINl7969AICuXbvKog5CXFyc1n5ycjI2bdrEvIi7OMYwaNAgWeSZAoDg4GDs3bsXnTp1Yq2iRaVKlfI8Jmfuo5xjCqNHA999lzs08DQYMkeX6CG3TS4tho4dOxIAWrduHWsVGj58OD158oRq1KhBAPLsBissmjVrJt2ZC4JAR48eZa1EsbGxBIC8vb1JqVSy1pEoyl0jYtfRsGEFM6bAMQzgLYaCRalU4tSpUwAAb29vxjbAgwcP0LhxY9y9exe2traoXLkyzpw5o+kvZEjOFsOMGTNksTAvLCwMtWvXxq5du2BqaspaR6JYsWKsFfRCbCUEB2fnPtq8GejRgy9gK+rwwJBPLl26hNTUVHz66ac6LTgraFQqFV7+m40sOTkZVapUwbVr15hnXRUDg7e3N6ZPn87URSQjIwOHDx+GnZ0da5UijbhobfDg7K4je3vgzz95Cu2iDg8M+eT48eMA5NFaAJCrpGeLFi0wbtw4RjYaiAhxcXFwcXHBtm3bZDHmAQBNmzZF2bJlWWsUOXKOI4g5j3bsAG7eBAYN0hxz7RpQooTm93xMoejCA4Oe3LhxA0D2wLMcFmsB2oHBxsYGGzZsYD4gnp6ejqysLPj5+fGKbh8BOWsoiAPMR44AdepoggTAu44+Fnh2VT0ZOnQo+vTpg6tXr8LExAQtWrQAETHvsskZGBYvXoyKFSsytNEQFxeHRYsWoXHjxqxVOPkkKkrTVTR/fvY4QqtWgFoNhIQAPXsCN25otiVLss9r0oSdM+fD4YFBT4yNjeH7b9VyOzs79OrVC1WqVNFvuXkBIE5XbdeunSzKjwKAk5MTxo4dy1qD8wG8bRxBrNxaunR2F9F332nGExYvZqbKMSA8MOiJubm59HNCQgIuXLiA9evXMzTSoFKpYG9vj7Vr1zJvvYjkfK84RYc3Wwk7dmjGFjZs0PzexERTp/nNrxlvJXw88DEGPXnzYjdv3jxZJMtSqVRYuXIlypQpw1qFUwR5c4FazlbCm+MIV64A48fnXrjGB5g/HniLQU9yBob69etjxIgRDG2y6d69u1SbmsPRFbF1UL685oI/cybg56fdShg1io8j/NfggUFPxMBgZGSE1atXy2YK5qxZs1grcIoIYjDYuFHTOrh8GTh9Grh4Efj8c6B/f+1WAh9H+O/BA4OeiIFh3LhxcHd3Z2yTjVxqQXDky7taB+3bA3v2AEZGmi4hQdCMIfBWwsdDbGwsHBwcdD6eBwY9MTc3R9myZTF79mzWKhyOTuQMCG+2Drp3B/z9Na2EwYM1axB27QLu3gVKleKthI+F3bt3w83NTefjeWDQEzMzM6xYsQI2NjasVTicd/Ku7qLu3bVbB8HBmgFmX19N4Ph3/SZyzqfgrQT9CAwMhJeXF2sNLcLCwnD48GGdj+ezkvSkd+/e6NKlC2sNDkeLnAnt2rbVdBOJ3UWbNmm6iwDg8GHt1sH9+5pcRmXKADmzqjRpUjRmG7FOEvk2Nm3ahMDAQNYaWoSFheHAgQM6Hy/I8Y3NCw8PD7p69SprDQ5HFkRFAY0bAwkJwCefAE+eAOnpubuLXFwAU1NNcChfXjsQiDRpIu9A8CZr1qzBN998I5u1OwDQoUMHREVF4erVq8zT0ojUqVMHwcHBAHCNiDzyOl4e1hwOR2febB1MmAA8f65JVXHzJuDpqRkXeLO7yNJS01VUVFsHb8Pf3x9r1qxhraFFTEwMbty4gW3btrFWAaBpVYmFqXSFBwYDkJiYKJsm7bNnz0BEiI+PR1ZWFmsdicjISGRmZkKhULBW0eL169eycwI0qU3etkZGbB1cuqTpDrp8WbPmoG9fTaugatXcg8lid1FQkPZziQFB12Awc+ZMNG7cGEql0gD/Q8Pg5OSENWvWICUlhbWKhLm5OczNzREXFyeL60J0dDSqV6+uV+2RIhkYbt++zVpBi0qVKsHa2hqvXr1irYK///4bPXv2RLt27WBlZYXjx49j//79iImJYerl7++PJk2awNbWFn/88QeuXbvG1Edk06ZN0sVFTlhYWEgBKypK0wrw9MzdOmjcGMjK0gQBcaqpIGgWpd2+ramN8GaXkb4BQUTMx8W6LGtOFi1ahIsXL8pqMsiBAweQmJiIcePGyaKLy8bGBufPn0diYqLuJ+lS5k1um6Wl5YfXuDMQqampBIBMTExIpVKx1qE9e/ZIpTRFLw8PD1Kr1Uy9Dhw4IDmVKFGC4uPjmfqIzJ49mywsLOjOnTusVbSIjCRq2VKzffMNkbm5ZjM2JvrySyILC6Jq1TT7NWsSubtrjjMxyZmkIntr0oT1/4gjB6Bjac8iOV1VDuUYlUolTE1NERERAQAoW7asLFZBV61aVWtfpVJh0qRJzO9cSpYsKf08depUFC9enKFNNunp6Vi4cCFq1KjBWgVRUcCXXwIZGUB4OBAdrbn7v3gRMDMDFIrs1sHu3ZrfqdXAnTua88WppjkpaoPJHHlQJLuS5BAY4uPj0b59e5z796+uXLlySEhIwMWLF5l6VapUSSsIVK1aFV27dmVopMHZ2RkAUL58eYwcOZKxTTaenp4YNWoUUwexq6hBA+DCBc0004iI7Pv9zEygc2dNEHBw0Kw5GDAACA3V/P5NivJgMkceFMnpqqVKlSKxvjFLnJ2dER0dDQAoXrw40tPTsW7dOnz11VdMvVxdXfHs2TMAwNq1azFkyBCmPgCQlpYGa2trbN68Gf3792etw5y3tQ6USs100sxMTWtAvP9RqYDPPtMc8+/X7a3w1gEnLwRB+Hinq8qhxQAAtWvXln5OSEiAvb09evbsydBIQ5UqVQAAZcqUQb9+/RjbaLCyskKTJk3w5ZdfslZhys2bgL29ptjN+fPZrQOVSjO9NCtL868gALa2ms3UVFMt7W1BgbcOOAVBkQ4MrFs7OQMDAIwYMUIWMzbEwPDdd9/JqliOnLLRFiZRUUD9+poCN+JCNKVSEwSysrLHCoyNNf8WK6YJBvHxQGysplXx5szj/M4s4nB0oUgGhvT0dHTr1g2RkZFMPXIGBlNTUwwfPpyhTTZVq1ZF8eLFMWzYMNYqWshhgLcwOX5cEwzKlAGuXtVc3HMumVCrNUGBCLCwAOzsNPvx8ZpgoFZrPx9vHXAKiyIZGF6+fImMjAy4uLgw9cgZGHr37o1SpUoxtMmmSpUqGDVqFOzs7Fir/CeZMkVzgW/TJvedvog4P8DMTPOzQqFpHbxvMJkHA05hIYvpqoIgtAXwPwDGANYS0a95nSOHu/Pq1avD2NgYWVlZsip6X7NmTdSvX5+1xn8OXWcECwJQvHh2y+Bt8IFkDkvynJUkCMJ2ADcB3IJmccRrgwoIgjGAhwC8AUQACALQl4juvescMzMzSktLg4kJ+7j22WefoVixYsynqXLYY4ilIjwgcAqKzMxMmJmZ6TQrSZcr6yoAtQF0B/CLIAhPAAwgouQP9BRpACCUiB4DgCAIOwB0AfDOwODk5CSLoABoupPksE6Aw5YPCQq2tkBSkuFcOPIgJCQEpqamqFy5MmsVANAr7bYuYwzlAfwDYAQR1QGwC4AhCwy7AAjPsR/x72NaCIIwTBCEq/9uBnz5D6Ndu3bo3r07aw1OEUQcO+BB4eNkxYoVYqprWbBq1Sqdj9UlMFQF8DOA+4Ig3ADQBkA3QRBaCYLglD9FLd52lc/Vv0VEa4jIg4g85DLICwD9+/eXzboKDhv0vU/hg8kfPwkJCdi0aZNsEn6GhobixIkTOh+vS2BYRkSdiagyAC8AWwFYAfgKgH++LLWJAFAux35ZAGznoeqBXApxcOQPDwgFx+PHj1kraLFhwwakpqbi1q1brFUAQO/swbpc1Y4JgvBUEIQjAGYC+AHAdiL6mogMMfUlCEAVQRAqCoJgBqAPAN07wzgcmcMDQsEzZswYqN9c+MGIrKwsrFixAgBkERgyMjKwfv16vc7JcwSXiNz/nTn0KYBqAE4AOJovw7c/v0oQhNEAAqCZrrqeiO4a6vk5nIKmCKYb+6i4dOkS/P39ERkZibJly7LWwZEjR6QWTFhYGFJSUpjWi9i7dy/c3d2RkZGBs2fP6nSOTv0gRJRFRHeJaA8RHSKit1SLzT9E5E9EVYmoEhHNNeRzczgcw8I648CbzJ8/HwDw8OFDxiYali1bprV/R8yLzoiuXbvi+PHjcHV11fkc3kHO4XB05uXLl5g7Vz73biEhIdi3bx8A4NGjR4xtgHv37uH48eNaj7HuTrKwsACg+ex0hQcGDoejM3PmzNG7sHxBsnDhQulnOQSGFStW5EoUKZeZSTwwcDgfASkpKQgNDWWtIfHo0SOsWbNGqkHCmvDwcGzdulXaZ92VpFarUbduXcnD1NQUy5cvl82MqaioKJ2P5YGBw5Ep48aNk81FGACmTZsGlUqFV69esVYBACxZsgSZmZnSPusWg5GREYYOHQqlUglAU+539OjR2LRpE1MvQJMOIyYmRufjeWDgcGTI7t27sX79elhaWrJWAQAEBQVh586dAIDo6GjmU0Pj4uJyzc0PCwuDSmXQeTH54vnz5wA0ZWwBwNHRkaUOAOh9g1FkA4McvgBvIkennHdUrHn8+DE6deqEmzdvslaRSE1NRZ8+fbBnzx7WKhIKhQJ//PEHAMgmMNy4cQOdOnWCmZkZ7OzskJCQwNTn1q1bWLlyJQYNGgQAaN++PaytraWLMktEh3LlyuVxZOGhdylkIipym52dHfXr14/kQHR0NM2bN48aNmxIM2fOZK0jcevWLWrQoAHt27ePtYrEmTNnyMzMjPz8/FirSMTGxpKlpSVNmjSJtYoWycnJdP36dYqLi2OtIpGSkkI3btygJ0+eUGxsLGsdIiJKTU2l4OBgevHiBYWHh9OzZ89YK1FaWhqFhIRQaGgoaxUJpVJJoaGhBE2G7DyvsfJIUaonSUlJUOQshcUQR0dHHDlyBJcvX0b79u1Z60hUrVoVKpUK8fHxrFUkmjVrhri4OFhbW7NWkShRogQSEhJkk61XxMbGBu7u7qw1tLC2tkadOnVYa2hhZWWVq8QuaywtLfHpp5+y1tDC1NQUlSpV0vn4ItuVJJdUtoIgYNGiRQDk0ZcoYm5uLvUJywk5BQURMzMznvOKw8mBvG6T9ECf6FfQNGjQAH379pVVYAA075E4AMbhcNiSnp6OiIgIVKlShbVKnhTJ2yRBEGQVGABg3rx5zGtQvw2eEpzDkQfz5s1jvtZCV4pkYHBwcJBNV5KIq6srPv/8c9YaHA5HhoSEhGD+/PnIeFeRb5lRJAND6dKlZXl3LqfKchwORx4QEUaMGIHMzEweGAoSPljI4XDeB+sFeDnZuHEjzpw5AwA8MHA4HA4LFAoF/vzzT9YaAICYmBhMmDBB2hfTZcidIjsricPhcN7GjBkzZLPif8KECYiNjZX2eYuBw+FwCplz585h0aJFsliwePr0aWzcuFHrMR4YOBzOR4+c+vJTUlIwcOBAEBHzadoZGRkYM2YMqlWrluvxogAPDBwOJ98sX76ctYLEhAkTpNoHrFsMRISgoCAsWbIEAFCjRg00bNiwyIwx8MDA4XDyxfr166WymqwJCAjAqlWrpH3WgcHCwgIWFhY4duwYAKBz584IDAxEs2bNmHrpCg8MHA5Hb27evIlRo0ahRIkSrFUQHx+PIUOGaD3GOjCIiPWfvb29YWVlhdatWzM20g0eGDicIkBQUBDS09NZawAAEhMT0aNHDygUClkEhrFjx+LFixdaj8khMLx48QJ3796FlZVVkcuKwAMDhyNznjx5gkGDBsmiaA8RYfDgwQgLCwMA5oEhNjYWnp6eWLp0KQBNVmFAHjnCTpw4AQBo0aKF5FVU4IGBw3kDucyBBzQlLNu1ayebdOVLlizB3r17pX3WgcHBwQFff/01IiMjAQDffPMNFixYIIsWgzi+0KZNG8Ym+sP+3eNwZMSqVavQpEkT1KpVi7UKFAoFunTpggcPHqBPnz6sdXDu3Dn4+vpqPcY6MACaVoxYmvWLL76Al5cX89KjarVaajF4e3szdREhIp2P5YGBw4y4uDhZXFhEVqxYgcmTJzO/qACaC8ugQYNw7tw5AOwLU0VHR6N3797IysrSelwOn9/du3cRGhqKEiVKoHnz5gCA4sWLM3W6ffs2oqOjUaZMGXz22WdMXUT0SfnNu5L+A8ilDKoIEWHevHlSYjE58L///Q9jxoxB3bp1YWxszFoHkydPxt9//y3ts64/YmxsjGvXrmH27NkAgGLFigGQR2AQWwudO3eWRRcSkN2N5O3t/d6sy2q1Gjdv3iwUJ/EmQxeKbGAQB7/kRHBwMNLS0lhraHHp0iUsWLCAtYaEUqnEkCFDMHPmTHh5ebHWAQAsXrwY48ePBwA0bNiQsQ2wcuXKXJ8Z68Dg4OAAZ2dnbN68GQCwZcsWfPXVV7IIDOKYR7du3RibZJNzmur7WLBgAa5cuVIYSnoFBhBRkducnZ1p165dJCf8/PyoadOmrDUk1Go1rVq1ikxNTenYsWOsdYiIKC4ujjw9PQkAeXp6stYhIqL58+cTAGnz8/Nj6nPgwAEyMjLScgJAL168YOpFRHTmzBkCQKVLl6bMzExSKpWUmprK1Onx48cEgKytrSk9PZ2pi0haWhqZm5sTAHr58uU7jztx4gQZGRnRnj17CsWrcuXKBOAq6XCNLZIthlevXqFRo0asNSQCAgLQs2dPWS1eOXPmDL7//nvY2dmhZcuWrHUAAOfPn8ejR48AAO3atWNso2m91KlTB25ubtJjrFsMnp6eSEtLk+a9m5iYwNLSEqVLl2bqBUBKCNe/f3+YmJjA1NQUVlZWTJ3E1kL79u1hYWHB1EXk3LlzyMjIgJubG5ydnd96THh4OPr27Qu1Wl0oteJfvnyJ0NBQnY+XR4ecnpQrV05WFdw8PT2xbNkyaeBLDjRv3hwbNmxAWFiYLOZ0A0DHjh1hZGSEAwcOyCIwmJmZoU2bNnBycsKVK1ewdetWlC1blqmTjY0NAGDr1q34/fff0aFDB0yYMEEW1QHnzp2L6tWro3PnzqxVJAYNGgRHR0dUrFiRtYpEo0aNsH///ncmGMzIyEDPnj3x+vVrACiUwGBvb48TJ07ofPMqkB5TmOSCh4cHXb16lbVGkYCIZHFRyYlSqYSpqansvOQ2S0rkwYMHubJ0cvQnMTFRGjRnyahRo7By5UppPzo6Gk5OToXy2oIgXCMij7yOK5JdSRzdkdvFF9DcqcvRS45BAQAPCgZg+fLluHv3LmsNbNmyRSsoCIIAe3t7hkZvp0h2JXE4HI6u+Pv7Y/z48Xj+/DlTj1u3bmH48OFaj9nb28tmim1OeIuBw+F8tNy+fRt9+vSBsbEx8wH827dvY8mSJVoehdWFpC88MHA4nI+Sly9fomPHjkhOTkbZsmVhZMT2cvfVV1+hSZMmiIqKgo2NDebOnVsoA8/5QX5tGA6HU2QJCQlB9erVWWsgPT0dXbt2lbqPKlSowNhIw7p16wAAffv2xZQpU2Q17T4nvMXA4XAMwqVLl6SUGSwR80xdvnxZekwOgSEjIwNbtmwBAKmwkFxW/78JDwwcDueDuXfvHjp06IBy5cqxVsHMmTOxc+dOrcfkEBgOHDiA2NhY1KhRAw0aNGCt8154YOBwOB/E8+fP4ePjg7i4OObdSOHh4UhNTUWPHj20HpdDYBC7kYYOHSrL6do54YGBwyliBAUFISYmhrUGACAmJgY+Pj6IiIgAAOaBoVy5cli8eLG02r9t27YwNzdnHhiePXuGY8eOwdTUFP369WPqogt88JnDKULcvn0bvXr1wuPHj1mrICUlBR06dMD9+/elxz799FOGRhpevHgBPz8/GBkZ4Y8//sD58+fh6urK1Gnjxo0gInTt2lW2M5FywgMDh/MOFAqFbBKzAZpCK97e3qhUqRLzrgilUonu3btrpYwuVaoU8wI5gCZtuUqlQrdu3eDq6gpXV1e9qpcZmqysLKxfvx5A9qCz3CmyXUnvSlDF4RiC3bt365e/voB59uwZWrdujVevXqF27dpMXdRqNQYOHCgVoxFh3Y0EAGlpaVi9ejUASDU2ALapYU6ePInnz5+jfPnyssrA/D6KZGDIzMzE4cOHWWvkIi4uTsqYKCfUarUsvYgIhw4dYq2Ri1OnTuHLL79ElSpVWKsAAKKiotC6dWuEh4cDgCwCw7Jly3JV4JNDN9K2bdsQGxuLunXromnTpqx1AGQPOg8ePFjn6oC7d+9mWvSLaWAQBKGnIAh3BUFQC4KQZ8Y/kdevX+P69esFqZYvFi5cKIu+3zdZu3Ytbt26xVojFytXrsSRI0dYa2hx48YNdOnSBSYmJrKYehkbGwtvb2+tXPq1atViaKSpEeHk5IRVq1YBAIYPH46OHTsybzEQEf73v/8BAMaNG8e8uw3QfH779u2DIAgYPHiwTucEBgbC19eXba0LXar5FNQGoDqAagBOA/DQ9TwTExPq3r27wSobGYKoqCiytLQstGpMuhIeHk52dnayqeImcvbsWTIxMaGffvqJtYrEo0ePqGTJkgSA3N3dWetQYmIieXh45KrmlpCQwFqNHj16REZGRmRsbEyPHz+muLg4un37NlOn48ePEwBydnYmhULB1EVk6dKlBIDatGmj0/HXr18nW1tbatWqVYH4QMcKbkwHn4koBNC//0+lUuH27dsF4pRf5s2bh/T0dLx48YK1igQRYeTIkUhKSpLVmMyLFy/Qo0cPqFSqd1a4KmyioqLg4+OD6OhoAOz7y4kIixYtgqWlJSwsLKBQKAAA5cuXl0VNgV9//VUaaxCL5LBOH7106VIAwMiRI2Fubs7UBdB8hmvXrgWg26BzWFgY2rVrh+TkZPbdcrpEj4LeoEOLAcAwAFf/3cjIyIjS0tIMGk3zy9OnT8nMzIwA0OTJk1nrSOzYsUO6y/T392etQ0RECoWCGjZsKHnJoYWVkJBAbm5uWnfls2fPZq1FRER37twhQRDI1NSUrKysqGPHjqyV6Pnz52RqakqCIND9+/dZ6xAR0cOHDwkAmZmZ0atXr1jrEBHR5cuXCQA5ODjk2YKJioqiTz75RPr+LV++vECcIJcWgyAIJwCUesuvphLRfvsFVLYAAB7PSURBVF2fh4jWAFjz73OSWq3GvXv3UK9ePQOZ5p/Zs2dDqVQCACIjIxnbaIiJicGYMWOk/aysLIY22YwZM0Yrhw3rFoNCoUDnzp0RHBys9TjzO7Z/mTVrFogIQ4YMQaNGjfDgwQPWSli4cCEyMzPRs2dP2RQRWrZsGQBNBtOSJUvqfF5ycjJsbW0LxEkcdO7fv/97WzCJiYlo166d1vgk8++fLtGjoDfoOcaAf6Pqhg0bDBdK88mDBw/I2NhYivStW7dmrURERP369dO6A96/fz9rJVq9enWu/vLQ0FCmTpcvX6ZFixZR8+bNtbxY95cTEQUHB0t3wc+fPyciooiICKZOL1++JAsLCwJAN2/eZOoiEh8fT9bW1no7XbhwgRYuXFggTikpKWRra5vndyk9PZ1atmyZ6+8iPDzc4E4ZGRk6txiK5HRVkTt37rBWwMyZM7XuxuXQYvD398fWrVu1HmM9xnDx4kWMHj061+OsWwwNGjTAyJEj8fDhQwBAx44dYWRkJIupqrNmzQKgya0jzpBycXFhqYQlS5ZAoVCgY8eOcHNzY+oism7dOqSmpqJly5Y6O125cgVt27YtsM/Zz88PycnJaNCgAWrWrPnO41auXAm1Wq01bmRtbV0gn/OJEyd0P1iX6FFQG4AvAEQAyADwCkCAjufpNdJfUNy8eTNXpC9WrBhTp6SkJCpXrpw05iFuu3fvZuoVHBxMwcHBVK9ePcK/Y0RWVlZMnURWrFhBAMjNzY2ysrJowoQJrJXoxo0bBIDMzc0L5O4xP8TGxpKNjQ0BoIsXL7LWISKizMxMqlChAgGgffv26XTO1atXqVixYgRAaokZmqZNmxIAWr16dZ7H5myFlSxZkurVq1cgTv3799e5xcC8Gyk/GwA6cuQI88Bw5MgRCgwMpHbt2hEA8vb2JiMjI0pJSWHm9OrVK3ry5Il0satevTpZWFiQn58fMyeRBw8eEACysLCgkydPUu3atVkrkVKppPLlyxMA+vvvv4mISK1WM7Yi6tq1KwGgMWPGsFaR+OmnnwhAgU2lzA+7d+8mAPTJJ5+QSqXK8/jr16+Tvb09ASAnJ6cC+axDQkIIAFlZWVFiYmKex0+cOJEAUMeOHenSpUs0ePBggzulpaWJXVvyGHwuCJydneHj4wMvLy8QEbOFLG3btgWgGcD67LPPMHLkSDx//hypqamwtrZm4iQOvLVo0QKTJ09Gw4YNUaJECaarKEUcHR2xYMECJCUlwcvLC7t372atBEEQMHfuXOzatQvdu3eXHmPN2LFjkZKSgkmTJrFWkejRowcePnyIb775Rq/z1Gp1gZXV9PDwwI8//ohq1arluao4ODgYrVu3Rnx8PACgbt26BfJZOzk5Yf78+UhNTYWdnd17j42Pj8fKlSsBAFOnTkXDhg0LrHvrt99+w7Bhw3Q6ViBil1wqv3h4eNDVq1dZa3A4nDw4f/48UlJS4OPjw9Tj9u3b8PT0RGxsrPTYlClTMHfuXIZWwJw5czBjxgx4enoiMDCwwF9PEIRrRJRnlokiPfjM4XDky+nTp+Hj44MaNWow9bh37x5atWqlFRQAMJ/qnpKSIi3Kmzp1KlOXN+GBgcPhGJyAgAC0a9cO9vb2KFu2LFMXJycnnD9/Xur6Falbty4jIw1r1qxBXFwcGjZsKLvazzwwcDgcg3LgwAF07twZCoUCjRs3Zq0DJycnqFQqHDt2DMbGxpg0aRJKlCjBtKqbQqHAokWLAGi6tOQwrpWTIjn4zOFwNLx+/Rp37tyBp6cnaxUAwK5du9C3b1+oVCoAkEVgAIDp06dDrVZj6NChmDdvHlxdXZlejDdt2oSoqCjUqlULHTt2ZObxLniLgcMpokRHR8PLy0s2Vea2bduG3r17S0EBkEdgCAoKwu7du2Fubo6ZM2dCEAQMHz6cmY9KpcL8+fMBAJMnTy6wGVsfgvyMdEAueX84Hz9EhNTUVNYauRCDwv3791GnTh3WOli3bh369++vtcLezMwM7u7uDK00TJkyBQAwevRo5uMdALBjxw48efIElStXRq9evVjrvJUiGRiioqJkGRz0WnJeiGRkZMjy4iaSnJzMWuGdzJ07V3bV78SgcPfuXdSsWROWlpZMfYgIdevWxcGDB2FmZiY9Xq9ePebprwMDA3HixAnY2trKYk2IWq3GL7/8AgCYOHGizhXdRG7evFkQWrkokoEhJiam0N4gXVEoFBgzZgzkuC5kw4YNePToEWuNt7J//35cuHCBtcZb2b59O2bNmiWLu0yR6OhoeHp64u7duwCA+vXrMzbSLAh0d3fHpUuXoFQqUa9ePVSsWBGff/45Uy8iwuTJkwEAEyZMgKOjI1MfANi3bx/u3buHsmXLYsCAAXqdu2TJEuzZs6eAzN5Al+XRctsAFFhWxPyybds2AkBPnjxhraJFRkYGlS9fnvbu3ctaJRfx8fFUunRpOnLkCGuVXJw/f57Mzc2pQoUKrFUkXr58SZ999plWDixdcvEUBs+fP5fy/Zw9e5ZOnz7NvNbGnj17pNQXSUlJTF2INKlWxFxhS5cu1evcBQsWEAA6ePDgBzngY8+V1KFDhw96gwxNixYtCIAschLlZM2aNQSAlixZwlolF19//bWsigiJhIWFkaOjIwGg5s2bs9YhorcHBQB0/fp11mpEJCVoox49ekiPZWVlMfNRqVTS+6XvRbigOHr0KAEgR0dHSk1N1fm8uXPnSp93dHT0Bzl89IHBzs6OMjMzP+hNMhT379+XPjhfX1/WOhJKpZJcXV0JAI0bN461jhbHjh2T3rNDhw6x1pGIj4+nTz/9VHIbMGAAayUi0lTjmzhxIjk7O0tuFhYWpFQqWatRUFAQASBTU1Pm9TVENm7cSACofPnysqn/LNb8mDt3rs7nzJo1S/q8K1as+MEOH31gAEBXrlz54DfKEPzwww/Sh+fl5cVaR2LdunWSV5cuXVjrSCQnJ0upkg3RPDYUSqWSWrVqpXVHPmPGDNZaEjdu3JDKfJYvX54aNWrEWonUajU1a9aMANAPP/zAWoeINOVjxYy5+S3mZeisq2fPniXxhjYhIUGn158+fbrWd7F3794f7PGfCAwLFiz44DfqQ0lPTycHBwfpw7Ozs2PahBZRKpVaNWTd3NxYK0mMGTNG6wt/4MAB1kqkVqtpyJAhubpq1q9fz1pNom3btgSAxo4dSxcuXKDvvvuOtZLUj1+iRAmKi4tjrUNERP/73/+klPO6pOL+f3t3Hhxlle5x/HuyEFmCARy2ECZcWWQRFxAvMONFUbaLzCQDCMriSImDUCMoDIQ4KohMKbLIJmgJzkgAGQUvFsMEdMRUEBHZxMBFb0QhE8ISCIGQtfPcP5p+TRuWTvI25ySeT1VXmdBv+as33f302X9q3bp18v3337uaybc1//Tp06/53NLSUpk+fXq51+K8efOqnONnURj69+9f5RtVVatXry73BzThgHRfU9r30H2AkE9qaqoopfyymXDs6N69e2XcuHHOWJHv8a9//Ut3NBER+fjjjwWQyMhIp585kG+ewVRYWCitW7cWQBYuXKg1i09ubq784he/EKBSg99LliyRmJgYV1sMu3fvds5nCGSM4OOPP5a+fftKixYt/F6L27dvr3KWGl8YmjdvLvXq1dM+znC581pXrVqlNVNxcbHzhi37OHv2rNZc+fn50q5du3K5TJox1bNnTwHvoUuApKen644kHo9HunbtKoDMnDlTdxzH/PnzBZC2bdsaMdYhIjJz5kwBpFu3bhX6cC8tLZXnnntOABkxYoSrmQYPHiyATJw4MeBryhbdOnXqSFhYmFy8eLHKWWp8Ydi8ebO8//778sMPP1T5ZlXWqVOn5Pnnn5c1a9YIIB06dJAJEybI008/rS2TiEhycrKMGTPGOQUsOjpaQP/h7UePHpXt27fLq6++KoC0aNFClFLapzX6fPHFF053YG5uriQkJEhhYaHuWPLuu+8KIE2aNNF6OmBZ2dnZzkloJrT4REROnz4t9evXF0A++uijgK8rKSmRJ554wvmi8tZbb7mW6eDBg864UEWOaF24cKEA0qZNG9mxY4fcfffdruSp8YUhNTXVlRvlBl8/q28KbVWnlLnFN4Xw9ddfl/Xr18unn36qO5KIiAwaNMjJtXr1aiPGGEREHn74YQGcwm7CEZ9FRUVy8803O/fLFE899ZQA0qtXLyPuk4jI5MmTBZD7778/4Gvy8/MlPj7erwX73XffuZZp9OjRAsjjjz8e8DU5OTnOdGnfWe1udU/X+MKwd+9eV26UG5YtWyZAUM5qrYo77rhDwLvgyBT5+flSp04dgR8PYjdhsD4jI0PCwsIkJCTEqEWKvrO7TequOXz4sISFhYlSSnbv3l3h60tLS11v6R87dkwiIiIqNFsxJyenXFdwbGysa5mOHDkioaGhEhISIt9++23A1yUkJAggPXr0cL3oBloYquWWGAD16tXTHcFx4sQJwHsWtSk8Hg+HDh0C0H6CVlnbtm3j4sWLdO7cmZiYGAAjdpdcvHgxJSUlxMXFERsbqzsO4N1DaubMmQDMnj2b8PBwzYm8pk6dSklJCaNGjarwYTdFRUWMGjWKY8eOuZpp5syZFBYWEh8fH9A2IVlZWfTq1Ytt27b5/d7N7ctfeeUVPB4Pw4YNo3Xr1gFdk5GRwfz58wGYM2eOvq3BA6kepj0AyczMdLOQVsmTTz4pYNbq4m+//VYAadasme4ofiZMmBDwtL3r5cKFC05/uUldlC+88EKlBlKDadu2bQJI7dq1JSMjo0LXnj17Vu69917XF6cePnzY+WZ+8ODBgK4pKiqSzMxMmThxol+L4W9/+5srmTIzM50WzIEDBwK+7tFHHxVA4uPjXclR1rlz52p+V5IJe5/4/O53vxNAkpKSdEdxbNiwocL9rcFWWlrqrMR2Y+qdW15//XUB5K677jLmAzgrK0vq1q0rgGzbtk13HBHxdvndeeedAhVf+Hf06FHp2LGjABIXF+dqrqFDh1aqK/fEiRNy4403CiCPPPKIABUaIL4a33hHRRaW7t+/X5RSEhYWJocPH3YlR1mXBrRrdmGozMKVYPnVr35V4ZkQwTZr1qwKT5ELtrS0NAGkUaNGxvz9PB6PM4V29erVuuM4xo8f7zehwQR//etfnVbo+fPnA75u79690rx5c+dbuZuD6L41ArVq1arwuIXv2/kDDzwgpaWlrr1XsrOznaK+c+fOgK/r27evADJ+/HhXcpTl8XikTZs2AReGanm0Z8OGDSu8j3kw9enThyZNmhjTNw3Qvn17hgwZwq9//WvdURwhISGMHj2aqKgoY/5+hYWFxMXF8Y9//IPBgwfrjuO48847iY6OdvbuD9TKlSsZOXIkYWHuv7VbtmxJx44defrppwMe40tOTmbw4MFcuHDB+V3fvn1dy3TDDTfQt29f2rdvT8uWLQO+7rPPPuPtt98mPDycRYsWoZRi7ty5rmQqKipi6NChZGVl0a1bt4Cu2bp1K8nJyURGRvLcc8+5kqOsgoIC4uPjnZPjrimQ6mHao0uXLm4WU8sypguprIrOQvrLX/4ivXr1ClIar+Li4oBbeytWrJDQ0FC/PvzWrVsHLVdFnnv77bcLIAkJCUHJIxL4bDuPx+PkmTVrVtDyiEjNnpV07tw53RHK8Xg8rs+0cEvZ4xaty7vW7A8dr7lAZyGJCM8++ywJCQn07NkzqJnCwsICau2dOXOGrKwsfvvb3/r9vk+fPkHLFahly5axb98+YmJiSExMDEoeCHy2XVJSEvv27aN58+ZMmjQpaHkqoloWhuPHj+uOUM6nn37KBx98oDvGZa1cuVJ3hCsSEfbs2aM7xlXl5OQE9QOkKkSESZMm8dJLLwEEvTAEqmHDhkybNo2CggIAoqKigOAVhkCdOHGCZ599FoAFCxZQt25drXny8/Od19aLL75InTp1tObxqZaFIS8vj+zsbN0x/KxZs4ZPPvlEd4xysrKySExM9A3aG+fvf/87mzdv1h3jijweDw8//DC5ubm6o5Tj8XgYO3Ysr732GuBt9XTv3l1zqh+tX7+eTZs2ERkZyc6dO2nVqpWr6wQqY+rUqZw7d44+ffoQFxenNQvAokWLOHbsGJ06dWL06NG64/wokP4m0x6ArF271q1utyorKCiQqKgoadiwoRGreMt68cUXBXB9G2E35OfnS2xsrPa9pa7GtwrVpAOYRLzjD8OHD/frv7/11lt1x3Lk5ORIs2bNBJBFixaJiMihQ4e0ZvKdiRAeHh6U6aAVdfr0aWe67PU6xZCaPMYA8M9//lN3BEdycjI5OTmcOXOGAwcO6I7jKCkpYfny5QDs3btXc5ryFi5cyPfff8+ZM2d0R7msdevWObOCmjVrpjnNjwoKChgyZAhr1qzx+70p3UgAiYmJHD9+nG7dujFu3DgAbrnlFm15SkpKGD9+PABTpkyhbdu22rL4zJo1i3PnztG7d2/69eunO46fal0YxJDukbJv0J8usdfpww8/JCMjAzCvMJw6dcrpFzexMOzfv5/f//73zs8mFYbs7GweffRRHnnkEb/fm1IYdu7cydKlSwkNDWX58uVGTE1eunQpX331FS1btmT69Om645Cens6SJUsA79YZ2ra+uJJAmhWmPbjUdNa9jbSI95hK36ZwVHClY7CVPaZy0KBBuuP48W0jAkjPnj11x/Fz6tQpZ4W272HK6mOfixcvOsej+hZYurkraGUVFRVJ586dBZDJkyfrjiMi3lXkvu24Tdni/aGHHnJWXF9P1PSVz4C8/PLLbt6zSklKSvL7AImKijJiVe+hQ4f8csXExOiO5EhLS/Ob396+fXvdkRzFxcVy3333+d07wIg+6bJeeuklAaRTp05SWFgoQ4cONWItxiuvvCKA/PKXvzTm7IhRo0YJIP369TPiHu3cudNZrX29x/5+FoXh3nvvdfOeVcrAgQPLfYjs2bNHdyz54x//WC7X6dOndccSEZEBAwb45WrSpInuSI5169bJ4MGDy52AZ9LeXJmZmc6WC1u2bBER7wQI3Y4cOSK1a9cWQDZt2qQ7joiIpKSkOB/C33zzje44UlpaKvfcc4+2FlWNLwyLFy+WBx54oEJ7trgtOztbWrVq5TQLY2NjpW3btjJ37lxtmUS8u4XWr1/fOezD99i6davWXCLe0+VCQkKkXr16Tq7w8HAjvsn5FBcXO6fe9e7dW+rWras7kh/fHj8PPvig7iiO0tJS58D7IUOG6I4jIt6/46233iqAJCYm6o4jIiIbN24UQBo0aCBnzpy57v//Gl8Y9u/fL6WlpVq7bXJzc6WoqMg5wW3gwIFSVFQku3bt0pZJRCQ9PV12794tb775pgAyfPhwmT17tjNtUKeDBw9KTk6O9OnTRwAZOXKk1K5dW2uB/ynfzrStW7eWkpKSoG6bUFFffvmlAEHbgbOyfMeP1q9f35gt8RcsWCCAtGzZUvLy8nTHkeLiYrnlllsE0PblscYXhkD3Xb8e3nnnHQFk2LBhuqP4mTFjhgAybdo0Ean43jvB4vF4nMHAo0ePyu7du7V8e7oSX9GaM2eOiJizj1Jpaakz0Dxp0iTdcRxnz56Vpk2bCiBLly7VHUdEvN1tvtfYhg0bdMcREZHly5c7PQu6uv4CLQzVcndVqNjeKMGWl5cHoH15/U/9+9//BiA6OhoIfO+dYDt48CC5ublER0cTExPjnORmgvT0dLZs2UJERIQzXdWUqYTvvfceqampNGrUiD//+c+64zgSEhLIysri7rvv5oknntAdB4A//elP5Obm0r9/f37zm9/ojsOFCxecXVNnz55NRESE5kRXV23XMZjyIQc4WwqbVhgyMzMBaN68ueYk/nbs2AFAjx49NCcpz7cgcOjQoTRq1Ehzmh8VFBQwZcoUwHuMZYMGDTQn8tqxYwfLli0jLCyMN954w4hjWlNSUli1ahW1atVi4cKFRhT2uXPncuLECbp27cpDDz2kO8416f8rVpJJhcHXYjDpHGoo32IwxWeffQZg1L4+4D2bYcWKFQD84Q9/0JzG3/z58/nhhx/o2LEjY8eO1R0HgOLiYifLM888Q+fOnTUn8mbyrXCeOnVqwGctB1NWVhZz5swBvOc4m1A8r8X8hFdgYmGwLYbAmNpieO+998jOzqZz585GFa3jx48ze/ZswFsgTOlGnTt3Ll9//TWxsbFBOVymMpYsWeJkmjZtmu44ALzwwgvk5eUxcOBAevXqpTtOYAIZiDDtAUh2drabYzJV4juGccGCBbqjOIqKikQpJUopYwadRbwbhwESEREhhYWFuuP46dmzp1EDqD6PPfaYM+vNFOnp6XLDDTcIIJs3b9YdR0S8A86RkZECyAcffKA7joh4Z+GFhoZKSEiIpKWl6Y5T8zfRM6nF4BtjMKkrKSsrCxGhcePGRt2rzz//HIAuXbpQq1YtzWl+dODAAbZv3069evUYMWKE7jiOPXv2sHLlSsLCwnj11Vd1xwG8XybHjRtHQUEBw4YNM2YDuClTpnD+/HkGDBjAoEGDdMcBYNq0aXg8HsaMGUOHDh10xwmYLQwuMLErydTxBVO7kZYtWwbAiBEjiIyM1JzGS8R7CI+IMGHCBNq1a6c7EgBr165ly5Yt3HjjjcyfP193HMB7UFZSUhIRERHGDDinpKSwceNG6tSpw4wZM3THqZBqWxhM6WcFMwuDqeMLJg48X7hwgXfeeQcwa9B5/fr1pKSk0LBhQ2P68M+ePcvEiRMBePnll2natKnmROUHnG+++WbNibxFffLkyQBMnjzZqN15A6G1MCil5iil/lcp9ZVSaoNSKirQa03YytfHxFlJJrYYSkpK+OKLLwCzCsPq1as5f/483bt357bbbtMdBzB3eurUqVM5efIkPXr04PHHH9cdB4DFixeTlpZm1IDzunXr2LVrF40bN3YKhG6pqakBP1d3i2Er0ElEOgPfAAmBXKSUMqKp6GPiOgYTWwwHDhwgLy+P2NhYY75BiYjTjWRSa2HBggUcOXKEDh06GLNoLDU1lTfffJOwsDCWL19uxLTLzMxMnn/+ecB78FPt2rU1J/JOe05I8H6UzZgxw5iuyYp0Z2ntjxGRLWV+/BwYHMh1phyY7dOuXTs8Ho8x3+oAbrrpJm677TbatGmjO4ojLy+Pu+66y6hBuLy8PKKjo8nIyGDIkCG64zgKCwsJDw9n3rx5xnSbnjx5kqioKMaNG0enTp10xwG8U3kbN27MPffcw4MPPqg7DuA9hKpp06bUqlWLMWPG6I4DeFug9evXD/j5yjuDST+l1IfAuyKy6gr/PhbwrezpBHx9vbL9DNwEnNYdooaw99Jd9n66q52IXLMJE/TCoJT6CLjcCFWiiPzPpeckAl2BeAkgkFLqSxHp6m7Sny97P91j76W77P10V6D3M+htVBG5/2r/rpQaDQwEegdSFCzLsqzg0tp5qZTqB0wF/ktELurMYlmWZXnpnlawGIgEtiql9imllgV43RtBzPRzZO+ne+y9dJe9n+4K6H4aM/hsWZZlmUF3i8GyLMsyjC0MlmVZlp9qWxiqsp2G5U8pNUQplaaUKlVK2amBlaSU6qeUOqyU+j+llBl7M1RTSqkVSqmTSim7XqmKlFIxSqlPlFKHLr3Pn7rWNdW2MFDJ7TSsy/oaiAdSdAeprpRSocASoD/QARiulDJniXf18zZgxn7e1V8J8IyItAf+Exh/rddmtS0MIrJFREou/fg50EJnnupMRA6JyGHdOaq5bsD/ich3IlIErAX0n0JfTYlICnBGd46aQESOi8ieS/99HjgEXHV3zWpbGH7iMWCz7hDWz1o0cKzMzxlc481nWdebUioWuAPYebXnmbE71xVUYDuNEiDpemarbgK5l1aVXG67XzsX3DKGUqoe8D4wUURyr/ZcowuD3U7DPde6l1aVZQAxZX5uAWRqymJZfpRS4XiLQpKIrL/W86ttV1KZ7TQG2e00LAPsAtoopVoppWoBw4CNmjNZFsp7eM1bwCERmRfINdW2MFD57TSsn1BKxSmlMoDuwCalVLLuTNXNpYkQE4BkvIN760QkTW+q6ksptQbYAbRTSmUopcw42KB66gmMBO679Fm5Tyk14GoX2C0xLMuyLD/VucVgWZZlBYEtDJZlWZYfWxgsy7IsP7YwWJZlWX5sYbAsy7L82MJgWZZl+bGFwbIsy/JjC4NluUApFaqUeu3SfvcHlFL/oTuTZVWWLQyW5Y4E4DsR6QgsBJ7UnMeyKs3oTfQsqzpQStUF4kSky6VfHQH+W2Mky6oSWxgsq+ruB2KUUvsu/dwQ+EhjHsuqEtuVZFlVdzvwnIjcLiK3A1uAfde4xrKMZQuDZVVdA+AigFIqDOgDfKg1kWVVgS0MllV13+A9ZB1gErBJRI5ozGNZVWK33basKlJKNcB75vhNeM8QGCsi+XpTWVbl2cJgWZZl+bFdSZZlWZYfWxgsy7IsP7YwWJZlWX5sYbAsy7L82MJgWZZl+bGFwbIsy/JjC4NlWZbl5/8BDPHHQqRf6N0AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:12<00:00, 2.48it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXlYE9f3xt8JSwBBEFFZRMSlbhRFaa1ShaoVd61Ql1rXikvrgvVXtbV16beb2mrt7lq1VStKLRa1ila07qKgUHdEXEBFlH0L5Pz+SGdMIGBYMneC83mePJDJJPNmIPPmnHvvORwRQUZGRkZGhkfBWoCMjIyMjLSQjUFGRkZGRgfZGGRkZGRkdJCNQUZGRkZGB9kYZGRkZGR0kI1BRkZGRkYH5sbAcZw7x3GHOI67xHHcvxzHzWStSUZGRuZZhmO9joHjOBcALkR0juM4OwBnAQwhootMhcnIyMg8ozCPGIgolYjO/fd7NoBLANzYqpKRkZF5djFnLUAbjuOaAvABcErPY5MATAIAc3PzTu3btxdVW0UkJyeDiNC4cWOYm0vjlN65cwfFxcVwdnaGlZUVazkAgNTUVOTn58PZ2Rk2Njas5QAAUlJSkJmZCQ8PD6aaVCoVEhMTkZubCwBQKBTw9vaGmZkZM008WVlZSEpKAsdxaN26NSwtLVlLEkhKSkKDBg1ga2vLWopAZmYmrl+/jiZNmqBBgwas5QAAioqKEB8fDwAPiejpoohIEjcAttCkkYYasC9JCXt7ewJAaWlprKUINGvWjADQhQsXWEsRaN26NQGggwcPspZCRETJyclkbW1NACg6OpqZjhMnTpCrqysBEG7PPfccZWZmMtNUmtTUVNq2bRtrGWVQqVSsJejlxIkTVFhYyFqGDrGxsQQghgy4HjMfYwAAjuMsAEQC2EdEyw3Yn0pKSqBQMM+EoaSkRIgSVCqVJCKG3Nxc2NrawszMDLm5uVAqlawlITExES1atEDdunWRlpYmiW+dw4cPR1hYGF5//XWEhYUx0bB27Vq88847KCoqQp06deDs7IxGjRrB2dkZo0aNwtChQ5nokqmdcBx3loh8n7Yf86sYx3EcgHUALhliCjyFhYWwtrY2njADyczMBADY2dlJwhQA4NKlSwCA5557ThKmAAC7d+8GAAQGBkrCFA4fPoywsDBYWVlh2bJlTDRkZ2ejbdu2uHjxIho1aiSpdIjMs40UrmR+AEYDiOc4Lu6/bR8Q0Z6KnlRUVCQJY3j06BEAwNHRkbGSJ/z7778AgHbt2jFW8oTIyEgAwIABAxgr0UR5M2dqZkXPmTMHHh4eTHTY2dmha9euTI4tI1MRzI2BiI4C4Cr7vMLCQiOoqTyPHz8GANSrV4+xkidIzRiys7MRHR0NjuPQt29fZjrUajUUCgXWrFmD8+fPw93dHXPnzmWmR0ZGqrBP0leRoqIi1hIASNMYEhISAEjHGKKioqBSqdC5c2dmszTu3LmD7777Do8fP8aHH34IAFi2bJlkZkfJyEgJ5hFDVZFKxCDlVJKXlxdjJRqkkEb6559/8P777+PIkSNIT09Ht27dMGzYMGZ6ZGSkjBwxVBOpRQzZ2dm4desWLCws0KJFC9ZyoFarsWePZriItTHk5eUhPDwcADBx4kTcvn0bKpWKmSYZGalissYglYhBasZw8aKmkkirVq1gYWHBWA1w9uxZ3L9/H40bN4a3tzczHUeOHNG5P3bsWCxYsACaSXEyMjLayMZQTaSWSpLa+IJ2GonVRTg9PV1Ir/FMnz4d69evl8wUYxkZKWGyxiCnkvQj1fGF/v37M9Nw7NgxnfsLFizAypUrJbFAUkZGipjs1yWpRAxSNQYpRAwpKSk4d+4crKys0KNHD2Y6tNNIy5cvx6xZs5hpkZExBUzWGKQSMUgtlSQlY+AHnXv27Ml0Wug///wjrF+YMGECMx0yMqaCyRqDHDGUJSMjA3fv3oVSqUTz5s1Zy5HENNWcnBwkJCRg27ZtCA4OZqZDRsaUkI2hmkjJGPhooU2bNszLNRcUFCAqKgoA2/GF+Ph4/P777wgMDGSmQUbG1DBZY5BTSWWRUhopOjoaeXl58Pb2hru7OzMdnTt3lgeZZWQqicl+YqQQMahUKuTm5oLjONStW5e1HEkZgxTSSABkU5CRqQIm+6mRQsTAp5EcHBwkcQGSyhoGIpKMMcjIyFQe9lezKiKFiEFKaSRAOmsYLl68iOTkZDg5OeHFF19kqkVGRqbymKwxSClikMLAc3p6Ou7fvw8bGxs0bdqUqRY+WujXrx/zQXAZGZnKY7LGIIWIQUrGoD0jiXVaS04jyRgTIkJqaiprGbUak52VJAVjkFIqifX4gkqlgoWFBdLT03H8+HGYm5ujd+/eTLSYMsXFxfjqq6/w5ptvws3NjZmOe/fuYc+ePbCxsYG1tbXw083NDZ6ensx0AQDHcfjpp59w8eJFTJ8+Hd26dZNMMcTbt28jKSkJ3bt3Zy2lWpisMcipJF1Yjy+cOHEChw4dQosWLaBWq+Hv7w97e3smWiqDWq0Gx3GSuLAkJCRgwoQJiI+Px+DBg5lqcXZ2hoODAyZOnCj8nyuVSpw6dYqpLp4PPvgAPj4+8Pf3x+jRo7Fu3TpJVBNu3LgxBg0ahICAAHz++eewsrJiLUmAj+QNwWRTSQUFBawlCB+YW7duYdGiRbh//z4zLaWnqm7atAlffPEFEhMTRTk+x3FYtGiR0Eu5Y8eOiIyMxOXLl4V91q5di0WLFiEpKUkUTYbw4YcfIjg4GNnZ2cw0qFQqfPLJJ+jYsSPOnDmDgoICdO3aFcXFxcw0AcDQoUNx4cIFoc5VcXExlEolU008SqUSP//8M9zd3TFgwABJmAKg+RxMmzYNLVu2lMy5AjSRzMCBAw1/AhGZ3A0AjRo1ilgzc+ZMAkCurq4EgGJiYpjoUKvVVL9+fQJAN2/eJCIif39/AkD79+8XRcORI0cIgM6tefPmlJubK+zj7e1NACgyMlIUTU9j+/btBIAUCgVFR0cz0RAXF0c+Pj5lzp2fnx9lZmYy0VSakpISWrJkCS1dupS1lDJcv36dtYQyqNVq1hL0sm3bNgIQQ4ZcYw3ZSWo3ANS7d++aPGdVYsyYMQSAWrRoQQCYXVzu3btHAMjW1lb4p2zVqhUBoAsXLoii4Z9//ilzcdM+H4mJiYLG/Px8UTTp4+7du0REFB8fT3Xq1CEAtGzZMtF1FBUV0aeffko2NjZkYWEh3CwtLcnS0pLs7Ozo77//Fl1XReTl5bGWIFNNDDUGk00l8QO/LOFTSba2tgA0BdtYoJ1G4nPlfFqrUaNGomgonaOfOnUq/P39hfs7d+4EoJnCyirvmpycjNGjR+Px48cYMmQIcnNzMWLECMyePVt0LRYWFvjggw+Qm5uLoqIi4VZYWIjCwkJkZWXhlVdeEV1XRVhbW7OWICMSJmsMGRkZrCUI5sSXw2CVpy49vlBQUICMjAyYmZmhfv36omjQNoYmTZpgyZIlOo/zxvDaa6+Jokcfa9euxd9//40ePXogMTER3t7eWLt2rSQGnmVkpITJGkNmZiZrCTolMQBpRAwA8ODBAwBAw4YNRVtgpn1xXb16Nezs7IT79+/fx/Hjx2FpaYl+/fqJoqc0KpUK69atAwDExcXB0tISv/zyC+rUqcNEj4yMlDFZY2B1EdaGNwZ+HQMrTaXXMNy7dw+AeGkk4IkxjBs3rkyJ64iICBARevbsyazYYGRkpM6iqKKiInTo0AFffvklEz0yMlLGZNcx5Ofno7CwkOmUMD6VxKdrWBgDEZVZw8Abg7Ozs2g6OI6Ds7Mzli9fXuYxKaSRVq1apXPfyckJq1evZqpJRkaqmGzEAAA3btxgdmzemMzNzYUFbiyMITU1FRkZGbC3t4erqysA8QeeeX788ccyi/0yMzNx8OBBcByHQYMGiaqHJykpCfv37xfuDxgwAPHx8bIpyMiUg0kbw5UrV5gdW3vVM59PZzH4rG9GEouIoX379hgyZEiZ7Xv27IFKpYKfn5/oRsWzZs0aEBFsbW2xZs0a7Nq1S9RzIyNjaphsKgkArl69yuzY2nWSWE5X1VcjiY8YxLz4lTcFlXUaSaVSYf369fDz88OmTZvQrFkzJjpkZEwJk44YWBqDdsTA0hj01UhiMfisj4KCAuzduxcAO2PYu3cvZs2ahcOHD8umICNjICYdMUgtlcTSGLQjBhapJH0cOHAAOTk5aN++PbOKnL1792Y2tiEjY6rIEUMVYZlKIiJkZ2frzEjSl0piHTGwTiMB5ae4ZGRkysekjeHBgwfMVkDrSyWJNfjMcRx69+6NnTt3Ijs7G46OjmjUqBFu374NgG3EUFhYiIKCAhQXF2PXrl0A2BqDjIxM5TFZY+Bn4LCKGliPMRQXFyMoKAgAUFJSgtatW+Pbb79Fbm4ucnJyYGFhwaRPxMOHDzFo0CBERUXh4cOHaNasGZ5//nnRdTyLpKYCffoA/30vqJHHZJ5NTNYYeFiNM7CelaTd1zkzMxO3b9/G7NmzddJILGoAFRcXIyoqCkOHDgWg6cuwY8cOyTR4MXUquogvXQqcPq35WROPyYbx7GKyxqCpIPvsRgzaxgBoqpk2atSI+cBzSUkJgCeNlHbs2IGZM2eiZcuWTPSYGk+7GFd0Ed+4ETh4UPNT+/lVfUw2jGcXkzQG7W/CrCIGbWPgC7Hl5+cLF0Zjo20MVlZW+L//+z8A7Aee9XUdW7t2rST6YpsCFX2zf9pFfOxYwMcHGDNG9/lVeawqhiFTizCkaYPUbgqFQmgG0759+5rpYFFJOnfuTADon3/+ISISmr6I1XUrMjJSOAczZswQtv/www8EgN566y1RdJTm33//1WnWM3HiRCY6pEpKClFgIFFqqv7H6tUjOneOyNGx7D6hoZob//usWbrPS0l5cp9/flUfe9qx9Gms6L3JSAPU5g5uZmZmwoXHxsaGSkpKavLcGcRzzz1HACghIYGIiBo1akQA6M6dO6IcPyEhgQCQUqkUupIRES1cuJAA0Pz580XRUZrz588Lf5umTZtSVlYWEx1SJTRUc2HlL7SlH9N3MSYy/CKu/VqzZlXtsUmTKm8YT3tvNcnVq1eNe4AqkpWVRXFxcaxl6KW4uJiIarkxWFhYEACqV68eAaBbt27V2Ak0lAYNGhAA4aLcvHlzAkCXL18W5fjZ2dkEgN555x2d7ZMnTyYA9M0334iiozRnz54VjOHQoUNMNEiVp33bLu9iTFTxBd7PT/NJLn3z86vaY66ulTeM8t6bMaKILVu2UI8ePejkyZM196I1RKdOnSgqKoq1jDL873//I7VaXbuNwdLSkgBQx44dCQAdOHCgJs/hU1Gr1cRHLXwf3Pbt2xMAiomJEU2Hq6trGVMcPHgwAaCwsDDRdGhz+vRpAkAzZ85kcnzWVHQhfNq3bf6xO3fuUEJCgs4+FV3ga5ryjlW/fgGNH59R5j2Vjj60dRsjiigpKaEXXniBANDgwYMpPj6+5l68mkydOpXMzc3pl19+YS1Fh+7du9MXX3xRu41BqVQSABoyZAgBoO+//74mz+FTycrKIgBkZWUlbPPz8yMAFB0dLZqOdevWldn20ksvEQA6cuSIaDq0OX78OLVq1UryjeNv375tlNct70L4tIhAzAu/IajValq+fDlpp2057phejS+8oP+9xcUZL4o4fPiwoMvLy0u0SP1p/P777wSAzMzMaMOGDazlCIwdO5Y/XwYZg0nOSuJn/ri7uwMQb8qqSqWCWq3WmZEEALGxsUKrUTGnrI4bN67MNn666r179xAeHi6shhYLIsLGjRv1No7/66+/EBYWJom2rGPGjMHNmzfx5Zdf4t1334Vara72axoya8jFRXPfxeXJLKCSkhJMmLAeLi6uADgAHNzcGkOtJhw9Wm1ZVYLjOMyaNQvR0dFw+U80kR9OnjxVxhr8/PS/t/Hj9c94qolZTd27d8egQYNgb2+P0aNHo1WrVtV8xzXDK6+8ghYtWmD48OEYO3YsazkCbdu2rVwFAkPcQ2o3/PdN4fPPPycA1KdPnxr01vLJz8+n7t2705o1awgAtWvXjs6ePUutW7cWvr1s3bpVFC36UKvVZG1trRNNbd68WVQN/CCXPl555RUmmkpz5MgRAkBdu3YV/m787LLqUFGqqLyIoF27x+Tt7a0zkwsA+fn5SSbqSk1NpYCAAPrss89IrVaXeby892ZmZtwo4tKlS3To0CG9mljCYszzaRQVFRER1e5UEv/h2bBhAwGgZs2a1dgJfBpdunQRPrz8tNkePXoI29asWSOaltJkZmYKKa6goCACQFu2bGGmR5vHjx+Tubk5KRQKSk9PZ6olMDBQ5yL81VdfVer5+i5iT0sV6ePmzZu0fPlymj9/Pk2ZMoWGDRtGPXv2JB8fH/L29qabN29W4d0ZB5VKRYmJiQbvX95guY+PeGMRMmV5Joxh9+7dxHEcKRQKKigoqMnzVy6zZ8/WuahYW1vT8uXLhfsrVqwQRYc+rly5IkwT5Y3ht99+Y6ZHm23bthEAevnll5nqOHXqVJlv566urjRv3jxSqVQGvYa+i1hFs4aeRWoiipCpeQw1BkmMMXAct57juAccxyVU5nm5ubnw8PCAWq1GYmKiseTp0LVrV537QUFB6NSpk3CfRU+Ge/fuISEhQadzG58zZ1EvSR+7d+8GoOm3zJJPP/1U575CoUBQUBDmzJkDc/OntycpbxzhzBng668Bjnty+/prTS79WeTo0bK2EBoKTJ9u4FjE5s0obtwUak6BYvemwObNLN/Os4ch7mHsG4DuADoCSDBkf36mxNy5c4W0wM6dO2vYW/WTmpqq823zwIEDlJaWJtyfM2eOKDq0yc3NJSsrKyGH7+vrS82aNWM6bVWb4uJicnJyIgBMpxbGxcXp/O26detW6QVJFY0jyFSMoVFESJ1fqcTaRncnGxuiX39l+wZqATC1VBKApoYag5WVFQGgXr160fTp0wkAffHFFzV7BiuAv+i6u7sLq675khijR48WTYc2+gYwAdCOHTuY6NHm+PHjBIA8PDyYDhS+/vrrBIBcXFxo8+bN5WopbyC0KuMIMhWjLwWXbueh30E8PFhIrFUYagySSCUZAsdxkziOi+E4Lobfdv78eWGamphVVvl00tixY6FQaE6hm5sbACAlJUU0Hdpop7MAoEGDBgDYppLS0tIA6KaRWOm5dOkSdu3ahffeew9XrlzBG2+8Ua6W8qZTVjTlVKZq6EvBOWTf0r/zrXK2y9Q4JmMMRLSaiHyJyJevZpqWliaUvBazyqq2MfB4eHgA0HSVY4Gvr6/O/SZNmgBgawxz585FWFgYIiMjAQD9+/dnpuXMmTOIi4vD0qVLhR7d+qhoLYI8jlDz6BuLULs10btvcTnbZWoekzEGbfhv6QBw/fp1AOJGDH5+fujWrRtatGghbGvevDmAJw18xEbbGJydndGwYUMAbI1BpVJhxIgROH/+PDiOw/Xr17F48WK9pbmNzZgxY9C6deun7ldRiWp9FzEiMFuEVlvZ+vynKDK30dlWZG6D37w+LecZMjWNSRpDXl6e8PuSJUtgaWmJtLQ0YUWysWnXrh1mzJihs41PabFa1evt7S3MqpkwYYJgCNomKjYcx/HjRyAizJgxA82aNTNo9g8L+GhhzhzN/TlzykYNMsZnVfYojCtejZvwgBocbsID44pX46fsUaylPTNIwhg4jtsK4ASAVhzH3eE47q2K9s/NzRV+Ly4uFrqDiRU1mJmZCf2Wedq2bQtAY1r8xVBMrKys4OXlBY7jEBISImhgGTGUPnbfvn3x5ptvMlKji74uZPIYgjQ4ehTYQqPQlG5CQWo0pZvYQqPkyExEJGEMRDSSiFyIyIKIGhPRuko8VxhoFTOdVPqix48xqNVqZgPQvr6+6NOnD5o2bSo5Y7Czs8OqVasks65C3wCzPIYgI6NBEsZQXficNas2nwBQt25d4feLFy8y0eDr64vJkycDgLDAjXUqiWfZsmVC0UPWlDfALI8hyMhoMEljKP2tMzU1FYC4EUNp+NlRADtjCAwMFGb+SCliCAgIQEhICDMdpalogFlGRsZEjcHe3h4A0L59e5ibm+PGjRsA2EYMNjZPZlEkJFSqskeN0bRpU2FgVyrGYG1tjbVr1zKNXLSRB5hlniWqOgNQGp/WSsL3Qejbty+6dOkiXASvXbtWI3X1K8u9e/dgZmYGpVIJQGMMUVFRTLTwSMEYAE1tIn4qrxSQB5hljAGLCSeGcO3aNURERFT6eSZpDPb29rC0tMSrr76KwMBAAJpZOfn5+bhz547oembOnIng4GDhW/GZM2cwf/58pt+SpTDG0LVr1zLTelmgPQNJHmCWMQYxMTE4KsHBKAsLC4SEhFR64a1JGoOZmRmGDBkCPz8/9O7dG8ATx2YxzjB8+HCEh4cjPz8fgKYj1wsvvCC6Dm2kEDFMmDABZmZmzI7Poz0DSR5gNm2k+s3c09MTAwYMwPnz51lL0YFf4zVp0qRKnTuTNAZAs7BNqVSiY8eOcHR0RGFhIQA2xtCvXz9h3IOncePGousAgE2bNiEhIUH4JyguLsa6deuYTKFlncYCKi5xIWN6nDx5EqtWrZKcQTg5OUGpVCIwMBDXrl1jLUfAwsICABAREYGNGzca/DyTNYamTZsC0EQPvXr1ErazGIC2srIqs+CN/4OIjVqthre3N06dOgUAeP3117F48WKhb++zhjwDqXbRuXNnfPXVV+jduzduSayoXtu2bXH//n28+uqruHv3Lms5ADQRA09l0romawza8OkkgN2U1TfeeEPnflJSEhMdffv2BRGhoKAAgKZx0KBBgyTx7V1s5BlIVScjI4NZ3a+KUCgUePvtt3HgwAF4eXlh3bp1koke2rVrBwBITk5G7969kZ6ezliR7hfU7Oxsg59X64zh8uXLTDQEBATA2dlZuM9qLUOjRo3KjG8MHjyYiRYWaA80yzOQqo6trS0mT56MVq1aYdy4cfjpp58QFxfHpABiacaNGwcbGxtkZ2dj4sSJ6NevH5NJJ6XhjQHQfP779etXqYuxMdCOGCpDrTAGd3d3oYhdcnKyMN4gJmZmZhgxYoRwn5UxALrtM+3s7ODv789Mi9hoDzQ/bQaSWq3G7du32QouhUqlQnh4OFatWsVUh7m5OTZv3oxWrVph48aNmDp1Knx8fLBo0SLm39AdHBwwatSTgnpXr17Fli1bmE4PB57US+Nxc3PDr7/+ykiNhiqntA3p5iO1W7NmzYTOaTwzZ84UupYlJCQY1M2opigoKKCDBw9SVFQUKRQKsra2JgCUlpYmqg6emJgY4VwMHDiQiQZ9XL9+neLj46mwsNAor893WDO0qfyuXbvozTffpO3btxtFT2W4c+cOLVy4kFxdXQkAde3albUkItL8b/PtcwFQdHQ0a0lE9KRNq42NDb355pus5RARCS1+fXx8qGXLlpSYmMhaEhERWVlZ0ZgxY6hhw4am19qzMjcAdOjQIZ03v3v3buGf9/fff6/uuawUAwcOJAC0YcMGGjlyJHXq1IkA0JEjR0TVwVNSUkI2NjYEQDIfGiKit99+mwDQ0qVLjfL6le3HzPfINjc3p+TkZKNoMoRr167RhAkTyMvLixQKhWAMLNugapOXl0c9evSgFStWSEYTEVFwcDAlJSVRcXExaykCn3/+OWVmZkpKU1RUFBUVFVFxcXHtN4aJEycKb1ytVlNOTo7wofrwww/pr7/+or/++qtGTuzT+PLLL4WL8N27d2n06NEEgH766SdRjq8PX19fAkBTp05lpoFn5cqVlJSURAEBAQSAdu/eXePHqGw/Zv4bJ38LDAykzMzMGtdVWfLy8ujUqVO0YcMGSV1ccnJyKFViza1zcnJYSyiDlIxTH4Yag8mOMezYsUMYSzh8+DCGDx8ulMr47rvv0KdPnwpbONYkr776KgDgwIEDcHFxEXKNLMcZXn75ZQDsWo1qk5qaig4dOuDMmTMAgKNHjyI4OLhGBub4weaFCys30Pz1118D0KyiX716Nfbu3atTIZcV1tbWePHFFzF27FhJLA7kqVOnjs7kCinAt/iVErVm9p8h7iG1G5/D51NGarWafHx8dL4BAqD79+/XmNNWhFqtpkaNGhEAunDhAkVERBAA6tWrlyjH18e+ffsIAL3wwgvMNPCsWrWqzN9m3rx5NfLaoaGaSMHVlfSsZyby8yv7nNTUVLK0tKQhQ4bQ3bt3a0SHjIwpgNocMTg6OgIANm/eDEDj0vPmzdPZp27dukIDH2PDcZywyO7AgQOSiBj4/sbJycnMNPDwixF5bGxs8O6771b7dbVXNRcUaO6XtgZ9pS7++OMPbN68Gb///jtcXV2rrUNGprZhssbAcRwiIyOFHstBQUFCi09AM4VVzLCOTydFRUXB09MTSqUSKSkpyMjIABGJPv/b1dUVZmZmePDggVDDiRWenp46999+++0aMe2qrmqeOHEigoODa0/YLyOjRUZGRrUX2JqkMVhaWqJ79+4oLCxEeHg4AM06gjn8EldUfWFHVeEjhujoaBQXFwvf2I8dO4bg4GDBwMTC3Nwcbm5uAMB88U+TJk2Ei7CVlRVmz55d7deszqpmvmeFjExtRKVSYfz48dVa12GSxgBAWOCivYBk9OjRcHBwAABkZWWJqsfNzQ1t2rRBfn4+OnXqJBx/yJAhOHDggJD+EpMmTZoAAPOaMkqlUkjZTJ48udqDmKmpQJcuQHCwvKpZRqY0CoUChw8fxnfffVf116hBPaISHBwMS0tLREdHCwWrlEolpk+fDkBzMeTrBYkFn05KTEwUQrni4mJ4enoySVtIxRgACOk17aiuqixdCty9C6xZI/dVkJEpDT+bbd68eVWu9GqyxlCvXj3069cPRIStW7cK29977z2YmZlBpVLh2LFjomrijaF+/fo620vn2MVC2xgKCwuZDoY3bdoUb731VrUHe/kU0unTgKNj2QFnua+CzLMObwz5+fkYN24cSkpKKv0aJmsMwJN0Ej87CdDUBuKLyO3fv19UPf7+/jA3N0dKSorOGgqxjeHs2bP47LPPhCjlwIED8PFcgry7AAAgAElEQVTxQXx8vKg6tGnVqhXmzp1b7deRy2jLSI3c3FzWEnTQ7tp4/PhxrFixovIvYsicVqndOnXqRERE+fn5VLduXQJA//77rzBXNzw8nABQhw4dqjvtt9J069aNAFBQUJAwZ/+bb74RVYNKpSJ3d/cyawe0z5HYpKenV/s1Kru6WUZGDCZNmlSmdhtL8vPzdT73SqVS+OyjNq9j4LGyskJwcDAA3aihb9++UCqViIuLw/3790XVxKeT6tSpI6zMbNasmagazM3N8c477+hss7S01JnOKzY1Mfi+cCFQt65mPAGQB5xlpMHZs2fx0UcfsZYhUHrFfGFhIcaNG1epKfMmbQzAk3SSdtlda2trdO/eHYBmXYGY8MZw9OhRvP322wDYjDGEhITA2tpauN+mTRtmXeVqishIIDlZYwjygLOMVHB1dcVnn32G3377jbUUALqpJABo0aIFHBwcKlUC3OSNwd/fH66urrh58yaOHz8ubOeb94g9zuDr6wt7e3vcuHEDwcHBsLGxKbPyVwwcHR0xevRo4f7zzz8vuoaaJDVVs7r53Lmyg87ygLMMS/gJFRMmTMC5c+cYq9EYg6WlJWbOnAlAk0HYv38/xo0bZ/hrGEmbaJiZmWHkyJEAdNNJgYGBADTGoEmtiYO5uTleeeUVAEBcXBwWLFgAGxsb0Y6vjXaPV1M3BnnQWQYAzp07V6VZNsaEN4b8/HwMHjxY9PR1aTiOw65du7Bs2TI4ODjg8uXLle5safLGADxJJ4WFhaGoqAgA4OXlBWdnZ9y/f1/02Tja5TFmzZol6rG1adeunbAi25SNITUV+PlnIC5Os7JZ7t387HLr1i2MGjUKKpWKtRQB7SnYd+7cQVBQkGhdJHNycvRuDwwMhIWFBfr37w8AiIiIqNTr1gpj6NChA9q0aYNHjx5h3759ADSuqZ1OKioqEso+GxveGA4ePMi8dDIfTpqyMSxdCjRrBpw/r/ldHnR+dunSpQu2bduG4OBg0RewlkfptTnHjh3DtGnTRMlUbNmyBXFxceU+PmTIEACawpGVoVYYA8dxOmsa+EFo3hj++OMP9O/fHwcOHBBFT4sWLeDh4YHHjx8zzzn269cPL774olA3yRQ5dgyIjQUePwZWrJAHnZ9lGjVqhObNm2PXrl0YNGgQ8vLyWEsqYwze3t64f/8+/vnnH6Mf28LCAsOHD68wclAqlTh16hRSU1MNft1aYQwA8MYbbwAAdu3ahbt378LX11doqH7s2DEcOHAASqVSFC0cx+k07wHArFG5QqHADz/8YNKVRP38gNBQzUBzaCgwa5Y86CwWR44cEb0y8NPw8/MDoEnV9unTR/S6aKXhjYHXZWtri127dgkzI42JnZ0drl69imnTppX7eK9evUBE+PPPPw1+3VpjDJ6envDz80N+fj4OHTqE9957r4xji1lxVXuc4fLly1iwYIFoxy5Np06dmB27uvAlMMaO1XRqGzdOHl8Qk/v376NLly44f/48aykCXbt2FX7/559/8Oqrr+LRo0fM9Dg5OWHGjBnYu3cv7OzscPz48QrTOzUJX2Fh48aN+OWXX/TuM3jwYACVSyfVGmMAdEtkDBs2DH369NF5XAxjUKlUWLt2LWxtbQFoohU/P79KhXEyT+BnI/H1kTZulMcXxOS1115DWloafH19MX/+fEnk9flv5jynT59Gjx49mLWxVSgU+Prrr2FnZ4cxY8YAAH788UdRjq1demfq1Km4evVqmX0GDhwIjuNw8OBBw1/YkOXRUrvxJTFKk5aWRubm5qRQKCg1NZVu3LhBfBtQAPTzzz9Xfn15FZg/f36ZchRTp04V5di1DT+/0j3ZqNyWnTLG4csvvxT+j1u3bk3Xr19nqqekpITs7e0FTfb29jR58mRat24dU11ERAkJCQSAbGxsKCMjw+jHu3Dhgs51xsfHhwoKCsrs17VrV36f2lsSIz8/X++Iv5OTE/r06QO1Wo3ffvsNnp6eWLhwofC4MSOGpKQkobn9/Pnzy5TBsLKyMtqxy+Px48e4J7Gci0qlQn5+PlJSUgza/+hRzbhC6TGGmhpfKCwsFG1qoSFcuHABfn5+6NixoyS+nQOajnd8BDx9+nQ0b96cqR6FQoEuXbrA1tYWSqUSDg4OWLJkCSZMmMBUF6CZIu7v7w8AiImJMfrx+L8LT2xsrN5ilUOGDKncOKMh7iG1GwA6d+6cXgfdunUrASBfX18iIioqKiIvLy8CQNu3bzfMhivJjBkzCACtXbtW2LZ3714dJ583b55Rjl0e33//PZmZmdGsWbNEPW55REdH06+//koWFhYUEBBAI0aMMOh5fOG82FiiwECiuLiaLZzHR5XR0dE184I1QHp6Ov3444+sZegwb948Onr0KBUXF7OWQkREH3/8Ma1evZoOHTpEeXl5rOXocOXKFXr8+LEox0pLS9O5zjg4OJCdnR1FRETo7Jeenk737t0zOGJgfpGvyg0AzZ49W++Jys3NJVtbWwJAV65cISKi48ePE8dxZU5WTbFmzRoCQD169NDZPmzYMOEPtnDhQqMcuzwOHz5MAKhZs2akVqtFPbY+rl+/TmZmZsL5CA0NNeh5oaFPbvXqEc2apfm9pvzu2rVr9NJLL0nmgidVioqKWEvQ4e7du5L4v2ZNQUEBAaA2bdoQAPL39ye1Wl2uWdZ6Y3BxcSn3wzx69GgCQAsWLBC2TZ06lfbu3fuU01w1Hj16RBYWFsRxHN29e1fYfvfuXaEs+Oeff26UY5eHSqWi+vXrEwC6cOECEWlMkyVvvfWWYAxfffWVQc8x9hhDcnIyXb58uWZeTEaGAePHj6eHDx+SpaUlAaBbt26Vu6+hxmCSYwyWlpZITU1FdHS03se1ZydpzgXw2Wefwd3d3Sh6tLvJbdu2Tdju6uqKTz/9FABEW0PBY25ujgEDBgDQLIf/6quvsHPnTlE1lObDDz8UKrwa+rfQHmNISQE8PIBJk2pujKFJkyZo1apVzbyYzDPF33//zVoCAGDt2rWoX7++UP5Cu6NllTHEPaR2c3Z2JgA0fvx4va6oUqmoYcOGBIBOnjz5NMOtEbZt26YztsFTXFxMvr6+9P3334uig4jozp07FBYWRl988QUBIDs7OwJAmzZtEk1DeUyZMoUA0IkTJwzaX7s5T2gokYMDkVIpN+eRYc8rr7xCZ8+eZS1DgG9Q5u3tXe4+qM0RA99TOTw8XO/MDXNzc6HiamVqkFeHAQMGwNbWFjExMTpzic3MzLBq1SqhaY8YuLi44IcffsC8efMAQJgtJYWqlB988AEsLS0Njhj4dQyAZg3D339rSmJoTTaTkWGChYUFRo4cWW45CmNQUYmdfv36wd7eHhcuXEBCQkK1jmOSxmBlZQUfHx9kZWUhMjJS7z58Omnbtm2iVGK0sbHBa6+9BqBsKNexY0cEBQUZXQOPQqHA+vXry5gRq7Ic2ri7u+Odd96Bs7OzQfufOaOpi+TqqqmV1LGjpi9DJYtFikpqKvDKK5qbxGYLy9Qgtra2uHr1KqZPny7aMcPDw3XS1dqU19GyKpikMQC64wj68PX1RcuWLZGWliZa8Ty+XtPWrVuFsQ2e0vONjY2npye+/PJLnW1SMAYAWLRokcFVZ48e1Ywt1Kun+RkaCjg4ABkZ0rroxsUB9vaAQqExsehoTfG/pk0BOzuN5gsXWKuUqUn4z/SGDRuwZcsWUY5pZ2eHSZMm4caNG3of19fRsiqYrDGMGDECHMdh9+7deuuklK64CgAXL140qqaePXvCyckJV65cQWxsrFGPZQiTJ08W+jEA0jGGunXrVmp/U0gn9e0LZGVp5kzxqFRAYSGQkwNkZmqiHdkcag/aEfmUKVPKvVjXJHZ2dsjKysLIkSOF3jPa+Pv7w83NDbdu3cLRaszQkIQxcBzXh+O4KxzHXec4bp4hz3Fzc8Mrr7wClUqFHTt26N2HN4Y//vgD27ZtM/rKSAsLCwwbNgwARPsGUREcx2Ht2rVCPRWpGENlKS+dJJVienwDoadRUgJ06CCbQ21BOwuQnZ2NkSNHGj1tzX+WT58+jQ8//LDM4wqFQshcVCed9FRj4DhuK8dxczmO68txXIMqH6n81zcD8D2AvgDaAhjJcVxbQ55bUTpp69atOHbsGNzd3ZGbm4sRI0YgPT295oSXg3Y6qaSkBGlpaUxLLnh4eGD58uUApDH4XBVKp5OIgJAQoKhIGlFD376G70skm0N1KZ2mZUXp9PDp06eNXkVZu2jesmXL8Ndff5XZh78ubt++XW9UYQiGRAw/AcgDEAQgiuO4nRzH2T3lOZXhRQDXiegGERUB+A3AYEOeGBQUBKVSiSNHjuDWrVs6j7Vq1QqTJk3C7du3hW1izB7o0qULPDw8kJKSgoiICPTu3RsZGRlGP25FvPXWWwgMDDTZiAF4kk5ycdEM7u7YAYwcqYkaWA7yGhItmJvr3icCBhv0Hy6jj02bNrGWAKCsMcyZMwdKpdKoX0C1jQEAxowZU6Zys7e3N9q1a4fHjx9j7969VTqOIcbQBMBhAFOIqAOAHQAWV+lo+nEDcFvr/p3/tunAcdwkjuNiOI6LSUtLAwDY29sLi7j0zQRatmyZzjZ+2qaxiI2Nxa5du/DSSy8BAIYNG4a4uDhRp7Ppg08pVTa3LyX4dBLHPUkpbdmiueieOMGuDLch0UJxsUa3dg2zmzflqKGq/Prrr5XuYWwM6tSpg/79+2P06NEANNPkFy1aJEynNwaljSEtLQ1vvvmmTjZA3/hqpXnaQgcA/wOwC8B1ALEANgK4CaAngAaGLJZ4yuu/DmCt1v3RAL6t6DnaZbd37txJAMjLy6vMYg61Wk0DBw7UKTJVUlJi2GqRKpCenk7u7u5lSm6fP3/eaMesDFKrd1MVtBe8paRoFrzVrUtkb08UECD+wjd95ToMvTVtKq7W2kLv3r2pUaNG9PDhQ6Y6Ll68SPn5+XTw4EECQE2bNjV6/Sa+rDd/69GjB82cOZOOHDmis9/NmzcJAFlZWVFmZqawHTW4wO0bIhpERC0A9ADwKwAbAKMA7KmaHelwB4D2aqfGAAyryQygb9++cHBwQEJCAi6U+grGcRzWr1+v0+/YmN/eHR0dsXnzZigUuqeVdcTAw5ejMGW0U0pLl2o6uk2YAFhaso0cqoIcNVQNhUKB+/fvi7p+QB9t2rSBlZUV/P394eLigps3b+LkyZNGPaadnR0cHBwwZ84cAEBeXh6+/vprdOvWTWc/Dw8PdOvWDQUFBfj9998rf6CnOQc0UcJNAHsBfA3gLwArDXEdQ24AzAHcAOAJwBLAeQDtKnpO6UY9ISEhBIDmzJmj12Wjo6NJoVAQALpz545h1lwNFi9erOPq+/btM/oxnxXKK6pnZsYmcjAkMrCzK/+x1q3F0Vmb6Nevn/DZ2rFjB2s5REQUGhpKAGjatGlGPU5WVhadPHmSsrOzycbGhgDQtWvX9O77008/EQDq2bOnsA01WV0VgBmAdgCGAhgAwNyQ5xl6A9APwFUAiQDmP23/0sYQHR1NAMjd3b3cVNGiRYsIAF26dKnCE18TFBcXU/fu3YV/3vDwcKMf81mDL8Wt/XtoKFGDBppaSmK1oTAzq9gUeBQK/Y8rFOLorC5SSkNqp4cbNGhADx48YC2JTp8+TQCoYcOGpFKpRDnmqFGjCAAtXrxY7+Pp6ellqj7XqDFI7VbaGEpKSoTcfnkNV4qLi8nf359Onz5d3nmuUW7dukX16tUjALRx40ZRjvksIbXIoSJSUso3DgsL1uoMY9++fRQTE8NaBhERDR48WCcif/3110XXUPrir1arqUWLFqJmCPbs2UMA6Lnnnit3bGPQoEEErTL3hhqDJBa4VReFQvHUonlmZmbYvHmzaOWv3d3dsX79egDSGWOoTRw9qrm0lm77OX162TGH1FSgTx82U1pTU4EXXij/cUdH8bRUh1u3bmHRokWsZQBAmTG87du3IywsTFQNK1as0Jn+zXGcsIZJrMWtr776Kho0aICrV6/i7Nmzevep8uwkQ9xDarfSEQMR0fnz5wnQtLbT1wybFW+//TYtWbKEtYxay9Mih3r1iEJCnvwMDDR+FJGSoolWAgKIRo0qP1oAiFxdjaulpliwYAEBoFOnTrGWQkFBQcKYoZmZGa1evZqWLFli1BmHpenbty/99NNPOtsuXbpE+K/MvVjtRqdNm0ZA+R0R8/LyhLL7/+l7dlJJPM8//zwBoN9//92wsyoCeXl5Rus1LfOE8sYcvLw0Yw7nzml+Ojhoxh9SUmreJPjXDAnRHMvSsvyxBf5WU53ojM348eMJAPXp04e1FBo1ahSFhYUJ7Sz3798vuoYePXqQg4MD3bt3T2d7x44dCTBef3ki0uk4eOLECQJAzs7O5Xa0HDduHAGgDz/88Nk0Br4xTVBQEOXk5NA333zzlFMsDnJvWuNTXuTQqJHmIh0Xp/k5ahSRo+OTKELbJOLiDDOL0vvzP0NCNGMblpaaaMXCQqPB3Fy/Nju7io8TFxdXcyeomvTq1UvI6R87doypltT//kDz5s0jAPTOO++IrsHPz48A0Jtvvqmz/csvvyQA9Nprrxnt2NOnTxfGe9RqNTVv3rxCg4yKiiIA5Onp+WwaQ3JyMgEgpVJJAQEBkvh2IwWys7MlZU7G1KIdOfCL4UJCiHx8ND8dHTXmwEcR2ibh41OxWWhHBNr7+/hoDEGpJHrjDU0aa9Qozc/yTOFpkUJaWhr5+/sb7TxVllatWgnG0KtXL9ZyiOjJt2V3d3fR/787deoknI8DBw4I22/fvk0cx5FSqaTHjx8b5dgTJ06kjh07CgPgH330EQGgsWPH6t2/uLiYXFxceL211xh8fHx03rharaapU6dS9+7dydraWviD+YkYp2dnZ0tqbIOIKCcnh1JTU2ny5Ml05coV1nKIiCg/P58iIiLo3LlzRnn98iIHc/Mn7UH59FJqKp/2UdOSJeeI44j27y/fLEJDnxjAvn1EHEe0davm52uvPYkUlErNMRo1qpopEBG9++671K5dO6Oco8qiVqvJycmJ3NzcyN3dnRYsWEDJycmsZVFJSQnxbX4TEhJEPbaXl5dwnWnZsiXl5+cLj/n7+xMA2rZtm1GOPWbMGAJAK1asICJNaokf28jNzdX7nFmzZtV+Y+A4jm7duqXzxu/fv6/tigRU3Pu0Jlm+fDnZ2dnR+vXrRTmeIRw7dozc3NyoXbt2BIB+/vln1pKIiGj48OGkVCpp9OjRRj9WRSYREqK52IeEEFlYFBPwEzVocItmzFAJYwT8xX//fs3YhIODJiJQKp9EIT4+T4zGy0uzjiIkpOqRAk9OTg5dvHjRuCfIQAoLCyk+Pp4uX75MKSkprOXo8PfffzMxKX5qKn/TXktw8uRJunDhgtGOPWLECAJAderUEa6DfATz22+/6X3O9evX6dChQ7XbGADQd999V+bNHzx4kDiOE/5Ynp6eBp7q6rFu3ToCQL6+vqIcryLy8vJo9erVNHv2bJ1/3JCQENbSaPv27VSnTh0CQBYWFqJdZMoziBde0EQDmtSSmg4fziRHR7WQauIv/rNmPTGAJ/trDIPjiIYO1dzv0EH/cUxpkFnGMErXRFMqlXT16lVRjj106FDhuIMHDyYizZdTADRw4MAKn1vrjaG8POd/I+8EgJycnCo8STVFbm4uOTg4EADRFtBVxPr164XpfPytbdu2rGUREdGRI0foueeeIwA0f/580Y9fnkm4uGge56MF/uIfG/ukUB9vFvw+vHG4uspm8KzRoEEDUiqVBIDatGlDK1euFC1jMGDAAJ3P9s6dOyklJYUUCgWZm5tXWFyw1huDubk5PXr0qMwbV6lUwowBpVJp2JmuAfgc3rhx46iwsLDMHGex+e2338jc3FznH0jf+WJBfn4+zZ8/n5ydnUWb762P8kyitFnwKaPyDEA2hGePgIAAio2NJUBTwVR7jMHY9O7dW+dz7ebmRpmZmfTqq68SAPrxxx/LfW6tNgZbW1sCQL/++qveN5+cnCyUoxCrxsuVK1eEf5Jhw4aJOvBdHhEREWRpaSn8A+3evZu1JB3i4uIkEWFp8zSzkA1AGuTm5pZZQyAmOTk5RPRk7ZT2zCRjExAQoJPCatiwIc2YMYM2bNhAAOjll18u97mGGoNJlsRwcHAAoOnlrI8mTZoI5SiM3ZwHAFatWoWNGzeiYcOGKCgoQFhYGFJSDK4cbjQGDRqEP//8E9bW1gCA48ePM1akS/v27fFCRfUiGMCX2jDkVo1e6zLV5OLFi1i1ahWz49epUwcA0KtXLwBAVFSUaMcuLCxEUFCQcD8pKQnz5s3DkCFDYGVlhaNHjyI5OblaxzBpY/jrr79QUFCgd58hQ4Zg2rRpohhDnz59sHr1ajx48EDYlpKSwqe9mNK7d2/89ddfsLW1xbFjx1jLkZGpES5cuIAff/yxyj2Na4pXX30VgLjGMG3aNGzfvh0+Pj4oLCzEkSNH4OLiAnt7ewwaNAhA9es1maQxKJVKeHt7IycnB3///Xe5+y1btgz29vZG1+Ph4YHw8HCYazX3LSwsxOPHj41+bEPo3r07Dh48iOvXr0OlUrGWIyNTbeLj43Hv3j3Ri+dpQ0To3r07LC0tERsbi4cPH4py3DfeeAMcx6F3794AgP379wuPaRfNq84XU5M0BkATEQBP0kkJCQll9rGyshKiC2PTvXt3fPvttzrbpJBO4nnxxRcRGRmJu3fvspYiI1Nt4uPjAQArV65kFpmfP38e169fR9euXUFEFX5JNQaBgYEAdI2hT58+cHR0xL///lumo2VlMHljiIiIwIoVKzB//nzGioApU6ZgypQpwn0pGQOgyek3bdqUtQwZmWrDG0NMTAxOnDjBRMONGzfwySefMEknAUDXrl1hY2ODf//9V/jCZ2lpiddffx1A+S0IDMEkjeHOnTsICwuDUqnEgwcP8O6776KkpIS1LACabzDdu3cHID1jkJGpDTx48EBnPG/lypVMdCQlJSE8PBzNmjUDoDEGMaMXpVKJgIAAAPrTSVu3bq3yddEkjcHBwQFLly5FYWGhsE0qxmBpaYkdO3bAw8NDNgYZGSPARws84eHhuH37tug6kpKSQESIiIhAvXr1kJycjOvXr4uqQd84g5+fH5o0aYK7d+/iyJEjVXpdkzQGW1tbzJ49W2ebVIwBABo0aICIiAhkZmayliIjU+Oo1WqdL2ViU9oYSkpK8MMPP4iuIykpCQAQFhaGF198EYD46STeGKKiooSOcgqFouqd2/7DJI0BAD7++GO0adNGuK/dZk8KtG/fHrNmzWItQ0amxomIiMDly5eZHT8+Ph4+Pj7CWoIlS5YgMTGx3KnrxuLGjRsANNeerKwsAMCBAwdE1dC6dWu4u7sjPT0du3btErbzxrBjx44qnReTNQYrKyts3LgRZmZmAKQVMfA4OzuzliAjU6MQEf73v/8J35ZZMGTIEJw6dUrI7ffo0QNhYWGwsrISTQMR4ebNm8L9U6dOAQD+/vtvFBcXi6ZDe9rqZ599Jmxv164d2rdvj8zMTOzZs6fSr2uyxgAAL7zwAubNmwdAmsYgI1Pb2L17N2JjY3UuimIzcOBAWFhYoEmTJgCAW7duia7h3r17Ot/E1Wo17OzskJmZiZiYGFG18MYQExOjM65ZnXSSSRsDACxYsADe3t6SSyXJyNQ2+GgBANOIgYelMZR+/y1atBCMQuxxhp49ewLQ/H2WLFkibB85ciQ4jkNkZCQyMjIq9ZombwyWlpY6KSUZGRnjsH//fpw+fRoAmEYMPLwxVLcuUFVISkrCW2+9hUmTJgEAxo4di3Xr1gEQ3xgcHR2F69/q1auFiguNGzeGv78/ioqKEB4eXqnXNHljAIAOHTrg/fffZy1DRqbWQkT4+OOPhftSiBg8PDwAsIkYBgwYgLVr1wpFIC9evIj+/fuD4zicOHECOTk5omlJT08XUukFBQX4/vvvhcf4dFJlF7vVCmMANEvBZWRqI0SETZs2ITY2lpmGQ4cO6VTn5efws4RlKomvwda2bVsAGmNwdHREp06dUFxcjMOHD4um5dq1azr3V65ciby8PABAcHAwLC0tcfjwYdy5c8fg16w1xiAjUxu5efMm+vbti2XLlqFDhw7MdGhHCwCQk5ODR48eMVKjgTeGq1evMtPAT5m/fPkySkpKmJTHKG0MDx8+FNJaDg4O6N+/P4gIW7duNfg1ZWOQkZEgJSUlWLlyJby8vLBv3z6EhoaC4zgmWo4ePYq8vDyh/AI/LZR1OsnFxQVmZmbIyspitpi0Xr16cHFxQWFhIZKSkpgZg0KhEP4/nn/+eaxdu1aopPzmm28CqNzsJNkYngGkNpVXKuXIeVJTUxEbG8u8tj/PpUuX8PLLLyM0NBS5ublwcnIScsUs6Ny5M06fPg1vb28AwEcffYQVK1YwL/libm4OR0dHAJpFd6zQTid5eXnBxsYGFy9eFK2ScUlJCQ4fPgx3d3cAQP369XHmzBlhpma/fv1gb2+P8+fPG/yaJm0MFy9eZC1BQK1Wo6SkpNKj/8aksLAQCQkJ+Pnnn1lLEcjJycGiRYuwfft21lIE1Go1/P39YWtri44dO2LixIn46aefkJuby0SPp6enUFIZAKZOnSrq4q3SWFhYAAD+/fdfAICXlxdCQ0MxYMAAZpp4FArNJUx71a/Y8MYQExODVatWCUU0Dx48KMrxP/nkE7z88sto3749AOD06dMwMzODUqkEoInwgoODK/eihvT/lNrNysqKvvjiC3rttdcMa5JqZPbv30+tWrWioUOHUkBAAGs5RESUkZFBnTt3psaNG1P79u1JrVazlkRERHPmzCEAZG5uTn/88QdrOUREdOrUKeL7iDs5OdHcuXPpxo0bTDWlpaXRvHnzyNXVlVJTU5lq4YmNjaX169fT/VK2VgQAABqESURBVPv3WUshIqLi4mKyt7cnANS8eXNmOn788UcCQAEBAfTcc8/Rvn37KCwsjB49eiSqjkWLFgm9oE+ePKnzWExMDP3www8G93xmfpGvyo1/8/3796/2yawOBQUF9Omnn9KgQYOEP0iDBg2YaiIievDgAS1fvpysra0FXUePHmUtizIzMyk4OFjQZGFhQXv27GEti4qLi2nkyJH066+/UkFBAWs5OsTExLCWIFmOHz8u/C8BoKtXrzLRcfjwYQJADRs2JADM/ma//fabcC4+/vhjvfsYagwmnUpi3aZSqVTi+eefx+7du4VtaWlpSEtLY6gKcHJygo2NjRBmA9CZ28wKGxsbzJ8/Hz/88APGjBkDT09PDB06VPTCY6VRKBTYsmULRo0aJYTfUqFTp06sJUiW0ukj7c+hmPCpJL61Z3X7LVeV5557Tvhduwx3lTDEPaR2w3+uKJW0zaZNm3S+uURHR7OWREREN27coICAAOHb+b1791hLKsPDhw/p0KFDVFJSwlqKjInRtm1bnc9dr169mGlxcnISdLi6ulJxcbHoGrKzswUNZmZmlJGRUWYfyBGDeIwePVqnixQ/SMcaT09PHDx4EN9++y0sLCywZs0a1pLKUL9+fQQEBOhENzIyT+P69etlJp8cPnwY2dnZTPRoV1JOSUmpcoOc6mBraws3NzcAmplKhw4dqvJrmeSnka/DLpXphQAwY8YMLFy4EIC0ZkspFApMmzYN58+fx6VLl0QtCSwjYywuXLiA1atXY+rUqQCAxYsXY/HixTh37hwTPaW/2FS1QU510ZdOKioqqrRhmqQxeHp6wsbGRjIRA8/ChQsxbdo0yUQM2rRo0QK//PKL5NY0yMhUhaFDhyIkJATm5uYAADs7O7z//vvw9/dnoqf0KvAdO3Yw6XLXqlUr4XfeGE6cOFHp8ReTNAalUokvv/xSUhEDoGmasXLlSnTs2JG1FL0oFArJDa7KmDYPHz4UmtSwQJM2B7NV4QCQkZGhU4fI09MTZmZm2Lt3r+ha+IjB0tISiYmJSExMRFRUFHbs2FGp1zFJYwCAKVOmCHXIpYRCocAXX3wh/MPKyNRmQkNDcf/+fWbHl4Ix3L17V6cO0UsvvYTbt2+jefPmomvhjYEv8rd//37s378fe/bsqdSCTZM1Bo7j8Pnnn7OWoRcLCwum/6gyMmIQGRmJzZs3M/0SxJd9YDl5oV27dhg+fDhsbW0BaKIoGxsbPP/886Jr4VNJfJo9MjISMTExyM/Pr1QEY7LGADwZhJaRkRGXzMxMTJkyBQCYGkPpiIHVGiKO44T+EA8ePGCiAQCaNm0KCwsLoWPboUOHhHNUmXSSSRuDjIwMG9577z2hSJyUjGHJkiXMyoHzqSOW5cjNzc0FHU2aNEF+fr7wWGRkpMGvIxuDjIxMpTh48KDOmhgppJI4jkNBQQF+/vlnnD17lokWPo3Dai0FDz/O0Lp1a53tz8QYg4yMjPjk5OQgJCREZ5sUIgaFQoHw8HA8evQIMTExTLR4eXkBgNA9jRW8QVlaWlb5NWRjkJGRMZj58+eXadAjBWPgOA6rVq0CAGbGwHfYU6lUZc6JmK0++YihdD8Ivj+1ITA1Bo7jXuc47l+O49Qcx/my1CIjI1MxN27cQGpqKoKCgnS2S8EYUlNT8c8//wAAs1RSy5YtBU3aU3izs7Mxe/Zs0XTwxpCbm4suXboI2xcvXmzwa7COGBIADAUgfmERGRkTJSEhAbGxsaIft1mzZggLC0OzZs0AACEhIejZs6ckxhiOHj0qbEtOTmYyO0m7mZJ2t7QdO3bg7NmzSE9PF0UHn0q6d+8e+vXrJ2yvzEpspsZARJeI6ApLDTIypkJGRgZCQ0PRr18/oQk9C/jZLSNGjEBkZCR8fdkF+7wpHT9+XGc7i6iB4zih211cXJywfcOGDQA0pSnEoGHDhqhbty6ysrJ0/jYmYwyVgeO4SRzHxXAcF8O634GMjJio1Wr8/PPPaNWqFVauXIlZs2Yxa/V548YNXLp0CXZ2dnj55ZdhZWUlRBAs4I1Be1omwG6cwdraGoAmqgOAxMREodJqafMyFhzHCVGDUqkUBqGTk5MNfg2jGwPHcQc4jkvQcxtcmdchotVE5EtEvg0aNDCWXBkZSRETE4OuXbtiwoQJePDgARo0aIBJkyYx08MXYwsMDKzWrJeagjeGbt26CdtatmzJzBjs7OwAAJcvXwYAbNq0SXhMLGMAnowzJCYmwtXVFYBuFPM0jG4MRNSLiLz03CKMfWwZGVPl4cOHmDRpEl588UWdInXvvvsu0xX/fBppwIABzDRow48xDBs2DICmJ0F8fDwzfY6OjgA0F2S1Wo2NGzcKj50+fVq0itC8MVy9ehXu7u4AgPj4eIOfbzKpJBmZZ4WUlBQMGDAAa9as0RnYrVevHt5++21munJychAdHQ2O49C3b19mOrThzw+/qKxRo0ZQKpWYOHEiEz28MTx+/BgRERE66Zv8/PxKfWuvDnwq6cqVK0Kq7+rVqwY/39woqgyE47jXAHwLoAGA3RzHxRFRIEtNMsbn0aNHwgdICoSHh2PDhg1wdHRE/fr1hZ/873wuXSxcXV1x4sQJBAUFYefOncL2mTNnom7duqLpKM2BAwdQVFSEzp07o2HDhsx0aMMbQ1ZWFgDdTmos4FNJAIR1FdocP368UusJqop2xMDPTKpMmwKmxkBEOwHsfOqO+p8ruQqmWVlZTD+4+oiKikKvXr0kc66KioowY8YM9O7dG2PGjGEtB4BmYdKJEyfKTCfs2LEjvvrqKyYDvZ9//jl27twJpVIJBwcH5OXlYcaMGaLr0EZqaSTgSSpJKsbAV1gFNOsItm7dipEjR6Jhw4YYP368aGMf/JqKxMREYaZUZTDJVFJycrKk2mempaXhnXfeEdoMSgG1Wo0JEyZg3Lhxle7eZEy+/vprbN26FWPHjsXkyZNRUFDAWhJu376tYwpubm7YuHEjzpw5g4CAACaagoKC4OnpiW3btmH69OmYNm0a6tWrx0QLz6hRo/D2229jyJAheh/fvn27yIqA4cOH45NPPhEuyI0aNRJdgza8joEDB+Lbb78VUjoNGzbEF198geXLl4umw83NDSqVSijR0blzZ8NfgIhM7gaAdu3aRVJApVLRW2+9RQDI1taWioqKWEsiIqKIiAhycnIiANS6dWtSqVSsJRER0dKlSwmAcOvUqRMlJSUx1VRQUEBz586lOnXq0Mcff0y5ublM9fAUFBQQEdHt27fpwYMHjNVUzI0bN8jDw4PZ8efOnUsA6OOPP9bZrlarac+ePaLpCA0NJQC0bNkyIiI6ePAgAaBu3bqJpoGnR48eBIDGjBlDAOj//u//CEAMGXCNNcmIQalUlqnXwgpzc3MsW7YM3bt3R05ODk6ePMlaEgCgR48emDVrFuzt7XH58mWsW7eOtSSUlJTA09MT33//PRYvXowZM2agdevW+PDDD3Hz5k1mupRKJTp27Ihr167ho48+go2NDTMt2vBtWBs3bgwpT9FWq9UYP358mbUEYsKXoCgdMfz555/4448/RNPBjzHk5OQAeFKCm8WYGj/OwPdmMJkxhqrSsmXLSpWQNTb16tXDvn37MHbsWERFRenMqWaFra0tPvjgA0yZMgXLli3DkiVL8MYbb+gMjomNmZkZgoODmR2/IvjpjjKV55tvvsHhw4eF+fIsuHfvHgDdMQYiwuLFi+Hk5CSaDj6VxM+Sevz4MQAwSQPyxsCbU61c+ayNUqnEzJkzWcvQwcrKClu3bmXSzq8iHB0d8fnnn+PYsWM6DctlZGqCy5cv4/333wegiZ5ZoS9i2LNnD86dOydqNMobAx8xsDQGfnyDrxRR6yMGAJIJ97VRKBR4/fXXWcvQi4uLC1xcXFjLkKlFFBcXY+zYscIEApbGUDpi4KMFQDNZRa1Wi9IXurQxSCGVxLcarfURg4yMDHuWLFmC06dPC/dZGYNarRYufnzEsG/fPpw5cwaA5oKoXQbbmEgpYuD7P/MaKhMxyMYgIyNTaeLi4srU92dlDP/f3r3HVlmteRz/PtBCiwV6KgGTUhgGSrFyKdAI9YJkelRGnIFiVLxMVDSo4xCn8Y/RYKqSqDGgxXJGYBImXOY4jkmdMoiWQxVEcbwwUssBPaXlKNbhVsa2XErb3T7zR3k3exek973eXZ5PQqS7e8df3rL307We9a518uRJmpubGTp0KHFxcWGjBU+kppP8VBhCz38GGzEYY3rZ7t27ee2118Kava4KQ9tppJKSkotWB0aqMPhpVRJc6DOAjRiMMb3sqaeeYsGCBRw9epRBgwZRVFTkbMVbaOPZGy20/Q29M1tOd4efViXBhT4DdG7EELXNZ2OMW979Abfffjvz5s1jypQpTnKEjhjOnDnDihUr6NevHzNmzCA1NZW5c+dGvDD4YSoJrDAYYyLM2+AvJycHaG12uhA6YkhISGDmzJnB7a6nTJlCfn6+sx6DTSUZYyJOHZ23fOLECT799FNiYmKcb6p3qZvb9u/fD8B1110HRK5ohRaG5uZmamtrAUhMTIzI/7+t0BFDZ/Yls8JgTBRqbGzkxRdfDC7TjLQtW7bQ0tLC7NmznW/u540YQguDd7SmVxgiJS4ujn79+tHU1BS8sWzw4MHOGvPDhw8P9n46s2WJFQZjosz+/fuZOXMmpaWlznYTbTuN5JI3Ygi9Fm1HDJEiIsEP4p9++glwN43k5RkzZgxAp7YRssJgTJRoaWnhjTfeYPr06ezdu5fHH3/cSY5Tp06xfft2AObNu/jodu+MhEhpO2I4deoUhw8fJjY2NnguQSR500lHjhwB3DWePd69DDaVZEwf8+OPP5Kdnc0zzzxDQ0MDo0eP5rbbbnOSpbi4mIaGBmbMmEFycvJF31+9enVE87QdMXhntaSlpXXpkJru8gqDl8t1YfD6DHaDmzF9hKqyYcMGJk+ezM6dO4OPL168mP79+zvJdLlppL179/Lqq69GLEsgEAjO5XvHjbrqL3i8wuD1f1wfY+sVhqampg6/xparGuNTZ86c4aGHHqKwsDDs8ZiYGBYtWuQkU2NjY/BEwLaFoampiUWLFnVqWWR3VVdXo6okJSUxYMAAwF1/weMVBq9guR4xpKenA63noXSUjRiM8amrrrqKdevWkZeXF/b4vHnznJ1t/PHHH1NXV0d6enrYUkiA5cuXU1paGtEltJdbqjpx4sSI5QjlFQbvuFi/FIbOsMJgjI/V1tby1ltvARc+/Fw1neHXp5EOHDgQ3LgukoXhUktV/TJicH1zm2fIkCGdfo0VBmN8qr6+npycHKqrq8nOzmbnzp2MHz+e7OxsJ3mam5vZvHkzEF4YmpubefTRR4NTSC5GDF7juaamhp9//pmBAweG7SwaSd5yVe/mNtcjBqDTZ1FYj8FEnKoiIq5jBL300ku89957wa9DP9ji4uJYtmwZc+bMiWgmVeWJJ57gm2++YfTo0bzzzjsMGzaMd999NyIHzlzKF198wbFjxxg1ahTTpk0LPl5QUBC2m6nLEYM3WpgwYYKz5rw3YqirqwP8URhiYmL6/pYYkWxuRTtvOOsnS5YsobKy0nWMoPvuu4/Dhw9TVlZGWVkZ+/btY9++fQwePJhNmzZFvCgArFq1io0bNxIfH09RUVHw3GJXG9XBhWmk+fPnBwt7ZWUlS5cudZap7YjBdX8BLt5h1fVUEhBszHdUVBYGP32oQOsNPUuXLg3upOgXq1evJicnp1OrEXrb+vXr2bRpExkZGWzYsMHZXj+hysvLqampCX4dHx9Pfn4+u3btCtuELJLGjRvH0KFDWbduHRkZGU4ytJWRkcEtt9zCXXfdFXxsz549rFy5ksmTJwOtv5lG8mc6depUFi5cGLxGrvsLXqYHHnggeB38MGLo9FHIqhp1f8aOHat+UlFRoWPGjNHXX3/ddZSgw4cP68iRIxXQFStWuI4TVFBQoEDwz7333qu//PKL00xnz57V559/XgGdNWuWHjx40GkeT3V1tesIHXLmzBmNi4tTQD///HO9/vrrnWXJzs5WQDdv3uwsgyclJUUBraysdB1Fx40b573n9mgHPmOjcsTgaqfCXzN27Fi+/fbb4EX1g5SUFHbv3s2zzz7LypUrKS8vdx0JVSUlJYW1a9eSn5/Pyy+/TGpqKhs3buzUzTc9LT4+ntTUVFatWsWOHTsYN26csyyhrr76atcROmTHjh2cO3eOadOmkZWVRXFxsbMsrm9uC+WXVUnQ+akk8csHWWdkZmbqnj17XMeIGvX19VRUVDBp0iTXUXyrpaXFWVM32j355JOsWbOGvLy8i85ajqSTJ08ybNgw4uPjOX36tNOfZ1NTEwMGDEBECAQCzv9tTZs2jb179wL8j6pmtvd8eydcAeLj460otMP1GzdaqSrvv/8+gPNzGbz+Qnp6uvOfp9dvTExMdJ4FYODAgZ16vvvExpioVVZWRlVVFSNGjGD69OlOs/ih8ezx0zQSXCGrkowx/uCNFu644w7nvxn7qb/g+qzntmzEYIyJGL9MI4E/7mHw+K0w2IjBGBMRJ06c4MsvvyQ2NpZbb73VdRybSroMGzEYc4V4++23nS7z/fDDD1FVZs+eHdwfyJXjx49TXV1NQkICo0aNcpoFbMRgjHFg5cqVrFmzxskJZR4/TSN5/YX09HRf7MPlt8JgIwZj+jBV5YUXXiA3N5ebbrrJWY7Gxka2bdsGwNy5c53l8PipvwAXppKitTDY7qrGRImWlhZyc3MpKCgAYNasWc6yfPbZZ9TV1TFhwgRn21uH8lN/AS6MGPzSY+jsVJIVBmOiQCAQ4LHHHmPDhg1A6w15N9xwg7M83vGefphGAv8WBhsxGGN6RUNDAwsXLqSoqCj4WEZGRpdO5uopfuovqKqv7mEA/00l2YjBmD7k9OnT5OTkUFJSEvb4zTff7ChR6zbl5eXlJCYmOh21eI4cOUJNTQ1Dhw4lOTnZdRzAf1NJ1nw2pg+pra0lNzeXu+++O+xxl/0Fbxppzpw5TldFeUKnkfywIgn8N5Vky1WN6UOSk5O58cYb+eSTTwCCK5Fcrkjy0zQS+K+/AP6bSrIRgzF9zLJlyzh+/DhZWVmUlJRwzz33MHz4cCdZamtr2bVrF/369XNy5Oml+K2/UF9fT0NDAzExMcFjPl2zwmBMH/L9999TUFCAiFBQUMDAgQODK5Nc2L59O4FAgKysLN8cJOS3exhCp5H8MrVlU0nG9BGqSm5uLoFAgEceeYTMzNbzVeLi4pxl8ts0kqpy4MABwD8jBr9NI4GNGIzpMYFAgKNHjzo7rnXr1q0UFxczZMgQXnnlFScZQjU3N/PBBx8A/ikMVVVV1NXVkZSUxIgRI1zHAfy3IgmibLmqiCwH/gZoBCqBR1S1xmUmc2Vpbm5m7dq1HDp0iKNHj3Ls2LHgfxsbG1m/fj3z58+PeK6GhgZyc3MByMvL88WH3tdff82JEycYPXq0b347D+0v+GXaxm8rkiD6bnDbDjynqgEReQ14Dvin9l7U0tLS68E6Q1Wpra0lMTHRdZQwquqbN0uo4uJi3zQu+/fvz6RJk3j66acJBALBx8ePH09RURHXXnutk1xvvvkmFRUVpKWlsWTJEicZ2gqdRvLLvyu/9RfAppK6TVX/oKreu/ELYGRHXnfw4MHeC9UF999/P2lpaZw7d851lDCFhYUUFha6jhHmo48+4sEHH+Thhx/m9OnTruMA8MMPP4QVhTvvvJOvvvrKWVEAOHfuHLGxseTn53d6GqC3DBo0iGuuucYXm+Z5EhISmDhxIhkZGa6jBA0ZMoTMzEzGjx/vOkpQUlISU6dO7fDzxdX8aVsisgX4D1X9t1/5/mJg8fkvJwJ/jFS2K8AwoNp1iD7CrmXPsuvZs9JUtd3DM3q9MIhICXDNJb61VFU3n3/OUiATWKAdCCQie1Q1s2eTXrnsevYcu5Y9y65nz+ro9ez1HoOq/vZy3xeRh4A7geyOFAVjjDG9y/WqpDm0NptvUdWzLrMYY4xp5fo+ht8Bg4HtIlIqIms6+Lp/6cVMVyK7nj3HrmXPsuvZszp0PX3TfDbGGOMPrkcMxhhjfMYKgzHGmDBRWxhEZLmIfC8iZSLynyLir9uOo4iI3C0i+0WkRURsaWAXicgcEfmTiFSIyLOu80QzEflXETkuIna/UjeJSIqI7BCR786/z59u7zVRWxho3U5joqpOBspp3U7DdM0fgQXALtdBopWI9Af+GfhrIB24T0TS3aaKausBf+ybEv0CwDOqei0wE3iqvX+bUVsYurqdhrmYqn6nqn9ynSPKXQ9UqOohVW0E3gHmOc4UtVR1F/B/rnP0Bap6RFW/Of/3U8B3wGUPx47awtDGIuBD1yHMFS0Z+Cnk6yraefMZE2ki8hfAVODLyz3P9e6ql9WJ7TQCwO8jmS3adORamm651Hajthbc+IaIJACFwD+qat3lnuvrwmDbafSc9q6l6bYqICXk65HA/zrKYkwYEYmltSj8XlXfa+/5UTuVFLKdxt/adhrGB74GUkVkjIgMABYC/+U4kzFI6+EZ64DvVPWNjrwmagsDXd9Ow7QhIjkiUgVkAVtFZJvrTNHm/EKIfwC20drce1dV97tNFb1E5N+B/wbSRKRKRB51nSmK3Qj8HfBX5z8rS0Xkjsu9wLbEMMYYEyaaRwzGGGN6gRUGY4wxYawwGGOMCWOFwRhjTBgrDMYYY8JYYTDGGBPGCoMxxpgwVhiM6QEi0l9E3jy/3/0+EflL15mM6SorDMb0jOeAQ6p6HVAA/L3jPMZ0ma830TMmGojIVUCOqk4//9CfgbkOIxnTLVYYjOm+3wIpIlJ6/uskoMRhHmO6xaaSjOm+DCBPVTNUNQP4A1DazmuM8S0rDMZ032+AswAiEgPcBmxxmsiYbrDCYEz3ldN6yDpALrBVVf/sMI8x3WLbbhvTTSLyG1rPHB9G6xkCi1W13m0qY7rOCoMxxpgwNpVkjDEmjBUGY4wxYawwGGOMCWOFwRhjTBgrDMYYY8JYYTDGGBPGCoMxxpgw/w+ZVycukR5BjQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:07<00:00, 2.54it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXd4U2X7x78n3YNuKB1Ay2oLKFuUKUOGvKCyBRQFCrLeH0NRUYaIgCAUZAiKgNCX0bJkgwgoe9oCLZRRVttAge6ZNuf+/XFMSDogaZs8J/B8rutcTU5OzvPtSfJ8z7PuWyAicDgcDoejQcFaAIfD4XDkBTcGDofD4ejBjYHD4XA4enBj4HA4HI4e3Bg4HA6Howc3Bg6Hw+HowdwYBEGoJgjCEUEQrgqCECMIwv+x1sThcDgvMwLrdQyCIPgA8CGii4IgVAJwAcC7RBTLVBiHw+G8pDBvMRCRkogu/vs4E8BVAH5sVXE4HM7LizVrAboIghAAoDGAMyW8NgLACACwtrZu2rBhQ7Nqexb37t2DKIrw9/eHtbU8LmlSUhJUKhW8vb3h4ODAWg4AICEhASqVCj4+PrLQVFhYiBs3boCIEBQUBCsrK6Z6MjIykJycjPT0dCgUCrz66qvMNKnVamRkZCA9PR3p6ekoLCwEAISEhMDR0ZGJpoKCAmRkZGg3jaYaNWrAy8uLiSZRFJGVlYX09HRkZGQgLy8PAFC5cmVUr16diSYAyM3N1X52WVlZAABHR0fk5OQ8JqLKzz0BEcliA+AMqRup1/OOtbKyIjnh7e1NACghIYG1FC2NGzcmAHTy5EnWUoiIKD8/nzw9PQkAnT9/nrUcSkxMpHr16hEACgwMpPj4eCY6UlNTKSwsjGrXrk0ACADZ2trS4MGDzfp9EkWRLl++TN9//z21bduWrKystHoAkL+/P40cOZKuXbtmNk05OTl04MABmjRpEr3yyit6egBQ1apV6cMPP6S///7bbJpEUaSYmBhauHAhde7cmezt7fU0OTk5UY8ePWjDhg1m00RElJ6eTlu3bqXhw4eTn5+fniYrKytq3bo1zZkzhwCcJ0PqY0MOMvUGwAbAAQATDTlebsZQqVIlAkApKSmspWjx8PAgAJSYmMhaChERbdu2jQBQ/fr1SRRFplri4+OpZs2aBIBCQkJMXgGrVCrasWOH3r7o6GgaMWIEOTo66lW+s2bNogcPHlRo+U+ePCnxBiE7O5t27dpFo0aNourVqxerTNq0aUNz5syhS5cumeUzU6vVFBUVRfPmzaNOnTqRnZ2dniZ7e3vq0qULLViwwGyaiIhSUlIoMjKShg8fTv7+/sUMqlGjRvT555/T4cOHKT8/3yyaNEY+b948evPNN8na2lpPk7e3N3300Ue0efNmvXrJYowBgABgHYBFhr7H2tq6oq5vuRFFkRQKBQEw25fieWRkZGjvPNVqNWs5RET07rvvEgCaN2+e2ct+/PgxqVQqIiKKiYkhX19fAkBNmzalR48embzs9u3b05AhQ0ilUlFERAS1bdtW70fcvn172rp1KxUUFFRo2aIoUmRkJFWpUoU2b95MRES3bt2iJUuWUNeuXYtVvF5eXvTBBx/Qpk2bKvwmJzU1lUaPHk2ZmZl6+5OSkui3336jQYMGaVveRSvdyZMn06FDhyg3N7fC9IiiSMnJySW+VlhYSKdPn6ZvvvmG3njjDe3vW/c6DRw4kH777TdSKpUVpul5ZGZm0o4dO2jEiBFUrVo1PU0KhYJatmxJ3377LV24cKHU370lGUPrf/+5SwCi/t3eftZ7bGxsynmJK468vDztHRbrO2ENly9fJgBUu3Zt1lKIiOjRo0dkY2NDCoWCSQtm1KhRdOTIETp//ry2O6tNmzaUlpZm0nJjYmL0WiYaQ9J0OYwaNYquXLlikrKTkpLovffe05bXr18/Cg4OLlbxNm3alKZOnUqnT5+mwsLCCtchiiJt3LiRvL29qW7dupSdnU379++niRMnUoMGDYrp8fHxoSFDhtD//ve/Cm85abh16xa99dZbeq24xMREWr16NfXv31/b2i7aFfPtt9/SuXPnTHKzdffuXVq4cKHePlEUKTY2ln744Qfq2LEj2djY6OmqXLkyffDBB7Rx40Z6/PixQeVYjDGUZbO1tTXoIpiDJ0+eEABycXFhLUXL7t27CQB17NiRtRQiIvrxxx8JAHXp0sXsZUdHR5NCoaC33nqLXFxcCAB17dqVsrOzTVru7t27tV2MulvdunVp8eLFJjMlURTp119/JVdX12JlA6BKlSpR7969afXq1ZSUlGQSDRpu3rxJnTt31jPDoq0UBwcH6tq1Ky1cuJCuXLli0psrlUpFc+fOJQcHBwJAa9asoU8//bTE8YsaNWrQiBEjaOvWrSa9gVCr1bRkyRJydnamTz/9lLKysmjnzp00atQoqlGjhp4mQRCoRYsW9M0339DZs2fLZFDcGMzE/fv3tQNhcmHZsmUEgIYOHcpaChERNW3alACYfUBOFEVq37693o+rb9++Ju3yE0WRvv/+exIEoVhl07lzZ5PclWu4desWdezYsURDcHFxoQMHDpiluzM/P59mz55dbGBWszVu3Jg+//zzCu8eehZnzpyhV199tUQ9GoPq1q0bLVq0iK5evWqW1n9MTAy98cYbemZka2urp8vT05MGDhxI4eHhpXZ9GcMLbQx2dnblvkAVxbVr1wgA1axZk7UULZMnTyYA9M0337CWQleuXNFWTDk5OWYte+vWrcUqgH79+tG+fftM8sPPzc2lDz74oNTKx97enr788ssKL7uwsJAWLlyoN5Bd0jZ48GCTjzkdO3aM6tevX6qGESNGmLT8omRkZNC4ceNKNOrKlSvTxIkT6eDBg2YzKCLJOL/55ptiJqDZmjVrRtOmTTNJ956hxiCPSfdGIggCawlacnJyAABOTk6MlTzlzp07AICAgABmGrKzs+Hk5IR169YBAPr27WvWtQt5eXmYNGlSsf1PnjyBk5NThX+HMjIyMGnSJCQnJ2PYsGHw8/ODv7+/3l8PDw+TfXeHDRuGjz/+GKIoPnMrLCyEra2tSTRERUVh48aNaNGiBRo1agSVSoX8/Hy9vxcvXsSePXvQvXt3k2jQZefOnRgzZgwSEhJKfD09PR09e/ZEu3btTK5Fw+nTpzF8+HDExMSU+Pq2bdvw3nvvmU1PaVikMcgJjTGwWvRTEnfv3gUgLfxhxeDBgxEWFobw8HAAwJAhQ8xa/sKFC7UGCQAdO3bE9OnT0aZNG5OU5+Ligl9++cUk534eVlZWcHFxYVK2Lo0aNcKyZctYywAAZGZmws7ODsuXL0dBQUGp2/Xr19GmTRsoFKYNAkFEiIiIwKJFi2BnZ4eGDRtCrVYX22bMmIEmTZow/e0CMoiVVBYcHR1JUyGz5uDBg+jSpQs6dOiAP//8k7UcAICPjw8ePHiA27dvM2s11KxZE+np6UhJSUFgYCCioqKQkpJiFj2JiYkICgpCdna2yQ2Bw7EkBEG4QETNnncc81hJZUGOXUlyaTHk5eXhwYMHUCgU8PNjF3IqLS0NKSkpAIDbt2/D1dUVf/31l1nK/vLLL/H666/j77//xqFDh7gpcDhGYpFdSXIyhuzsbADyGWO4f/8+AMDf3x82NjZMNIiiiPT0dL19H3/8sVm6kzIzMzFy5Ei0atXK5GVxOC8qFtlikBNyazFo+tVZ9lFmZWVBFEXt8wYNGmDp0qVmKbtSpUrcFDiccmKRxiCnFoPcZiXJYeA5LS1N+9jJyQmRkZGyMU4Oh/N8uDGUE01XklwqPrkZw8qVKxEcHMxMC4fDMR6LNAY5IZcWg8agNMbAcg2DxhiGDx+OQYMGMdPB4XDKBh98LidyaTF8++238PT0RHx8PACgevXqOHHiBOrWrYvKlZ+fl6MiSU1Nxauvvooff/zRrOVyOJyKgRtDOZFLi6F27doIDQ3VPh84cCA8PT1x9epVs2tRq9WIjIyURZY2DodjPNwYyolcWgwNGjTQe/7kyRPMnDnT5Cs6S+Kdd95hniaTw+GUHT7GUE7kMl21Xr16es/d3Nzw4YcfMtHCTYHDsWws0hjk1GKQS1eSi4uL3kykESNGwNnZmaEiDodjqXBjKCdy6UoCnnYnWVlZYcyYMYzVcDgcS4UbQzmRS4sBeGoMvXv3RvXq1RmrsQwKCwuRm5vLWoYeOTk5OH/+vNnKMySQZlJSEiIjIw061lwolUps27YNjx49Yi1FS1ZWFg4dOsRk0kdpqNVqXLhwAadOnTL4PRZpDHL6IWtaDBs3biwWH8jcaIxh/PjxWLZsGebPn19qLHoWzJs3D9OnT8fDhw9ZSwEgBRzs27cvevfuDZVKZdayRVHEzz//rLfv2rVrGD9+PHx9fdGtWzfk5+ebXMeNGzcwevToYvuTk5MRERGBTz75BEFBQfDz80O/fv1w8+ZNk2qJjo4u8bXCwkJERUVh+fLlGDx4MGrWrAlfX1/07t3bZFGNDTHBR48eYfv27Zg4cSKaN28ONzc3vPXWW1i9erVJNBmCKIq4fPkyFi9ejHfffRdeXl5o1qwZvvrqK8NPYkg2H7ltgiBUTDqjcjB16lS6cOECVatWTZt5af78+ZSXl8dM08WLF6lFixZERBQSEkIA6Ny5c8z06JKTk6NNsn7y5EkmGkRRpBs3bhARUXp6ujbtp6urK125csVsOtLS0ug///kPNW3alFQqFUVGRhZLQdq8eXO6deuWyTRkZWXRlClTyNbWlgYMGECPHz+mrVu30tixY0vMwObo6EhdunShf/75p8K1pKSk0IQJE8jGxoZiY2OJiCg1NZX27dtHU6dOpY4dO5Kzs3MxTU5OTtS+fXvatWtXheoRRZG2bNlCX3zxRbH98fHx9Ntvv1FoaCgFBwcX06RQKKhJkya0ePHiCtVERKX+lkVRpGvXrtFPP/1Effv2pcqVKxfTVb16dfrkk09e7NSeCoWizBe3opg6dao2Qbfm4rdv356pppycHIqIiKD8/HyytrYmAJSVlcVUk4Zff/2VAFCTJk3Mkk+3JHbs2EFDhgyh5ORkbR5qb29vioqKMpuGuLg4bYVSuXJl8vHx0cs7PHToUJOauSiKtG3bNqpevbpePuiiqS/t7e2pQ4cO9O2339Lx48dNkitapVLRjz/+qL1hsLKyouHDh5eaGjQgIIAGDhxIS5cupYsXL1JBQUGFa4qOjtaa9KJFi+jSpUu0bNkyGjBgAPn5+ZWYrrVdu3b09ddf0/79+yk9Pb3CNcXHx1OPHj2ob9++2n23b9+mX3/9lQYPHky+vr7FdPn4+NDAgQNp1apVdOvWLe1vjhuDiTly5EixD2PVqlWsZZEoito8ywEBAazlEJGkqVGjRgSA1qxZw0RDbm4uBQYGkpeXl7ZiDggI0LYgzMHevXvJ1dW12PcmKCiIwsLCKCUlxaTlX79+nbp27VpipWtjY0Nt2rShadOm0ZEjR0yaA1kURdq9e3eJd9y6el5//XWaOHEibdmyhRITE02mh4jo0aNHNGrUKFIoFHoaiupyc3Oj7t2709y5c+nEiRMm7SHIzc2lb775huzt7QkAde/enYYOHUoBAQHFdHl5eVGfPn1o+fLldPXq1VJvvl5oY7Cysirzxa4ocnNzyc7OTu/DefLkCWtZREQUERGh/SLJgWPHjhEA8vT0NGvSdV2+/fZbvc+qfv36lJCQYJayRVGk77//vsSE9MHBwZSWlmbS8rOzs+mrr74qNfk8AFq/fr1JNWi4dOkSderUqVQdnTp1ouPHj5vte6JSqWjx4sXk5uZWoh4/Pz8aMGAALVu2jC5dukRqtdosuvbu3Uu1atUq9Tq5urpSz549KSwsjKKjow3WZagx8JXPZcTe3h6tWrXC4cOHAUh5ADw8PBirktAkGi+66I0VmlwMoaGhsLe3N3v59+7dw+zZs/X25ebmYu3atRg1apRJP7ecnBwMHz4cGzduLPaaQqFAWloaJkyYgJUrV5oksRIR4ejRo3B1dcWXX36J7OzsEreVK1eidevWJg2+GBcXhxUrVsDDwwOdOnVCamoqUlJSkJKSop24cezYMdjY2Jjle/LHH39g/PjxiI2NLfF1R0dHHDhwAPXr1ze5Fg13797F+PHjsWPHjhJfnzFjBrp3747GjRubdCEpN4Zy0L59e60xsEyjWRTNF92cX+ii3LlzB9evX0eDBg2wdetWKBQKjBo1iomWTz/9tNhMNnd3dzRo0ABubm4mK1elUmH+/PlwcXHBjBkz4OPjA19fX+3fypUrw9ratD9BQRDw9ttv4+233zZpOYYQFBSEZcuWlfiaWq1GWloaUlNTzfL7zs/Ph6OjI+bPn4/09HS9LSMjQ/t4wYIFWLFiBWxtbU2qh4iwZs0aTJky5ZnTby9fvoypU6eaPtSNIc0KuW02NjYGNshMy4kTJ7RNO7l02xAR1atXjwDQ2bNnmWk4evQoubi40Pvvv08AqFevXkx0/Pnnn3pN8BYtWtCePXuYDYBzOM9DFEXKy8ujJ0+e0P379ykuLo4uXrxIx48fpwMHDtDjx4/LfG7wriTT07x5c9jZ2SE/P9/soa1LQ6VS4fr16wCAkJAQZjru37+PjIwMbReKk5MTZs6ciSFDhpgtiVBBQQH++9//AgDatGmDqVOnolOnTrL5/nA4JSEIAuzs7GBnZ8ese9oiF7gJgoDVq1dru3FYYWNjo63k3N3dmWrRcPPmTRQWFiIgIIBprKSiC+vWr1+Phw8fmjWz3PLly+Ht7Y2jR4/i77//xltvvcVNgcMxAIs0hvz8fISGhhYLNc2CwMBAAPIxBrkMPBc1ho4dO2LRokVmK5+I0KlTJ/z5559o166d2crlcF4ELNIYAKBVq1aoUqUKaxmoVq0aAPkYgxwGngGpK0lD7dq1ERERYZJZN6UhCALza8DhWCoWawzvvfceawkAoJ1mx6eq6qNpMbi6umLXrl2yuT4cDuf5WKwxvPvuu6wlAJDyGwPsWwyaKW5yaTEkJCRAoVAgIiICwcHBTLVwOBzjsEhjsLa21vbts0YuxjB48GCsW7dOOyMpODgY0dHR0vJ2M5Ofn4/k5GSEhYWhc+fOZi+fw+GUD4s0Bjs7O9YStMjFGDw8PDBkyBAUFBTAysoKISEhWLBgAZNZOImJiQgNDcW4cePMXjaHwyk/FmkMDg4OrCVokYsx6IYyUKvVSEpKMi7+egXi4uKCpUuX8qmhHI6FYpEL3Ey9PN1QRFFEWloaAPbGULRrbcCAAQgKCmKixcvLi0m5HA6nYrDIFoPJ44QYSHp6OogIzs7OZp2KWRJFg5+xai1wOBzLRx41rJHIpYtCLt1IgH6LoU+fPsxnJXE4HMuFG0M5kJMxVK9eXXtdvv76a8ZqOByOJWORYwysu5JEUYRCoZCVMdjZ2cHX1xfNmjVDw4YNWcvhcDgWjEW2GFgbw9WrVzFs2DBcu3YNgGQM0dHR2LNnD1NdgYGBmDp1KlMNnLIjiiI2b97MWoaWuLg4TJ48GaIospaCjIwMLF++HGvXrmUtBYA08+/333/H+fPnWUvRUlhYiHv37lXMyQyJzS23rVatWmWOR14RqNVqvdy9mpyshw4dYqpr06ZNTMu3JI4dO0YqlYqISBa5GZ48eUJvv/02tW/fnkRRNHmO42fxzz//UN++fUkQBBo6dCgRSTmR//77b7OlttTVMmLECHJyciIAFBMTQ6IoUlpaGl29epWOHDlCDx8+NJue5ORkmj17NlWvXp3s7OwoNTVV+1p+fj7duXOHTpw4YdZc4pmZmRQWFkbVq1engwcPFns9JyeHrly5QpcuXXqxcz77+vqW60JWBEWTqleuXJmys7OZatKt4LZs2UJ79uyhjIwMhor0+e2332jDhg1UUFDAVIdKpaKQkBA6cuQIffHFFzR69Gim5nD27FmqUaMGAaDAwECqW7cu1ahRw+yV8IkTJ6h79+563+tq1aqRp6en9vmdO3dMriMnJ4fWrl1LLVq00NOiUCgoMDCQHBwc9PZHRESYVI8oinTq1CkaPHiwXt5sLy8v+s9//kONGzemKlWq6Gn6/PPPTaqJiEipVNKXX36pzVdtZ2dH4eHh9N1339HHH39Mbdu2JT8/P62mt95668U2Bisrq4q8vmVi5syZxRJ0lyezUkVTp04dAkDnzp1jLYWIiHJzc8nb25sAlHhXY04WLVpEAMjX15cAkJWVFV28eNHsOkRRpGXLlpGNjU2x71KVKlXo1q1bZtHwxx9/0Jtvvllq4nkA5OTkRE2bNqXo6GiTabl27RpNmDCB3N3dn6lF00oPDAykli1b0p49e0yiJycnh3799Vdq0qTJc/UAIEEQyNvbm5o0aUILFiwwiSYiotjYWBo2bJieST1rs7KyosDAQBoyZMiLbQxySO1ZNGWkjY2NLLokiIhSUlIIANna2lJ+fj5rOURE9MsvvxAAeuWVV5hep+TkZL1uQAC0ZcsWs+vIzMykAQMGlPhD7tSpk7aby5RkZGTQ+PHji93t6m4eHh4UFxdn8s9MFEWKjY2l9evX0/jx46lNmzbk7OxcTM/ixYspLS3N5HoKCwtp1apV9P7771NISAgpFIoSjeCXX36hU6dO0b1790z+mR07dox69OjxTBNo3749TZw4kZYtW0b79++nGzdu6Ol6oY3Bzs6uQi50ecjMzCQrKyvtBxIQEMBakpaDBw8SAHrttdeY6sjLy6Nr166RWq2moKAgAkC//fYbU02ffPJJsR+Tt7c3LVmyxGyGdeXKFQoODn7mHd706dPNaqAZGRkUFRVFW7dupXnz5tHIkSOpU6dOFBgYSP/973/NpkMXtVpN165do//97380adIkevPNN6lx48ZMumyzs7Pp9OnTtGLFCho5ciS1aNGCHBwctGMw5iA9PZ3Onj1L69atoylTplCvXr2oXr16ei3OwYMHP/McFmUMAFYDSAZwxZDjHRwcynJdKxzdJmbLli1Zy9Eya9YsAkBjx45lquPq1asUFBRE69evJwDk5+fHtAUTFRVV7M4vICCAVq1aZZY7dCKix48f0/Tp0+m7776jn376iTZv3kx//PEHXbhwgW7fvk3p6emyaXlqqKhrk5RE1KULkVJpwMHh4VTgV4PUEKjAvwZReDgRSWZhrs/qeRQUFFBsbCwVFhYy13H9+nXauXMnzZs3j5KSkko91tKMoS2AJoYag7Ozc1mvYYUyduxYbT9fnz59WMvR0rNnTwJA69atY6pj165d2iY3AJo5cyY9evSIMjMzza5FFEW9fvTAwED69ddfZVPJWCJGVfRENH48kbs70YQJzzkwPJzI0VGqnjSbo6PWHDhlx1BjkMU6BiL6G0CKoccrFAr8/PPPyM/PN6Gq59OqVStt3mlfX1+mWjQQEc6ePQsAaN68OVMtt27dAgCN+WPatGlo0aIFcnJyzK5l27ZtOHr0KAIDA/Hrr78iLi4OQ4cOZR7jSm4olUDXrsCDB88/dt484OxZ6a8h5/3tN+DPP6W/zzz/V18BRb8jOTnSfo5ZkIUxGIIgCCMEQTgvCML5jIwMbN68mXlehpYtW2pjFMnFGBITE/HgwQO4uLigbt26TLVojEGDp6cn9u3bZ/Zc3bm5uVi+fPlLbQiGVviGVvZGVfT/nnfIEKBxY+DDD59z/tIWaVXU4i3Oc7EYYyCin4moGRE1A4C+ffuyloTq1avD2lqKKuLj48NYjYRua4H1CvGbN29qH9vb22Pnzp1MzEqlUmH//v0vpCFUZIVvTGVvTEWvOe/kydLzyZOfff5C3+ol7/creT+n4rEYYyhKr169WEsAACiVSgDyaTHIpRsJeNpiEAQB4eHhaNmyJRMdrq6uL5whaKjICt/Qyt7Yil5zXs29k4/Ps8+/8ZXvoLJ21NunsnbEpgbflf5PcioWQwYizLEBCICBg89ymK6qoXbt2gRIS/VZsmbNGsrIyKAOHToQANq2bRtTPYWFhdppdGFhYUy1WDLPGuBNSpIGcy9eJPLwKH0QePx4adM8LmnwV3MuzYSWpKTSz6l7Pt19pQ0qt2qlP46s2Vq1Kv349xFOtyHNSrqNGvQ+wks9nmM4sLBZSRsBKAEUAEgAMOxZx7u7u1f4BSsLoiiSo6MjAdCLmcKC0NBQCgkJ0S4K2r9/Py1btozy8vKY6Ll9+zYBoPFFaxCOUTxrJk9FVvjGVPbGVvQc+WBRxmDsVq1atYq8VmUmLS2NAJCDgwPzuedTpkwptlBqzJgxzPQcOnSIevXqxXyOt5x53nTPZ7UIKrrC55X9y4GhxmCRYwxyyfmclJQEQBpfYJ08qOhMH2dnZ0ybNo2RGmkGUnh4OKysrJhpkDvPGx94Vp+/of32584BixYBgvB0W7RIKleX48dLsgVpP+flwyIT9cilstE1BtYUNYbJkyebfVqoLo0aNWJWtiWgOyDcqZM0gFu1avHXY2Kk55MnAw0aPD3u3DngxAmpktelVSv957xi55QFi2wxcGMojq4JVK1aFRMnTmSohqOhtOmkz5sB9LwWAb/D55gSizQG1vPzNcjJGCpXrqx9PGPGDDg5OTFUw9FQUneRIdM9De0C4nBMgTxqWCNh3WKQxnDkZQyaFkNQUBCGDRvGWA0HKH39gCHjA7xFwGEJN4YysGzZMuzatUtrDD4+PkhKSsLDhw+ZafLy8gIAzJ07V7sam2MejO0u4q0BjuwxZOqS3LamTZtW4AQu49m4cSPh30Q4AKh+/frk4eHBJGqoLj179mQ+bfZlpKS1BsYsGONwzAVe5OmqrGnSpAkAKQYPAMTExGDQoEFwdnZmKQtLlixhPm32ZaM83UUcjlwR6N/+ckuiWbNmdP78eWbli6IIV1dXZGVlaffFxsYiJCSEmSaO6VEqgY8/BtaufTq1dMIE6W9YmPRYEICFC4HWraXppEVp1YqPE7wIXLt2DREREfDz84Ofnx/8/f3h5+cHNzc3JjdnRIRVq1bh2LFj8PHxga+vr95fHx8fODo6QhCEC/RvINJnwTujy4BCoUDDhg1x4t9f/ptvvslN4SVAd4bRwoXPXmvwIlb+6enpICK4ubmZtVy1Wo0ffvgBhw4dgrOBC0MTAAAgAElEQVSzc7GtSpUqGDFihFnHHoODg1GnTh0MHToUeXl52v0ODg7w9/dHtWrV8OOPP6J+/fpm0SMIAoYPH47Hjx/jq6++Qkk3/EZ9bob0N8ltYz3GQEQ0btw4beiJiIgI1nI4ZSAzM5MuX75s0LElhacwNpicIYiiSOvXr6e9e/eW/STlJCEhgTZv3kyzZs2iIUOGUMuWLaly5crk6+tLjx8/ZqJJFEVatmwZ2dnZ6YV9USgUdPDgQSaaiIjOnj1Lvr6+xcLRzJ07l5mmXbt2UaVKlYppGjJkyIsdK+mVV16pyOtYJlavXk0AqGrVqnTy5Em6e/cuqdVq1rK0nD59muLj42UxGJ2QkEBEREePHqWoqCjGap4ye/Zs6tevH61fv15vf0kxjEoKWFfR8YWuX79OHTt2JADUs2fPMv5X5UelUtH69eupfv36ehWLvb098yjC0dHRFBISoqdr3rx5TDUlJiZS8+bN9TSx/PyIiGJjY6lOnTp6mqpXr/5iG4O1tXVFXsMyERUVRQBo6tSp5OTkRACY3U2VRL169QgAnTp1irUUeuedd+jo0aPaiobl3bCG1NRUcnNz0wZBTE5O1r5WdJaRqWcY5eXl0TfffKN3N1y3bl1mkXE1qNVq2rlzJ73xxhsEgLp06cJ85h0RUVZWFoWGhhIA6tevH927d4+1JMrJyaGBAwcSAOrVq5csfnepqanUtWtXAkDt2rWj8PBwg43BIgef7e3t6dixY0yT0RQUFMDNzQ0nT55Eo0aNUKlSJaSnp8tiVlBaWhrc3d1ha2uL9PR02NvbM9XToEEDxMfHIzc3F97e3rh9+zYKCgrg4uLCTNP06dMxc+ZM7fPOnTsjMjIS2dkuqF//aQyjmBjg+++lY8LCnr5fd6C5PBARduzYgejoaOTn52u3goICTJ8+HX5+fuUroAIgIhw7dgznzp3DpEmTWMvREhkZiUePHmH06NGspQCQrtP3338PGxsb2VwntVqNKVOmICMjAz/99JPBg8/M7/7LsgGgPXv2VJCvlp3Zs2fTmTNnCAC9+uqrrOVo2bdvHwGg119/nbUUIiJycXHR3gkLgkAAaMGCBcz0PHr0SJu3wt29HoWE3KF791REZJ4uI07FIafuWw3p6emsJRTj5s2bREQGtxgsclaSIAh46623WMvAxIkTsWPHDgBAYGAgYzVPOXnyJAAwS6WpS3p6OjIyMrTPiQjDhg3DBM08TwbMmzcPKpUKn376KbKzv8WmTfYICwM++6zkWUYxMfqRTznyQS5x03Rh2RIujVq1ahl1vEUag52dnSxy+NrZ2SE+Ph4AN4bSuH//vt7zdu3aYfny5cy63B48eIDk5GRcvXoVDg419bqNsrJKX5RW3i4jDseSsEhjkFPk0Nu3bwOQhzH8/vvv6N69O86cOQMAeOONNxgrAu7du6d9XKtWLWzdupVpoiVPT0+sXbsWgDROoBvLKCICSEp6fo4DDudFR37tMANwcHBgLUGLnIxh3LhxGDRoELKyshAQEAAHBwecOnWKqSZNi8HV1RW7d++Gp6cnUz2PH9uga1cgOrp46Ou8PGnRWtHRhBdxsRqH8yws0hjk0I2kQU7G4OHhgYiICABAYmIiPD09cenSJaaa7t+/DysrK0RERCA4OJipFuDp6uWPP+axjDic0rDIriS5hJVWq9XarhI5GIO7u7v2cUFBAerXr888N8O9e/ewePFidO7cmakOQD/g3WuvAf/8w7uNOJySsMgWg1yMITExEQUFBahSpYosxj08PDz0ni9cuJD5terZsyfGjBnDrHzdXAm6+RHGjpXGGHi3EYdTHHnUsEbCurLTIKduJEDfGLp16yaLu/Q+ffowLV/TdTR9OhAZWXLAOz4VlcPRh7cYygD9u1pcrsZgZWWFH374gbEa9uh2Ha1bB/Tpw8cUOBxDkMett5GwXtSyY8cOZGZm6hmDKIpIT0/X6+c3N5qyR44ciXr16jHTIRd0u47c3YFffpE2XfiYAudF59ChQ+jUqZNR77FIY2CNr68vXn/9de24wuHDhxEQEICdO3cyNQYPDw+4urpixowZzDTIAaUSGDhQGly+elXad+ECX8XMeTn55Zdf4ODggFZG3AVZZFcSazRJebKzswEAZ86cQZ06ddCoUSOWsuDh4YGvv/4alStXZqqDNfPmAadOATVr8q4jjnnRREKQE4mJiaUm7ykNbgxlwMXFBf7+/nr7Jk6cyEjNUxo2bIhx48axlsEUzbhCcLDUYhCEp9uiRdJANIdjKqZOnYrk5GTWMvRITEzEX3/9hUOHDhn8Hm4MZUS3Dz84OBjdunVjqEaiTp06sLOzYy2DCZppqdOnS+MKUVHA+PHFp6Ty6agvDsbcAZuL27dvy6orl4iQlJQEAPj6668Nfh83hjKiawwTJkxgPiD+sjNvHnDmjDT7SDfMxW+/SWsYOC8emzdvZi2hGCkpKVi5ciViNPOiGfPkyROoVCoAwFkjmsu8NisjGmPw8vLCBx98wFjNy42m++jtt592GwF8XOFFZ9WqVfjjjz9Yy9AjJSUFoijis88+Yy0FgNSNVBYs1hg0A7+s0BjD6NGjZRXU72VEMy317l0pEJ6PDx9XqGjk2G0jiiJCQ0ORlZXFWgoA6RqlpKQAAPbt24cDBw4wVvSSGUNMTEyZ/+GKIiQkBHZ2drJJK/gyolQC7dsDa9ZI3UbHj0thsz089KOk8nGF8rNy5Uqo1WrWMvQgIty9exdffvklaykAgMzMTL1rNGnSJBQWFjJU9JIZg7W1NerWrctUg4eHBz777DN4e3sz1fEyw6elmo9Lly5h7Nixsmw5LF26FMeOHWMtQ9ta0BATE4PVq1czUiORmJiIPn364LXXXjPqfRZpDF5eXqwlAACmTJnCWsJLC5+Wal7q16+PFStWGDWzxdTomtSwYcOQm5vLUE1xY3BxccHUqVP1UtuamwEDBiAiIsLobI4WaQwsVxfrohlbyMzMlN2dVGpqqqya/nFxccjLy0NOTk65z6VUAm+8IcU+Ku+01MTERKSmppZbU0WyY8cOjBo1ink3hC7169eHjY0N4uPji1WALAkODoaPjw/Cw8Px5MkTplpSUlJQvXp1dOnSBTY2Nli6dCnOnTvHdDw0ODgYgiAYv/iWiCxus7GxITlRpUoVsrOzo6SkJNZStHTo0IFsbW3p8OHDrKUQEdGXX35JTZs2JRsbG9qwYQOdPXu2zOcKDSUSBKIRI6TnSUlEHh5ESqXx51qyZAk5ODiUS09FI4oi/f3336xl6JGSkkLXr18ntVrNWoqWM2fOUGpqKqlUKtZSiIgoJiaGHj58SI8ePaKcnBzWcvTIysqi9PR0AnCeDKhjBZLZna4h2NvbU15eHmsZAIDCwkLY2tqCiJCfn880nzEg9bcOGTIEDRo0wL179xAXF4e6detKH7ZmHicD5s6dqx0ktLOzQ2xsLGrWrGn0eZRKIDAQ6N0b2L//aeyjCROkbqSFC407X+/evVGlShUsXboUVlZWRuvhcCwJQRAuEFGz5x1nkV1JcvoBP3r0CEQET09P5qYAACdOnECjRo20uZY3bdqEvn37QhRFprpcXFy0jz/77LMymQIgDSp7eAAbNgApKU+nppZlXEEURbz55ptYvny5rL5THA5rLNIYWOdj0OXBv8tqq8okZGdQUBDi4+O1Yx7Tp0/Hm2++ybziq1SpEgDA398fX3zxRZnOoVRKU1ODgqTHRaemGjstVRAEjBs3ziQtKaVSCunt5gY0awa0bKm/tW/PV2Rz5It8algjYF3J6aIxBh/NfEnGFJ3G6+npiY8//piRmqdoWgzz588vcxrUefOkqanR0dLjhQufTk01tgsJQIUbgibcd34+cP++ZFyiCFy8CBSNmGJtDTRvDlSrBtjZARs38nDgHPlgkcbAWwylExQUpPd83LhxcHR0ZKTmKS4uLmjTpg369+9f5nOcOCFNTQWAsDBpA9gn21EqpRlSFy5IRiCKgO6EMCL954BkFAkJknkQScH/Vq40r27Oy4Ux48nyqWGNQA4thv379yMxMVHPGDIzM5GcnIxatWox06XbYnBwcMCYMWOYadHFzc0NP/74Y7nu0hs1ApKTgdOnge+/L9tgc0UTFSVNnc3Plyp4hUIyBg2enkBamvRYMwTl6Cjt0z3255+B/v2BDh3Mq5/z8nD69GnDDzZk6pLcNn9//wqZwlUerl27RgDIwcGBAFDdunXJycmJoqKiWEsjX19fAkBjx45lLUWLKIrlen9SEpGdHZGbG9GECeWbolpRHDyou3KCSKEo/tzGRn8fIO1TKKQpt5rnAJG7O7v/hWMa5DS9d8SIEQZPV7XIwWc5tBjq1KmDSpUqaVdbXr9+Ha+88goaNmzIWJnUnaRQKGSRPEhDefvzp0+X/h4+LK14FgS2oS+USimaqy5FW+qaLiVPT8DKSto8PZ+2EogAFxegoEB6npoKbNlieu0c8xAdHY1z586xlgEAyM3NxaZNmww+XhbGIAhCV0EQ4gRBuCkIwnOnrMhhjEGhUKBx48Z6+z755BNGavQJCgpCv379EBgYyFpKhfH771J3TZMmT6epsgx90acPoLsw2dq6uDEAkgk8eSIZhFr99LHGHDTREjSzeQcNMq1ujvlYuXIlLly4wFoGAGk1vTGhOZ5rDIIgbBQE4XNBELoJglDhyYQFQbACsAxANwD1ALwvCEK9Z71HDi0GAGjatKn2sZubG/r168dQzVOCgoJkEw++IlAqgfR0aernhAn601RZRE5VKoGTJ/X3PSt6RatWTzuSShso1/xmVSqpVcSxbLKyshAeHo7z58+zlgIAWLt2rVHHG9JiWAEgB0BvAH8IgrBdEIRKxksrldcA3CSieCJSAdgE4J1nvcHa2hoJCQkVEnenPDRr9nQB4ZAhQ2STl2HgwIFo0qQJaxkVxvTpUqUaEiKtY2DdjdSnj+HHCoK+eR0//myDMPb8HHmyceNGZGZmyqLFkJCQgMOHD6NatWoGv8cQY6gO4C8AnxBRIwBbAHxTNokl4gfgvs7zhH/36SEIwghBEM4LgnD+1q1beOutt5hXxLothpEjRzJUok+VKlVYS6hQdu+W7qRPnZJm87DsRiqptfAsiIBffim+//jxp7OUipKayhe/GUtOTo5R0zFNCRHhp59+AiCF3mYd9TUzMxNxcXEYNWqUwe8xxBjqApgF4JogCP8A6AyglyAIHSuoa6mkUclinzAR/UxEzYioWX5+PgYPHsw09g/wdAC6Xbt2CAkJYarlRUWpBHJypG6kixcBd3fpMatupLFjjX9PafcMzZuX/h7NYDvHMFavXq1Nes+a8+fP459/F9yo1WpcunSJqZ6QkBDUrFnTqKi4hhjDj0TUk4hqA+gAIByAI4BBAPaWSak+CQB02zj+AJ77Ccshz7JmAFoug84vIprVzh99JK0MdnEB/P3ZdSNt3278e0q7kY2MLP09v/9ufDkvK4WFhViwYAHi4uJYSwEArFixQu+5XMYZjAkvb8j0noOCILgDuAogDkAwgI1E9H9lk1eMcwDqCIIQCCARwAAAA5/1hkqVKqF69eoVVHz56NatG9577z3WMl5YNKud//lH6j7SwKoXsSJ7K57V+pDJ/AqLYMuWLbhz5w7i4uLQgfEKwbS0NGzcuFFvnxzGGQDjjOG5LQYiagygFoBPAfwNYCmASWUVV8L5CwGMBXAAkvlEEFHMs94jlwxuADB+/HjY2dmxlvHC0qqVlIgnKQlwdZVWGdvZAUVmCpuNiqiwNbmqt20r/ZgXaKaxSSEizPu3+SiHFkN4eDjUarVeGJoX0hgAgIjURBRDRNuIaPe/lXmFQUR7iaguEdUiou+ed7ybm1tFFl8u7O3tWUt4oTl3Tmop+PpKU1ZPnZLWM+zezUZPYaFx5mBlVbyVMW+e1BIqDV9fNuMnhnLw4EHWErT8+eef2v58ORhD7dq1kZSUhICAAABAZGQkfH19mQ9AA8VTjz4LWSxwMxZF0VCVnBeW48efthbc3IADB6TFZFlZ7GbuFBYWDXJR+lZ0fUNUFLBkSfGgerrIubWQlpYmm/hbgBStV4McjKFr167w9PTUxlBr06YN9u7dK4tcLRXeYuBwWKI7AL1vn3QXbmfHbgC6rCiVQNu2kmGUljepVSt5txZmzpyJW7duMU/8BABRUVF6rZc7d+5ADpkd8/PzkZKSAoVCAS8vLwiCIItFuRU9+MzhMEV3AFrDo0fAqlXA5Mnyz2OgVAIffww4OQGZmYC9PVBS/SX3LqSrV69iyZIlICJkZ2drky+xQre1AEjjDTdv3kSDBg0YKZJ4+PAhAGk9kRwMAQAKCgqQmZlp8PG8xcCRPZoBaM1GBFSuLK1vmDYN6NpVngvClEpJ2/TpUqjw7dul7HOlhc8o2oVUWFiIPXv2mF6oARARxo8fj8J/xRtTyZiCO3fu4MKFC+jatSsAwNnZGYA8upPklqMFkLoAjYEbA0f2aAagNZsgSC0GAFi3DjhzRl7dSkUNYd06Kc8CERAXV9wYNLGUdFsLOTk56NWrF+7evWte8aWwc+dOvW4bYwKymQJvb29cvXpVawwDBw7E3r17mRsWIE9jMKYbCeDGUGEQEURRRHx8vPauijWa2Or37t1jLUULEWmb2oZy/Lh+a0HzeOhQqZLt3l2KoVTWPMpqtRpKpdL4NxahJEPo3l3SvHcv0KCBfhDA0FDpeUndR99//z127drFfF6+hocPH6Jv374QBAFVqlRhbgwODg4QBAE3b94EIM0G6tatG4YMGcJUFyBPYzBmRhIAy0zUY2VlRZmZmUYlqTAFKSkpJIoiffbZZ+Tp6UkzZ84kX1/fcielKS9JSUl07tw58vf3p27dutH8+fOZ6tFw8+ZN6ty5M4WEhBj93latSp734+0tJexp0EBK5BMaStSli3EJfM6dO0c9evSguLg4o3URSUmDunSRynZ1lXQMHEhkayslFmrQgMjJqWT9rVqVfM7c3Fzatm0b8++SLrm5uXTmzBm6e/cu3bhxg7UcIiLKysqi6OhoSkxMZC1FS3Z2Nl27do3i4+NZS9GSl5dHmzZtMjhRD/NKviwbADp58iQVFhZSSkpKRV4/owgPDyd/f3/y8fEhSPGdqGrVqsz0aNi9ezcpFAqtph9++IG1JCIiSkhIoICAAAJADx8+LNM5xo+XtqQkKeNZUpJUIdvZEbm4PM3ypmsQmoq7IrK9ac4VFfX0nOPHl24IjRsTNW9unClwXiwKCwtZSyAioqFDh774xjB9+nTq1KkTnTlzpiKvnVGo1Wpq3ry5tgIGQPXq1WOmR5fBgwdrNS1YsIC1HC03btwgb29vOnz4cJneX1rLwcdHMgMrK6JBg/TTgI4fL5lIaWZR0mPdil/3dc25Gjd+ek53d24InJJRq9W0fPly1jIoIyODnJycXnxj0GwJCQkVef2M5tixY3rG0Lp1a6Z6NDx+/JiqVKlCAGjhwoWs5egRHR1N4eHh5TrHs7qW3NwkYxg0SHrs5kZ08WLJZlHaY03FX9RY3N2JDhyQ8jUfPPi0HHd3bgic4uzZs4c6duzIWgatWrWKatWq9XIYg0KhoIKCgoq8fmWiT58+WmPo2bMnazlaIiMjCQCFhYWxllKMivrcSupaatxYqqQ1Yw+NG0v7SzKLkh7rVvxFjSU0VCqvceOnXVgNGkj7uCFwitKhQwfy8fFhLYPi4+NJrVYbbAwWvcDN29tbFvmf586di507d0KlUsHDw4O1HC19+vRB7969meetKImK+tzOnZMWwGkir/r6Sn+bNwd695ZmBjk4SDOFPvwQ2LpVCtttYyMF4tOsHdB9vG8f0KiR9FezTzPBJCcH2LJFSr/5+utStrXNm4ErV4prk/sqZo5piYqKwuF/87SmpqbC3d2dmRaj878b4h5y2/Dv3XmzZs0q0lTLxaeffkoAaOLEiayl6KFUKmn9+vWsZZic54092NnpD1S7uUnjCJoWgeaxi4v0959/9J+Hhj59b2ioVKavL28hcErnww8/1PYknDhxgrUcIiKDWwyCdKxlIQgCAcA777yDHTt2sJYDQFpZWLt2bUyYMAFfffUVazl6qNVq2SzNNzWtWz87cikgpQbt3x/46y+gXTtpn+bxX39Jzy9eBDRps9u1AyIipPUHpcFbBxxdNBFWCwoKAAC//PILhg8fzlgVIAjCBSJq9rzj2PfDlAF3d3ekpqbCz69YamhmuLm54ZtvvpFl5NeXxRSAkivnomahVD7tetKNv6T7WLf3TXc/wE1AziQmJsqiXli6dKnWFAAgNjaWoRqJ/Px8g4+VXy1mAL6+vlAoFLL4AugycuRIvP7666xlcIpw/LjhYbIN2bgpyJcJEyboVcgsyM7OLpbeUw7G8OTJE4OPtUhjsLe3x5AhQ2RnDNbW1mjMKrUYh/OSc/z4cURGRhodMK6iWbt2LRQKBTw9PbX75GAMjx8/NvhYizQGAJg2bZrxI+0cDueFRBRFTJw4EUAZ4gJVMG3btoVSqUS1atUAAJs3b0ZISAjz+FLGGINFjjEAQEBAAGrUqMFaBofDkQEbNmzAuXPnALA3hldeeQUAcPv2bQCSUfTt25d5cM2XosUAQJbz8zkcjnnJycnBl19+qX1ubIhpU5Camor09HQ4ODjA29sbgiDAxsaGqaaXxhg4HA47CgoKcPbsWdYysHDhQiQkJGifs24xAE9bC4GBgbK5geXGwOFwTAoRYdy4cbh16xZTHUlJSZg7d67ePrkZg1zgxsDhcEzK0qVLsXLlSlSvXp2pjqlTpyI7O1tvnxy6krgxcDicl4r9+/dj/PjxAKCdecOC3NxctGnTBvv27QMgLTKtWbMmbzGUgm532/PgxsDhWBCsQ9jExsaif//+EEURCoUCvpqohQxwcHDARx99hOTkZABAmzZtcPbsWbz66qvMNGmIj48HIC9jMKbbjxsDh2MB3Lx5E9OnT2dqDI8fP0aPHj208/F9fX1lEd345MmTAICWLVvC09MTw4YNY6xIni2GR48eGXwsNwYOR8akpqZi4sSJqFevHho2bMgsFpdKpUKvXr20d8IAmI8vaDh16hQAyRjkgCiKuHPnDgDJGERRZCsIwKVLl4wKFWKxxsB62XtJsF7AwnlxUKlUWLx4MWrVqoWwsDC88soreO+995hoISJ88sknOHbsmN5+luMLGjIyMnD58mVYW1ujWbPnBg01Cw8ePEB+fj7c3d3h6OiIDRs2sJaEtWvXGnW8xRrD22+/jUuXLrGWoceoUaOYT98ryqxZs2QxGKchLy8PK1euRG5uLmspWv7++2+EhYVh2bJlWLVqFdavX4+IiAjExcUx0RMVFYUGDRpg/Pjx2hk2s2bNYjYfPi8vD6NHj8b27dv19suhxXDmzBkQERo3bgxHR0fWcgA87UaqWbMmfv/9d+zevZuxIhgdV84ijSElJQWJiYl44403sGXLFtZyAABHjhzB5cuX8dprr+HIkSOs5QAALl++jP3796NRo0bF7vZYoVQqMX/+fAQEBGDOnDmyaPm5urpi8uTJGDt2LEJDQ/HJJ5/g7t27qFmzJhM9jRo10sb9AaQukq5duzLRAkiDvM2aNcPBgwcBAKGhoXj//fdl0WLQHV+QC7rjC8uXL8c/ReO2M6B9+/bGvcGQbD5y2/BvViTN9vXXX5Nara6QDEdlIT8/n7y9vbV6rK2tafny5cz0aOjatatWk0KhoBkzZlBhYSFTTbNmzdL77FxcXOjzzz8npVLJTNOFCxfIy8uLAFD37t3p9u3bzLRoePLkCY0aNYq8vLzoyJEjrOUQEdGjR49ozpw5FBMTQ7m5uXT16lXWkighIYH+97//0fnz51lL0ZKUlETbt2+ndevWab/nGRkZTDWlpqZqcsAblMGNeSVfls3W1paKmkPPnj0pPT29Iq+lweTk5FDbtm2LaRo9ejSpVCommoiephvV3dq2bUv37t1jpuns2bOkUCgIAFWrVo06dOhAI0eOpKVLl1JOTg4zXZ999hlt2bKFRFFkpqEktmzZwloCp4yMGzdO+7s7duwYazmkVCpfjtSeRalXrx5+//131K5d26x6Vq9ejUmTJpXYLdK+fXtERkbqxWY3B0lJSZg6dSoyMjKQlZWlt9na2mLx4sXo1KmTWTUBQHR0NKysrFCrVi04ODiYvfzSeJnSn3JMT1ZWFvz8/LRTexcvXoz//ve/TDXduHEDdevWNSi1p0Uaw6uvvkorV66EUqlEUlKS3t+8vDwsWLAATZs2Nbuu7OxsJCYmIjExEQkJCdq/Dg4OmD59Opydnc2uicPhmJ+ff/4ZI0eO1D7/6KOPsGbNGoaKgIsXL6Jp06Yvbs5nW1tbvPHGG6xlFMPJyQl169ZF3bp1WUvhcF5a0tLS4Obmxqx8IsJPP/2kt+/ixYuM1DwlMzPT4GMtclYSh8PhlERaWlqxaKvm5vTp04iKioKLi4t2X2xsLPLz8xmq4sbA4XBeUubOnYurV68y1SCKIm7duoUePXoAAObMmYO+ffviypUrTHUZYwwW2ZXE4XA4Rbl//z4WL16MRo0aMdXRqlUrANIEEABo3LgxvvjiC6hUKpayeIuBw+G8fEybNg15eXlGBYszJRpj0ESgtbW1ZSmHGwOHw3m5uHz5Mn777TcA0IbhZk1RY2ANNwYOh/NS8cUXX2hDkmdmZiIvL4+pnszMTGRmZsLW1hYeHh5MtWjgxsDhcMyGUqlEVlYWs/KPHDmCvXv36u1j3Z2kVCoBSK0FVsEPi2JMME1uDBwOp8xkZWWhT58+zCKbiqKIyZMnF9vPujtJ043k4+PDVIcu169fN/hYbgwcDqdMFBYWol+/fkhJSWGWQOjy5cvo2rUrRo8eDUCqiAVBkI0xyGV8AXga9dUQuDFwOByjISKMHj0a+/btQ61atZjpaNiwIf+D0zkAAB5qSURBVL799lvt+MJ///tf7Nq1i/nUULkZQ05ODh4+fGjw8UzXMQiC0BfADAAhAF4jovMs9XA4HMOYM2cOfvnlFwAwe9DKkjh79iwA4LXXXkOHDh2Y5sYG5GcM+/btMyrFKOsWwxUAvQD8zVgHh2NRFBQUMKv8wsPD8dVXX2mfs2wxAFKGuejoaADQBs9kPeCrO/gsByIjI406nqkxENFVImKTP5HDsUAKCgqwZs0afP7550wqv8OHD2Po0KF6+1gbQ3R0NAoLCxEcHAxXV1emWjRoWgz3799nrATIzc01Or0o6xaDwQiCMEIQhPOCIJxnPRWNwzE3GkMIDg7GyJEjtYOt5uTKlSt47733UFBQoLefdVeSbjeSXNAYw88//8x8TcXly5cxe/Zs2NjYGPwekxuDIAiHBEG4UsL2jjHnIaKfiagZETWrXLmyqeRyOLKioKAAq1evRlBQEIYOHYr4+HhMmDCBWWW8b98+tGjRQvtcoVAgICCAiRYNcjMGItIaw71793D+PNuh09deew1jxowpZujPwuSDz0RktjRh58+fR2ZmJoKDg1G1alXm/Yx5eXmwtbVlNpWPUzZEUURGRgZSU1ORkpKi3QCgT58+Zsn0VlBQgPXr12PWrFl60wy9vb31+vfNSYMGDXD9+nWcPXsWNjY2mD9/PhYtWsQ8BtC5c+cAAM2bN2eqQ0NGRgZycnJgZWUFtVqNkydPonXr1kw1GbsA8YWKrurt7Y1OnTohPT0dLi4uCA4OLrbVqlXLbF/k9PR0vP7666hWrRoaNWqExo0bo1GjRqhfvz6TH9Px48cxc+ZMNG3aFE2aNEHTpk0RGBjIxEAzMjLQv39/ODs7o2bNmqhVq5Z2q1atmlnTbGZlZeHDDz/ElStXkJKSgtTU1GIzOJo3b47IyEiz6MrOzsYHH3yA7du3F3ttzpw5enH+zc3ChQtBRBg8eDD+7//+j3lSqrS0NMTFxcHGxgYNGzZkqkWDprWg+Q6dOHGCpRwAxoXDAIDnJoU25QbgPQAJAPIBPARwwJD3NW3aVJvgOjc3l2JjY2nnzp0UFhZGTZs21SbgLmnr0aMH3bhxo4zptA1HrVaTUqmkTz/9tJgGGxsbatiwIX300Ue0aNEiunDhgsn1aHjnnXf0tLi5uVGHDh3os88+o02bNtH169dJrVabRcuOHTtK/IxsbGyoTp061LVrV1q7di2JomhyLbdu3SIPD48S9YwdO5by8vJMrqEoo0eP1tPRrFkzs302JfHw4UOys7MjABQTE8NMhy5//PEHAaDmzZuzlqLl0KFDep+bl5eXWb7DzyI2Nlaj5zwZUjcbcpDcNi8vL2rXrh35+/uTIAjPNAIAZG1tTR9++CFdunSpIq+1Hp9//jn16tWLWrRoQf7+/mRtbf1cXfXq1aNly5ZRRkaGSTT99NNPNHDgQOrQoQOFhISQu7v7M/U4OzvTJ598QnFxcSbRQ0S0detWeuedd6hu3bpkZWVVqpa2bdvSgQMHzPKD2r59O9WoUaPE67Fp0yaTl18Sy5Yt0+qwt7cnAHTy5EkmWjRMnTqVAFD37t2Z6tBl9uzZBIDGjBnDWoqWdevWFfsumfI3ZQhnzpx58Y1B94IrFAoKDAykTp060ciRI2n48OHa1ypVqkSffvop3b9/vyKvcYnUqVOn2JfB3d2dQkJC9PZZWVlR37596ejRoyav9AYMGPBccwJADRs2pBUrVpjMoHT54Ycfipm27vOuXbvSsWPHTK5Dl6NHjxIAqlatGikUCgJA9evXp6tXr5pVhy43b94kPz8/WrFiBYWGhtKgQYOYadEQHR1NgwYNor/++ou1FC1nzpyhr7/+mv744w/WUrTs3r272G9szZo1TDXdv3+fWrRo8WIbQ40aNWjfvn10/fp1ys/P17sAU6ZMIT8/P5o/fz6lpaWV+4IaysaNG2nDhg109OhRunHjBmVnZxMR0cGDBwkAVa1alaZPn06JiYlm0/THH3/Q6tWrad++ffTPP//QgwcPaPny5QSA7Ozs6MMPP6STJ0+atZl77do12rBhA/3zzz+UlZVFNWvWJEEQqHfv3nT+/Hmz6dBFFEU6fPgwZWdnEwAaPHgwZWVlMdGiS2ZmJhFJXRPmuLl5EcjJyaHTp08z1aBpWeluw4cPZ6qJiGjo0KEvtjHojjEU5ejRo8XMgiVLly6lTZs2yUbT4MGDacGCBfT48WPWUujKlSv0wQcfyKa/OiEhgVauXMm8P5hTdpYsWUJhYWHMyhdFkaZOnUpnzpwhGxsbAkArV66kjh07MtOkYdCgQQYbg0BS14xF0axZM2I9N9hSISLm03g1yEkLx/LJz89H7dq10atXLyxevJipluzsbDg7O8PW1hZ5eXnIzs6Gk5MT0+973759sWXLlgtE1Ox5x75Q01U5z0dOFbGctHAsn7Vr1yIhIQF37txhLQWpqakAAHd3dwiCAGdnZ8aKJOM0FL7yisPhWDwFBQWYM2cOAOPyDpgKXWOQC8aE5uDGwOFwLJ7169fj7t27AIA7d+6AdRe5ZqW8nIyBtxg4HM5LQ2FhIb777jvt88zMTKPyG5sCTYvBw8ODqQ5dMjIyDD6WGwOHwyk3xsbiqUg2btyI+Ph4vX2su5Pk2JVkTFRqbgwcDqdcqFQqTJo0iUnZarUas2bNKhZ7jPUAtByNQaPJEPisJA6HU2aICGPGjGF2h/7w4UMsX74cjx8/xoABA9CiRQu4urryFkMRHj16hJycHIOP5y0GDodTZn788UesWrUK/v7+TMr39fVFx44dcePGDQBAq1atsG/fPnTv3p2JHg1yM4Zdu3YZdTw3Bg6HUyb279+PiRMnAgAzY9AQExMDAKhXrx4UCgXq1avHVI/cZiXt2LHDqOO5MXA4HKO5du0a+vfvr805UK1aNaZ6NMZQv359pjo0yGlWUlZWFg4ePGjUe7gxcDgWzpMnT8xaXkpKCnr06KE3/ZFli6GwsBBxcXEAgJCQEGY6dNEYg0qlYqxEatkZs4YB4MbA4Vgsx44dQ+fOnXHt2jWzlVlQUIC+ffvi5s2bevtZGsOtW7egUqng7+8PV1dXZjp00RiDxrBYcvnyZaxYscKo93Bj4HAsCCLC4cOH8eabb6Jt27bw9vZGq1atzFb+nj174O/vj+DgYL39LLuSYmNjAcinGwl4agxRUVGMlQAzZszAkCFDjHrPS2UMycnJSEpKQlpamiyaeByOoRAR9u/fj9atW6Njx47466+/4OzsjHnz5plVx7vvvotVq1Zpu5E6dOgABwcHpoOsugPPcoCItIPPJ0+eZB6eQxAEo7uSXqp1DA8ePEDr1q21ibGtra3h6OgIJycnODo6wtHREVWrVsXs2bPRrNlzI9OWm1u3biEsLAyurq5wcXGBq6ur3lZ0nykhIuTl5cHBwcGk5Vgqmh+7UqmEUqlEUlISlEol6tWrh549e5q03N27d+Pbb7/FuXPn9F6bNm0afHx8TFZ2aWzfvh1JSUkICgrCgQMHMGXKFKaRcuXWYsjKyoJarQYAJCYmIj4+HrVq1WKqiRvDM3BxcUHv3r2xdu1aANKgVUZGhvbup3///liwYAH8/P6/vbuPiqrO/wD+/sqTDj4AgVjgQ7qGFWiKSa3b+ZUCgnQgSxN0f9LKbnqMVMwtW/PncWs7sJQrViqe8PjwM4tKfGB9yId2XeUniqYLKUJpIii6oi1GIsi8f3/g3J2RAVFm5g76eZ0zhxmY8fs+1zv3c7/3ztxPgEPy9OvXDwaDAe+++26zzwkJCUFGRgaeeeYZu+d59dVXsXbtWvj4+MDb29vip+l+9+7dMWHCBLteRnjDhg3IycmBp6enVrRN981vAwYMQN++fe2SoaysDLNnz0Z5eTnOnj2LysrKJm+umTNnYvbs2XYZ3yQ/Px/vv/9+k6IQFBSEGTNm2HXs5nzwwQcAgOTkZLi6uiItLU2XHCbONmM4f/68xePdu3e3u8Kgeze2O7m11MHNXHl5OdesWcPJkyezT58+zfY8HjBgAHfu3Nmqf9MWzp07x+zsbL766qscOHCg1Uz33Xcfly5dyvr6eodkMhqNLCoqop+fX7PLKTo62iHd1urq6hgeHt5sjo4dO/KPf/wjr169atccmzZt0rpwmd/c3d0d2sO3qKiI/v7+Fhm2bt3qsPHNffPNN1o/dUf0CL+V+vp6uru7E4BDW/m2ZPHixRb/VwkJCXpHYklJiSnPvdfa88KFC8zOzubUqVP50EMPNXlDd+vWjbGxsXzggQcIgAaDgampqXZtu2k0GllSUsKsrCy+9NJL7NevX7MbPAB0cXHh9OnTWVVVZbdMZGNv3D179jAtLY1xcXEtFoRHHnmE27Zts2seU2H64IMPOGbMGPr4+FjNEhsby5MnT9o1S3V1NZcuXWq1aN9///0O7Sm8f/9+bVmYdm5iY2MdNv7NkpKSCIDJycm6ZTB34sQJAmBgYKDeUTQ379T4+/vr3i62sLDw3ikMly5d4oYNGzh9+nSGhIQ0eRN7enoyKiqKaWlpPHjwIK9fv86GhgZ6e3tz7NixLCsrs9mCN7l+/ToPHz7MjIwMjh07lj169GiSy2AwcOTIkZw/fz537typrUgRERF22yMvLy9ndnY2Z86cyWHDhlndE/bz8+PQoUO1x76+vlyyZIldZi1Go5HFxcVcunQpX3zxRXbv3r3Fgtm3b1/m5ubaPIe5wsJCTps2jV26dNHG9fLy0u6HhYWxoqLCrhnMffXVV/T09CQAxsTE8PLly/T19eX333/vsAzmLl68yI4dOxIAi4uLdclws/Xr1xMAIyMjSTYuMz3V1NRoy8j8duzYMV1zFRQU3P2Fwd/fn6GhoVRKWSx8Dw8PPvPMM3z77be5d+9eqzOBqqoqm+/91tfX809/+hOjoqLYtWtXq4eF4uLi+N577zE/P591dXXaaxsaGhgWFsaNGzfafK9i5cqVjI+PZ69evZpkUkoxJCSEU6ZM4apVq1haWkqj0cjFixfT3d2dv//973n58mWb5iHJLVu2cOLEidqs7eY9q/j4eGZmZvLEiRO87777HHLY6Ouvv+ZTTz1lkeXJJ5/kmjVrePr0aQLgSy+9ZPdDV+bWr1+vFe8JEyZo68zevXsdluFmaWlpFhthZ/DOO+8QAFNSUnjp0iUOGjRI1zz79+9nfHy8th5NnDiRb731FlesWKFrrn379t39hcG00F1dXTl8+HC+9dZb3L17t0PfuOaMRiMDAwO1laF379789a9/zczMTH777bdsaGho9rX19fWsra21S67nnntOy9SlSxdGRERw/vz53L59e7PHY1etWsXvvvvOLnlIcsGCBRYF84UXXuCHH37IY8eOWRTG0tJShxw2IsmcnBxthjllyhQeOXJE+1tJSQkzMjIcfiggLy+PBoOBycnJLa4/jrRhwwY+/vjj3LRpk95RNF988QXHjRvHL7/8kunp6VRKsaamRtdMu3bt4uDBgwmAr732GsnGIwl6Ki4upoeHx91dGAICArht2zZeuXLFlsuuTbKysrh27Vq7HJ66U7m5uVyyZAmPHj2q+4ppUlhYyEWLFvHo0aMtbvDMZ1X2Vl9fz+XLl/Pf//63w8ZsjZKSEt2PTVvjjJnq6+u1mXFBQYHecThv3jwC4Lx58/SOovH29m51YWiXH1ft0aMHRo0apXcMC5MnT9Y7QhN6X3rYmuDgYAQHB9/yeW5ubg5I08jV1RW/+93vHDZea/Xv31/vCFbp+Z2F5uTk5KCsrAwAUFRUhNDQUF3zmHofeHp66prD3PXr11v93Hvqm89CiLvTokWLtPtFRUU6JmlkKgwGg0HnJP9h+tJda0hhEEK0awcOHEBeXp722BkKQ01NDQCZMQgh7nFs/GCIw2VkZFg8dobC4IwzBikMQgiH2rJly201m7eViooKZGdnW5z3KC8vx48//ujwLOZMMwZnKQwktaZKrSGFQQjRJmfOnMGkSZPQtWtXh4998uRJbN68GcnJyQCASZMmYciQIdr1k/TibCefb+f8AiCFQQjRBvX19YiPj8e1a9fg6ur4Dzk+9dRTiIqKQkVFBQBg1KhR2L9/v+4XrXO2GYMUBiGEw8ydOxd5eXnw8vLSNccPP/wAAOjduzfc3NzQo0cPXfM424zhds4vAFIYhBB3KDc3F+np6QCge2E4ffo0gMbC4AxkxiCEuOecPn0akyZN0h7rWRhqampQVVUFNzc3XRoXWSMzBiGEUyguLnbIOHV1dRg/frzFp5D0bO1pmi307NkTLi4uuuUw52wzBikMQtxj9u3bh8jISOzcudMh47355pvIz8+3+J2eMwbz8wvOgKTTfY9BDiUJcY8wFYRf/epXOHv2LKZOnWr3Ma9du4bw8HDk5uYCgLaHrmdhcLbzC7W1tQAar/flyGt+teR2Zwzt8iJ69pKTk4Nly5bBxcWl2VvHjh2RkpLikMbjFy9eRH5+vraCtXTr2bOnU17cTNjevn37sGDBAuzYsUP73aJFixzycVEPDw9ER0fjnXfeAQC88MILCAsL0/ULZabC0KdPH90ymHPGy2Hc7oxBCoOZuLg4fP7551i3bp3Vvw8ZMgRZWVkOKQoA4OPjgzVr1uCzzz5r9jkPPvggli1bhl69etk1C0mkpqaiuLgYHh4ecHd3t/qzU6dOSEhI0PWYsyOQRHV1NSoqKlBeXm7xc9CgQZg6darNC7W1ggA0rrfh4eE2HaslJLF69WoAQGJiIkaPHq19j0APzjZjcLbDSMDtzxh0761wJ7fmej7fCaPRyBMnTvAvf/kLIyMjTc0sLG6dOnVienq6XVpcNqehoYEFBQWcP39+k051uNEb+vXXX3doU5Ly8nL27Nmz2fabgwcP5oEDB+yaobi4mAEBATQYDOzcuTO7du1KLy8v+vj40NfXl927d+dDDz1kl2YyP/74I8eOHcugoCB27tzZ6jKYPXu2XXpfVFVVcdasWU1axbq7u7O0tNTm47UkLy9P67jnyPdEc5544gkC4O7du/WOQpI8duwYAbB///56R9EcP3787u/g1tbC8PPPP3PLli1MTk5m3759m7y53d3dtfsjRoywa0czc5WVlVy9ejUnTpxIPz+/ZjfAjz/+uEWXMXtqaGjgN998wz//+c8MDw+3Wjg9PT25cOFCh2wkjEYjMzMzm102MTExPHPmjN3GP378OH19fa2uMytXrrTbuCR5+fJlDh8+3GLc119/3a5jWjNlyhQC4KxZsxw+tjX3338/AejWC/tmpv7KercZNVdUVCSFwZrS0lIuXryY0dHRTZp1e3t7c/z48Vy1ahUrKysZEhJCLy8vZmVl2bVb1bVr1/i3v/2Nc+bM0VoBmt8eeOABTp48mQkJCQTAzp07MyMjw+7d2CoqKrhy5UpOnDiR3bt3b3YjDIBxcXE8ffq0XfNUV1czJyeHv/3tb632igZAX19ffvLJJ3b7//rpp5+YmZnJkJAQq72q8/Ly7DKuyfnz5/nYY48RAAMCAujn50d/f3+Hd527evUqvby8CIBHjx516NjW1NbWEgA7dOhgtce7Hv7+979rfcOdxZEjR6QwkI0r8LZt2zhjxgz279/f6mGPuXPncu/evRZ7urW1tUxISOC5c+dat8Rv0/fff88lS5YwLi6uyeEIDw8PRkRE8L333mNhYaG2kZs2bRpjY2Pt1ja0pqaGW7du5axZsxgcHGy1QCUmJnLt2rU8ePAgATAwMJA5OTl2yUNSO7wXHh5ONze3JhviAQMGaI8nTJjACxcu2CVHaWkpU1JS2K1bN208Pz8/bedi8ODBdm/neubMGQYFBREA+/Xrx1OnTvHll1/WpcF8dna2U+0Nl5aWauujs9i6dSsBMDw8XO8omkOHDt27heHkyZP86KOPGBMTw06dOllsTLp168Zx48ZxxYoVPHv2bLML0NZ7nFeuXOHmzZuZnJxstUAFBQVxxowZ3LJlS7PnC8yLhC00NDTw8OHDTE1N5ciRIy0OnZnOqURHR3PhwoUsKiqyGHvjxo1MSUlhdXW1zfKQjYV8+/btnD59On/xi19Y5FFKMSwsjAsWLGBBQQEbGhqYlJTEwMBA5ubm2jQH2di4PTc3l1FRURY5wsLCuGbNGtbW1tLX15fjxo3jTz/9ZPPxzZWWlrJ3794EwODgYG3dPX78eIs9s+0lJiaGALhw4UKHj23Njh07CIDDhw/XO4rmiy++IADGxsbqHUWTn5/ffgoDgHQAxQD+CSAHgFdrXmcqDLW1tdyxYwdTUlIs9iBNt0GDBnHOnDncs2ePw5rLG41GHj16lGlpaRwxYkSTjW7Xrl05ZswYZmZm8ocffnBIJvI/h4cmTJhg9fzFkCFD+MYbb3DXrl2sra1t9t+x5XmEsrIyZmZmMjY2lgaDwSKPl5cXx48fz9WrV/P8+fNNXrt8+XKbH0apqqpienq6xXknDw8PJiYmWpxUNxqNfPfdd+16mJFs3CEwnWweNmwYq6qq7DrerVRWVtLFxYUuLi6srKzUNYvJxx9/rM0ancXq1asJgAkJCXpH0ezbt69dFYZIAK437qcBSGvN63r16sXY2Fh6enpabEy6dOnC559/nh9//DHLy8ttvWybVVdXx3Xr1jExMVE7EWa+tzt06FDOnTuX//jHPxxWoEhqRfPRRx9tUggCAgL4m9/8hp988ondDsNYc+jQIc6ZM4cDBw5skikkJEQr5I78tEtRURGTkpIszj316tWLqamp/Ne//uWwHOby8/Pp4+NDAHz66adtPkO7E++//z6BxhP8zmLevHkEwD/84Q96R9EsXbqUAJiUlKR3FM2ePXtuqzDo+j0Gkl+ZPdwPYGxrXldWVoaysjIAQHBwMEaPHo3o6Gj88pe/hLu7ux2StqxDhw545ZVXcOnSJQCAv78/Ro0ahVGjRiEiIgJ+fn4OzwQAqamp2LVrF4DGz1Q//fTTiIiIQGRkJB5++GFdvhD36aefalfkNBgMGDlyJGJiYhAdHW3372I058CBA8jKygIAhIeHIzk5Gc8++6yu1905deoULl++jJiYGHz++efo1KmTbllMOnToAD8/PyQmJuodRePt7Y2QkBAEBQXpHUXj7e2N0NBQ3XtCmDMYDAgNDcWhQ4da9XzFxr113SmlNgP4jOT/NvP3lwG8fONhMAD9G7vePXwBXNQ7xF1ClqVtyfK0rSCSXW71JLsXBqXUTgDWumbMJbnxxnPmAhgK4Hm2IpBSqoDkUNsmvXfJ8rQdWZa2JcvTtlq7PO1+KIlki9/VV0olAngWwMjWFAUhhBD2pes5BqVUFIA3APwXyZ/1zCKEEKKR3pfd/hBAFwA7lFJHlFLLWvm65XbMdC+S5Wk7sixtS5anbbVqeTrNyWchhBDOQe8ZgxBCCCcjhUEIIYSFdlsYlFLpSqlipdQ/lVI5Sin9egu2c0qpcUqpb5VSRqWUfDTwDimlopRSJ5RS3yml5uidpz1TSq1QSl1QSsn3ldpIKdVTKfW1Uur4jff5jFu9pt0WBgA7AASTHAigBMCbOudpz4oAPA9gj95B2iullAuAjwBEA3gEQIJS6hF9U7VrKwFE6R3iLnEdwGskHwbwBIBXbrVuttvCQPIrkqZ+dfsBBOqZpz0jeZzkCb1ztHPDAHxH8iTJOgCfAojTOVO7RXIPgEt657gbkDxH8vCN+1cAHAcQ0NJr2m1huMlkAFv1DiHuaQEAzpg9Lsct3nxCOJpSqg+AwQDyW3qerl9wu5XbuJzGdQBrHZmtvWnNshRtYu2KhPJZcOE0lFKdAXwJYCbJ6pae69SFQS6nYTu3WpaizcoB9DR7HAjgrE5ZhLCglHJDY1FYS3L9rZ7fbg8lmV1OI1YupyGcwEEA/ZVSDyql3AHEA9ikcyYhoBqvr58F4DjJha15TbstDLjzy2mImyilxiilygE8CeCvSqntemdqb258ECIZwHY0ntzLJvmtvqnaL6XUOgD/ByBIKVWulErSO1M7NhzAfwMYcWNbeUQpNbqlF8glMYQQQlhozzMGIYQQdiCFQQghhAUpDEIIISxIYRBCCGFBCoMQQggLUhiEEEJYkMIghBDCghQGIWxAKeWilMq4cb37QqVUX70zCXGnpDAIYRtvAjhJ8lEAiwFM0zmPEHfMqS+iJ0R7oJTyBDCGZOiNX50CEKNjJCHaRAqDEG0XDqCnUurIjcc+AHbqmEeINpFDSUK03WMA/ofkYyQfA/AVgCO3eI0QTksKgxBt5w3gZwBQSrkCiASwWddEQrSBFAYh2q4EjU3WASAFwF9JntIxjxBtIpfdFqKNlFLeaOw57ovGHgIvk7yqbyoh7pwUBiGEEBbkUJIQQggLUhiEEEJYkMIghBDCghQGIYQQFqQwCCGEsCCFQQghhAUpDEIIISz8P6u0cNgNClRSAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:12<00:00, 2.28it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "outfolder = './out/altgd1'\n",
+ "if not path.exists(outfolder):\n",
+ " os.makedirs(outfolder)\n",
+ " \n",
+ "for gan, outfile, hs_g, hs_d, nsteps in plot_configs:\n",
+ " trajectory = trajectory_altgd(gan, theta0, psi0, hs_g=hs_g, hs_d=hs_d, nsteps=nsteps, dsteps=1)\n",
+ " plot_vector(gan, theta_s, psi_s, path.join(outfolder, outfile), trajectory)\n",
+ " simulate_trajectories(gan, theta_s, psi_s, trajectory, path.join(outfolder, 'animations', outfile))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXlcVNX7xz+XbVhlExFEwYXQEhPR1DCXzNS0RbRc0NyCyrbxW2pZZlma8TU1NUv9WmmapmbmzzQ1c0kLF0RITdwVmlFBEGSZgWGe3x/HGRkYYICZe+/geb9e5zXM5d57Pgx37nOfc57zPAIRgcPhcDgcAw5SC+BwOByOvOCGgcPhcDgmcMPA4XA4HBO4YeBwOByOCdwwcDgcDscEbhg4HA6HY4LkhkEQhOaCIOwVBOEfQRBOCYLwhtSaOBwO515GkHodgyAIQQCCiOi4IAheAJIBPENEpyUVxuFwOPcoknsMRKQmouN3fr4N4B8AzaRVxeFwOPcuTlILKI8gCGEAogAcNvO7BAAJAODm5hZ9//33i6rNHHq9HleuXEFOTg7Cw8PRqFEjqSWhsLAQmZmZKCgoQPPmzdGkSRPJtOj1ety6dQu5ubnIy8sDEaFx48YIDQ2t9blKS4EzZwCdDnB3L0Jp6UVotQHw8/NHy5bsMtbpdMjIAMrKyuDtnY+SkhKUlpaipKTE+LNer690bg8PD7Rt27bef29V6HQ6ZGdnIysrCyUlJQAAFxcX+Pr6mmgz/A4AHB0d0bFjR5tpMkdGBpCVBdQ0iODgADg5AW3bAs7O4mgzh1qtRlZWFlq2bAkvLy/phFSgsLAQWq0Wfn5+UksxUlpairS0NADIJqKAGg8gIlk0AJ5gw0ixNe0bHh5OUnPu3DmKjIwkAOTm5kY//PCDpHouXrxII0aMIAAEgPz9/enrr78WXUd+fj6tXbuWnnnmGVIoFEY9AOjhhx+mlStX1um8gwblEKAn4BoBNwkIJOAgsdtYxfaHSb/lm7u7O0VERNBjjz1G48aNoxkzZtC6deus/CmYR6fT0ZYtW+ixxx4jFxcXysrKqvR7lUpFhw8fpl27domiqTwxMeY+y/JNTwBRaCiRIBAlJIgusRJJSUlSS7AbUlJSCMAxsuR+bMlOtm4AnAHsBPAfS/aPjo628kdWO37++Wfy9vYmANSmTRtKS0uTTEtOTg699dZb5OLiQgBIoVDQ1KlT6datW6JpqMkYLFy4kDIyMmp9Xp1ORz/99BPFxAwjoPRO0xOQSsBnlW76Hh4e1LZtW3rsscdo/PjxNGPGDFq2bBlt376d0tLSKDc3l/R6vQ0+gdpz+vRpSk9Pl1pGJWo2Dqw1aULk4kKkVkutmFMb7MYwABAArAaw0NJjpDIMOp2O3nnnHeON6Omnnxb1BlwerVZLn3/+Ofn5+Rn1jBo1ii5duiRK/7YyBgb0ej1t3bqVJk6cSH5+v9wxCHkEFBOgMXoNs2bNkt1N395RKomiothrXBy7S7RuTeTgoCdHx7vGwcFBHl4Dx3LsyTD0uHNDSQNw4k57orpjpDAMN27coL59+xIAcnBwoE8++YTKyspE16HX6+nHH3+kNm3aGG/EjzzyCB05csTmfdvaGJhDpSJydCTy89PT88/fpEcfPU+CoCNPz4vk6bmcIiMjSavVWrXPex1LvQZBYK+pqVIr5liK3RiGujSxDUNSUhKFhIQQAAoICKDffvtN1P7L6+jRo4fxZhweHk4//fSTVZ6UqzJyUhiD8sTHV31j6tKFKDs7mwoKCmzW/72Os3PNBqJTJ6lVciyFGwYroNfraenSpeTs7EwAqGvXrja9CVaFuYnlxYsXU0lJSb3PrdPp6OOPP6bdu3cbt0ltDMoTFGT+ZuThQTR5sigS7mks8R4Egah3bz7fYA9ww1BPCgsLacyYMcYb4qRJk0ij0di83/Lk5ubadGL54sWLFBMTQwAoOTlZFsZApSLq3//uTaa6G1NMjM3lcIj9T3x82GSzILDXip6EszOLVuLGQd5ww1APKoaifvfddzbtryK2nljW6/X07bffkpeXl/H8Bq9IKs/AgFJJ5OvLvQE5YZiMdnOr2XsICeHGQc5ww1BHpAxFFWNi+ebNm/Tss8+aGAGpjYEBlYrI25uoe3f2hMpvMPLA0sloLy/2yiOV5As3DLVE6lBUW04sG9i9ezcFBwebNQpeXl6SLxYyPJn6+rJX7jXIi6rmeyrONzg7c6MuVyw1DJIn0asLnTt3pmPHjlntfFlZWRg5ciT27NkDBwcHzJ49G1OnToWDg+1TSV26dAnTp0/H+vXrAQD+/v744IMP8OKLL8LZSvkGdDodEhMT8eWXX0KhUEChUMDV1bVSa9KkCebNmwcPDw+r9Fsb1GqgXTtAEIDffwf69mW3mn/+AZo2FV0Oxww9egCHDlXe7ugI6PXs/2UgIQFYtkw8bRzLEAQhmYg617ijJdZDbs2aHoNUoai5ubk0ZcoUSVcsy4nyi6rKv+deg/ywdGiJr2+QH+BDSdUjVSiq1CuW5UqXLuZvLl26SK2MYw4Pj5oNA1/fID8sNQySp92WgqKiIowdOxaTJk1CaWkpXnnlFRw4cAAhISFW60Ov15tk8iQi/PTTT3jggQfwxhtvICcnB4888giOHDmCtWvXIiwszGp92yMxMYBSaXprUSrZ8AVHfsTH3/1/BQaa3yc1Fbh2TVxdHCthifWQW6uPx1AxFHXNmjV1PldV6PV6mjRpEmVnZxMR0eHDh20+sWyPlF+zUNXwBF+rIE8sXfg2erTUSjnlAR9KqowYoah6vZ4mT55MAGj//v02W7HcEFAqWXgqXxhlvyiVRO7uVRsHBwe+KlpOcMNQDrFCUfV6PU2bNs3YjyAIfGK5ClQqFpY6apR8cvtzao+lE9H8/ysPuGG4g5hZUd9///1K6wNiY2Pv+YllcyiVLEGewTi4uvKnSnulSZOaDQP//8oDSw1Dg558Pnz4MDp16oQ9e/YgICAAu3btwttvv22T9Qlz5szBrFmzKm0/deoUbty4YfX+7BG1GujTB+jcGViyBCgqAsaOBebNY7ePmTOlVsipC46ONe+j0/H/rz3RIA0DEeHLL7/EI488gszMTHTt2hXHjx9H3759bdLfvHnz8O6775psCwkJwbBhwxAfH2+2zvC9SGIi8OefQHIyWxC1aRMwdSoQFAQ8/zywevW9G8VSMYpNCs6cOYNTp04hPz+/Vse1alXzPg4O1vn/ajSa+p2AYxFOUguwNkVFRXjppZfw3XffAQBeeeUVzJ8/Hy4uLjbpb9GiRXj//ffRo0cPdOvWDd26dUPXrl2tGvraEFCrgW++ubs6Vq8HtFogOPjuPkFBzHjMny+NRjHIzc3F2bNnkZ6ejvT0dOPPTZs2xY4dOyTVFhAQgKFDh2L//v1o1KgRWrRogebNm5u0Fi1aoGvXrnB3dzced/Bg1auiDZSUAM7OzGuoz4roffv2YdGiRXjuuefwzDPPwMfHp+4nszIajQaOjo5Wy1ggKZaMN8mtVTXHIEYoanmKi4spOTmZRxlZgFJJ1L49q8YWEVH1WLQ1w1PlEA5cWlpKCxcupJiYGAoICDCbp0oQBNq9ezeVlpZKLZe0Wi298MILZnUCoPfee6/aObqqFioaWmBg/TVOnz6dAJCLiws9+eSTtHbtWrp9+3b9T1xPdDodDR06lH744QdZXHvlycnJISLL5xgkv8nXpZkzDFJmRS0sLBStL0tRy2imz5A11cmpjFxc9JSSQqRQsLz+vr7Wn5RMSkqiYcOG0bVr16rcp7CwkNLS0mjz5s20Y8cO6wqogF6vp+3bt1OvXr2qvOECLPX5fffdR4MGDaI33niDiouLbaqrOr3z588nBwcHE33+/v508ODBao9VKlkLDDRvGBo3rr8+nU5nDCgBQKNHj5aFYSAi2r59OwGgPn36GG/GcmD16tX0wQcfNGzD8MADDxi/9FJnRd2xYwc1bdqUjh07Jlqf1aHX62nZsmXk7u5OP/zwg6Ra2AI2PT3xRAZ5el4ioJQiI/8iIhaR5OjIvAhr5EOqePN95JFHTG7+n376Kb3wwgvUu3dvatasmckNr3fv3vUXYCFJSUkUGxtrDGUGQL6+vhQUFGSiydPTU/Knzm3btpnU7ABAp0+frvaYmsJXrVXt7caNGxQSEkKNGzem1atX1+9kVkSv19MTTzxB8+fPl1qKCbdv36bXXnutYRsGLy8vWrlypaihqObYsWOHsdrZlClTROu3KrKzs2nIkCHGL/HLL78smZbbt2/To4+eIAeHWwSoqr1Z1Gf4qKSkhL777jvjEKKhGZITVtUcHR2pTZs2NGDAAPrggw+s94dbSHp6OsXHx5OLiwtFRESQXq+n27dv04kTJ2jjxo20YsUK0TWZ4++//6awsDAKDAys0VswoFTWnEvJGusa/vrrL1lmEJDzeqUGbRgA0KOPPipJVlQD5Y3Cyy+/LKpBMsdvv/1mrLXg5eUletU5A+fPn6fJkyeTl9d9BNwkoCMBxSQIZVY1Crdv36aFCxdSixYtLLr5v/baa7Ro0SLavn07nTt3TjbzQiqVit5++21Zr3W5ceMG9e/f3+L9xcy+KjejIHcavGEwNLGyopZHTkZBq9XSlClTjEMT3bt3pwsXLoiqQa/X065du+jJJ58sN0Qyn4KC1tHSpT+RQqGnuDgiPz/rzCeUlJTQkiVLKC4ujjp37lxpuAMAOTk5iTrP1NDRarW12l+prLmwj4cHX/QmNveEYXBwcKDFixeTRqOx5mdXLXIyCv/88w916tTJ+FnMnDnTZpEtZWVllSZzb9++TUuXLqV27dqZDOEMG/YaNWpUSirV3RXOfn7s1Rb1FfR6PanVatq3bx8tX76c3nzzTXryyScpLi6OdDqd9Tvk1IilXgNPsicu94RhAEBRUVG0efNma352VSIXo2CYYHZzcyMAFBoaavH4b10oLCykZ599ljZt2kREd4eLDFFgACgoKIhmzZpF165dM0amGPIhVTQQ/Cnx3sAQYBAfz5ogsDuOoTa0YTKaXw/i0aANg6OjI02aNImSk5Ot+ZlVi1yMQsUJ5lGjRtl0siszM5Oio6MJAM2YMaPCcBEbulq3bp3JUEN1KbSVSl6V7V7BkhrR1pqI5lhGgzYMUVFR1vysakQuRkHsCeZjx44Z+6sY8fP888/T0aNHqz2e11i4t7F0OMnFhXsNYtGgDYM1az7XhByMghQTzBs2bDAOVZVvSqWyyoVj5QvvcDjlqc57cHfnXqRYcMNgBeRgFCpOML///vs2TZ2g1+tp1qxZVYaAhoeHU3p6utljDWPKISHcOHBMqcl74LW9xcFSw9DgkuhZi19//RXPPPMMtFotXn75ZSxZssQm6bqrgoiwYsUKKJVKFBcXIzQ0FGvXrkVMTIzN+iwuLsaECROwfv16uLq6VkqgZkiiZi5JmFoNrFrFkuNlZtY/WRqnYXHwILtGWrYEPDyYOcjNvfv7qCjptHHMYIn1kFuztccgtacg9gSzgQsXLlBycjLduHGj1guH4uNZGUeAvSoU3GvgmKJUslxJ5jwGZ2d+vYgB+FBS3RDbKFS8ActlBXNtUKnYBKKjI6vGplAw48CjTTjlqWk4ia9psD3cMNQBKYzCu+++S0TyWMFcVwzegkLBjET59/wpkFOemnIoWSNNBqdquGGoJVIMHy1YsIAcHBwoNTVV1Alma1NVzV8ebcKpSHx89YaBp8mwLdww1AIpjMIff/xBTk5OBMD4ausVzLaiulBEvmaBU56qHiL4kJI4WGoYGmTN59ogRfTRtWvX8Nxzz0Gn0wEAdDodBg4ciNTUVJtGHdmKqmr+xsSwaBQOx4CjY837fP/9vVv7Wy7c04ZBCqOg0+kwYsQIqNVqk+179uzBhx9+iOLiYpv2bwsOHjT/7MeNAqciVT1ElEevZ+HOHOm4Zw2DVOsUpk+fjv3795tsi46OxuzZs6FUKuHm5mZzDRyOVJR/iAgKMr+PkxNbE8O9Bum4Jw2DVEZh8+bN+O9//wsAiIyMxOzZs3Hu3DkcO3YMb731Flq0aGFzDdZArQYGDOBf3IYIG4YWh5AQ89t1OsDHB0hMrLhdhxUrVqCoqMj24mpJaWkprl+/LrUMq3HPGQapjMLZs2fx6aefYubMmTh9+jTS0tIwffp0tGnTxuZ9W5vERCApCejWjRuHhkZSUhKeeOIJfPzxxzh06BBKSkps1ldMDKBUAl26VP7d9evAkSOm25ycnFBQUIDw8HCsWLHCOEcnB5ydnREfH49Dhw5JLaUS6enptT/IkhlqubW6RiVJuaI5Nze3QZQhNNRYGDWK5dLni9jqj16vp/z8fEpPT6f9+/fTDz/8QIcPH5ZMz8aNG43radzd3enxxx+nuXPn0uHDh60aRl3dgjdvb/NhqxqNhkJDQwkARURE0ObNm2Xzvfr000/JycmJFi5cKBtNRETLly+nGTNmkF6v5+GqRER5eXnGn6VOc9FQMBTcMRgHV1f7ijvPyMgglUolWf+pqak0adIkio2NpYcffphatWpF7u7uJokKW7RoQVlZWZJpJCJaunSp2SSKrVu3prNnz1qtH5WKrZhXKFjz92d3JX//qtfArF692kRTt27daP/+/VbTVFcuXbpk1DR8+HC6ffu21JKIiCgtLY0A0NSpU7lhICIaMmQI5ebm3pNGwRZPLAZvIT7+boU2hcJyr0Gr1Uq2cC87O5veeust8vT0NHlgUKlUVWaLtRWHDx+mRx99tMoMtg8//DAtWLCACgsLRdVVkZkzZ5rocnR0pD179li1j+oWvHXsaP4YnU5HHTp0MOrq3bs3HTt2zKq66kq3bt2M6Wzef/99WdxrdDodeXp6Gj6vhmsYHnzwwRo/jH379hEAGjdunE2Nws2bN2nYsGF08eJFq563PmRlZVGPHj3o0KFDVj1veW/B8NAdH2+Z17B7925q27YtzZ8/36qaaqKgoIA+/vhjatSoEQGg5s2b08yZM2nw4MEUFBREAGjAgAGiaiJihnvXrl3G6ngVm0KhoJKSEtF1VdT40ksvmeiytmEIDq7aMERGVn3cL7/8QgDIx8eH3nvvPatqqg8LFiygli1b0pNPPikLo2Dg6aefpieeeKJhG4bGjRtX+yHo9Xrq2rWryQVtC6Og1+tp6NChBID69etn1XPXlaysLOPTVHR0tFU9h6rGhIOCqnb7MzIy6LnnnjP+Hzp16iTKF0ar1dKSJUsoMDCwyidzAOTp6UmxsbE211MVZWVltGHDBgoPDyfcSYmycOFCmjVrlmSayqPT6WjYsGEUHh5O+/bts/r5u3Sp2jBUVw9ar9fTk08+WadMwLYkMzOTTp48KStNRMxjJqKGbRgiq3uUIKIff/zR5MsvCALFx8fTnj17rPoP+9///me8uZw/f95q560r5Y1CeHg4/fvvv1bvo+pynXrS6XTG/bRaLX366afk4eFBAMjNzY0+/vhjKi4utrqm8pSVldGaNWuoZcuWVRqDkSNH0po1a+jMmTOyeaorKSmh5cuXU3BwsCzGy8uj0Whs9lSuVLLWvj2ba/D0NL2uqkuPkZ+fbxNNDZkGbRiqm2MoLS2liIiISjeDfv36WXUcMj093Thp+O2331rtvHVFDKNQXenOd999l86dO0dEd4eNDJ/9kCFD6PLly1bXY46dO3fSf/7zHxo5ciT16dOH2rVrR76+vpXG8LVarSh6aktRUZEsHjIqYqsn4JpScbu52aTbexa7MgwAvgZwA8BJS/avzjAsX77c5CbQqVMn2rVrV10/R7NotVrj2PDw4cMldxvFMgqhoUQ+PpWHjRYtWkQAaOPGjSbDRm3atKHt27dbXUtd0Gg0dOXKFUpKSqItW7bQpUuXpJbEuUN8PAtiaNSIFexxciIaiTV0CaFUBoGKmoQSrVkjtcwGgb0Zhp4AOtXXMBQWFhonFFu1akXr1q2zyVDBtGnTjBOZOTk5Vj9/bRDDKBCxL68gEMXFEfn53fUa1q1bZ4x5NzSxho04DYOK2XlHYg0VwN10o7s7Nw5WwK4MA9OLsPoahjlz5lBAQAAtXrzYZkMFv//+OwmCQA4ODpKPBYtlFAxhqaNGMaMQH8+8hl27dpGzs7OJUejdu7dow0achkHF4aRLCDXdYGihoVJLtXssNQx2kxJDEIQEQRCOCYJwLCsrq9LvNRoN3NzccOHCBbz66qtwcXGxuoabN29izJgxICK888476Nmzp9X7sJTs7Gz07dsXaWlpCA8Px759+xAcHGyTvgyZLufNA55/nv28cqUOTz/9IkpLS032PXr0KLZs2YKysjKbaOE0PAyJ9QxJ9Vrgqvkdr1axnWN9LLEeYjRYwWOwJXq9nmJjYwkAde3aVdIYc7E8BSKilBQ2hBQUxIaPVCoib28dKRSrCPjM6Cl4e3vTU089RQsWLKATJ07IJtqHYz8YQler8hhKQ0Kllmj3wEKPwUkyi2RnfP3119i8eTM8PT2xdu1aODs7S6JDLE9BrQbGjwcuX2bfSrW6fJpkRwDPw9f3FN55pwx9+vRBVFQUHC2pwsLhVEFMDGt/nJmNwJ0JcKO7WVS1Tu7Y2H42Rkuo757CEushRoOMPQapQ1OPHz9OROJ6CkolS2RWVRjhww9zj4BjXcrPNZSPSrqEUBqJNbxMrBWAPU0+A1gHQA2gFEAmgInV7S+mYZA6NPXw4cMUFRUlqlEw5EQaMoRdIUOGsLQX7dtXvcKZw7EW8fFELi6sCQK7BqvKtsqpHXZlGGrbxDQMhtDUFi1aUG5urmj9ErF5jT59+hiNgRhGgehuTiQXF7YaNT7+7ntfX/4F5dgOQwRcRAS79pyd2V3K15c/lFgDSw2D3UQlScHevXuRmJgIBwcHfPfdd/Dx8RG1/127dmHv3r0AgHPnziEsLMym0UcAm0tYtQooKgLKyoARI4AffwReeQVwcACaNatcWYvDsRaJiax6W3o6u/4MQW+5ucCdrwJHBLhhqAKpQ1P1ej2mTZtmsu3y5ct4+umncfToUZv1m5gIjB0L/P47+2KuXQvk5AAdOwIaDXDyZOXKWhyOtTh6lFVvMwePgBYPbhjMQERISEjAv//+i65du2KmIZBfRNatW4fU1FSTbd26dcNnn32GLuZqIVqJQ4eAhQuZ52COmBgWd87h2IKDB4HAQPO/+/tvIC1NXD2WwkZp5EdxcXGdjuOGwQwrV66UNDRVq9XivffeM76PiIjA5s2b8eeff9rcc4mJAXx9gfh49nr8OODnxwwFETcKHNtTXQn2cePkeQNOSUnBgQMHpJZRiQMHDmDnzp21Po4bhgqcPXsWb7zxBgBgyZIlaN26tegali1bhsuXLyMoKAjLly/HyZMnMWTIEAiCYNN+DfMLe/YAq1cDw4YBUVFstTOfV+CIRatWVf8uLQ3YsEF+N+CmTZsiNjYWFy9elFqKCS4uLhg3bhyys7NrdRw3DOUoKSnBqFGjUFRUhOHDh+N5Q/4HEcnPz8fixYsxZ84cnD9/HvHx8XByEmcdomF+oWlT0+1TpzKDce2aKDI49zgbNwLe3oBCAYwaddeDcHcHxo4tw5gxf2PDhg3SiqxAYGAg8vLy8OSTTyIvL09qOUZcXV1x7do1xMfH1264y5LQJbk1a4arajQa489ShqYaSE9PN1ZbEhPD2gWV6m64avksqkolDxe8lzhy5Aj9/PPPkqSUNxTuUSiIdu0ik4WVsbFETk55BDSlxYsXi66tOkJDQwlgpWKlqm1ekePHjxvT1qxcuZKvY7CUBQsW0OHDh02yph44cMBq57cXDJW0iKqr0iatRo546HQ6ioyMpJiYGDp48KCofVdX7tPBgahz52Rjnq4ZM2ZIXg/FQI8ePYw3YaXhyyQxp0+fNmq6U02RGwZL6Nq1K8XExFCzZs0IAL377rtWO7c9wY0BpyLbtm0z3lSeeuopOnXqlCj9KpWVazRUbn8YtSUkJJiUlZWKkSNHmqSgX7ZsmdSS6MKFCyaaLDUMApE8Z/mro3PnznTs2LF6n+fy5cto2bKl8f2DDz6Io0ePSpYgjyM+f//9NyIjIyXr//Dhwzh16hRcXV3h6uoKhUJh/LlFixZo3ry5ZNqICL179zZG2zg4OGDcuHH48MMPERISYrN+e/RgYdMVCQwEbt1iuhwdW6O4+JLxd7GxsVi7di1cXV1tpqsmpk2bhsRyURpOTk7YuXMnHn30Uck0qVQqNGvWrPymZCLqXNNx9/Tkc8UJrNTUVISEhGD//v0SKZIOtRro04e1e2GSWafTYdasWRg3bpykOjp16oSLFy9izJgxGDp0KAYPHozHHnsM48ePFy3ooCoEQcCnn35qfK/X65Gfn4/MzEyb9luxPoOB69cBrRZwdhbQpMk84/YmTZrg/vvvR0pKik111USLFi1M3g8dOhSbN2+GRqORSBHqbigtcSvk1qKioqziZnXq1MnEzQoODq71eKper6dvv/1Wssnqqvjyyy/pypUrFu8fF8dcdBcX604yG/I66fV6mjFjBv3+++/WO3kdOX/+PHXr1o0AkK+vL7322mtSS6I//viDwsLCjNeiQqGgvLw8qWURERnrkDg4OIg64VvV8CZAFBaWQa6urhQUFER9+vSxWcXG2vDzzz+Tp6cnxcTEUJs2bejo0aNSS6LCwkJycXGh0aNHU0BAQMOeY/D09Kz3B3b27FkTo9C7d2+6du1arc9z6NAhYySTXIrTGDT5+PhQfn5+jfurVGxSzzC5Z61EeYWFhRQVFUWlpaXGiK9GjRrRzZs363/yOqDX6+nrr78mT09Pk/99jx49ZDGBeevWLXr++ecJAH311VdSyzFy5swZevjhh+nvv/8Wtd/ykXJEd+uOJySwqKlPPvmEMjIyZPG/IyJKTU2lbdu2UW5urmzuBTqdjn755RfSarWk0+katmEICQmp9wf20UcfGW8M06ZNq3N42fDhw43nkAM6nY46duxIAOidd96x6BiDtzBwIHtt29Y6XsPcuXON4XsAyNHRkTZs2FD/E9eB7Oxs45Nvxda1a1e6deuWJLrMsWHDBvrnn3+klmHC+fPnRe+zfKRcSgqRkxNLAa9QEGVm6iSmm4oHAAAgAElEQVStomivWGoY7HLyuUOHDpRWz6QpkZGRuHr1KlatWoVnnnmmTufIzMxEWFgYiAiXLl2qNMYoBV988QVeffVVNG/eHP/88w88PDyq3V+tBkJCAEEAMjKAxx8HTp9mC4xOn6682M1ScnJy0KpVK+NiH0dHR6xbtw7PPvts3U5YD/R6PTZu3IicnJxKE7yG961bt0bTuv6xHJtQ1SR0cDAwfDgwf774muwdQRAsmnyW/Om/Lq2+4aonT56kDh060NmzZ+t1nnfffZcA0NChQ+t1Hmtx/fp18vb2JgC0adMmi44xeAtxcex9Sop1vIYpU6aYPJW7uLjQsGHDaPfu3XU/KeeexHBNeniwoc7ffjNdfMmxHDTkoaT6GoYTJ05QYWFhvc5RXFxsmMyhffv21etc1mIcyzBGjz/+uMXjrh4eVOUEX13XMFy9epUUCoWJYXBzc6Pp06fLasiGYx+0b8+K9owaxa7LyEi+Er+ucMNgY7799lsCQB06dJDF5JdhwtnZ2ZnS09MtPs7Ly7xR8PKqu5bx48cbDYKjoyMlJCTYvOocp2GiUt0t78kXX9YfSw3DPb2Ooa4QERYtWgQAeP31122e9bQqcnJykJSUhLKyMrzyyisAgLfeegv33XefxefIzzfvL+Tn103TyZMnsWrVKgAsjvvUqVNYtmyZTavOcRouM2cCLi5A+/YsqV779my7vz9PAW8per2+9gdZYj3k1qT2GAxP535+flRUVCSZjs2bN9MDDzxA8+fPJwDUvHlzKigokEwPEdGTTz5JvXr1or/++ktSHZyGQXCweW8BIEpNlVqdfbBz5066cOECEXGPwaYYvIX4+Hi4ublJpmPv3r04deoU/vOf/wAAFixYUGMUUnmsvdr52rVrePnll7F3715069at/ifk3POUy1hjgocHMH68uFrslRMnTmDp0qW1OoYbhlqSmZmJTZs2wcHBAZMmTZJUy94K1dHfe+89JCQkoNRQQb0GEhOBv/5izRqFeJo2bYqBAwdKNrTGaXhs3AiYywxSWMiK9sgtfUudhm1sTGpqKlauXInCwkKLj+GGoZZ89dVXKCsrwzPPPCPpuoWsrCycPHnSZJuXlxfmzJljURJAtRr45hs2bqtQAN9+K78vGYeTmMg8AxcXoEkTwNGR5VBKSABefVV+lQVXrFgBNmIjH1JTU3Hr1i2sXbvW4mOkzdJlZ2g0GixfvhwAm3SWkn379pm8f/zxx/Hjjz/C09PTouMTE1kJxV692Pv9+9k2vmiIIyeOHr27yO3GDfaqVgN3voaIiZFGV1X8+OOPCAkJwaBBg6SWAoDds86cOQMAWLx4seUHWjIRIbcm1eSznEJUX375ZWNI6MiRI2uVREylIvL2JvLxYT+rVOxna+VI4nCsheFabdSIyNPz7sSzp6c8r9XQ0FDq2bOn1DKMJCcn16keAx9KshCSSYiqAcP8wuuvv441a9bAxcXF4mMN3sK4ccwtDwpiP4eFyc8159zbGK7V1q2B8HAgIIClbykrA95+O0dqeSYUFxfj6tWrOHDgAJKSkqSWA4ANI9UJS6yH3JqYHkNOTg4RySdElYhIpVIRAJo9e3adPJfq0hnzRUMcOVF9mc8CysiQR21lIqK0tDTjk/mQIUOklkNEREqlknsMtuCjjz7Czp07ZROiCgAHDx7EihUrMH369Dp5LoZCKCoV0L8/G7M1fN34oiGOnIiJAaKiTJujIwAQ9Hpg4sQzUks0kp6ebvx5y5YtJu+lorzHUJuiPXzyuQYuXbqE5557DkVFRbIIUQWA/v37o1GjRvU6h1oNdO8O5OXxSWeOfDl6FDBfmE0A4IG9e9kEq5QlPQ2UNwREhHnz5mHFihWS6SEiuLi44Ndff8WAAQPg7u5ucTU57jHUQEZGBvLz86HT6eDg4IBu3bph4sSJkoak1dcoACzVwNWrwKBBwKpVPFSVUzU5OTm4cOGCJH0bvFulkqXD8PIC4uOBuLgbAK6jtFSLL7/8UhJtFTl79qzJ+9WrV0OtVkukhhmGbdu2oV+/fnByckJOjuVzMtww1MDVq1eNP+t0OoSEhGDJkiWSTz7XB7UaWL0aGDkS2LEDGDqUTzpzqoaIMHr0aOh0Osk0HDoEnDwJ3L4NrFgBrF3bBEAggA746KMVyK9rci8rUt5j8PT0RGBgoHEIWgocHBzg5OQEBwcHNGvWrHbH2khTg0Cj0SArK8v4vlmzZtiyZYvkcwz1ZeZM9qpSMaMAcK+BUzWurq5ISkrCnDlzJNPQsSObWxg1CvDzAxYu/AHAAgBpyM19AZ999plk2gBmPF1dXfHLL78AABQKBS5fvowxY8ZIqstASEhIrfa3ywpunTt3pmPHjtm8n/PnzyM8PBwA4ObmhoMHD6JTp04279eWqNUs/4yTE6DVAiNGANu3MwPh6cnnGjiV0el0cHZ2hqOjIw4dOoSuXbuKriE4mF275jkID48BuHjxIpo0aSKmLCNEhJKSEjg7O8PDwwMajQY5OTnw9fWVRE9FRo4cifXr1wOARRXcuMdQDRkZGcafv/vuO7s3CgDzFkpLWa4ZnQ5YswbIyWHu+ZEjUqvjZGdno6SkRGoZJjg5OcHJyQllZWUYPXo0CgoKRO1frQY0GubhGqLpXF0LATQFm4R+BIWFhZg9e7aousojCAIUCgUcHBzQpk0bAOzBUi7U1mPghqEaDIbh448/xlDDmIuds3UrYC7PV0wMD1WVAwqFAn369MH69etllZBNoVAAYDe7yZMni9p3YiIwdixbiKlWs9xJQUF/oXnzJcZopOPHj6NLly6SzoMYkKNhaN68ea3254ahGq5evYq4uDhMnz692v1u3rwpaZSSOa5fv17pS6JWA7m5gIMDS0oWH88iPVxdgU2bbKtn8+bNyM3Nxe3bt23bUS1JT0835pKRA15eXhg5ciRGjhyJw4cPSy3HiJeXlzEH0IQJE0T1ao4eBRYuZCueg4OBnTuBS5ceQ/PmQ9GxY0e4u7ujpKQEo0ePhpO5VKwiEx4eDgcHB9wwJHeSAbX1GCRfxVyXplAo6r8k0AK+/fZbKi4urnYfvV5P3t7e5OHhQdnZ2aLosoRu3bqRm5ubScGc+HhWTF2hYD/Hx7McSQoFUUKCbfWEh4dTZGQkKRQKOnr0KF2+fNm2HVpIbGws+fr6UkZGhtRSjGi1Wvrtt9+klmHCgQMH6MaNG5LmCEtJIXJyItq1i8jPj+VKunbtGul0Osk0mSM/P79WucvEQKPRUHFxscUrn+1y8tnDw4Nqk1u8rhBRjWGpWVlZaNKkCTw9PZGfny+LMFadTgcvLy9oNBpkZ2fD39/fOOns6AgUFVU+JjgY+Pdf22kKDQ01Cf396quv8OKLL9quQwtISkrCiy++iLlz52LAgAGy+N9xqiYyEjh9GnjhBcDdnXkQPFiidgiCYNHks/R+Vx2oTcK4+mDJjcIwjtimTRvZ3FhOnz4NjUaD0NBQ+Pv7A2DjtD4+wPXr5o+pqlKWtSi/4nLw4MFISEiwbYcW4OPjg+PHj8OR5VjgyJgTJ9g6Bk9PtgYnKQl49FFg6lSgaVOp1TU87HKOQSzDYAnnzp0DAGNYq5QcO3YMFy9eRHJyMgCgc+e7DwZHj5o3Cl26iJMjyWAYmjRpgpUrV8rCiLZt25YbBTthzBjm7f74I1BSAsybBzz/PF+YWRvKysos3tcuPQZLKpSJhcFjkINhyMvLQ79+/XD//fcDANq1a4dff/0VwcHB2LixAx54ABg4kH25Ll8GPv2UueNiYDAMK1eulCzWnGOfqNXAqVPsAaZ/f7ZtzRr2KrdCPeZISkqSRQ30HTt2WLwv9xjqicFjMISoSUlQUBBu3bqFP//8EwALsx0zZgzCwsKQmAgMG8ZSYBietKZOFWfFM91Z/PPyyy9j8ODBtu2M0+CYORNwdgYefhjw9mZRSQAwerT8Q6yTkpKwcuVKqWUAqF0FN24Y6omchpKamhlsfffdd1FY2AirVrH3Y8cCH37IDIIgiOOOa7VaREREYN68ebbtiNMg+eUXNnz0558sG7DBa/jpJ2l1WUJiYqIs0m8b7lOWYpdRSR06dKC0tDSpZYCI4Ovri7y8PKjVarM3ZrH1KBQKlJaWAgBatGiBs2fP4u232eKk8vVzy2PrxW0FBQU4c+aMyZwHh2MpDz3Ert2KODkBGRnynXxOT09Hu3btEBAQgOtVRX2IhCHC0tKoJLv0GOQyx5CdnY28vDxjJkWpEQTBxDjNmjULCoXCuECoolGIiRFn4tnT05MbBU6dMRTriY8HFAogLo4l0hs/Xt6Tz/PmzQMR4caNG7h165akWmob7CELwyAIwgBBENIFQTgvCMLbFuwvhqwqyc3NRUlJiSxDVQ2G4f7778fo0aMB3M1pHx/Pho8EAUhIkP/4LIejVrNhTycnls9LqwXWrpV/fi+1Wo3Vq1cb31es1SB3ajQMgiCsEwRhmiAIAwVBCLC2AEEQHAF8AWAggPsBjBQE4X5r92NNbt68iYceeghbtmwBwOYXLl++LIsC4AbDMGfOHJNQTMMXzFDCk6fZ5tgDhjxJy5cz43DiBCvak5DAvIbyqVyKiopkUZcBAD7//HOTtCENzjAA+ApAEYChAHYLgvCTIAheVtTwEIDzRHSRiEoArAfwtBXPb3XCwsJw+vRpJN7xY7dv346WLVvKIl9S06ZN0b17dzz11FMm22fOZNlUXVxY0+nu1mXgcOSKYRg0Kopdsx07svenTlUOnFi8eDEuXrwondg75OfnV6oqJ4cJ6NpgiWFoAWA/gJeIqCOATQA+tKKGZgAyyr3PvLPNBEEQEgRBOCYIwrHyxXOkwMnJCa1btza+LywsRI8ePdC9e3cJVTGCgoIwd+5ck6Etg7cgCOzpa+xY7jVw7IODB1mabYcKd6pDh5iBMAwl5ebmYu7cubgmgwt6+fLllTwXORiG2jy4WmIY7gPwMYAzgiCkAHgcQKwgCH2tNLRkbnC+0l9ARMuJqDMRdQ4IsPqIVq257777TN5PnTpVIiWmjBo1Cj179jTZZvAWnJxYqOqHH7K4cO41cOyBxETA35892Pj7A6Gh7GGnfOBEYmIibt26JQvD4OXlhbS0NHh5sYGV1157TbKa2eW5efOmxftaYhgWEdFTRNQGwKMA1gBwBxAHYHudFJqSCaB8svAQACornNemREREGH++//77MWjQIAnV3KW8LgPbtrEaDFotS5YXHMx+Litjv+Nw5IpaDXz9NZCdzSadb94ErlwxfaBRqVT4/PPPAUAWhuHFF19EkyZNcPv2bXh5eeHzzz/HN998I7Usk8JjNWGJYdglCMJlQRB2AJgJ4E0A64hoAhF1qaPG8hwFEC4IQktBEFwAjACw1QrntSnlb8BTpkyBQ0VfV0a0alX172ydPI/DqQ+JiSxEtWNHoHdvli/J19d0GPSjjz5CcXExAHkYBsA0VY4gCOjQoYPEioDMzEyL960xVxIRRd2JHGoLIALAbwB+rbO6yufXCYLwKoCdABwBfE1Ep6x1flthGEpq1qwZRo0aJbGa6jG422o1K6YOAOvWyXdhEEf+nD592piTy5bs3QtkZbEWHMy25eYCjRszo/Hyy+ewYsUK4/5yMQxySpVjwNoeA4iojIhOEdFmItpGRFatn0dE24noPiJqTUQ1Fm69evWq5GUPDR7D5MmTZZWiozoSE4G//mJNzguDOPLm4sWLeO+990Tpy8GBRSSpVMxz8PEBAgJYmc9Vq4C33ppnkjVUboZBDqlyDNTGY5Dv+Ec1ODs7Sz50ExAQgLCwMFnUFbAEtRr45hv25VIogG+/5RFJnNqj0+kwZswY0Up7nj8PpKTcnRe7dYt5D5cuAQMGXMfWraZzamq1WhRdNSGnrMsGrO4xyI3GjRtLLQGCIGDhwoXGyAO5k5jI5homTGAtLIx7DZzaM3fuXPz5559wdXUVpb/8fBZ95OFhur2gAPj++0Dcd99oREVFAWBBIHLzGOQ0lGTVOQY5IpdcSU8/Let1eEYM3oIgsEyVAPMYLl/mFbA4lnPkyBF88MEHACCaYQDYaueiImDIEGDLFjZPtmMHW+TWpElj+PqyUNCdO3di3bp10Gq1UCgUoumrCBFxj4Ejfwzewrhx7P348cCzz3KvwR4oKytDTk6O1DJQWFiI0aNHG8fzxTQMEyYADzwA7NsHjBzJ0mAMHcqu3QsXLiA/Px+BgYFo1qwZpkyZIqlRAIAbN27g9u3baNSoEeSw5gpgxqrBewyc2nH0KBunTUlhq0XL4+4ujSZO9RARtm/fjsTERGNOLil58803TXL6i3XzVauBtDS25gYAvv+eva5YwbKudulyDAAQHR0tm0SWckyumZ2dDa1Wa/H+3GNo4BBRpeyqhrTFarU0GVb1er3xyyMHiEgWK1PLs379egwePBiDBw+Gr6+vpFo0Gg2GDh2Kl156CQALvBDLY0hMBNq1u5sR2HAdKxTMczh+/DgAZhjkQm0ikq5du2as0W5LauMtAGBfCntrzs7OVFpaSnJh4sSJ1KxZMzp8+LDUUowsXbqUQkNDaf78+VRcXEy///4PKRREQ4YQOTsTjR5NNHmyeHry8vIoNzeXIiMjqWfPnjRx4kTxOq+BxMRE8vHxoevXr0stxYhWq6XExEQqKiqSWoqRkpIS2rVrF2VmZtKqVatE6bNLF0M+YNMWHMyuX61WSykpKXT58mVR9FiCVqulM2fO0JkzZ6rdr6ioiLp27UrJyck211RSUkIXLlwgAMfIgnus5Df5ujQAlJGRYc3PrV7ExsYSAFqzZo3UUigzM5POnj1LS5cuJQDUt29fio6Opl690snFhUihIHJxIYqMJPLzI1KrxdH177//UkBAAIHlwaK4uDhxOraA9PR0evbZZ+n111+XWgqnAkolUVCQeeMQEyO1urqj1+tp5MiRBIBu3LghWr+WGga7nWPIzMxESEiI1DIA3HUZ5TA84u3tjaioKGOc+Z49ewA0hZNTaxCxsdrWrYGTJ9mQUmIiMH++7XUFBwfjq6++wtChQwGw4Qm5cN9992HDhg1ITU1FWVmZSR0LjnQYsgKfOsUWtKnVQPv27L29R9LNnj0b69atg6urqyzC7ytit3MMtQm9sjWGWGXD2CIzzNLg6emJGTNmIC8vr9zWqXB0vDuBd+ECe+Zas0bcClixsbGYMGECAHkZBgMPPvggNwoywlCkJyiIvQ8KqlyDwR7ZtGkTZsyYAQAICQmRzQR1eezWMNR6MsUGaDQaaLVao2E4f/48kpKSjLHeUpGQkICwsLByW2Kg1Va+4Tk5mVbAEoOFCxeidevWsjQMHHlhKNJjKEcrCKY1GOyR5ORkPP/888b3zZs3r2Zv6eCGoR44ODigc+fO+OyzzwCwCImYmBjJnwAUCgVmzZpVbks6AEJcHMs7Y0jtNGKE+E9fXl5eWLNmjUl+Gw7HHIZoOqWSZVSdPNm0BoO9oVKp8NRTTxkzwQLcMFgdOQwlubi4YPz48dh2p6hBaWkp9Hq92ZoIYjNq1Ci0b98eQFMAI+HmJmDtWraWwZDmRuyhJAPdunXDm2++KX7HHLvDMM+wZ499VxwsKirC008/DZXKtNQMNwxWJjMzE0eOHMGcOXMk1REfHw8fHx+TbRWru0mBo6Pjnc9mKgA9yj2kGHF2lu7pa/DgwdJ0zLEb1Gqge3dg2DDm6dZ3fqG0tNR64moJEWHr1q3Ggj2GtD7cMFiZ5ORkdO/eXfIsq15eXpg0aZLJNjkYBoDdfL28HgVQOS14ly6Al5f9PoFxGj5TprBqbYaHmqlT6+Y1EBFmzpyJ3Nxc64u0EA8PDwQFBeF///sfAGDevHl46qmnZGsYBCkjaOqKIAhG0du3b8fAgQOllINr164hLCwMWq0WQUFBldxFKfnjjz/w0kvFUCgeR69eQGEhsGsXkJQEfPopm9ATI1yVw6kNajXQvDmrx+DoyNJsN23K5hlqc82WlZVh0qRJOHToEE6ePGlb0TWQnJyMzp07w8vLC//++y8EQUBhYSECAwNF0yAIQjIRda5pP7tdx2DgwQcflFoCmjZtirFjx2L58uWymF8oT5s2jyAjoxRt25rmSTKEAMbESKOLw6mOmTNZnfKyMqC09O71Clh+zWo0GsTFxWHz5s149dVXbSO0FixevBgAMGHCBGO6fk9PTyklVYndDiUBrC5DUPkrRkLeeustCIIgO8OQmAhMnOiMI0fYgjYAcHNjuWakypXE4VSHWg2sXs3Sa/fvz65bV1e23dKopLy8PAwcOBCbN28GAPTp08fGqqvnxo0bWLduHQDglVdekVSLJdi1YXjwwQclDw01EB4ejtjYWNnMLxgoHwu+di3bVlzM3HN7XyjEaZjMnMle3d1Z1Jy7OzMIhu01ce3aNfTu3Rv79u0DwIpq9erVyzZiLWTFihUoKSnBE088IasaDVVhl4bB4045pw4dOkisxJRp06bJzmMwxIIbvAVPT7aOQafj5T058uSXX1gZzxUrgNxc9qrVAneiwqvlwoULiImJwYkTJ4zbOnToAH9/fxsqrp7S0lIsXboUAPD6669LpqM22KVhaNKkCQB5zC+Up0uXLujbt6/UMiqhVgPr1wP+/sALL7A0A2VlQLNm3GvgyI9mzcxvb9my+uOuXLmCQYMG4eLFiybbpR5G2rx5M1QqFSIiItCvXz9JtViKXRoGX19fNG3aVHaGARC3spWlGCbybt5kw0orVjDDcPIkn2PgWA8iwsGDB+udK6xjRzb0GRLCHmpUKlY/pKb0LaGhoThz5gymTJlisl1qw2CYdH711VclD6+3FPtQWQFBEPD666+jXbt2UkuxC7ZtY8NJFXFzA3r0EF8Pp+Hx119/oVevXjhw4EC95v0ME8/33Qf8+y97qKlN8rwzZ85gwYIFAIA5c+bAwcEBPXv2rLOe+pKcnIxDhw7By8sLY8eOlUxHrbEkN7fcWnR0NBUXF1slP/m9QEyM+Xz29p7TniM9//zzDw0ZMoQAUFBQEBUUFNTrfEolUWBg3a5VvV5Pjz32GAGgCRMmEBHRF198US899WXs2LEEgN544w1JdRhAQy7UEx0dbc3P6p5BpSLy9iZq1Ig1X1/xCvVwGhaZmZkUHx9PDg4OxuJLy5Ytq9c5VSp2TcbHMwOhUhG5uhIlJFh2/IYNGwgA+fj4iFr8piquX79OLi4uBIDOnj0rtRwistww2OVQEqduJCYCrVoBEyYAw4ezyCRLQwA5HAC4desW3nnnHbRp0wYrVqyAXq8HwNLAGGpt1JWZMwEPD2DDBpb+IigIGDPGsjQYBQUF+M9//gOADSEFBATUS4s1sGaIam5urrgpPSyxHnJr3GOoPQZvwceHKCWFKCSE+YsKBfcaOJZRWlpK06dPNynRamibNm2q9/mrKuFpqO9cHdOmTSMA1KlTJ9LpdPXWUl9KSkooODiYANCvv/5ar3MdP36cunfvXu+/Kzc3t+GX9uTUDoO30KsXsHQpm9iLiADOn2dPasuWSa2QU56CggIUFxcbi0FpNBpj02q1CAwMvJNWXTycnJwwe/ZsNGrUCG+//bZx+0MPPYTY2Nh6nVutBjQa4MEHgdRU09+pVNWnhz9z5oyxJsoXX3whiyp81gpR/frrrzFp0iS88MIL9f67fv75Z8t3tsR6yK1xj6F2lJWVVTsBHRwsvqabN2+K32k1/Pbbb7LStGnTJnJycqr0ZA6Axo8fT/n5+ZLo+u9//2vUERERQQBo37599T5vfDzzYnv3Zj/X5CEYMDfhLAdiYmIIAC1evLhOxxcVFdHEiRONn/WBAwfqrWnQoEH3xuTziRMn6v1hWQu9Xk96vZ42bNggtRQjZWVlpNVqaerUqcZt8fFEjo7sP+/oSBQZSeTnJ95wkk6noytXrtDjjz9Oer1enE5roLi4mN544w0KDg6m3bt3Sy2HiIguXrxIoaGhJgbBz8+PNm7cKJmmrVu3mkw0b9++nZ544ol6n1elYkOahhYfb/k1+csvv8hqwpmIKCUlhQCQl5dXnQz4hQsXKCoqyvhZN2vWjMrKyuqlKTc3l5ydnRu2YXB1daVPP/2U+vXrV68Py1ps2rSJ7r//fnrttddIoVDU+59oDc6fP08PP/ww9ezZkwDQ5cuXSaUicnG56yk4OxMJAtHo0ZY/odUHvV5P48aNIx8fHwJA27dvt32nFvDTTz+Z3IAnT54seTh0YWEh+fv7GzX169ePMjMzJdVUWlpKI0aMMEYfabVa+ueff+p93vh4ZhC8vO7Og1nqNeh0Olq6dCl988039dZhLXQ6HW3dupW++uqrWh/7f//3f8bvR/nrsb6UlZXRgQMHGrZhMHxgPXr0qPcHVh9Onz5Nc+bMoSeeeMLkH6lSqSTTpNfradeuXTR37lwTTd988w0plUROTncNg5jrGfR6PaWkpJg8CUVGRspiovDo0aPGsMLy2tLS0iTVdfnyZVIoFLRw4UJZPGwQkU28vKomne+lNTZ6vZ4+/vhjs0OHhw8ftlo/lhoGu5581mg0kvYfERGB48ePY/v27SbbMzIyJEsHLggCFAoFPvnkE5Pte/fuRWrqOOh0lY9xdKw53UB90ev1OHbsGK5fv27c9vfff+P777/HmDFjbNt5DWRnZ2PJkiWVJnp/+OEHBAQEoGnTppLoIiIcPXoUkZGRkvRvDmtnM1arWbZfb2/guedYqKpGw1bl2/qalBOCIODtt99G37590atXL5TcKczesmVLdOnSRXxBllgPuTWUe6qTmsLCQoqOjrZ66F59SU1NpaZNmxo1NW/enNq315MgELVty57I2rRhr23bijOURMQ+r08++YS8vb0JAIWGhpJGoxGnc47sUCqJoqKI4uKYN7trFxtWat9evGtSLuj1eho8eDABoKioKHJ0dKRp06ZZtQ/cC0NJ4eHh1vzM6kxmZu1RVvcAACAASURBVCYFBQUZb8ILFiyQWhIRsQnMNm3a3NHVlARBX2Vkkthue3Z2Nr355pvk4uIim8+LIz48XctdlixZQgDI29ubrly5QgkJCZSSkmLVPiw1DHa58tlQj0HqoSQDzZo1w9atW42ZVTMyMiRWxGjZsiUOHTqETp06AZiKRo2KzO4nxlBSRfz9/TFv3jycPXsWmZmZKCgoEFcARxYcPMhqkAPAunUsi+qJE5ZlU7U22dnZKCwsFLfTO5w6dQpvvfUWAGDZsmVo0aIFPvnkE8kySAvMiNgXkZGRdOnSJbi7u+PGjRtSyzGyYcMGDB8+HMOGDcPGjRullmMkPz8fLVpcQV6e+bHqtm2BgQMtL7BuC4hINtX4OOLSpAmQkwO8/jrzFQTh7qsY12RhYSEWLlyIw4cP4+effxb9OtRoNHjooYfw999/4/nnn8eqVats1pcgCMlE1LnGHS1xK+TWoqOjacWKFdSoUSOruVjW4sMPP6SuXbtKLaMSGo2GoqL2UVCQ+eGkLl2kVsi5F0lJkW4oqaSkhL766ivjXNxff/1l2w6rQKlUEgBq1aqVzRcuoqFHJU2cOBG7d++WWkYlZsyYgfz8fKllVEKhUMDNrSfU6spPQ4IAREVJIIpzzzNhAhAQwBI6hoUBvXvb3lsgImzevBnTp0/H2bNnAQCxsbHo1q2bbTqshl9//RULFy6Eo6Mjvv/+e3h5eYmuwSyWWA+5NcPK56ysLNmsni2P3KNs2rdnC9vi41lEiL8/S2/Mk+lxxESlursKXyxvYe/evfTQQw+ZRBE6OjrSmTNnbNNhNVy/fp0CAwMJAH300Uei9ImGPPlsoHHjxrIcl1YoFFJLqJITJ1hJT2dnYNIkwMGBlfwsK+MpuDnioVYD3bsD7doBSiUzB0ol81wnT7ZNydnFixejX79+OFIhI9+ECRMQERFh/Q6rgYgwceJEXL9+HY888gjeeecdUfuvEUush9waT6JXd6Kiql79LEUyPc69iVJZtbdgy/muffv2mRQXcnNzkyTVSMXQVLHAveAxcGrP+fMwu/oZYNEhHI6tUatZ8Z3hwwFXV/beYBaUStvVIU9LS8OwYcOg1+vh4+MDAFAqlWjWrJltOqwCc6GpcoMbhnuM/HxTtz0+HvDyYmsZHPjVwBGBxERg7FjgyhWW/iIoiE02CwKwcGH1tRfqSlpaGvr27Yvs7Gz0798fe/bsgZ+fH6ZOnWr9zqpBo9Fg1KhR0Gg0GDt2LIYPHy5q/5Zit1FJnLqjVgPffMO+iPffDxQUMMNw/Djw++/Ao49KrZDT0CAiXLhw4Y630AanTjGDoFYD7dsDp04BtkpJVdEobNmyBa6urli9erXRcxCLd955B2lpaWjVqhUWL14sat+1QdIFboIgPAvgAwDtADxERMcsOa5z58507JhFu3LMMHkysH8/0LkzsHo1MwQ7drDfNWkClMtzx+HUmStXrmDv3r3Yu3cvfv/9d4SEhCA6+gCcnZ2xYMHd/SZPtl14alVGQQp+/fVXDBw4EI6Ojjh06BC6du0quga7WOAGZhAiAOwD0NnS4/jkc/2oLj8NQJSaKrVCjj2SmZlJ3333HU2YMIFatmxpEhLarl07ys7OrvLas0V4ampqKjVu3JgAUP/+/SWtsSFFaKo5YE9J9LhhEB9D1SxDhlVDTvyWLYk6dZJaHcfeyMjIoG7dupmtJxASEkJXr14VVY+cjEL5rKmPPPKITWuQ5OXl0datW6v8vaWGwW6mGwVBSBAE4ZggCMeysrKklmP3JCYCPj4sSglgY70AcOkSkJYGXLsmnTaO/RESEoLVq1dXql3h5+eHnTt3onnz5gDYdTZggG2vLzkNHwHA0qVLsW3bNnh7e2PNmjVwdHS0eh9arRaLFi1C69at4enpWf8TWmI96tMA/AbgpJn2dLl99oF7DKJS3XDS0KH3Xi58Tt0pLCykGTNmkEKhMPEU3Nzc6M8//zTZV6kk8vW13fUlJ0+BiOjkyZPk6upKAGj9+vVWP39ZWRmtXbvWOHQ3YMCAavcHH0riVIchHYGbm3njcK/lwpc7Z8+epUuXLlFRUZHUUozo9XrasmULhYWFGY1BXFwcjR07lpycnExqeqtURL17s5rOx48T+flZPwWL3IxCcXExdejQgQDQ2LFjrXpuvV5PO3fupI4dOxo/e0EQ6MSJE9Uexw0Dp1qUSiIXl6q9hnsxb1JWVpbUEqrkjz/+ICcnJ+Nq2YiICOrduzeNGDGClEolzZ07l1atWkWXLl0SRc/58+dNap23b9+e9u/fT0RE//3vf+m7774z2V+pZHNaUVF331vTa5CbUSCyXdbUo0ePUt++fSvN5YwePbra4/R6vX0YBgBDAGQC0AK4DmCnJcdxw2A5ZWVlZgvJVzeU5OhIlJBgO023bt2ijRs32q6DOvLKK6/QxIkTRZ8orYnc3Fzas2cPxcTEmJ3cNdx81q5da/Z/bU0qDht5eXnRggULqKSkxLhPxZugSkXUqBG7rry92UOHSmU9r0GORmHHjh3GBH1JSUlWO+/t27fp3XffLVeZkTVnZ2e6ePFitcdu3brVPgxDXVt0dLQsM5j+/fffUkswoaysjA4dOlTp6c2AUsnyI5kzDoGBttGk1Wrp0KFD5OLiQnv27LFNJ7UkLy+Pli9fTh9++CEBIIVCQW+++SZlZ2dLpikjI4OGDx9OrVu3rtIYAKDAwED64osvSKvV2lzTuXPnTIaNRo8eTSqVqsbjlEqigIC7HoPBU7CG13Dp0iXZGYWbN2/aNDRVo9GYeGsA6I033qj2mJKSEoqIiGjYhsHf35+WL19e6w/UVqhUKhoxYgS1bNmSrl27JrUcIiIqLS2l5557ju677z4KCwsza0ir8xoUCtsMJ82dO9c4JOLl5UXJycnW76SW7Nmzx+xNt1GjRvTxxx/T7du3RdeUl5dn1OHi4kLR0dEUFxdnom327NlUUFAgmqaSkhJq3769ybBRTahURD4+tkuvrdPpaOzYsbIxCkTsgeyzzz6jxx57zOqhqeWNgp+fH3Xo0IG8vLzoxo0b1R6n1+tp/fr1DdswAKDx48fX+kO1BdnZ2ZSQkGD8wi5ZskRqSUTEoiEMT1IAaOHChWb3M1TQcnFh9RkM8w4ODrYZTnr99ddNbr5NmjShc+fOWb+jWnDkyBEaMWIE+fj4VPlUvmTJElGeysvz/fffU3JysrHfbdu2kaurK02ZMkUyb+bKlSsmw0Y1oVSy+h+hoexBQ6k09RqsgU6nk41RKI+1h/UqGoWUlBRavnx5rbySBm0YXFxcqF27dhZ/GLZm+/bt5OvrSwCoR48eUsuhgoICUiqV5OzsbLy5+fv7061btyrtW10abhcX63oNGzduJG9v70o33pYtW1o0JGFL0tLSyM3NrZI2BwcHCgoKoqioKHr11VcpJydHMo379u2jjIwMyfqvC126mL+2eCnZ2mHOKBCxYavaeLQN2jBERkZSeHg45ebmWvyB2JpLly5RdHQ0AZDNl/fixYs0evRoEgSBANB7771XaR8vL/NfXIBVebP2k93x48fps88+o8GDB1OjRo2MN+AHH3zQrOESi6VLlxoje3bu3Empqal0/fp1m65SbcioVET9+xPFxbFhyfIhqtaOSJICW0/yl6cqo1AXGrRhiI6OpszMTMmHICpSXFxMCQkJNH/+fKmlmJCSkkIDBgwgd3d3s0/mKhWLFvHxYT/Hxd01Dl5etgtdLS0tpcOHD9PcuXOpf//+NGjQIFkOCXBqj2Ehm4eH+YcOe1wnc/XqVZo3bx7FxcVRXl6eKH1a0ygQ3QOGQc4cP35caglm2bNnD3399deVthvGfZVKNucgCKwBrBa0WE93JSUlkkz0cqyLSsWMws6d7DoyrLmyZoiqWKjValq0aJExVNjNzY3S0tJE6dvaRoHIcsMgadrtusLTbluXHj2AQ4eq/r2XF3D2rO3y5XMaFpMns9fCQmD9emDkSGDZsru/s1WKbWuRnZ2NH3/8ET/88AP27duH8vfINWvWIC4uzuYatFotYmNjsX37dvj5+WHPnj3o2LFjvc9rF2m369rk7jHYK4YIJUNzdhbfa+DYNwZvQaWqeo2MnIeRzp49S23btjUbnTZp0iRRNNjCUzCAhpZdlWN7JkxgldwMlJayV40G2L1bGk0c+8JQthMAiotZVUCFAkhIuGsaDh6UVmN1hIeH47fffkNwcLDJ9oceegjzRXBzbOUp1BY+lMQBwNIhN28OlJWZ/72vL5CTI64mjn2hVrNSsbduVf5dcDDw77/ia6otv/76K8aNG4fr5coY+vv7IyUlxZg63FaIYRQsHUriHgMHAHvS69ABcKjiisjN5TUaONWTmMjmDxIS2IOESsU8BJWKeZ1yvn40Gg2USiUGDhyI69evo2fPnkhMTIQgCFi3bl2DMAq1wpLxJrk1PsdgfWoq94n/b+9eg6Mq0zyA/990LiYBEjEiGBiQsBDuBNTaERAYhXgBVjKgKDjLEIIXUDubIEw5tTJU8QEwgiC4ikRY18FEUNmRosAZRVEIMIlhYibcLyYkwEjYCSG3bvq/H066SUOSbtLn9Okmz6+qq5Oc032eOumcJ+e9PC9ID8UbRTvm7FsoKND6pNLS3LcH8tyFoqIiDh48mIBW9G7p0qW02+0sLCz0yzKcRvYpXA8yXFXcLKtVe7SUJKKizI5QBKLycrJ7d+1RUXFtmdhA73R2OBxcs2aNayGdhIQE7t+/37XdZrMZPpHNn0mB9D4xhJp3ryICzcGDrQ9branRlv0cMsR/MYnA9/rrQFkZEB6uNSfl5wODBgHFxTc3xJkkKisrERkZiaioKOMCBnDhwgXMnj0b27dvBwDMmjULq1evRseOHV37hIYae3kMuOajJqTzWdxg+HDg8GEgIQEoLdX+36uuBhwOoEMH4NgxmdMgNBUVwD33aJ+NqCitj6GkBFi27Mb5CtXV1SgtLUVpaSl++ukn19dNH8899xxWrFhhyLrITk07mGNiYvDee+/hySefNOx4zTErKcg8BtFmrdVPAoxdxEcEF6tVa2L01HTkcDi4ZMmSZucHAGBoaKjhpfRra2v5yiuvuI45evRonjlzxtBjNsffzUdNQfoYhC+ur5+UknLtD17vqqsiODnXWggP1z4raWlaB3RsbPOfj59//pkPP/zwDUmhc+fO/Prrrw2NtaUOZn8zMymQkhiEj66vnyQjlMT1nGstNK2empZ243oLhYWFTE1NdXXyNn0kJiYaWgzTUwezP5mdFBoaGiQxCN94Gr5qschdQ3vX2mfkgQcc3LJlC8eMGeOWCCZMmOD62YQJEwwtnX/+/Hk+/vjjrmPPmjXrhvWo/cXMpFBSUsLMzEx26dJFEoPQx/V3CyEh177+9a/Njk6YpbycHDtWa0aKjdXuELS5DFf52mtr2KNHD9cFOTo6mvPmzWNJSQlJctasWXzppZdos9kMi2/Hjh2udZdjYmKYk5Nj2LE8MSMp2Gw2Zmdn84EHHrj+Lk0Sg/DdoEGt3zUIc505c4YzZ87k4sWLuXnzZubn5/uldLnVqjUhWSxaM1JMjI3PPPMftFhWE8giAPbu3ZsrV668YQGmQ4cOGRZXoHQwO5l5p7B3716OHz9eEoPQV3n5tXUZWnq05W/c4XDoH2w79uqrr97Qdh8fH89x48bx+eef55tvvsnvv/9et+M5ZznHxTma/UzExhbxiy++8OsqZ6S2zvmQIUNM72B2MrtPoaSkhP3795fEIPRltZJ33dV6YkhMvPn33b17Nz/44APd49XTjh07+N1335kdhpuamhoWFRXxs88+4/Lly5mWlsZx48bx7rvvbnEYaHx8PN944w1dVxx7/vlaDhv2I4EGAv9NIIuRkb0ZEVHNb789qttxvBVIHcxOZieFTz75hB06dHB18MfGxjI2NlYSg7/Z7faAXB9448aNbW7L9aZ+EnBzndC1tbXcuXMnAXDBggUBcc6qqqq4a9cunjx50hXPwYMHCYAjR47ktm3b/P7f76VLl9wu/t27d2/x4t/co3///szOzmZ9fb1uMf3975fYrVsJgUoChwjUsmPHjxgVVcMjR/5pSj2kqqoqTpw4MSA6mJ3q6+tNSwo2m40ZGRmu8zF16lRWVVVxwoQJHD169K2dGHr16qXnufRZQ0MDMzIy+OGHH5odipvFixeze/fuXLBgQZvfw5vk0K2b98lh/fr1tFgsrg/u5MmTTf9D3rNnjyue8PBwJiYmcuLEiQwJCTH0Qtuaixcv3nCxt1gsTEhIYHJyMufPn8+33nqL27dvZ0FBAcPDww1PZC+/bCdQ25gUbM1+FvxdD8lut3Ps2LGMiYnhxx9/7N+Dt+Dq1at84YUX/J4UKioq+OCDD7o+K1lZWa5m2/z8fGZlZd3aiSEqKuqGDi0z7d+/n7fddht79uzJuro6s8MhSV6+fJn9+vVzXVS2bt3q0/slJZGhoS0nh549vUsOzbWHDxkyhKdPn/YpPl/s2bOHo0aNYteuXT3+Jx4fH88VK1b4ZTH4zMxM18X/6NGjbGhoaHa/3NxcTp482dCmL2e/wj33/DMgEkJTZWVlpnYwN+fq1at+/Uzv2bOH3bp1IwB27dqV33zzTbP73dKJISkpiWfPnm3zSTTCsWPHOH36dK5atcrsUEiSBw4c4OzZs53tiuzYsSOPHDnS5vfzVCZDKc+lMurr65mamtrsBbdLly7cu3dvm+PTS1VVFQsKCvjiiy+2mByUUhw6dCi/+uors8MlqfU9GM1Zebe8XBuN5Pxdl5drE9tkTkvzLly4YOj7OxwOrly5kqGhoQTAUaNGsby8vMX9vU0MUkRPZ6dPn0avXr3MDsOloaEBu3btQk5ODk6cOIEvv/wS0dHRbXovZ8G03/wG+MMfgPh4LS0AQKdOWqG9H35oufrqkSNHsH379huKqJ1rXMElPDwcGzZswMyZM9sUn14qKysxaNAg1NXVoV+/fujbt6/bc58+fRAZGWlqjP5UUQEMHKhVS12+HLhyBdi69Vr11PT0GwvmtUe1tbXIz89HXl4e8vLykJ+fj9WrV2PSpEmGHK+6uhpz5sxBTk4OACA9PR3Lli1DWFhYi6/xtoieJIZ2pLa2FleuXEFcXFybXp+eDuTmaitytWTwYK00982or6/H2bNnUVpairKyMowfPx5dunRpU4x6uHjxIhwOB+Li4qCUMi2OQJGerj2vXAmMGtV8afaRIwN7LWe9kcSJEydcSSAvLw+HDh2C3W4HAFgsFuTm5iIlJcWQ4x8+fBgpKSkoKSlBdHQ0srOzvaoQK9VVhe48dUT36KE9/+UvZkcq9NTS7z3QFt7xp5qaGlqt1mabGkNCQrh582bDjn39UNTi4mKvXwsvm5JkzWfhte++0y4JM2Y0v720VHt++mn/xSSM5/y9X/9oT3cI14uMjMTLL7+M4cOHu/1cKYWNGzdi+vTpuh/TbrcjMzMT06ZNQ3V1NaZOnYoDBw5gwIABuh9LEoO4aZ9/3vr2CxduvjlJBI6KCuCRR4BDh7Tnxi4g0ejSpUvIzMxEYmIiCgoK3LatX78ezz77rO7HPHfuHB566CFkZWXBYrEgKysLubm5bivO6cqb24pAe0hTkrk8jVCKiiIHDzY7StFWVqs2NDUpSXv296S1QFVfX89Vq1axc+fOrmajGTNmMDMzkwC4bt06Q47r7VBUb+BWHq4qicF8zuGLd9/dcoIYO1aGMQYb53yFnTu1Ici7dslwVIdDKyGekJDgSggPPvggDx48SJLcsGGDIcPUb3YoqjckMQhDeTMjOizM+4lvIjCkpWm/s6YL7phR6iJQ5OXlceTIka6E0LdvX27bts2tEKQR1WwvX77Mp556ynXc9PT0Fic43gxJDMJwVit5551kdHTLycGbiW8iMDgnr3XqpD3/8IN2t1BY2P7uGk6ePOl2YY6Li+Pbb7+ty8XZk6ZVUaOjo3VdS8LbxCCdz6LNDh4E/vEPbcJTSyIigE2bpAMz0FVUAPffr309caI2Ya1rV20y46ZN2vPy5ebG6A9NO5ZzcnIQERGBhQsX4vjx45g3b16rk8f0sGXLFtx3330oKSlBYmIiDhw44NX8BL2F+v2I4pbhHK6Yng588w1w773Axo2AzXZtn7o6wGIBXn8dePddU8IUraioAH77W+AXvwDOntXu8/74R21bt27u+44caXw8xcXFyM3NRV1dHerr61FXV+d6OL93DttMTk7W7bgNDQ145513sGTJElRWVgIAZsyYgaVLl6Jnz566HacldrsdixYtQlZWFgBg6tSpyM7ONm7UkSfe3FYE2kOakgKLN/0NSrVtUR9hLKtVW5ozPFxrQoqN1ZqMzKqBdPXqVc6ZM6fFOlUJCQnct2+fbsfz1LHsD61VRdUbpI9B+FN5uXZxaS05DB9udpSiKecIpGee0ZboTEtz72j2d6dzZWUls7OzmZyc3GxSSE1N1bWj15uOZaPt2bPHVdXX16Go3pDEIPzKatXmL3i6c5C7hsBhtWrJ4PbbW16pz+iyF85k8OijjzIsLKzZhHDHHXfw008/1e2YZnYsOxkxFNUbkhiEX3m72tvgwWRycvsa4RJIysu1819YqDUbxcdryaFp05HRdwotJYOQkBCOGzeO69at4+9//3sCYHJysm4XzMrKSmZkZLgWNYqIiODChQv9vraLUUNRvSGJQfidt8khOlrmN5il6azmpCStCckfdwreJINz58659l+4cCHXrFmjS7NOSzOWzVgcysihqN6QxCBM45zfcOed1y5ASUlkSMi1C4/MbzBe0/W0y8u1megxMWRBgX8Sws0mg6aqq6t9Pn4gdCw35UtVVL1IYhCm8Xad6JAQ6XMw0u7du9mnTx+mpKRwxIi/UikH+/Wro8PhcCVrUt+mI1+SgZ6a61j+/PPP/dqx7GSz2ZiRkeGKZdq0aaatcy6JQZjOatUuPlYrmZLSfIKQYnvGqaqq4qRJkwh0JVBL4CqBWkZF/ZIWSxUjIq5wxYoPuXfvKZ+GpgZKMiADo2O5KX8ORfVGUCQGACsAHAbwNwCfAYj15nWSGIJD63cODoaFaV9/8onZkbbu8OHDbs0ygaCqqorFxcXcuXMn33//fS5evJhz5sxhcnIyBw4cyE6dOjUZ2fMuARuBDwnUEDhE4E126/YxH3vsMBsaGm76riGQkoEznkDoWG7K30NRvREsiWECgNDGr5cBWObN65Kc98DCo1OnTpkdAmfMaD1BREaaG19tbS1PnjzJurq6ZrevXbuWvXv3ZlZWFisrK/0SU01NjdtFPzU1lcnJyRwwYMB1F/2WHxEREezSZWjj3UKtx+Y9T/0LdXV1AZUMSK2ZJlA6lp3MGorqyYYNG4IjMbgFAkwB8JE3+3bo0EHfM6aDTZs20WazmR2Gmy1btrBnz548duyYqXG0VmTPmRyGDjVvlNK+fftcF5W77rqLI0aM4BNPPMH58+dz2bJlXL16tWt7VFQU586dy6KiIkNjOn/+vMeLfkJCAseMGcOZM2dy0aJFXLt2Lbdt28aCggJeuHCBZ886GBNTRcBGpf6Po0YdYFHRz4yIaFvHf319PWNjY01PBk3Z7XYOGzbM9I7lphwOB6dMmUJ/D0X1pHHdCK8Sg6J2UTadUupPAHJI/k8L2+cCmNv47SAAP/ortnYgDsDPxr190jAgxOJ5P1sDcOI40L07cPIUYLMbF5NhDD6X3goPAxITgbDw5rfbbcChYFhnL0DO5y2jH0mPBZgMTwxKqT8D6NrMptdIbmvc5zUA9wJIoRcBKaX+SvJefSNtv+R86kfOpb7kfOrL2/NpeHVVkg+3tl0p9e8AJgJ4yJukIIQQwlimlt1WSj0CYCGAMSRrzIxFCCGExuyFet4G0BHAl0qpQqXUf3n5uvcMjKk9kvOpHzmX+pLzqS+vzmfAdD4LIYQIDGbfMQghhAgwkhiEEEK4CdrEoJRaoZQ6rJT6m1LqM6VUrNkxBSul1DSlVLFSyqGUkqGBbaSUekQpdUQpdVwptcjseIKZUipbKXVBKSXzlXyklOqhlPpaKVXS+Hf+iqfXBG1iAPAlgEEkhwA4CuB3JscTzH4EkALgW7MDCVZKKQuAtQAeBTAAwNNKqQHmRhXUNgJ4xOwgbhF2ABkk+wP4VwDzPH02gzYxkNxF0jkzNg9AdzPjCWYkS0geMTuOIHc/gOMkT5JsAPAxgH8zOaagRfJbAJVmx3ErIFlBsqDx68sASgDEt/aaoE0M15kNYIfZQYh2LR5AaZPvy+Dhj08If1NK9QKQBGB/a/uZOsHNk5sop2EH8JE/Yws23pxL4RPVzM9kLLgIGEqpDgC2ArCSrGpt34BODFJOQz+ezqXwWRmAHk2+7w6g3KRYhHCjlAqDlhQ+Ivmpp/2DtimpSTmNyVJOQwSAgwD+RSl1j1IqHMB0AP9rckxCQCmlAGwAUELyTW9eE7SJAW0vpyGuo5SaopQqA/BLANuVUjvNjinYNA6EmA9gJ7TOvVySxeZGFbyUUpsB7APQTylVppRKNTumIDYSwLMAftV4rSxUSj3W2gukJIYQQgg3wXzHIIQQwgCSGIQQQriRxCCEEMKNJAYhhBBuJDEIIYRwI4lBCCGEG0kMQggh3EhiEEIHSimLUuqtxnr3RUqp3mbHJERbSWIQQh+/A3CS5EAAqwG8aHI8QrRZQBfREyIYKKWiAUwhOaLxR6cAPG5iSEL4RBKDEL57GEAPpVRh4/edAfzZxHiE8Ik0JQnhu2EA/pPkMJLDAOwCUOjhNUIELEkMQvjudgA1AKCUCgUwAcCfTI1ICB9IYhDCd0ehLbIOAOkAtpM8ZWI8QvhEym4L4SOl1O3Q1hyPg7aGwFySteZGJUTbSWIQQgjhRpqShBBCuJHEIIQQwo0kBiGEEG4kMQghhHAjiUEIIYQbSQxCCCHcSGIQlkvhmwAAAApJREFUQgjh5v8BXCuvneUayJ0AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:09<00:00, 2.30it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXlcVPX+/19nZtg3UQHBfUE0sERcw9TKytKbaXW9aaYtmKUlZGlqaZlW2k39WXndvrmj6c0yr5aVuVsCIoi4oSKiIAiI7MvMvH9/nM4wAzPDmWFmPgc4z8fj82DmzFlec4DP+3zen8/7/eaICDIyMjIyMgIK1gJkZGRkZKSFbBhkZGRkZAyQDYOMjIyMjAGyYZCRkZGRMUA2DDIyMjIyBsiGQUZGRkbGAOaGgeO49hzHHeI47gLHcakcx81grUlGRkamOcOxjmPgOC4QQCARJXIc5wXgNIBniOg8U2EyMjIyzRTmIwYiyiaixL9fFwO4AKAtW1UyMjIyzRcVawH6cBzXCUA4gFNGPpsCYAoAqFSqiAceeMCh2syRkZEBIkK7du2gUknjlmZmZkKj0SAwMBAuLi7MdGi1WigUCmi1Wly8eBEuLi7o3LkzFAr7PpMQEfLz85GdnY2qqioAgIuLC5ycnFBeXg6NRqPb18PDAz169GjwNSsqKpCXl4f8/Hyo1WoAgKurK/z9/aFWq6HRaKBWq3VN/31tFAoFwsPDLbo+EaGwsBB37txBcXExevToAQ8Pjzr7qdVqVFdX1/uzuroatT0KYWFhJv+etFotCgsLkZ+fj6KiIgBAr1694OzsrPtc+N6mmrnPtVqt0et26dIFvr6+untQVFSEgoICFBYWGhwTFBQEjuOg1WpBRNBqtXVa7e2134slICAAAQEBKCwsxN27d1FcXFxnHycnJ3AcByLSNeE76L+3FZ6enigpKckjIr/69mXuShLgOM4TwBEAi4lot7l9VSoVGftnYkXr1q2Rn5+P27dvIyAggLUcAPw/QXZ2Ni5duoTu3bsz0aDVajF27Fj88MMPmDRpErZs2YIuXbogISFB949sa6qqqrBp0yYsXrwYGRkZJvfz9vZGWFgYwsLC0L9/f7z66qs206BWq/HLL79gw4YN+OWXX3DlyhUEBgaa3J+IUFJSgoKCAl0rLy/HqFGjrNZw9epV5ObmYtCgQVafAwBKSkqQm5uLnJwc5ObmYsSIEaIeNLKyshAbG4uAgABMnDixQRoEqqurUVRUhHv37qGwsFD3s1+/fmjXrl2d/SsqKnDgwAHs3LkTP/30ExYuXIiYmJgGaVCr1SgvL6/TKioqDN5369YNvXv31h1XUFCA//3vf9i9ezcOHDiAiooKzJ49G59//rnZ62k0mjrG2trXrVu3xvDhw08TUd96v6i+dWLVADgBOADgHTH7q1QqkgparZZUKhUBoPLyctZyiIgoKyuLAJCnpydpNBpmOn755RcCQP/85z8JALm5uVFycrJdrqVWq2nt2rXUsWNHAmC0cRxHmzZtohs3bpBWq7WLjtrk5uZSRkaGQ64lY5qysjL6888/WcsgIqLi4mLatWsXTZ061eF9BoAEEtHHMh8xcBzHAdgEoICIosUc4+zsTIJ7gDVlZWXw8PCAk5MTKisrwX8dtuzfvx8jR47EQw89hKNHjzLT8dxzz+H777/Xvd+2bRvGjx9vt+uVl5fjxo0byMjI0DX99zdv3sSIESOwd+9eSfyeZGQcDcdxokYMUnCIRwKYCCCF47ikv7fNJaL9pg6Q0j+14Ev18fGRjK7ExEQAQJ8+fZhpyMnJwZ49ewy2RUdHIy4uDv/+97/tMhfj5uaGkJAQhISEGP1crVYjKysLVVVVTOddZGSkDnPDQETHAVjUo0qlAwaAe/fuAeANg1SQgmHYuHFjnUnVZ555BosWLWI2Qa9SqdChQwcm15aRaUwwNwzWIEXD4O3tzVhJDYJhsHRVi63QarVYt26d7r2fnx/Wr1+Pp59+mokeGRkZy2Aex9DY0XclSYH8/HxkZGTA1dUVPXv2ZKLh0KFDuHr1KgBg1KhRSElJkY2CjEwjolEaBimOGKRiGM6cOQMAuP/++5m5bNatWwd3d3esWbMGP/30k2SW8MrIyIhDdiU1EKm4kg4cOABvb2/m8wt37txBVlYWkpKSEBwczESDjIxMw5ANQwORiitJq9ViyJAhaN++PQDA2dkZixcvxsiRIw0CbRyh448//pBMBLiMjIzlyK6kBiIVV1JgYCDUajXS09MBACtXrsSOHTvQq1cvh+oICAiQjYKMTCNHNgwNRCqupKCgoDrbFi9eDKVSyUCNjIxMY0Y2DA1EKq6k1q1bGzypDxw4EP/4xz8YKpLJzgZGjABu32atREbGMmTD0ECk4kpSKBRo06aN7v2nn34qqfvUHFm6FIiL439ai2xcZFggG4YGIhVXEgBdBs/hw4fj4YcfZqymeZOdDWzaBBw8yP+0tmO3hXGRkbEU2TA0EKm4koAaw/Dpp58yViKzdCkwaRIQHg689JJ1HbutjIuMjKXIhqGBSMWVBPAT0GPGjEG/fv1YS2kyWOPKETr0WbP497NmWdex28K4yMhYg2wYrOTWrVsA6rqSWKYxb9euHRYtWsTs+k0Ra1w5Qocu1OYJDLS8Y7eVcZGRsQbm9Riswc/Pj+7cucNUw+jRo9GlSxesWbMG5eXlWLduHX799Vds376d2RLRnJwcOf2EDcnOBkJDeVfO8OFAaiqgN79vksGDgRMn6m6PjASOHxd3baHQ2PLlhts4Dli2TNw5zKFWq5GRkQEnJydmGWeJCLm5uUhNTUX37t2NVmFjARFJ4uHTHjSmegwWI4Vf2sCBAzF37lzd+6ioKMycOZNp3IBsFGyLMVeOmE5ZTOev0WiQnZ1tsjOMj+eNy4oVhtsjI0UI/5vq6mpcv34dV65cQULCLaxfH4lu3RYhMzMe6enp8PHxwdmzZ8Wf0Er0DcD58+eRmpqqe52fn4/evXsjLi7O7jqMUVVVhZSUFMTHxyMhIQGJiYnYsGEDpFBTPi8vD8ePH8d9993n8PK8smGwkoceeqjONlvVtpVhj+DKSU3l38+aBYSF8T/FjBr0qaiowLlz53DmzBkkJibizJkzOHv2LP7zn/9g0qRJRo8RO7IwRUJCAqZNm6bX4S4DEIAbNyIAxAIAhg4ditTUVKjVarRr1w4Khe09y4cOHcL06dNx/vx5k/t0794dW7duRadOndC5c2e0a9fOLtHzGo0GFy5c0BmB+Ph4JCcnQ78a5MSJExEaGmrza4shIyMDx44d07ULFy6gW7duSBX+CB1Io3QltWnThm4zdrZWVlbCx8cHlZWVAIBevXo55OlLpmEQEX766SfcuXMHr732msn9GuLKuXv3LrZs2aIzAufPn69TtKhdu3bYsmUL2rZti6CgIHh4eFj7lUxCRPjtt9+wYMFq/PXXegCPAvgdQCiAHIN93d3dERwcrKuAJ7Tu3bs3eCl2RUUFYmNjsWzZMlGdnFKpRPv27XWGovbPwMBAq0bm58+fx8qVK7Ft2zaUlJSY3I/jOLRq1Qr+/v4ICAjQNVPvXV1dLdYCAOnp6Thw4IDOEGRmZtbZZ8CAARg6dCh8fHzg7e0NHx8fk6+dnJzqvaZYV1KjNAyBgYGUnZ3NWgaGDBmCY8eOAQCWLl2K9957j7EiaaNWq5nmUTp69Cjef/99/Pnnn9i/fz8efPBBJCYmguM4DBs2zGDfhs4TnD9/HqtXr8amTZt0S5rN4e3tjaCgIAQGBiIoKAhBQUH49NNPbXK/YmKA7OwslJVNxd69DwMgADMxYcIEXL9+HZcuXUJeXp7J49u0aaMzFLNnz0aXLl2s0kFE+P3337Fs2TL88ssvuu0zZ85EVlYWrl+/juvXr6O+/20nJyd07NhRZygmTZqESAt8bCUlJdi+fTvWrl2LhIQEg8+8vb1F/b5qH1PbWDz22GMYM2aM2ePKy8uxd+9ebNmyBb/88kudhwdLcXV1NWs4evTogTfeeKPpGgZvb2+y9JdnD+bNm6eLMJ43bx7ee+89SQS6AcBnn30GFxcXvPjii/D392emIyEhAaGhoXBycsJTTz2Fvn37YtGiRXZxW5ji7NmzmDNnDvbvrykj3qFDB9y4cQMAMGzYMBw6dMgu1y4pKUFsbCxWrVqF5ORk3fbu3bujVatWyMrKQlZWFqqrqw2O8/T0RHFxcYOvL0ygp6byq6P++OMCnnyyHaqrQ7B37zqMHDkSAFBQUIBLly7h0qVLuHz5su51Wlqagavl4sWLJmtqW8L58+exYsUKbN68GTt37jQo5FReXo4bN24gPT0d169fr/Oz9sKTbdu2Yfz48VbpSExMxLp167Bt2zYUFxdj7dq1mDx5MvLy8pCTk2PQcnNz67zPzc2FRqOpc9533nkHX375pWgdd+7cwY4dO7BlyxbEx8frtr/wwgsIDQ3FvXv3cO/ePRQVFdV5XVRUhKKionpXRA4dOhRHjhxpuoZBoVCQVqtlLQMHDhzAiBEjoFQqodFokJeXh1atWrGWBa1WCz8/PxQUFCAtLQ3dunVjpuXZZ5/Fk08+iZSUFKxcuRKtW7dGcnKy0aR/tiY9PR3z58/Htm3bjP7TODk54YEHHsCwYcPwxRdf2FULEeGvv/7CqlWrsHPnTjz44IM6Y6TValFQUKAzEllZWSgvL8e0adMafF1TLrGiokKMGxeHxx9/3OzxGo0GGRkZOkMxbdo0US4LseTm5iItLc3iJ/6MjAydoRg5ciQ6d+7cIB0lJSXYsWMHkpKS8PXXX4s+Tvjd1TYc4eHhGDJkiFVaLl68iK1bt2Lr1q247777DB5ozOkoKSkxajiE14GBgXjxxRdFGQYQUaNrCoWCpMC9e/dIoVAQAFKpVKTRaFhLIiKi5ORkAkBt27YlrVbLTEdGRgYpFAry8fEhAOTk5ERHjhyx+3VzcnLorbfeIicnJwLvN9FrbQj4mcLChlN5ebndtRgjNzeXlixZQoWFhXa/VmQkEVC3RUba/dIyDUSj0dCxY8eoqqrKZucEkEAi+thGuSpJcENotVqHuiRq4+3tjYiICMTHx8Pf35+pFn0OHz4MgHeRsFzBtWbNGmi1Wl0Q4D/+8Q907NjR7uvEfX19MXv2bEyaNAk5OTm4ffs2bt++jZycHPz88+NIT38Qt27dxurVqxEdHW03Habw8/PDLCFyzc40dHWTDDsUCgUGDx7M5uJirIfUmlKppEmTJtGhQ4dsZkmtZf369QSAwsPDWUvRMWbMGAJAa9euZaahvLycWrduXeeJffDgwZSZmclEU1YWka8vUWIiUcuWRNnZTGQ0WrKyiJ54Qr5vjRmIHDFI4xHXQjQaDfbs2WORX9Je+Pn5AZBOcJlWq8XRo0cBoM5KG0eya9cug5Uubm5uWLFiBY4cOcIswlXOPdQw5EyvzYdGaRgA3i1hy0kwa8nJ4deDs1z5o09qairy8/MRFBTEdNL5q6++0r0ePHgwkpOTMWPGDGbuNjn3UMOQM702LxqtYRg7dixrCQBqDINURgzC/MLQoUOZzS/ExcUhPj4ebm5uWL58OY4cOYLg4GAmWgRskdiuOSOPtpoXjXLyGUC9y+wchVQMw/r16zF69GgcOXIEAFs30tdff43IyEhs2LCBuUEQsEXuoeaKLdODyDQOGuWIwcnJCe7u7qxlAODXYQPsDcPZs2cxYMAA/PHHHwCA0NBQ7N27F+Xl5Q7VUVJSgkGDBklilKDP8ePGFm3Kq3bEII+2mh+N0jC4uLiwlqBDKnMMnp6eSE9Px927dwHwfv3vvvsObm5uDtfxxhtvMM0yK2Nb4uP5kRbH1bQVK/iJaJmmSaN0JVmbtMoeSMWV5OnpWef9UvmRTsYGyKOq5kejHDFI6WlUKobBy8vL4P38+fMdknZCRkam6dEoDYNUIoyrqqpw9+5dcByH1q1bM9WiP2IICQnBjBkzGKqRkZFpzEijh7UQqRgGIctj69atmaaTBgwNw8qVK+Hs7MxQjYyMTGNGGj2shUjFMEhl4hmocSWNGTNGMkt5ZWT0yc4GRoyQg+MaA9LoYS1ECqU9AenMLwD8iMHV1RXLbFEpvhEidzrSR06p0XholIaB9Yjh1q1bKC8vl5xhmDNnDjp16sRaChPkTkfayCk1GheyYbCC27dvo1evXvjpp5902z777DPs3r2bmaYOHTo029KicqcjfeSUGo2LRlnBLTg4mNLS0phdv6qqCl5eXgYlD52dnXHr1i3mq5OaI/pVymJi+ACsZupRkyS1y4tmZ/MpNVJTgYAAQmZmJrRardGm0Wh0r7t06QIfHx+HaicilJaWoqSkxKARER566CGHajFHaWkp3N3d63WzcxwnqoJbowxwYz1icHZ2xgMPPGBQm3Xs2LGyUWCAnMfHcqqrq7Flyxbk5eVBo9FAo9FArVbXee3i4oIPP/ywwdHz5lJqLFvGITU1Fa+//joyMzNNnmPEiBHYs2dPg3SIIS8vD++88w5+++03lJSUoLS0tE5ZWI7j8MMPP9hdCwBUVFQgIyMD2dnZyMrKMvip//qVV17BitqJwBqCmKINUmshISE2KlthPW+++aZBARopFA1qjkRH8632tpgYccdrNBqm5U+1Wi3l5eXRX3/9Rdu2baOFCxc6pJDRrVu3dAWdjDWlUkn79u2zybXElBctKiqiadOmGdWiUCho9erVlJubaxM99aHRaGjDhg3k7+9vVE9wcDBt3brVIb+niooK+uqrryggIMDk78rf359SUlJElRaGyEI9zDt5a1rPnj0turn24NtvvzX4Q2HZuTRnGlLTOD4+nkaPHu2w392pU6do3bp19P7779Pzzz9Pffr00dXDFtrkyZMdokXg+++/p8DAwDqdjbOzM40aNYpWrVpF6enpDtNz7NgxCgkJMdoBchxHAwYMoIULF1JCQoLda6wXFhZSdHQ0KZVKk51y165d6ZVXXqHNmzfTjRs37KalpKSEPv30U2rRooVJLZ6envTQQw/RjBkzaNOmTZSSkkLV1dUG52nShiE0NLTBN7qhpKSk6H4hX3zxBWs5ksZRT3piyc/Pp6lTpxLHcTRixAi6efOmQ66bk5NDc+bMIW9vb5P/3IMHD6a3336bVq1aRRUVFQ7RdffuXYqKijKpCQD16NGDYmJi6MqVK3bXU15eTnPnztV1yM8++yw9+uij5OTkZKCpTZs29PLLL9OJEyfsqiclJYWGDRumu+57771HI0aMIE9Pzzr3qXPnzvTyyy/TTz/9ZBctBQUFNGfOHHJ3d9dd8/7776egoCCjvzdXV1caMGAAvfHGG7Rp06ambRg6depky3ttFWq1mtzd3cnZ2ZlWr15Nv/zyi8P+kcWwceNG+vnnnyWh6ZFHHqGCggKaMWMGbd68mZkOjUZD69evp1atWhn884wcOdKhOu7evUuLFi2qo0O/ubi4kFqtdqiuQ4cOUXBwMAGg//u//6O1a9fSmDFjyMvLS6crPj7eYXrOnDlD4eHh9NFHHxER727avXs3vfbaawYd4Zo1a+yuRavV0o4dO6ht27a0d+9eIiKqrq6mU6dO0ZIlS+ipp54yuE+vv/66XfVkZ2fT9OnTycnJiRYsWKDbtn//flq0aBGNHTuWOnXqZPA31b9//6ZtGFQqla3ub4MYPHgw/etf/yJXV1cCQIWFhawlERFvtFq2bEkA6MKFC0y1JCYmEgB68MEHdR1eRkaGw3WcPn2aBg4caLQTdrRhECgpKaHly5frOjlvb2/avXs3ffbZZzRnzhwmmsrKymju3Lm0fPly3bbKyko6dOgQffjhh3Z339SmurqaTp48WWe7VqulM2fO0OLFix024iMiKi4uppSUFKOfVVdXU1xcHH3xxRd0+PBhh+i5du0affXVVyY/z8/Pp99//52WLl1K69evb9qGwcXFxaqbaGtiYmJo165dBIB8fX1Zy9Fx4sQJAkBdunRhPvcxdepUg0542bJlDr1+QUEBTZs2jRQKhcmn85dffpnpfaqoqKC1a9dSly5d6NSpU8x06FNWVsZagowdEGsYGmUcg7u7O82dOxfz5s1jmh4jPj4e1dXViIyMRJ8+fXD69GlmWvSZN28ePv30U0yfPh1fffUVMx0lJSUICgpCcXGxwfann34asbGx8PDwsLuG0tJS3L17F2VlZSgtLTX5c8yYMejYsaPd9ZhDrVYjLy8PbeR1tjJ2olHFMXAc9y2AUQByiSisvv3Ly8uRmZnJPGdSv379EBsbCwCSSkWxf/9+AMDIkSOZ6vjuu+/qGIW33noLn3/+ucNKs3p4eDjEANkClUolGwWBbdugnj0Pils3oG3XAarPFwMTJrBW1WyQSkqMjQBGWHLAuHHj7KPEQq5fvw5AOobh1q1bSEpKgpubG4YOHcpUy5o1a3Svg4KCcODAAaxcuVIy9brtQX3J/ORkfyLYtg2YMgWqWxlQgKC6mQFMmcJvl3EIkjAMRHQUQIHY/TmOw5AhQ+yoSDzp6ekAgM6dOzPVUVDA376ff/4ZAPDoo486vN6zPmfOnNFFhj///PNISUlpFunA60vmJyf7E8G8eUBZmeG2sjJ+u4xDkIRhEAPHcVM4jkvgOC5BpVIxL4wjIJURw/Lly7F69WqdG+mpp55iqmfdunXw8fHB1q1b8d1336Fly5ZM9TiC+pL5ycn+RHLjhmXbZWxOozEMRLSWiPoSUV9vb2/WcnRIZcQAAG+88YYu42tRURE+/PBDlJSUOFxHSUkJsrOzcfbsWUyYMIH5XJAtMecKqi+DqNgMo83d3aQO6mB8e1vj22XsgJilS45oADoBOCdm3/bt29to8VbDUKvVumjM4uJiplrmz59fZxnm/PnzmWgpLi62+Xr3rCyiJ54gys626WktJjqayNe3bi6mrCx+e1ZWzfuWLWv01ve5mGs0FzaP2EqVKnfSz3FSqXKnLSO2spbW6IHI5aqNZsSgj1KpZC0BAJCVlYXq6mr4+fkZ1FxmQe17ct9992Hu3LlMtHh6eto8A64UfPPmXEHmMoiK+VzMNZoLa4onYLJ6La6jI7TgcB0dMVm9FquL5VVJDkOM9bB3A7AdQDaAagA3Abxqbv+uXbva3JJaw9GjRwkA9evXj7UU+uSTTwySjRmLFm2sCE/biYmmn7IdgX4m19oZXOtL5ic22Z+5a8jINBSIHDFIYgaXiF6wZH+pTDwL8wusJ54BwxoVb7/9NgYNGsRQjW0x5pt3dCGe+uo+HD9u/vj6PhdzDRkZRyG7khqAsCJJChPPgmHo1KkTFi1axFiN7RA6y1mz+PezZtnXxWJq4lesK6ghWOJuas6T0zL2RzYMDUCKI4Y1a9Ywn++wJY7okGtfz9hcRnw8sGIFXzZUaCtW8PvaCrHXkMJ8i0zTRjYMViCUIJTaiGHy5MlNLojMER2ygLmJ3+PHjc0QiHMRiUXMNeTJaRlHIBsGK5g/fz7eeecdXLlyBQC/Cmft2rUoqx2t6UCCgoLw5ZdfMru+vXBEhywgNs6AJY1Bo4xjqa6uFhbx2A4xM9RSaxEREbabpreCzz//3CBeQKFQ0OjRo5lqcnSe/KaGJXEG5s5hLNbCVjEYttDY2GCdNt4YW7ZsoY0bN1J5eTlrKUTE1/UYN24crVq1qt6aMGjKcQysCQ0NNXiv1WoRExPDSA2PreMGmhu2mMsw5fu31ZyAo+dbpEBZWRmmTZuGPXv2QK1Ws5YDABgzZgw++eQTtGvXDnPmzEFGRgZTPR4eHnjnnXfw1ltvISgoCK+88gr++uuvho0ixFgPqTXWI4Zr164ZjBj69OkjyScbGfGIjTMgMj4CMBVrUV8MhiWjCUs0WosUSsHW5ujRo8RxHAUFBdEHH3xA169fZy2Jjhw5YuAxeOaZZ+jgwYNM+4GPPvrIoF8KCwujlStXUkFBgW4fNOUKbqwNg0ajMSjGvXWrHKrfnDCWssJUYFp9AWu2TH9hC5fV5cuXaejQoTRr1iw6dOgQVVVVNVyYDZg9e7ZBAOeTTz5JP/zwA1VXVzPT9Pbbb9dJQ9OzZ0/65ptvqKioyOF6qquracCAAXU0ubq60ksvvUR5eXmyYbA3ERERBICCgoKosrKStRwZC7G2EzU2AjDl+09KEpc/yVYR3bYyMkePHiVnZ2cCQF5eXjRmzBhat26dQ2sr16aiooIeeOCBOp1eYGAgffDBB5STk+NwTSUlJdS1a9c6mp566ik6fvy4w/UQ8YZd/6EVAA0aNIhSU1OJSB4x2J2XXnqJANBnn33GWoqMFVjbiRobAehv098vPNz4dv3RxKuvFtGlS5fopZfyaOLEO5SUlESnT5+muLg4yrbAUtjayGzdutVofezevXtTUlJSw05uJSkpKTqDJbQePXrQ7t27mS2+0HcpCU/nO3bsYKJFYM2aNQaaVCoV/b//9/9Iq9XKhsHefP755+Tu7k75+fmspTQKzpw5w1qCDqETTUjQkJtbKWVkiBvxmRoZ9OtHRn3/Xl7Gt0dG1pzryJHLNHjwYALaEJBHQAABoJCQYfToo1WiO3h75Fiq7bPmOI727t3b8BM3gC+//NJAk4eHB+3atYupJsGl1L59e52uDz/8kJmx0mq1NGrUKAJAU6ZM0Wl68cUXm7Zh6NWrly3vo1Xs3buX3nzzTSIi+vPPPykzM1NSE9CHDx+WxCQdEVFGRgZ16tSJfvzxR4qLi2Mth6KjiaZOLacnn3ySOG4FDRkSb3S/2u4mUyODmBjTrilTIxP9c2k0Glq1ahU5OX1NAN/xKZUryddXK6qDt9cyVq1WK3QmurZ58+aGnbSBaDQaevjhhwkADR8+nADQ5MmTmWoSXEp//PEH/fvf/yaO4ygiIoLKysqYabp9+zYNGDCAiIi2b99O7u7u5O/v37QNg1KppMTERJvdRGu4fv06Xbp0iTQaDbm6uhIAg9l/lmi1Wmrbti0BYDbs12f16tW6J06VSsXUYGVlEXl7V1Pbtn3/7uzakEp1T1RdBHOrgowZAHMrlVq0MH4uX99UAtqQm1u5aLeQOYPVUCoqKmjIkCEUHBxM69evl8TDj/CgodFoJBNPcOzYMSopKSEiop9//pk4BGuzAAAgAElEQVTpfIxAlvCkQERnz56l48ePN23DAIDu3Lljk5vXUK5fv04AyM/Pj7UUHWfPntVpkkLg2+jRo3VPnEqlku6//37auHEjEy3Dh58lleor8vPzo549e9JDDz1E3bvvoylTSgz2M+ezrz06MLWvuZVKpuY3tFotPfnkRfrXv7LrHGcKey9jzc/Pp+nTp9vmZDbi/PnzrCU0Spq0YVCpVLa8Vw3iwIEDBIAGDx7MWoqOJUuWEACaOHEiaylUWVlJnp6eBu6IDz74wKTBsmelNrVaTQMGVInqRM357Gt37Mb2zcoi8vEhGjasZuWS/kolc3ENUoxuZrksVMZ2NGnD4Onpact71SBWrlxJAOjVV19lLYVKS0uJiGjYsGEEgGJjYxkrIjp48KDB6ogNGzaY3V8KZS3Ndc61RwdCR3/mDG/QkpL47VFR/Kqk2gZEf6WSvsERDGJUlHG30JQp0ihtKtO4adKGwd/f35b3qkFMmzaNANDSpUtZS6EnnniCzp8/TyqVihQKBeXl5bGWRO+++y4BoBYtWtDBgwfN7ivFSm36HXbtpan6Hb2+QYuOJgoIqDsqAYgUirqjiOzsmuODgowfFxTE3mDKNH6atGFo27atLe9VgxBWRuzZs4e1FOrQoYMuuCU4OJi2b99O27ZtY6rpvvvuo86dO9OFCxfq3ddeZS3FuKf09zHls+/Xr2YkkZXFd/BKpfF9AwN5Y1LbqBgbRUyZIs69ZI3BtKdrTqbx0aQNQ6dOnWx5rxqEsHZZTMdnbzp37mzgy1coFBQfb3wppiPIyMigQYMGUW5ubr372tO3LsY9JWZVkb6bR9g/PJxv+kZA6OijovifU6bwx4eGGjciLi78vsJ5zS1ttdRgSsE1JyMdmrRh6Natmy3vldWUlJToVtpIIS1Gt27dDAzDzJkzmeq5du2a6LXc9lpyKeZpW+yqIlNuHqXS0Ai4uhJNmFDXqPj58UZAGD3ExPDbOY4/TtAizF0IcxbWGkypuOZkpEOTNgw9e/a05b2ymqSkJJ3bRgr06NFDZxS6dOmim4xuDNhryaWYp21Tq4pqu41atKiZDxBGCGFhfPPxIRo0iN/H39/4dwGItm83nLR2diYaP76uQRJcTvWl1Wjod5dpXjRpwyCFyGciou+++44A0KhRo1hLISKi0NBQnWH47bffWMthjhj3lKl9TLmNhJGB8NPUJDNApFLxI4GsLH5UoFQajhbCwkzPUSiV/JO+SmWdwZTqslcZx3PgwAHd6yZtGPr06WOTG9ZQFi5cKAmXjcD9999PUkgRIBXEuKdq75OVRdSxo+kO39+fNwrCCMHHh8jJiX/yF947O/Mdu7c37zrascO08RCMhb4LqWNH83MOgk5zk8r2jIaWaTxUVlZScHCwLg6lSRsG1kn0Tp06RWq1miZMmEAAaO3atUz1CISHh5O/v78klqlKATHuKVP7BAXxnwsdbH0Gw82Nf7o3NwoICqrpnENC+G2//mq4ZDUszPicg9gcTJZ8dxnbwzI/kjGuXLlCAHTxQ7JhsCPz58+nwYMHU/fu3UkIJFu5cqWo1Tf2pF+/fsxT/jYWxFRh05/4jY7mRwAcR+Tpyc8ljB9vvPMF+AlolYo3Jqb2MdWMzTmIycEkw5bKykpasGABaxkGCAGmXbt2perqatkw2JPNmzcbrP4BQA8//DBTTUREixcvlkSSs8ZAfVXYoqL4tNlRUTUdsWAIXF1r3Enu7jUdeu2Rgqcnb0gA/mdYGH+chwe/bezYGgPk6sq7oITPajdh4ru2Ttk9JB0yMzPJw8ODSdEgU3z77be6PmrDhg2yYbAnJ0+erGMYfv31V6aaiEgyZRiljpgqbFFRpp/obdEUippJ7gkTeMOhUvEaTEVF114tJXyX5jhqqK6ulsQScX0SEhIIAL311luspehYsGAB6a9UFGsYFJCxmG7duhm879u3L4YPH85ITQ1OTk6sJTQKli4FJk0CwsOBl17i3wvbAgOB7Gzgv/8FxowBOA7w9gaiovj9nZ35czg58a85rua8SqXpa3p71xwLAFotUFAArFsHbNvGmwsXF17D0qX8Pl5ewHvvAZs2AQcP8j8XLKjRCfA/he9QH9nZwIgRwO3blt0vKVJUVISVK1eylmHA7b9v7OrVq3Ht2jXGanhu3Lihe22RJjHWQ2qN9YhBq9WSj4+PzhJ///33TPXIGGJuxY6xJ+4WLfj5A1NP905OvFupRQv+6byhowVnZ951NHZsjavJxcX4vh4e4oLsxEwqN6Uo6Bs3bpCHhwdlZmaylqJj/fr1uj5hwoQJrOUQEdEjjzxS27shjxjsBcdxulFDjx498MwzzzBWJKPP0qVAXJzxp2j9kQHA/+zcGaisBGJigKwswNcXOHOG/9myJVBdDRQXA4WF/FN+Q6mqAioqgN27+W4dADQaflQyZQrQrh0/ujhwACgrAyZP5veZNYs/Lju7rmk4ftz8NbOzDUcejX3UUFZWhtLSUsycOZO1FB05OTm617GxsUhOTmaohicjI0P32t3dXfRxsmGwEsEwzJ49GwqFfBulQn0dYHw8sGIF7wIS2pkzQI8ewIYNQP/+wHPP8cc+9xzfYeu7i+yFWs27ldauBW7e5F1VP/8M9O7NawEscxvVxpj7TCx37txBXFyc5Re1I6WlpQCAnTt34vfff2eshue23h8bEWHu3LkM1QBarRZlZWX44IMPANR1gZtFzLBCao21K4mIaN68edShQwd5wldiWLpiR3//8PAa1445N5BC0XB3kn4TJqCF8yoUvMunXz9xbqP6gt0aOmFdXl5OHTp0kEzVRCK+lCb+do+EhIRIYiL6+eefr7Mo5ciRI8z0lJeX040bN+jevXsEgJycnJq2Kyk/Px8VFRVMNXTr1g3vvvuuPOErIYTRwqxZ/PtZs8y7TfT3z84G0tMBDw9+hDB2LODjA7RoAbRuXXNMVRU/cWxLhAlo4bxE/Ghl8GD+dXR0jZvriSf4iXF9zLnOhM+tnbAGAFdXVxQUFGD8+PHQaDTWfUkbI4wYAODSpUtYvnw5QzU8OTk58PT0BAB4e3tj3rx52L17N0jwFzoYV1dXtG/fHt7e3ujQoQOqq6vFHyzGekiteXt729CuWsf58+cbVZI6qWLLegH1pYGofa3aowsheZ09l6nW37RGt/frJy41uLH7aIso6E6dOhHAl2WVArt37zZ4Mnd3d6cbN24w1TRp0iRKT08nV1dXAiCpDAQjR460aPKZeSdvTevatast75kMQ2y5Uqa+DrD2tUztb4uVR9a2l1+upvvuO0ZeXtXUrh0fFCek8xaTGtxeK4769u2r64T37t1rn4tYwJYtWwwMg4+PDz377LNMNanVaiIiGjhwIAHSiG0SmD17tkWGQWXDkYvD8PHxYS3BgOLiYnh6eoJzxCylSPLz89GiRQsozS2udyDJyckIDg6GVqvVDbf1J4qHD+ddOm3aWH8Ncytzal9r0iTA0xNISyvBwoWVaNWqFQCgtJR31bi48CuVAECl4ieHHcGGDSoAgwHwK6Fu3QJOnwYefBCYONFw8liIcUhN5Y+dNQsIC2v4fTRG69at0bp1azz88MPw8/Oz7cmtoKysDD179gTHccjMzMRff/0FpVIJtVoNlYpNtyb8r0VERCAhIQHXr19nosMYYWFhlh0gxnpIrTk5OdnSmDYYf39/cnV1pWwJhZ8OGzaMXFxc6PDhw6ylEBHRRx99RD169CBnZ2f68ccf6fz58w5N7WCsVrOvL1Fk5ClSqf5i7D4y3tzc+HiHpCQ+zqF2Yj391OD639Me9/HYsWOUl5dHGo3G9ie3gpMnT9Ldu3fp5s2busyhUiEvL4/Ky8tZyzCgtLSUioqKmrYrycXFxZb3rEFUVVURAOI4ThJ/oFeuXCEiojZt2hAAunr1KmNFPJ988olu2O/r60vJybkOS+1Qe1XOmTP86qMffywhJ6cS6t+/hKKiDGstTJhgXWde229vKtNqfa1lS17jhAk1dSBqu5AaEuwm0zwRaxgapSuJ1VDRGMLa5YCAAEnomjBhAkaNGoXbt2/DxcUFXl5e2LNnD55++mmmri59l9by5cuxYYOfyZUyy5bZ9tq1V+Vs2sTHBxw65IqwMCWSk4GMDECIT1q3zvJrKJXG3U1qNb+iaMUKy8735JPA+fP8KqmUFD7WAqj5DgAQGcm7mmRkbE2jXK4qFb85AGRlZQEAAvX/YxnStm1bfPjhhwCA6upqBAYGIi4ujvn8h/A7e+yxx/DSSy8ZDTRbsYJfdmkN5vIA1b7WihV8R3vypBLp6fx8QmGhdYFsL77IP6ebm4OIjxd/Po4DWrUCDh3iNa5da3juyMiasUF90c4yMtbSKA2DFJ7MBQTDEBQUxFgJT9euXXWvtVotnJ2dER0dzVARj1KphLu7O9asWQOO43D8uHEnirWdnbm1/PrXio7mGxHfyU6eDIwbx6e9cHKy3Dj88EP9+wjXnzCh/n0VCiA/n49Z0KdFC9747dpV1wBakhyvKSXSk7GM8vJy0fvKhqGBSM0w1A57nzJliiRWkSiVSnzyySfo3Lmzzc9tSR4g/dHDihV8W7cOcHXlP7c0XtGSbCg//lj/Psbix4SgOyELbG0DWF+Amz6W7CvTtPhBzFPM38iGoYFkZ2cDkI5h0B8xODk54d1332WopoYBAwZgxowZdjl3fXmA9J+Shad3YeSQlcVHODs7A92786mu9dNjm4Lj+PMWFYnXaU1Kre3b+UR6330HbNzI53PSN4CWGMWmlkivMWBRtLGd+fbbb8XvLGaGWmqtffv2tpyot4rt27dTfHw8vfzyywSA1qxZQ5WVlVRQUMBUV3p6um71z2uvvcZUiyMQkweodmCbkGrbmDNLqTRft1loHGfdstBffxW3KsnFhdcRHs63mJia18J3iomxLMBNrvzmWO7du0f/+c9/WMsgIqLr168Tx3FNe7lq586dbXnPrGLnzp2kUCjI19eXAL60Z1BQEN26dYupLrVaTU5OTqRQKCgtLY2pFkcgJg1G7YhhwVCEh1u/nNTaZaF+fvWft0cPXpdQr+G333i9Xl6GFd58ffnyomKW/MqV3xzPN998Qy+88AJrGURE9PHHHwsPjKIMA0dEdhi0WAbHcSMA/D8ASgDriehzc/t3796dLl++7BBtprhy5QqCg4MNtj3//PPYuXMnI0U1hISEICIiArGxsayl2J3Bg4ETJ+puj4zk3UYxMfz75cv510Jk844dvHvpwAHgH//gk+OJ/Vfw8gIuX7YuulilMj6PoI8wCc5xQHAw8NhjwOHD/GdDh/Lbly0D+vThtyUm1hwbE1PzuT7696G+fWUaDhGhV69eUKvVuHjxIlMtWq0W3bp1Q05ODsrKyk4TUd96D6rPcgDYDmA2gCcB+ImxNpY08MbgKoAuAJwBJAO4z9wxPXr0sL1JtRCNRkNeXl46tw0AOnToEGtZRET01FNP0dmzZ1nLYI6xp2QXl5qIYSFwzNmZr9JmSUSytW6YM2esH6E0ZCRji0R6MuI5cuQIAXzga3FxMVMtN2/epF27dtGePXtEjxjETIetBlAG4FkAv3Ec9wPHcV6W2Syz9AdwhYiuEVEVgB0ARps7QAqTzwqFAuHh4br3PXv2xNChQxkqqiEmJga9evViLYM5tQPbBMrK+MnXb78FNm8GunThU163agW4uZmv3QwA5eXWx1u88gp/DbHLYlu0AJKS+HTbxiq3GWvGlvzaenmwjHlWrVoFgH/wPnv2LFMtbdu2xXPPPYfi4mLRx4gxDB0AHAEwlYh6A/gvgI+tk2iUtgAy9d7f/HubARzHTeE4LoHjuITCwkIbXt569A3Dm2++yTyITGD48OGsJUiC2oFtQUF8Yrw//uANRkAA3zleu8Ybg6IivtM35+rhOCA52foO9coV/hr1ua28vPjAOyLg5ZdrlpjKcQjGqaysZO6yEbh9+za+//573ftEfV8fQ/Lz80XvK8YwdAewCMBFjuPOAHgcwFiO4x7lOM4WC+SN9aZ1/m2IaC0R9SWivv7+/jh06JDgimJGn7+dvB4eHpg4cSJTLTJ1qf2UHBnJb8/O5g1GUBA/tyC0+gLclEo+3uHll63XVFQEhITUvBeuJxgvpRLw8wM6duQjnh99lB8xfPcdP8pZsKBuHIJsLIDNmzfjhLHJJgasW7cOar1w9TNCPhPGFFhQsFyMYVhJRE8TUTcAjwDYCsAdwAQA+61SaMhNAO313rcDkGViXwDAuXPnsHHjRuZP6MKI4cUXX5RcKvDmhLmOsXYMg1AFLTsb6NfPcN+yMvNP8hoN/7Sflma91qQk4NKlmvfC9QTjpdHwOi5f5o3Evn1AaChf//nZZ3nXV+04hOYetKZWq7FkyRJcuXKFtRSo1WqsWbPGYFtTNQy/chx3neO4nwEsADATwHYieoWI+tVzrBjiAQRzHNeZ4zhnAP8C8JO5A6qqqvByQx7bbETPnj3h6uqKN954g7WURomtnnTNdYy1P9N/HxkJ+PrygXFCUJuxyGevv2fUXFz4lTyWBLXV5l//qn8fZ2feQHTpwo8aHniANwRlZfyoQj/hoBy0BuzcuRNXr17F1atXWUvB3r17UVxcrAt4ValUOHfuHKqqqhgrs8wwWLJyKBTAWACjAKjEHCe2AXgKwGXwq5Pm1be/s7OzZPLCx8hRQlZji+pt5kpb1v4sKanmfYsWfDtwgH9Wd3IiUij4+AFnZ9NTu15eDVv7z3HWrTKKiqpZURUTY7wmQ3MMWtNoNBQaGkoAqE+fPqzlUEpKCpWWltLo0aMJAG3cuJHee+89SawSfPLJJ0WvSrJZ5+7IFhQUZMv71SDu3bvHWkKjREytYjGYi+Y1VpxHeC9EEUdH89dXKHiDUF/H7eJi36WqYpbNCktMBWMhNmjNVvW1c3NzJVPP+Mcff9QtF/fx8SGtVstaEhER9evXjwDQsWPHiIgkoat///5N2zD06tXLlvdLhgG2SM9gLprXVHGepKSalBje3nxzduZHCj161N8pN2Ttf1hY/YaA43jdANGLL9Z05KbiEGo/I5m7l7aqr/3CCy/QtWvXGnYSG6DVanUdsNCkYrDatm1LgHQKZRERdevWTbRhkETks6X07duXEhISWMuQsZLsbH5CNTWV95dnZ/O1ilNTLYsmNhfNK/xZC5/FxABHjgDDhtV8duQIcPMmP69QO821OZKTgfvvF78/wH/Htm3NT24rlTVLZZ2c+NdeXnzsg7Ho5PqivmtfPzS0pua1pfdaYN++fRg1ahTS0tLqZPJ1NL///jsee+wxg22nTp1C//79GSni0Wg0cHFxgUajQVlZGdzc3JjqEWjVqhUKCgpsE/ksxRYREWE7MyrjcOrLbyQWc9G8pj6zRevWzfLvHBUl7twKBZ9PSRi9jB1bMz/SEDeQLUZoRUVF1L59ewJAFy9etE6IDRk2bJjBaAEAxcbGspZFt2/fJoAvYSsVNBpN00+iJxuGxg3r9Az6vvboaN5PL7iTOnYU14Fber3aLiN///qv4e5O5OKipdde01J4uPVuIFsl0Js+fbquA05NTbVciA25ffs2rVixgjZu3EgAqHv37tS3b19auHAhU11ERImJiQSAQkNDWUvRUVBQIPzubJYSQ0bGprBOzyAsWZ0/n69vIEQYazRAZqa4dBVisxxkZwMREXyFOH1yc+s/tqwMcHYuQXm5YZCbpUtSa6cG0V/uKpaTJ0/im2++0b3X1JcJ0M4EBARgxowZKCsrAwAMGjQIJ0+exKOPPspUFyC94l2AZVHPQCMt1CNFBEsrJYgIarUaN2/exN27d1nLAcBrqqqqwvXr1x12Tf14Cf11/5s3A+3bA//8J0GjIV0VNzG/xgce4FNr1HfN997jX1tLcbEXDh3i0Ls3H+Sm36GLjQOxRX3tmzdvYsLftUlbtGjB3DAICGkwevToAScnJzz44IOMFUnTMFgUwwA0TleSUqmk0tJSW42yGszbb79Nfn5+dOTIEdZSqLy8nLRaLW3bto3at29PUVFRkqgTUVlZSdnZ2TRw4EAKCwujNWvWOOza+qtxBF97VhbvPnJxIRo48CwpFDkWzzV4eRG1akWUnFzjnhLmAiZMsL7WQ0CAaVebvhvIVquMxFJRUUF//vknnT17VhKrkoiIysrKKCkpiTIzM1lL0VFaWkoXL16U1IqkiooK2r9/f9OeYwBA8fHxtrxvDeLVV18lALRs2TLWUigjI4M6duxI3bt3N5iUKywsZKpLo9HQU089pdOzePFim57f1Bp9/XgJIagtK4vvVMPCeMPQp091gyaje/TgDQHHEXXuTLpJZGvP5+xMNGxYTedvbKJ+yhTbxIHINB+io6Ob/hzDuXPnWEvQ0bcvv/orISEBFy9exNq1a5lp6dChA6ZOnYrahYzc3d0ZKeJRKBTYsmULOnXqBADIy8uz6flNpcXQrwfduTPfAgN598q5c3y21cTEhqVxv3iRr81MBKSn89u0WuvOFRDAz0ecPMlrN+UG+t//zNe5lpEO6cIfBUMqKiqwadMm8QeIsR5SawBo5syZtjSmVnHnzh169913acmSJQSAWrVqRV5eXvTZZ58x1VVZWUkhISG6p3MnJyemevQ5ffo0ubi40MSJE212TlNR1LVX4/TrZ/wJPTCQL5GpUPDNmrQVtmwcx48aWrSQy3Q2BcaNG0dFRUVMNZw6dYq+/vrr5jNiYFmboXXr1sjJycHs2bMB8DP/xcXFaGNN5JANcXZ2xldffaV7z3q0oE+fPn2watUqi1dJmEN/VKD/9Fx7NU5cHBAdzQe7EfFBbcOG8RlTH3mkplgPMV5DQAS0bg20awcMHFh3ctkWq4xkHMOVK1ewa9cu5gn++vfvj2nTpok/QIz1kFoDQEFBQbR582YaP368LQ2rxaSnp5Ozs7OBP3///v1MNQk8//zzJNwrqbF27VqbnMfc03N98RJCDIMw1+DuznakULsFBPCjhylTDL8z6zgQGfFERUURANq1axdrKUREokcMzDt5a5p+Jzx9+nRb3jermDFjhoFhSExMZC2JiIgyMzPJw8ODulkTqmtnhKRiDU3sZkkUtf61srJ495G3N28UTK0EclRzc+NXMUVF1Wj19SUaP57XJ7uJGh83b97UPTSydi8LiDUMjdaVJNCxY0fWEjB37lx4enrq3rN2JQm0a9cOCxYsgIeHB2spdRCKLDW0yIwla/T1r7V0KV/v4JVXePdRTk4DvowNKC/nXVnr1tWUIb17F4iN5fVZe3/k6m7sWLZsma4OQ1pDqjuxQIz1kFqD3tP5zp07bWlQreajjz4iAMRxHFVXV7OWo6OyspJeffVV1jKMYqvU25ZeS1i2amoy2lHNz6/GDRYezk84u7rW1I2wxeSyo2MdZHjy8vLIw8ND108NGTKEtSQiEj9iYN7JW9P0DcNff/1ly/tmNUVFReTn50d+fn6spdRBKqmIa2OLxG7WXEuoxaBPVBRR27Y1abjttTLJyYkoNNT4Z71718x5mIpdsMTt5kjDKyWkUPtAeFAUmlTm+Zq0YfD09NTd8GwJ/bWvXLmS5FoR4rDnksva8xZil61yHP8UHxRkH6MgtpmqIBcUZNnTvyMNr1QoLS2l7777jqmG4uJiatmypYFhAEAlJSXMdYk1DI1yjkHIQeLi4gJ/f3/Gamp4/fXXMWjQINYyGgX2XHJprM5zfctWfXz42gcFBZbVZmgooaF83emsLF7LmTP8z+RkQ7OQlcXPQ4it7SzkhJo1i38/a1bzqAm9YMGCOsGdjub48eOIiYnBCy+8AACIiIiAs7Mzrl27xlRXrpjMjQJirIfUWkREBA0ePJiCg4NtaVBtglTdNlLDXksujblPxCxbFcp86j9ZCxXXwsL492JrKtQ3ryDkahJyLem7jYQltLXLF1v69G+rmheNiYSEBFIoFPTRRx+xlkJERM8++ywBoC1bttDZs2cpKSmJqZ6TJ082bVdSREQE/f777zR8+HBb3jeZJoAlHWhWFp+TyNxEtEpleefPcTXLTJVKvvO3NKGeSmXaFSbG7dbcYh2qqqqod+/eBIA+/PBD1nKIiCgsLIwAUFxcHGspRKSrj910XUkA8Mgjj+DFF19kLUNGQljqPlm6FPjzTz5/UlxcTfcZHQ34+fHLRtXquscplXyUtZ+f8fMS8ctMKyv5Gg/5+TUlOzmOr63g6wskJvK1IKZMqbludDT/evp0064wMW431jUvHM2yZcuQlJQEAFAb+6U5GI1Go1ui2r17d8ZqeHIsWZMtxnpIrQkV3KSw+kBGOlga7Obry68EMvXUfuBATVnNFi1MP/UrlbwrylSQnJ8fPxlu6vOgoIZFcDd3Ll++TK6urrpJ3lmzZrGWRNeuXSMAFBAQwFqKjk8++aTpjxiAmiApGRnA8mC3SZP4yV79iWgifjQQHg48/jj/ZL5pE5+3SKEAoqL4faKias6l0fDnER7IevcGWrbkfwLAnTvAgQM1nyuV/GSyfq6mBQtMjwqk/PR/9+5dXRAXC4gIU6ZMQUVFhW6bFIoIXbp0CQAQEhLCWEkNzWbEICNjDeaezrOyLJsPEB4Io6NNz0colTWT4WFhNTEUQvBZeLjpJbKmMqxKgStXrtCoUaOYali/fr1upCC06NrDRgasWLGCAFCUkONEAvzzn/9sHiMGGRkx1E4LYcpnP38+MGgQnyZDv3uOiuKf8seP50cC2dlAv378sTk5NSMTtZqfd/D15Y9R/V3mQaMB+vThl8KeO8ePLoRj7t7l37dtW9csREfz+0kxa+rJkycxcOBAdO7cmZmGyspKnD17FgsWLDDYLoU5BnnEII8YZCRO7bQQpnz2gYGmRwtOTqZHA0LJUCFLqzA6mDCBf29sZFLf6ikpRy1v376dXFxcCJBGJuHvv/+eANCgQYPom2++oWnTprGWRGq7eKMAACAASURBVI888ggBoL1797KWoqNz586iRwzMO3lrmmwYmiYNzbRq6pxiOlixxX6Ezt3cpHXtiWX97xYVVVOW09zyU2uilu1x//TRarW0aNEincvG1dWVysrK7HMxC3jttdcIAC1cuJCIiLKEG8uQdu3aEQC6fPkyayk6/p6glw2DjHQxtqLMHgnfxHawpvaLiiLq2LFupy0ExAnvo6Lqdvam5hyCgsyvnrI2XYg9E+ZVVlbS5MmTDXz5I0aMsP2FLESr1VLbtm0JkE4d+JKSEgJAKpVKMgk1S0tLhd+bbBhkeCoqKuju3busZeiorKykxYsXG2yzh+tEbAeblUXk6VlJKSl5dfYzNSmsUhme18WFNw76T+1CZ1/7u5kKptOPxH7++UyaOXMmTZo0iUaOHElt2sSSn98WOnjwoNnvag/XU1VVFU2YMIE4jjMwDCtXrrTdRawkOTmZAJC/vz9pNBrWcoiIKDExkQBQSEgIayk6NmzY0PQNQ48ePUitVhMR/8RQWlpqsxtoLampqbq6rhcuXKCqqirGivgh9bVr1yguLo5efPFF1nKIiM9C+9NPPxEAio2N1W23R8I3sXEN06ZVUVjYb+Tn50exsbGk1WoNRgG1O1vhM323jSkDEhlp+XczNQfSp49pt40jEuatWbPGwDCkpaXZ/iIW8vnnnxMAeumll1hL0bF9+3YCQE8//TQREZ05c4axIqIPP/yw6RsGjuPoscceo7y8PEpLS6M33njDlvfQYm7evEmBgYHUq1cvSk9Pp7lz5+r8nayorKykQYMGUcuWLWn8+PEEgHnWSSKit99+W9exuLi40PHjx+2WadVcYJj+k33PnnkmJ6ONdbamztuvX11DIua7GZsbKCkpodDQUAJAEyZMMJuZ056ZavUpLS2l9957j5YsWSKZqoC5ubm0efNmOnHiBGspOm7fvk0//PADHTp0iLRaLQ0aNIj5aKawsJD27t3btA2DUqkkANSxY0eaPXs2AaB9+/bZ8j5aRFpaGgUHBxMAat26NXXr1o2cnJwoOTmZmaZ79+7RiBEjDJ7wfH196ebNm8w0ERFNmzbNQFOrVq1o8uS7Dk/4pu+PP3fuHLm5uRnocnfvSu7u5XTzJv8PXTvWwdRIorYhETNqMTU3sG/fPvrmm2/qjfB3dMI8rVZL//vf/+xz8ibGwYMHCQBdvXqVtRQioqZtGHr16kUREREG/8gBAQGUm5try3toEQUFBTR8+HADTeHh4cxcShqNhn788UeDKlIA6PHHH2eWSmTt2rUkGHX95uqaYNbnbmtqd+zff3+CtmzZQrGxsfTdd9/Rf//7X/rHP9Lo6aevUmZmpu44Y5197XmE2k/t9c0nmJsbEPuUKafMkC4jR44kAPTTTz+xlkJETdwwREREUFJSEvn4+Bh0MM888wyTTk+r1dLhw4dp1KhRdTo9Vi6lw4cPU9++fevoAUBff/01E01EfFry2NhYmjhxIvn5+ek0DR06lCorKx2iQYw/vj53UW0DEBVl3VN7cyym01y4cOGC7u/7s88+Yy2HNBpN0zYMPXr00K0Trt2+/fZbW95LUWi1Wvrll19o1KhRdVZusHYpnT59mqZOnUpeXl46TW5ubnThwgVmmgQ0Gg3FxcXRxx9/TAMGDKCXX37Z7oa9of54U24bc5PP+tc2V1nOXnMDMmyYOnWq7n9u4sSJrOXQvXv3mrZhiIiIoOrqavrxxx9p5MiRpFAodL8AT09Ppv68q1ev0rvvvku+vr6ScCkJFBcX0/r166lfv34EgPr27ctcU23u3Llj9/KHYvzx5gLFGuK2qT2X0ByL6TQX8vLyDOat+tSuvMSAjIyMpm8Y9Llx4wZ99NFHulFEZGSkbjkrK0pLS2ndunX0wAMPMHUpGSMxMZGmTp1KX3zxBWspDkdMx26PQDFrKsvJNF4WL15s4Dlwc3NjvjLp7NmzzcswCKjVatq3bx+NHj2alixZYvUNtCVarZaOHTtGEydOpPPnz7OWY0B5eTlrCaKxd7oH/euYCxQzp8PcZ/JcQvOhoqKC2rRpU8fNfeXKFaa6jh492jwNgz65ubmSK+TDehTTmLFnuofa1zHXgZvTYeozW88lOMpINlYSExMpPT2d2fX//PNPWrp0Kc2cOZMA0EMPPUSdOnVivjKpyccxyCkxmheOyjRaXwduToe5z2w9l+AoI9kYEWo/X7p0ibUUmjFjBgGgJUuWUHFxMZ07d46pni1btog2DHI9BhnJI9RPCA+vv9axLa5jqrayOR3mPrOkslx9CHWtDx40X8+6ufLll18iKSkJWq2WtRSkp6cDADp16gRPT0+EhoYy1XPv3j3xO4uxHlJr8oih+eDIJZ31pdAwV/XNURrluQrTXLx4UVcnIjU1lbUcuv/++wkAxcXFsZZCRLoJcXnEINP4qe8p3paYq61sToejNAqjhVmz+PezZsmjBgGtVouoqChUVlbq3rOEiAxGDFKgsLBQ9L4qO+qQkWkw8fHAiRO860WfyEhp6XCERnMGaNky216rsbFmzRocO3ZM916j0TBUA9y9exfFxcXw8PBA69atmWoRsMSVJBsGGUlz/DhrBTxS0CEVIyk1bty4gVnCMOpvWI8Y9EcLHMcx1SJgyYiBqSuJ47jnOY5L5ThOy3FcX5ZaZGSkjjlXF2vUajW/zNHBEBHeeOMNlJSUGGxnbRiuX78OQDpuJADIysoSvS/rOYZzAMYCOMpYh0wjJzsbGDFC9rez4PLly5g3bx6TJ+O4uDi0atUKI0aMMNjO2jAII4bOnTsz1aGPoEkMTA0DEV0gokssNcg0DZYu5Zd/2mspqyNpLEaOiPCf//wHvXv3Ru/evZloGDBgADZv3gxPT08AwPz589G3b1/mhkGKI4Y7d+6I3pf1iEE0HMdN4TgugeO4BEu+oEzTp6mt7W8MRi47OxsjR47Em2++CXd3d4wdO5aZlurqavz6668AgJdeegl//PEHOnbsyEwPIL0Rw7lz51BVVSV6f7sbBo7jfuc47pyRNtqS8xDRWiLqS0R9/fz87CVXphHiqAA4R9AYjNzu3bvRq1cv/PzzzwCAyZMnw8XFhZmeEydOoKioCCEhIejatSu8vLzQpk0bZnoA6Y0Ydu7cadH+dl+VRETD7X0NmeaL0JGmpvLvZ80CwsL4n4z7BqswZuSkshT13r17mDFjBjZt2mSwPSoqipEinv379wMAnnrqKaY6BIhIZxikMGIgIuzYscOiYxqNK0lGxhi2Di6rqKiwnTgL0Q9gS0pKwsCBR/F//1eN338/h7S0NNy6dQuFhYUWuQRsxfnz59G7d+86RmHo0KEICQlxuB599u3bBwAYOXIkUx0Cd+7cQVlZGby9vVFaWory8nKmetLS0jB48GDLDhITHm2vBmAMgJsAKgHkADgg5jg5JUbTw9pMuJbWNKgvM+ns2bNp+vTplJGRYZWehqCf7iItLY1atWpFwDICvqyTwtnV1ZU+/vhjh5VDJeKLzzz88MMGOmJjYx12fWOkp6frCnQ58l6Y49SpUwSAHnjgAVq4cCH9+eefrCVRWlqa8DtrutlVO3bsSEeOHKF79+6ZvBElJSX0ww8/OCz19r59++jkyZNmq6LpF5Z3BKdPn6Zjx45RdXW10c+vXbvmUD1EfFGlvXv31qnUNnXqVEpMTLT79Y1lJs3Pz6evvvqKfvvtN9q2bRsBIJVKRa+88orNs3RaUx0OOGbQGQ8ZMoRSUlJsqksMO3bs0N2bwMBAatWqFfOaHt988w0BoDFjxjDVoY9wn55++mlq3749rVy5krUkio+Pb/qGQf+fJDg4mMaNG0dLliyh3377jfLy8nQ3IyQkhPr370+///67TW6uObp27UoAyMPDgx577DFavHgxnThxwuApZtKkSfT6668baLQn48aNIwDk6+tL//rXv2jLli2Um5ur+7xv3760ZMkSk4bDHixdupQAkIuLCz3++OO0fPlyunTpEr322mukVCpp9uzZVFZWZpdrm0qN/ccff9R5IheaQqGgcePGUVJSkk00iE2ZfffuXYOStQAoICCAtmzZwqzOSE5ODg0bNoy+/vprWrduHb3zzjtMdOiTkpJCc+bMoR9//JG1FB2pqan06aef0vvvv0+QSL3nmzdv0tNPP920DUPr1q0pPDycnJycjP4zd+zYkcaMGUM9e/bUbXv00Ufpr7/+suW91lFVVUVTpkyh7t2719Hi5uZGw4cPp0WLFtGUKVN0HfWqVavsXrjngw8+oC5duhjo4TiOBg4cSAsXLqTIyEjC3/Voz5w5Y1ctAhs3bqSIiIg690nIigmAunbtSn/88YfNr20qM+mZM2folVdeoQcffJC8vb1NGolRo0bRyZMnrb6+pXUlfv75Z3J2diaFQkEzZsygwsJCq69tK9RqNWm1WqqoqGBaDKcxMHr0aAJAPXv2ZC2FiHQPZU3XMAhzDJWVlZSYmEjr16+nN998kwYOHGhQgNtYe+aZZ+w6DL916xZt376dXn/9dQoJCTGrpXfv3nT8+HG7aSHiffcXL16kZcuW0aOPPmrSmCqVSpo7d67DXAO3b9+mTZs20bhx48jX19eopldffZUKCgpscj0xqbGrqqqob9++ehraEPAztWx5Hw0YMIAmTJhA8+fPp7S0NKPnr6+qmqUps1NSUigyMtJmoxUZx3Hz5k1SKpW6h7GioiLWkujjjz9uHobBGNXV1XTu3Dn697//bbJD5jiOJk6cSFevXrXqBltCVlYW7dixg6ZOnUoqlcqonokTJ1KW0GPZmaKiItq9e7cwrKzTQkJC6NixYw7RIrB8+XKTv6s2bdrQf//73wa7T8RUUduzZw9FRUXR559/Trt27aLx43OoRQutqJoH9bmIrKnZUFRUxLyAvIx1LFy40ODv+PDhw6wl0Zw5c0QbBo6I0Njo27cvJSQkmPxco9HgiSeewMGDB+Hs7IzAwEAEBQUhMDDQ4HWnTp0wdOhQKBT2X7W7ZMkSvP/++yY/9/Lywscff4y33noLKpV9w0sKCgowdOhQnDt3zuQ+06ZNw2effQYvLy+7aklNTcV7770HhUIBpVIJlUoFpVJZ5/Vzzz2HJ5980urrDB7MZyatTWSk8SR02dlAaCgfaDZ8OB8nYSouQsy+MTH8z+XLDbdxnHTiFGRsg0ajQZcuXXDjxg3dti+++ALvvvsuQ1VATEwMVqxYcZqI6k1Y2iQNQ1FREW7cuIHAwEC0bNmSedrbkpISbNy4ER4eHvD09ISXlxc8PT11TXjv5ubmECOVnJyMCxcuQKFQ1GlKpVL3un379vj/7d17UFRXnsDx7wFR8REe8lAUDBEFYVABWR8r0YpxJSpuyENdHUKME3xGMa9NShIrNbFm1liWUqbcJBVmM9HJxomx1kkmxmRmCZqYHeMjvmgsogYZXhoQGVCeZ/9AOt2I0g3d3G79fapu9b237+X+uND31+fcc8+Jjo52ejyuyPJC3tkF3JZt7U1Mwn199tlnNz1sN3/+fLsfMnO0ZcuW8dZbb929iUGI7mgrAZw+3frAXGlp69PUHZUE7NlW9Iyamhqnl3RvZ9WqVfj5+fHuu+9SWlrKzJkzKSwspLCw0LCYANLT0/n9739vU2KQJ5+FaMeep6l7cuhRYZuXX37Z0ONnZ2fz61//mrq6OgDef/99fve739HY2GhoXPY8gS2JQYh2Dh9uHSVNqZ+nLVtaezztzrbC+T755BM++OADQ2Pw8PCgvr6e6upqPDw88Pf3JykpCS8vL0PjsicxyNCeQrRjT52/3B9wHdevXyczM/Om0dyMUFFRAUBgYCCenp4GR9NKSgxCiLvO5s2b+eGHH2hoaDCko0FL5eXlAAQHBxsahyVJDEKIu0pRURGvv/66ebm2ttbAaFwzMdjTc7AkBiGE23v++eetvhHX1NQYGM3PVUmulBjabobbQhKDEMKt/eUvf+GPf/yj1Tqj7zO0lRiCgoIMjcNSVVWVzdtKYhBCuK3GxkZWr15903pXSQyuVGK4evWqzdtKYhBCdFtjYyN79+7t8eOaTCYyMzPJzMwEYMiNB0okMVhrbm6WewxCiJ5z8uRJJk6caL4Y9qTY2Fiefvpp/v73vwPw6quv8t5770mrpHYOHjyIPb1cyHMMQoguaWxsZOPGjbz22mv079+fhQsXGhKH1pqvvvoKaB2DevTo0XZdBJ2h7eazq9xj2L17t13bS2IQQtjt5MmTPPnkkxw9ehSAp556iv79+xsSi8lkoqKigqCgIKKiogAM7zjTlUoMWms+/vhju/aRqiQhhM2amprYsGEDCQkJ5qSglGL58uWGxZSbmwvAtGnTDE8I0HqOLl++DLhGieHIkSPmqjZbSWIQQtjk1KlTTJw4kaysLKsO4R566CEiIiIMi6stMUydOtWwGCxdvnwZrTX+/v5cvHjR6HDYu3cvqampdu0jVUlCuLDGxkaWLl1KbW0twcHBDB48mMGDB1vNBwUF9UgHbb6+vjz33HO8+OKLFBcXm9evWrXK6ce+Fcv7C9OmTTMsDktt9xcGDhzIRx99xIsvvmhoPC+88AKlpaXs2bPH5n3u6sRw6dIl8wA5QtzK0aNH8fDwYNy4cT1+bC8vL9asWcOECROor6/vcJs+ffqQlZXFCy+8QJ8+fZwWy7Bhw6itraW4uBhPT0+am5sZMWIEM2fOdNoxO1NQUEB5eTmBgYGMHj3asDgstd1fqK+v58CBA4YnhoEDB3Lu3Dm79nHLqqSqqir27dvHoUOHOH36NMXFxdTU1NDS0mLXz2loaCA0NJQlS5aQm5tr9/6W/vrXv5Kbm0t+fj4//fRTl1pFVFRU8Morr/Djjz92OQ5LJ06c4JtvvqGkpKRLv9uZM2ccEoel4uJiDh48yKVLl2w+R/Y2tbPXlStX+OSTTzh69ChlZWU0NzdbvR8YGEh8fDyTJ09mx44ddrUH76pLly7x2muvkZKSQnJycodJQSlFWloaJpOJrKwspyYFgAMHDrBixQoAtm/fzpQpU1i5cmWPjDp4K5atkVzh/gL8nBguX77M119/3a3riqPY04EeuOkIbkqpDoNWSnHPPffg4+Njfu1sfsOGDRw+fBiAsLAwFi1aRFpamt3fPkaPHo3JZDIv9+rVi6CgIIKDgwkODraab78cEBBgHuc5KSmJr7/+muTkZDIyMpg9e3aXqwnS0tLYsWMH0Pqtcvjw4dx7772Eh4ff9BoYGHjTB2vevHmUl5ezdu1aUlJSHNJ98NatW80PI/n5+REZGWmeRo0aRWRkJBEREfTt29e8z8KFCzlz5gwvvfQSjz/+uMO7MT5w4AD333+/ednT05PBgwcTEhJiHh/8o48+Mt9QDAgIYMmSJSxdupTw8HCHxtKmoqLCqkWLh4eH1QVmzpw5bNiwgTFjxjjl+B05c+YMc+fOZdasWWRnZ7Nv3z4mTJiAn59fj8XQ3ueff87bb7/N3LlzSU9PNywOS1999RVZWVkcvNEn+4kTJ4iNjTU0poKCAiZNmkRVVZVNI7ihtXa7ydfXV0+fPl2PHz9ejxo1SgcHB+u+fftqwGFTQkKC3rJliy4vL9e2SE9P15MnT9YRERF64MCBdh1LKaUDAwN1TEyMDg0NtXpvyJAhet26dfr8+fM2xWEpKytLJyQkaH9//05j6Nevn46OjtazZs3SK1eu1G+88YZevny5+f0RI0bo7OxsXVNTY3cclnJycnR8fLweMGDAbc9HeHi4Tk5O1mvWrNHz58+3iuOtt97S169f71Yclr799ls9Y8YMHRMTY9O5soxz9uzZ+tNPP9VNTU0Oi6fN+vXr9c6dO3VBQYF+9tlnNaAnT56s8/LyHH4sW1VWVurGxkbDju8uZs+ebf4/efPNN40OR2utdUxMjAa+0zZcY92yxHCrMZ8bGhq4evUq1dXV5tfbzVdXV3Po0CGuXLly08/q378/kydP5oEHHmDFihXcc889dsVYV1dHRUUF5eXl5lfLyXJdZWVlpz9PKcXMmTPJyMhgzpw5dpcirl69yoULF7hw4QLnz5+/6dXWflR8fX3JyMhg1apVhIaG2hWDJa01JSUlnD17loKCAqvpwoULnRa/Q0JCePbZZ1m6dCkDBgzochwduXbtGmVlZZSUlFBSUkJBQQGvvPJKh9sGBgYSFxfHo48+ypIlS5w2KMuiRYuYP38+KSkpLlNlIjpWUVFBSEiIuUpywYIFho8qBxAZGcnZs2dtKjHcUYnBXhcuXCAqKor6+noCAgKYMmUKSUlJ3H///YwbN85cveNsjY2NXLp0idLSUh5++GGrFh8AoaGhJCYmMn78eBITE5kwYYJDBzvXWnPlypWbksWf//znW9608vT0ZMGCBfzmN7/pVoLoSH19PYWFheaksX37doqKijrc1s/Pj2eeeYbVq1czaNAgh8bR5plnnmHbtm2EhYURFxdHfHw8cXFxxMXFMXTo0B65ULe0tBhaly9sl52dzZo1a8zLQ4cO5eLFi4Yn9Pvuu4/z589LYujMrl27uHLlCklJSURFRRn+h3vnnXfIysqySgLjx4835OnJ0tJSYmJiqKqqQilFeHg4MTEx5ik6OpqoqCj69evn1Di++eYbkpKSaGlpoW/fvkRERJinkSNHmueHDh3qlG/rTU1N5OXlMXbsWKclHnFnSUxMpP316dy5c067H2Wr0NBQiouLJTG4m8rKSvz8/AxPUABffPEFZWVlxMTE9EgCuJUvv/ySXr16ERERQUhIiHxrFrfV3NxMQ0ODYU3QTSYTv/zlL4mMjOQPf/gDMTExXLt2jfXr1/PEE08YElObIUOGUFZWZlNikE+ZC/H393eJpAAwY8YM0tLSiI+PNywpADz44INMmzaNYcOGSVIQndqxYweFhYWGHX/48OEcPnyYKVOmADBp0iTOnDnD2LFjDYupjeXT6p2RT5oQ4o5QX1/P+vXrKS0tNSwGb29vlFJUV1cD4OPjQ58+fSQxCCGEEd555x1+/PFHSkpKjA7FnBjsbc3oTE1NTTZvK4lBCOH2amtref311wEMLTG0aWv+7ePjY3AkP5MSgxDirpKdnW3uisIVEoNlVZIr0FpLYhBC3D2qqqrYuHGjeVmqkm5mb39NkhiEEG5t48aNVr0XuEKJwdWqkuwpLYAkBiGEGysrK2Pr1q1W61ypxCCJQQhxV7t+/bpdLV8cYffu3SxbtszcHNTX15fS0lKndtNuC1erSpLEIITocSdOnODpp592WieCt7Jy5Uo2b95MTU0NAPv27WPx4sUddozZk1ytKsnehC2JQQjRZS0tLWzatInExEQmTpxoyJP7VVVVnDt3jt69exMXF8f27dvx9fXt8TjaaK3dvirprh7aUwjRdUVFRaSnp5Obm4u3tzeLFi0yJI7jx48DEBsbS+/evQEM7Vqmrq6O5uZmvLy8nD6qnq2kKkkI4VRaa3bu3MmYMWPIzc0FWkf7M+pb+tGjRwGIj4835PjtWVYjuUrfZ/ZWJUmJQQhhs8rKSpYvX86uXbus1mdkZBgUERw7dgxwncTgatVIIFVJQtyxjB6sp6SkhFmzZvH9999brY+OjmbSpEkGReV6JQZXa5EEkhiEuGOZTCaSk5MJDAwkLCyM4cOH3zQNGjTIadUXISEhHDt2jF/96lfk5OSY12dkZBhWZVJbW4vJZMLT05PY2FhDYmjP1VokgZtVJSml3gBSgAbgB2Cx1trYdmbtHDt2jCNHjjB37lyCgoKMDof6+npqamoICAgwOpS73k8//dSjo7qNGDGC+fPns2nTJvO35PZGjx7N9u3bmTp1qlNi2LNnDzk5OXh4eDBmzBjy8/NJS0tzyrFs8f3336O1Jjo62rDBedqTqqTu+wJ4WWvdpJT6D+Bl4N8726muro4TJ07g5eWFl5cXvXr1uuW8p6dnt77NREdHk5KSwtKlS5kyZQqPPPIIqamphIWFWW1nMpnQWuPt7U3fvn3x9vbG29sbLy8vh36b6t27N8nJyQwaNIh58+aRmpqKv79/h9tevHiR+vp6fHx88PHxMbfYcKQtW7Ywbdo0xo4da9PvWVlZydWrVwkKCnLYAEDHjx+3+fgdqauro6ioCH9/f/z8/PDy8rJpv/fee48PP/yQxYsXs2DBAofefP3HP/7B/v37OXXqlHk6e/aseYD59sLCwli3bh1PPvmkU/7OAPn5+aSnpwPw29/+lunTp7N58+Zb/v/1BFerRgKpSuo2rfV+i8Vvgcds2S8/P9+ugS86Sx62zLe0tJCXl0deXh6ZmZmMHz/enCSioqJITU3FZDLddGwPDw9zkmifNGxZ39F7kyZNYtu2bezfv59ly5YxY8YM5s2bx8MPP2x1cVq3bh3vv/++ednb2xtfX198fHzMr5bzt1vn6+vLgAEDbqrjvn79OnFxccTGxvLEE0+wcOFCQkJCbvm32LlzJ6tXrwZgwIABBAUFERwcTFBQkNV8+1c/P79b1q/n5OSwb98+MjIySE9PJzAw0Ob/DWgtFbaNuAWtH2h/f3/zNGjQoA7nR40axXfffcff/vY31q5dS2pqKosXL2b69OndvhdQXV3No48+arVOKUVERARFRUU0NDQAPZMQ2pSUlODp6cljjz3G888/j1KKTZs2OfWYnenTpw8xMTEkJiYaGoclHx8fEhISGDlypNGhmPXr14+EhASOHDli0/YuM+azUupPwIda6x23eD8DaGv68AvgVE/FdhcIAC4bHcQdQs6lY8n5dKxIrfXAzjZyemJQSn0JDO7grXVa6/+5sc06YDzwiLYhIKXUd7YMaC1sI+fTceRcOpacT8ey9Xw6vSpJa/3g7d5XSqUDc4DptiQFIYQQzmV0q6RkWm82T9Va1xkZixBCiFZGd4mxDRgIfKGUOq6U+k8b93vbiTHdjeR8Oo6cS8eS8+lYNp1Pl7n5LIQQwjUYXWIQQgjhYiQxTcFqjwAAAuhJREFUCCGEsOK2iUEp9YZSyqSUOqGU2qOUMm5kDjenlHpcKXVaKdWilJKmgV2klEpWShUopQqVUi8ZHY87U0rlKKUqlFLyvFI3KaVClVL/q5TKv/E5X9PZPm6bGGjtTuMXWusxwFlau9MQXXMKeATIMzoQd6WU8gTeBB4CooF/U0pFGxuVW/svINnoIO4QTcBzWuvRwERgZWf/m26bGLTW+7XWbV0GfgsMMzIed6a1ztdaFxgdh5v7J6BQa31Oa90A/DfwrwbH5La01nlApdFx3Am01qVa66M35muAfGDo7fZx28TQzlPAZ0YHIe5qQ4GLFsvFdPLhE6KnKaXuBeKA/7vddkb3rnpbdnSn0QTs7MnY3I0t51J0S0ddu0pbcOEylFIDgN1Aptb66u22denEIN1pOE5n51J0WzEQarE8DCgxKBYhrCilvGhNCju11h93tr3bViVZdKcxV7rTEC7gMDBSKRWulOoNLAD2GhyTEKjWgUreBfK11ptt2cdtEwNd705DtKOUSlVKFQOTgE+VUp8bHZO7udEQYhXwOa0393ZprU8bG5X7Ukp9ABwCIpVSxUqpJUbH5Mb+GUgDHrhxrTyulJp1ux2kSwwhhBBW3LnEIIQQwgkkMQghhLAiiUEIIYQVSQxCCCGsSGIQQghhRRKDEEIIK5IYhBBCWJHEIIQDKKU8lVJbb/R3f1IpdZ/RMQnRVZIYhHCMl4FzWusYIBtYYXA8QnSZS3eiJ4Q7UEr1B1K11gk3Vp0HZhsYkhDdIolBiO57EAhVSh2/sewPfGlgPEJ0i1QlCdF944BXtdbjtNbjgP3A8U72EcJlSWIQovv8gDoApVQv4F+APxkakRDdIIlBiO47S+sg6wBrgU+11ucNjEeIbpFut4XoJqWUH61jjgfQOoZAhtb6mrFRCdF1khiEEEJYkaokIYQQViQxCCGEsCKJQQghhBVJDEIIIaxIYhBCCGFFEoMQQggrkhiEEEJY+X+VpdDtVLN5OgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:08<00:00, 1.86it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXdYVFf6x793GkPvHUUFW7CgqCgqVmIvsWVjNMYSk6yJ2d1skk3MJr/spqxmk92UTYyaGI0mlohKjL0HRBAVBEEQlSKMIL0z7fz+GOeGEWacYcq5wP08z310bjn3y5Tz3vOe97wvQwgBDw8PDw+PFgFtATw8PDw83II3DDw8PDw8OvCGgYeHh4dHB94w8PDw8PDowBsGHh4eHh4deMPAw8PDw6MDdcPAMEw3hmHOMAyTxTDMdYZhXqGtiYeHh6crw9Bex8AwjD8Af0LIFYZhnAFcBjCXEJJJVRgPDw9PF4X6iIEQIiOEXHnw/1oAWQAC6ari4eHh6bqIaAtoCcMwPQAMAZDUxrHVAFYDgFgsjvD397eptrYghKC6uhqNjY3w8PCAnZ0dbUlQKBSoqamBXC6Hi4sLHB0dqWkhhKCpqYndAMDBwQGurq4Wu4dCoUB9fT0aGxsBAEKhEK6urlCpVK02tVqNtkbIYrEYXl5eFtMEAHK5HHV1dWhubgYA+Pr6AkCburTaVCoVez3DMPDz87OopvagUCjQ1NSExsZGqFQq+Pj4QCgU0pYFQgjq6+tRV1cHd3d3Tvz2AM3nW1lZCXt7e6q/vYepra2FWq1GdXV1GSHE+1HnU3claWEYxgnAOQAfEEJiDZ3r5+dH3nvvPdsI00NFRQX27NmDkpISiMVizJkzB2FhYdT0VFVV4dSpU8jIyACg6YBjYmIQHh5ulfspFAoAmk61JXK5HNnZ2cjMzERubi6USiV7rFu3bhgyZAiGDBli1r1VKhUyMzORlJSEoqIik64Vi8VwdXWFi4sLu3l7e2PAgAFmadJHVVUVLl26BG9v70d+FtrOrrq6Gs3NzejVq5dVNLWX+/fvw9v7kX2KTWlsbIS9vT1tGTqoVCpOGM+HIYTgxRdfvEwIGfaoczkxYmAYRgxgH4CdjzIKAKg/HWRnZ+PAgQNoamqCh4cHFi1axD4R2pqmpib89ttvSEpKgkqlgkgkQmRkJMaMGQOpVGqVexYXFyM2NharV68G8GhjEBYWhv79+8PFxcWs+6rValy6dAnx8fGoq6tr8xyGYdCjR49Wnb/2tbXeE324ubkhJibGqHMZhoGTkxOcnJysrKp9cM0oAOCcUQBgFaPQ2NgIsVgMkaj9XTbDMEafS90wMBq13wLIIoR8SluPIQghOH36NOLj4wEAffv2xRNPPEHFUKlUKqSkpODcuXOsG2XgwIGYOHEi3NzcrHJPQgji4+Nx9uxZ2NnZ2cQYtEQgECAyMhL9+/dHSUkJ7t27h5KSEpSUlKC8vByEEBBCEBERQXX0xsNjacRiMXbs2IHp06fDx8fH6vejbhgAjAawFEA6wzCpD/a9RQg5TFFTKxoaGvDzzz/jzp07YBgGEydOxOjRo02ywpYiKysLJ0+eREVFBQCge/fumDJlCgICAqx2z6qqKsTGxqKwsBCA5gkmNvb3wZ21jEFbaEcBvXv3ZvcpFArcv38f9+7dY40Ejc+Gh8caiEQi+Pj4YPPmzYiJicGIESOsez+rtm4EhJB4AJz+BRcVFWHPnj2oqamBo6Mj5s+fj549e1r9viqVCpcuXcLIkSNZHceOHWM7Z09PT0yePBn9+vWzqo60tDQcOXKEnUjV4u7uzj7BW9sYPAqxWIyAgACrGkceHpoMHToUly5dwpEjR3Dz5k3MmTPHam5H6oaB61y6dAnHjh2DSqVCYGAgFi1aZJNOUK1WY+/evaivr0e/fv1aTSyPGzcOw4YNg0BgvYjjxsZGHDp0CJmZbS8pqaurg6+vL3WjwMPTFfDz84O/vz9kMhlyc3OxceNGzJ49G3369LH4vXjDoAeFQoFDhw7h2rVrAIDhw4djypQpNok2UKvV2LdvH7KzsyGRSPDll1/abGJZS3NzM+Lj4yGRSDBs2DCIRCIIhUKIRCKdrb6+3qo6eHhsTWVlJaRSKScntocMGQKZTAYAqK+vx08//YThw4cjJiamVYSgOfCG4QEtfdIPh6LOnDkTgwYNspmO/fv3s0/pcrkcgPUnlh/Gzs7O6GgaHp7OhKOjIzZt2oTw8HBERkZatMM1l4EDB+L48eM6wR5Xr16FQqHAzJkzLfbgyhsGAPfu3UNpaSkGDRpENRSVEIKDBw+yLiMtQqEQvr6+Fl0YxsPD0zYSiQQjRozAkSNHkJycjPHjxyM8PNyqbltjkUql6N+/P9LT09l9s2bNsviDK/2/lDIKhQL79u1Dfn4+Tp06hV27dqGpqQl9+/bF6tWrbWoUDh06hLS0NJ39QqEQfn5+qK2txf37922ihYenqxMREQF3d3fU1tbil19+wddff40bN27QlgVAMwkNgI3K+/XXXy3eN3T5EcPx48dRVlaGsrIyAKAWinrkyBFcuXIFbm5uCAwMRFBQEIKCguDn52fWohYeHh7TEQqFmDhxIvbt2wcAKCsrw+7duxEUFISYmBh0796dmrbg4GCEhobiqaeeQmxsLDIyMrBnzx6sWrXKYmuqunSPk5OTg5SUFJ19TzzxBAYOHGhTHeXl5ejVqxeio6M5u+qVh8caFBYWQqlUIjg4mBOumpaEhYXhwoUL7GQvANy9exeHDx/GzJkzERQUREUXwzBYuHAhGIbBrFmzUFJSgvv37+PgwYNYtGiRRe7BrU/ChtTV1eHgwYOt9sfFxbUyFtbG09MT/fr1440CT5cjICAAJ0+exKefforDhw+joKCgzUSHNGAYBpMnT9bZ5+rqiqeffpqaUdAikUjYf5988knY2dkhKysLiYmJFmm/SxoGQggOHDiAhoYGdp9EIsHQoUOxbNkyDBv2yBxTPDw8FkAoFGLRokVsHqytW7fiv//9L44dO2ZygkRr0KtXLzaZobu7O6qrq7Ft2zbU1tZSVvY7np6emDNnDgDg5MmTyM/PN7vNLmkYkpOTcevWLQCaVA5z5szBq6++ilmzZlF/EuDh6Wq4urpi/vz57JxeTU0NLl68iC1btuCzzz7D2bNnoVarqembPHkyvL29sWrVKvj6+qK8vJxzxqF///6IioqCWq3Gzz//bLa2LmcYSkpKkJiYiKioKKxZswYrVqxAeHg4OzTj4eGxPSEhIRg3blyr/X5+fhg6dCjV+Qd/f3/MnTsXDg4OeOaZZzhrHCZNmoTg4GDU1dVh7969ZhnTLmcYhEIh1q5di5iYGIsXZ+Hh4TI3btxAbGwsTp06hUuXLiEnJwf37t1js/PSJjo6GqGhoTr78vPzOeFS0ubg4rJxEAgEWLBgAZydnVFYWIjjx4+3uy3OFOoxheDgYPLWW2/RlsHD0+G4fPkyDh8+3OppUlvAyN3dHTNmzKC2mLKxsRGbNm1CdXU1evbsidu3bwPQpIKYOnUqZ0b2DQ0N2L59O0pKSuDp6Ylly5bB2dmZtiwAmkiv77//Hmq1GvPnz9cpQvXCCy8YVainy40YeHi6MhEREVi6dGmrPEAKhQJVVVWIioqiusLe3t4eixYtgqenJ5YsWcLmJ7t69So2bdqE4uJiatpawuWRQ7du3fD4448DAH755Zd2LX7jDQMPj41pbGzE3bt3kZaWxpZItSU9evTAqlWrWrlSlUolDh06hOTk5FYp1m2Jv78/G6c/cuRIPPfcc/D29kZ5eTm+/fZbJCQkcCKklcvGITIyEgMGDIBcLseePXtM/jx5VxIPjxVQqVSoqKhAeXk5ysrKUF5ezm7aMOnIyEhMnTqVmsampibs3buXdde4uLigpqYGgCaJYnh4OEaMGAEPDw9qGrUolUocP34cly5dAqAxbk888QQnUr5z1a0kl8uxZcsW3L9/H/3798eiRYuMdiXxhoGn01NRUQFnZ2ebZckkhCA9PR3x8fEGh/ERERHw8fGBp6cnPDw84OrqavPoG7VajWPHjiE5ORlvvvkmcnNzkZSUhIKCAvac0NBQREZGIiQkhHpVvJycHMTFxaG+vh729vaYNWsW+vfvT1UTwF3jUF5ejs2bN6O5uRmPP/44tm3bxhsGW6FQKDiVmhfQrOzm2krqyspKiMVim+kqLi5GQkIC7t27h5dfflnnmEKhQGVlJSoqKiASiVpFw1gCQghu3ryJhIQEnY5WH0KhEG5ubvDw8ICHhwcmT55sszxZKSkpeOyxx+Dg4ABAk3E4KSkJGRkZbIpnT09PzJw5Ez169LCJJn1osxbk5uYCAEaOHIkpU6ZQ1QS0Ng6rVq2yet0UY8jKysKePXsgEAhQVFRklGHokLmSVCoVbQksubm5OHjwIBYvXgx/f3/acgBoIk+OHTuGOXPmICwsjLYc3L59G0lJSbh58yZGjRpl9ToPt27dQnx8PPLy8gBo3A4JCQmoqKhgN63LRHvcGoaBYRj06dMHffr0QWFhIS5cuMBm6HRzc0NERISOptraWtbdJJFIbOpmeni1v5+fH+bMmYOYmBhcvnwZKSkpKC8vh6Ojo8006cPJyQmLFy9GcnIyTpw4wZnfnXbOYfv27QgODuaEUQB+X/x2//59o0N/O6RhaGpqoi0BgMYo7N69G0qlEhkZGdS/oI2NjYiLi2M7n7y8PJsZhqqqKshkMnZYL5fLce3aNSQnJ7PuFKFQaDWjrlarcf36dVy4cAH37t3TOZaXl8caCS0CgYB9OrfFavdu3brhySefRFlZGS5cuICMjAwMHTqUfUIHNO9ZZWUlysvLOfMdd3BwwNixYzF69GgUFBTA29ubtiQAGqMbGRmJfv36capOiYODA1asWMGZsFotkyZNAsMwOH/+vFHnd0jDwIWnlpZGYdiwYa2SbdmaO3fuYP/+/aitrYWdnR2mT59us6pzBQUF2L17N6Kjo1FZWYnk5GSkpqaynZuzszOGDRuGiIgIi392SqUSV65cQWJiIqqqqto8RywWY8iQIawv38PDA25ublRW03p5eWH27NmYMGFCq4gkiUQCX19fm9UAMQWBQEDdhdQWXDIKWmxlFJRKpdGuRlO/6x3SMNDmYaMwffp0apNyKpUKp0+fRmJiIgghCAoKwrx58+Du7m6T+6elpeGXX36BSqVCUlISjh07xoYSBgUFITIyEv3797darWyRSISwsDD4+fm1igCqrKyESqWCQqFA9+7dOeFW08KFiUmejk1BQQHq6uqs8gDIGwYToW0UysvL4enpCUBTPCQ2NhYymQwMw2DcuHGIjo62yZMwIQSnTp1CQkICu6+yshJCoRBhYWGIjIxk0whYG0dHRzg6OrYqnqJWq1FVVaUTIsrD01nw9/fHxx9/DJVKhSFDhli0bd4wmABto1BSUoL9+/fjhRdeYCeYFQoF3NzcMG/ePHTr1s0mOuRyOWJjY5Gdnd3qWHh4OGbMmEE9rBHQDJ+1riMens6Gvb09PD09ERcXB5VKZdFyAbxhMBLaRqG5uRl79uxBZWUldu3axXbKAwcOxIwZMyxW0u9RVFdXY9euXa0meAHNF7WoqAhpaWkIDw+3iR4enq5MYGAgysrK8Ouvv0KlUiEyMtIi7fKGwQhoGwUAOHDgACoqKgAA2dnZNp9gBoDa2lqcOXMG/v7+bDSIi4sL+y/X1nLw8FiKhoYGnQgyrtCtWzekpaUBAI4ePQqlUonRo0eb3S5vGNqgvr4ehBA4OTlxwigkJCSwIahaevXqhZCQEJvqcHZ2xty5c216Tx4eLnDnzh2UlpZi/PjxnHCTank41PrkyZNQqVSIjo42q10+iV4bnD9/HpmZmZwwCnl5eTh16lSr/YWFhUhKSqJa2YqHp6vQu3dvJCYmYseOHZwKZPD29m4VHnvmzBmcOXPGrHb5EcNDVFZW4vLly3BxcUFtbS1Vo1BbW4uff/6ZDf90cHBA//79MWDAAAQHB3PqyYWHpzMjkUjQu3dvZGZmYtOmTVi4cCECAwNpy4JAIEBAQAC7gFMoFOK5554ze30Hbxge4vTp01CpVKisrAQADB06lIpRUKvV2Lt3L1QqFcLDwzFgwAD07NmTaolDHp6uzIABA5CZmYnq6mps3boVU6dOtWgkUHsJCgqCQqGAnZ0dbt++jStXrmDatGlmtckbhhbIZDJkZGTo7Lt+/ToAYOrUqTadXL179y7GjBmDkJAQqy0O4+HhIqWlpfDx8aEtoxW9e/eGRCKBXC6HSqXCr7/+isLCQsycOZNq4EXPnj0RHh4OpVKJb775BikpKRgxYgS73qk98I+fLTh58qTOa4FAgAEDBmD8+PE2/+C7d++OPn368EaBp8tRVVWFzZs3486dO7Sl6CASidC3b1+dfdeuXcO3337LRgzSoFevXvD09ISvry/Cw8OhVqtx4sQJs9rkDcMDbt++zRYsATQZCf/4xz9i5syZfPoCHh4b0qdPH4hEImzfvh07duxoc80MLVrWTwaA4OBgzJ49mzMp7idMmACxWIzs7Gzk5+e3ux3eMOD39A6A5oNetWoVW3eWh4fH9miTUt66dQvffPMNYmNj9SZJtCUhISGQSqVwdXUFwzAoKCiAUqnkTDZVZ2dnREVFAQCOHz/e7hKovGEAkJmZCZVKhaeffhrPPvssJ6INeHi6Mt26ddNx26Snp+PLL7/E0aNHqYaLCoVC9OvXDzNnzkRUVBQIIYiNjeVMmnQAiIqKgpOTE4qLi1vNmRoLbxigqXX7/PPPW6VYCw8Pl8nIyEBeXh5bpY1LaGsIaFGpVEhOTkZcXBzVjnj8+PEIDQ3FhAkTEBAQgOrqahw6dIianoeRSCSYMGECAODUqVPt+mx5wwDN0wm/JoCnK9KtWzfs378f69evx7Zt23D+/HkUFhZyokqit7d3q5xbAwYMwJNPPkm1Opp2jYBQKMS8efMgFotx/fp1NjUFFxgyZAh8fHxQXV2NpKQkk6/nDQMPTxfG1dUVTz/9NEQiEfLy8nDmzBl89913WL9+PXbs2IH4+HgUFRW121dtLuPHj4dIJIKDgwNEIhHS09Nx+PBhanoextPTk10zcPjwYXb9E20YhmFL6P72228mu994w8DD08Xx8fHB4sWLdaqBKRQK3Lp1C0lJSaiqqqI2onZxcUFkZCSGDh2KJ598EiKRCCkpKZwyDkOGDEH//v0hl8uxb98+zqSpCQ0NRa9evdDc3Ixz586ZdC1vGHh4bIxKpUJNTQ2KioqQnZ2Ny5cv49y5c/j111/Z9Mm2plu3bli4cGGrlfW+vr42qYltiDFjxmDw4MEIDQ3lrHGYNWsWXFxcUFRUZHInbE0ef/xxMAyDlJQUlJeXG30dw5U31hSCg4PJW2+9RVsGTwelsrISd+7cwdChQ212T5VKhcTERCQmJuod1gsEAixbtqxVJTpbkpaWhgMHDgDQuCMIIRCLxRg7diyioqI4seCSC8kt2yIvLw/bt28HADz77LNUP8eWxMXF4erVq+jbty/Onj17mRDyyDwe/IiBx2aoVCqqw+y6ujocPnwYX375JRvVUldXZ9KTVHsRCoUYM2YMnnnmGfTu3bvNcwgh+OWXX7B//35cvHgRCoXC6roeZvDgwaxvetmyZQgLC4NCocDp06fx1VdfmbVoylK0NXLgAj169OBkCGvLRW/G0iENA1d8eADQ2NiIvXv3cmLxjZaGhgZs3boVhYWF1DQoFAqdTuT27dvYuHEjkpOTba6lubkZp0+fxueff45Lly5BrVbj+vXr+PTTT/HJJ5/g6NGjNtPi6+uLxYsXY/ny5a1KsRJCUFZWhmvXruHUqVPUns6joqIwatQo+Pr6YsGCBVi6dCm8vLxQUVHBmd9eS+NAM0LpYbQhrN7e3px5r7SL3vz8/Iy+pkO6klxdXcmGDRtoywAA7NmzB1lZWejVqxeWLl1KWw4aGhqwfft2lJSUICAgAM8995zNNajVavz0008ICAhAREQEjh07hszMTACaAubPPfecTYb+SqUSycnJiI+PR2NjY5vnSCQShISEYNGiRVbX0xY5OTk4deoUSktLMWzYMISHh6O4uBiNjY1mF1sxB0JIqzUEN2/eRL9+/ahpaovy8nLOZShobGyEVCrlhHtLi0qlgkAgwIsvvmiUK6lDZlflSu6iq1evIisrCxKJBDNnzqQtR8coeHp64g9/+IPNNRBCcPDgQeTm5qKqqgoXL16EXC5n/dSjRo2y+g9GrVYjLS0NZ8+eRU1NTZvnuLi4YMmSJfDy8qL6A+7Tpw969+6N9PR0XL9+HYGBgZxYef/we6Jd8cs1uGYUAE3tc1o8bNC1mDr67JCGgQsTYOXl5Thy5AgAYPr06XB3d7e5BkIIFAoFJBJJK6OwbNkyKgb0+PHjuHbtGgCgrKwMANCvXz9MnTrV7OIhxqJUKuHr64vp06ejrq6u1VZfX4/a2lqkp6dj4sSJNtFkCIZhMGjQIISFhdGWwtPBSU1NxcCBA3VCj9sDJwwDwzDfAZgJoJQQMuBR59NGpVIhNjYWCoUCYWFhGDx4MBUdmZmZaGxsxGOPPcYJo5CQkICLFy/q7HN0dMSoUaNsZhQAjXsoICDgkec1Nzdb7J7V1Q749luNkVm58hQABt98E4PiYjcQwoBhCDw9a1Fe7gK1GlAqRfDyqsb9+67s8YCACtjZKSESqbFy5Sm4urbt/jJGy7Zt47Fs2RlqbZh7fUhSEobvj4NzVQVq3Txw6YnZuBUZaXI7XY2KigqcPHkSU6dONasdrkw+fw/AvL/Ehpw5cwbFxcVwdXWl5kJSqVQ4ffo0UlNTOWEUUlNTW9WzADSjmqSkJFRXV9tc06Ows7OzSDvV1Q746KMnkJPjj5wcf7z11tN4662ncPu2D5qa7NDcLEFTkx2KirzQ1CSBXC6BWi1Aaak7CBEAYECIAEVFXrh92w85OQHYt6/9neCxY4ORl+eN48fDH32yldow5/qQpCSM27kTrlXlEIDAtaoc43buREg7Ujt0NUQiEZKSknDr1i2z2uHM5DPDMD0AHDJmxCCVSgmtGOGmpiaUlJQAAPz8/CzWuZhKbW2tTnEQkUgEPz8/Km62xsZGlJaWAtDE4tvZ2cHe3h5SqZRqZStb0NTUD4WFPwOw/N/JMLWws8uBv/9aiERlRl2jVHojP/9XBAYuQ1HR9wgOnmH0tZZqw9zrz9y5g8A2Er8ViUSY0LOn0e10RWpqalBZWQmhUIiAgIBWCxZv3rzZuSafGYZZDWA1oHnSM8ZVYCm0EzoKhQIpKSmQy+Xo3r07elL6kqpUKuTl5enEudvZ2UEkEsHHx8emxqG+vh6VlZUICgqCm5sbnJycOBWNYS0qKoYiPX0DAAaGB96qB8dNf08IcUZTUwTu3PkNgwa9Cnf31Edek5u7Bv7+J9CrVzXU6pOQy/+E7t2/Mum+5rZh7vX+N2+2vV+ptOnv/lHom+ilCSGEfXCtrq5uNW91U89722ZDXNgA9ACQYcy5ERERxFaoVCqyZs0aolarybx58wgAEhkZSeRyuc00PMx7771HAOhsQUFB5LvvviNKpZKarq5AcTEhw4YRAth+GzWKEJnMsDZ3d82/2tceHoavsXQbltCgCAxu8w1QBAUb34gNeO+990hdXR1tGTps3LhRp1/49ttvdY4DSCHG9MfGnGSLjauG4bfffiMAyAsvvEAAECcnJ5Kbm2uz+z9MSUkJcXJyYj94Nzc3smHDBtLQ0EBNU1eguJiQ8eMJ8fc3vUO3s7OccQgK0t/J/ulPmu3hfX/+s/F/p7ltWELD9qk7SLPIQecPbxY5kB+m7jC+ERvw0ksvkXnz5hGVSkVbCsv333+vYxgcHR11+iveMFiINWvW6LzR33//vc3u3RYvv/wyAUCkUil5/fXXSUVFBVU9XYHiYkICAwlhGMt18OZsDEPIqVOtdY4e3fb5o0cb/7ea24alNDyFHeQOgokKDLmDYPIUdpjUhi1Yv349AUDWrVtHWwrLrl27yMPehJEjRxKFQkEI6WCGAcBPAGQAFADuAlhp6HxbGQalUkl8fX113mQXFxeyZMkS0tTUZBMNLbl16xaRSqVk5cqVpLCw0Ob374oUF7dvlNByc3bW376zs3GGoK39bRkHHtvx448/sv3Cjh3cGM0cOHCAACB2dnYEAHn77bfJvn37yJ07dwghxhsGToSrEkKeIoT4E0LEhJAgQsi3tDUBwLlz59iJHC0TJ07El19+SSUaKTk5GZcvX8aWLVuop0LuCqSmAj17AjKZ6deOHv17F65n8TUAzTHteaNHt32O5tmpNZMmAcOGAffuma6vo6FvBTtNWua6WrlyJRITEymq0SCVSrFy5UqsX78egCZb7rx589CjRw/TGjLGenBts9WIYfXq1ewTgUAgIBs2bCBqtdom9+ahh3Y+wUHXzW3UZgl3hz53jL7N39+0yd2OyHPPPcc+9XKF/Px8HW+Cj48PycvLo6qpsrKSqFQqUlRURBiGIRKJhFRVVbHH0ZFGDFxEoVDg559/BqCpcHXq1Cm89tprnAtP47EsMhkwYgRw9ixgbDVEofD3bjo+3nwN8fGatoxdpyiTAUOHdu6RQ0BAAKKiopCenk5bCsvD6wRKS0sxe/Zs1NXVUdPk5uYGgUCAgIAAjBkzBnK5HHFxcSa3wxsGPZw6dQoVFRUYPXo0rl69ivHjx9OWxGNltK6ju3eNv2b0aKCNtVgWoaZGv3vpYWQy4LXXrKODC0yYMAEymQzR0dGIt4T1tQAikQj+/v7sazc3N/j5+eGLL76gqOp3Fi5cCADYu3evyddyZuWzKQwbNoykpKRY9R7Lly+Hm5sbNmzY0OlX7/JoOtbQUONHCaNHW2Z0YAxjxgAJCcadK5MBJqTd7zA0NzfDzc0NTU1NkEql2L17N2bPnk1bFkaNGoWamhpkZWVBJBKhoKDApLoH1qS4uBhBQUEQi8UoLS2Fq6srGIbhK7i1F0IIFi9ejP/85z+8UegCyGTAwIHcNArA764lY7yYL71k3r0UCoXZeXasgZ2dHaKiogBo0tLMmzcPW7dupaxKYxhOnDiBWbNe1vEoAAAgAElEQVRmQaFQ4JtvvqEticUcdxJvGNqAYRi2vCFP50YmA8LDAWOre9raKLTkQb9okH37zJtrEIvF+Oc//4k1a9bgHscmLSZMmMD+X6VSYcWKFVi/fj1oej02bNiAgIAArF27FgCwceNGyOVyanoept3uJGNmqLm22XKBG0/nZt4820UbWQqx2LDWGTPMa//WrVtELBYTR0dH8s4775Dq6mrLCDeT+Pj4VmuKhg4dSuLi4mhLI2q1mjz22GMEANm5cydtOSwPRyehIy1wM3XjDQOPJTh+vOMZBUKMC2c1l7Vr17IdsLe3N/n8889Jc3Oz+Q2bQXNzM3FwcGB1de/endTX11PV1JKvv/6aAJpcalxi7NixBADZvn07H67Kw2OI1FTg8ccffR5N15E+4uMfHa20ebN593j77bfZuh7379/H2rVr0a9fP/z444/UitxLJBKMGTMGGzZswKBBg1BQUIAPP/yQipa2WLp0KVxdXZGUlITk5GTaclja407io5J4bAIh3ElRnJoKREQAmv6NQF9KbGsbhbq6OnzyySeora2FVCplNzs7O0ilUgwfPhzh4foL3QQGAsXFbR8TCACVyjx9//jHP/Duu+/q7JNKpVi3bh3WrVtH5fM8duwYJk2ahIsXL2Ls2LGQSCTIyMhA7969ba6lLV599VV8+umnWLJkCX744QfacgDoRifJ5XKjopKou4Xas/GupI5Fbm4u9eSDLQkN1bpc1O3Kb2RJZDIZmTZtmo7vHAAZPHjwI337j3Ipbdpknrba2lri4+Ojoys2Nta8Ri3IM888QwCQKVOmcCYjwa1btwjDMEQsFhMZh5aja91J6MyuJFpD2bYghGDbtm2oqqqiLUWHjRs3oqCggLYMAMDf//537NixA++88w7OnDlDVcuuXUBurvY30vYTr7Oz4fxGlsTPzw+//vorvvzyS0ilUnZ/RkYGVI945I+PN7w6+oUXzNPm5OTEjhh8fX0BADdu3DCvUQuyYcMGuLi4oKmpiepq45b06tULs2bNQnBwMPLy8mjLYVm4cCG8vb2Nv8AY68G1zcnJyYK21DwSEhLYiTCu5GXXanJzcyM1NTVUtVy5cqVVJEl5eTk1PUKh8sFIoe3Rgq1GCm2RmZlJhgwZQgCQzZs3G32dRKJ/1GBuBla5XE5CQ0NJQkIC+eWXX8xrzArk5ORwZrSgpby8nDN9gZbGxkaiVCo794jBzc2NtgSWzz//HADw1FNPtaqvaku0oyilUok1a9YAAF588UV2ApEWf/vb33Rejxw5EpWVlTbXoVKpMGXKSahU2s+o9WhBIrHdSKEt+vfvj4sXL+Jvf/sbJk2aZPR1w4frPzZzpnmaxGIxtmzZglGjRmGmuY1Zgd69e3Nm7kqLh4cH1b6gLaRSqWklf42xHlzbBg4caElj2m7u3r1LhEIhEQgEJD8/n6qWDz74gJSUlJAvvviCACDdunWjXnbwxIkTrXznAMiMGTNs7n+9ckVmcKTAtbBUU5+CBQL9owYOubp5KHDkyBH2/+DXMVift99+mwAg8+fPpy2FDBkyhMyYMYO4uroSAOTnn3+mqkelUpGIiAgdgxAZGUnOnj1rcy3ausMdaa2CqRgq+DNpEm11PLRQqVQkJCSEXYPCGwYr09jYSLy9vQkAKp1dS8rLywnDMGwHPHDgQHL79m2qI4aWJQb79OlD9u3bR80X/PTTndsoaDFUP4Kna5KTk0OA3yvMGWsYuOUI60Ds3r0b9+/fx6BBgxAdHU1Vy/nz5zVW/gHp6ekYNGgQkpKSqOiRy+VYt24d/P39sWnTJly/fh3z5s2j4gtOTQV27tR/XCLh3gK29mIo/ffp07bTwcMdrl27BgAmpwLnDYMJqNVqFBQUgBDCTjqvXbuW+uTXwyGg3t7eOHv2LCZOnEhFz969e7Fy5Urk5ubiueeeg0gkoqIDAObONXzc0MRtR8PQ3zJnju10dGVaPqBxgbS0NABAUlISLl26ZPyFxgwruLbRciUVFxeTQYMGkaNHjxIAxMPDgzQ0NFDR0pKBAweybpsePXqQnJwcqnrkcjnV+2t5VC4kmqGp1sLQ38tjXZRKJfnxxx9py9Bh9uzZbN/wYEEg70qyNIWFhbh27RpbIGT58uVobGxEdXU1NU33799nyx0OGjQIFy5coJ4egCs1LObP138sIIBuaKq1cHTUf+xBpVoeK5Gfn49//vOfnFqAqx0xAMCuXbuMvo43DCZQWFgIAGy+9U8++QT9+/enuur53LlzAIDo6GicO3dOp9RgV0UmA4YNA2pr9Z/Ts6ft9NgSQ+HzS5bYTkdXJCcnB1lZWfj1119pSwEAVFdXIz8/n31tSp0I3jCYwMMpJiQSCfbv34/g4GBKijTzC3PnzsXRo0c5tfCPJhs2AJcv6z/OxYyplsLQKKi52bwiPjyGyc7OBgCsX7+eshIN2olnLabMhfKGwQS0IwYtW7ZsYcsN0iI0NBR79+6Fvb09VR1cQSYDDFVXdHTsvEZBi6Hf/4YNttNhTZRKJecmenNycgAACQkJSDC2SLcVSUtLw6JFi9hqlF9++aXR1/KGwQRaGoY333wTS5cupahGw5/+9CeqUT9c4913gcZG/cc5lqnAKhj6OlDOYWgxcnNzcezYMdoydNCOGADg448/pqhEw8KFC7F7924MHjwYAFBRUWH0tV3gZ2I5tIZh7ty5eP/99ymr0UA7VJZLyGTAd9/pP+7r2zknnB9mxAj9x5qabKfDmshkMrz55pucmujVjhgA4ODBg8jKyqKo5veMuN26dQMA3L171+hrecNgAoWFhQgPD8cPP/zAuSRZPJrRgqFM1abkEOvIxMfrdye16Ls6NPfu3UNqair27NlDWwoAoL6+vpWr+d///jclNboEBQUB4A2DVdDO6MfFxcHJyYmyGp622LfP8PHOGonUFvrcSZ3FON57MIv+9ttvQ6FQUFYD3Lx5U+e1n58fdu7ciaKiIkqKfkdrGB42XIbgDYORVFRUIDY2lh2W8XALmQww5ELtzJFIbeHhYdp+QzQamrShhNYw3Lp1C1u2bKGsRuNGWrp0KVavXg1Ak/I+NzcXTRzw3fGuJCvi5+eHyMhI2jJ49PBQaWIdBIKuZRQA/S41Q/mU9JGQkIDDhw+bJ8jC3GsRd/uPf/wD9fX1FNUAU6ZMwfbt2zFsmKaccm5uLoKCghASEkJVFwD4+PhAJBLxk888XY/du/UfM7QauLPS0ND2/vasxbSzs8Py5ctRWlpqnigL0tIw3Lt3j81dRgtXV1cAmvBxoLVriSZCoRCBgYEmXcMbBp5Ogb5oIweHrhGJ9DD6RgYqlemL3KRSKUpLS7Fq1SrOrB2499AfsX79epOeiK2FNh1Nbm4uZSW6aOcZjIU3DDwdnhMn9B9rj+ukM2Ao0+prr5nWllQqBQD88ssv2Lx5sxmqLIdMJmMjA3v27Ino6Gh89dVXlFUBAQEBkEqlKCsro5oq52FMnRvlDQNPh8dQsryOlla7uLjYIhOW8fGa0VJbxMaa1padnR37/z//+c868fo0UCgU6NOnDw4dOgRAkw4/Li4Ob731FlVdACAQCDjpTuJHDDxdDkPJ8jrapLODgwOioqKwbds2qAwtyjACfVGcpkZ3akcMANDQ0IAlS5ZQDRFlGAanT59GTEwMpFIp8vPzUV5ezpm1RVrDwCV3Ej9ioEB5eTlnfK9aSkpKoOSQH+X48eOoqalBraFevB2kpuo/JpE8+vrbt28jMzPTcoLMxM3NDUuWLMGzzz6LxMREs9qyVMiqVCqFo6MjAgMDMWXKFOzYsYNqFJBIJIJEIoFIJEJ4eDgcHBw41Qn37t0bAoGAU5P1po4YqBfdac9mZ2dnsUIW5qJWq4mrqytxdHQkZWVltOWwjBw5ktjb25PExETaUgghhMydO5f07duX2NnZkQsXLpDc3FyLtBsaqr8wjTG1nBcvXkzc3d1JUVGRRfRYgsbGRnLixAmz2/H1bft98fU1rZ26ujry22+/keLiYmp1u/Vx7949olQqacvQoaamhjQ3N9OWoUNTUxNpbGzs3IV6hBxavllWVobq6mowDAOP9qwesiBKpRJyuRxKpRKpqalobGykXrRHS1NTE7Kzs9Hc3IyxY8fi/v37FmlX34OiMWsXrly5gps3b2Lv3r0ICAiwiB5LIJVKMXnyZLPb0eeJMjW9kKOjI8aMGQN/f3/O5eby9fXlVH8AAM7OzpAYM1y1IXZ2djouwUfRIdNyculN1w5hQ0NDqf9oCCGYOHEi1q1bh6amJgQHB8PT0xNqtZq6/7XlhOrbb7+NkSNHmt2mTKb/mDF9hYeHBy5evEj9vbEW+tYyUF4LxtMB6JC/CC4ZBm3kAReezMViMXJycjBz5kwAmgiJWbNm4YMPPqCs7HfDEBkZiXXr1lmkTUNhl4YyjGrp0aNHpzUKgOUmn3m6Hh1yxMCVmsLA7yMGLhgGAPD392fdNHfu3EFFRQW2bdtGWZXGMDg6OmLHjh0W+/z0hV36+na8aCRr4OoKlJW1vZ+HxxAd8nGJiyMGbYgabfz8/HRev/HGG9TnPgCgubkZn332mcXeJ5nMcEEeHv1hvHV1ttXB0/HgDUM7qa6uBsC9EUNLw+Dn54e1a9dSVPM706ZNw4oVKyzWnqGkeRybi6RGc3Pb+zmQ8JOH4/CGoZ2sXLkSO3bsYEcMvXr1QkJCAvW1Ay0NwzvvvANHjmSQe//99y06OR8Xp/9YV6q7wMNtLl26hBqOJOt6OL+UITqkYeDCHIOPjw+WLl3KjhyGDRuGTz75hHr9Za1hCAkJwapVq6hqaYm9vb1F29M3gcrPL2gwFLHFkWeFLsH69es5kxpj06ZNRp/LCcPAMMxUhmGyGYbJZRjmb0acbwtZBunbt6/Oa5lMhjfeeIOSmt/RGob333+fEwbUWjywxzx6MORq48DPp0tw8+ZNxMbGIjs7m7YUyOVybNy40ejzH/l4yzDMTwBSAVyDZtWcZVYm/d6+EMD/AMQAuAvgEsMwcYQQ7uQpaIOHDUN0dDQnCvn4+fkhPDwcixYtoi3FaqSm6l+8xc8vaDDkalu82HY6ujL//ve/QQjhhGGIjY2FzNAw8iGMGTFsBNAAYD6AEwzD7GcYxrmd+tpiBIBcQshtQogcwC4AcyzYvlXo06ePzmsujBYATbjqRx991Knj85cu1X+Mn1/QYGh184OkpJ0OwqF8Zffu3WPDxGlnowU0oet79uwx+nxjeo/uAM4BeIEQEg7gZwDvtU9emwQCaFml+u6DfTowDLOaYZgUhmFSCgsLcebMGQtKMJ3g4GB2EnzAgAGYNm0aVT1aQkNDMWXKFNoyrMqNG23vF4v5+QUthlY3m1jMq8NgSsdnbb744gs0PwgL48KI4c0338SCBQuMPt8Yw9AHwPsAbjAMcxXA4wDmMQwziWEY7/bJ1KEtj2cr008I2UQIGUYIGVZaWopevXpZ4NbtRygUsjH5r732GifmPQBN5kmuaLEW+qZOOLBcgzPom5wXCIAxY2yrxRaUlpbiNVMrEFmJ2tpanaJBOTk5nBjNlJeXG32uMYbhc0LIbEJIKICJAHYAcADwNABLVAi/C6BlsvAgAMWGLnBzc0NwcLAFbm0effv2Rbdu3fDUU0/RltJl4Be2GYebW9v71WogOdm2WmzBhx9+iMLCQosUOTKXzZs361Rvq6+vR3GxwS7NJhQWFj76pAcYE1t5nGEYdwBZALIB9APwEyHklfbJa8UlAL0ZhukJoAjAHwAYnB7z8fGx0K3No0+fPhg7dmynjv7hGoaibXh+R1/ofGcM583Ly8PXX38NQFOHhOZDo1wux6effgqhUKhTaCknJweBlH14d+/eNfrcRxoGQsiQB5FD/QD0BXASwNF2q2vdvpJhmJcAHAMgBPAdIeS6oWucnS05991+Ro0ahUmTJtGW0aU4eJC2Au4jk+lf9WypqC2VSsWZdNfvvvsu5HI5AM2kL03DUFhYiG+++QZFRUV4/vnnMXHiRIhEImRnZ2PChAnUdGm1GYtRoSuEEBUh5DohJJYQcogQYtHlvYSQw4SQPoSQEEII/VSgRjJ79mw4OTnRltGlMBRtw5F+ijqGXO2WiNpqaGgwabGUNcnIyMAPP/zAvjZlda81CAkJwYwZM1BQUABA8/B49OhRTgSEWHTEwKOfzj7Jy0UMRdvwoaoa9GWddXCwjBvptdde40yqlXXr1ulM7NI2DFpa5lBjGAY9OfDltPiIgYeHK+ibWzSmYltXQd97ZIk6DIcPH8ZXX31lUjUwa3HhwgXEPbSSz5RFXNaEa1mXAdNGDLxh4OlQ6HMXdeL1fCYhk2kqO7eFt5nB5aWlpVi+fDkAUDcMhJA2KwFyYcRACOFUAS8t/IiBp9OiL0ch5dyFVkOtVqNWX2GFNjAUtWWON4MQgueeew6lpaUANDWEaaJSqRAbG8uuLvb19cX//vc/VFRUUNUFAPfv30dtbS2cnZ3hba41thCEEH7EwNN50Rdto29/R+bkyZOYMWOGSYuj9u1re7+3t3muti1btui4bWiPGEQiEdzc3HD58mUAQEREBP74xz/is88+o6oL0C33y5V5yLKyMnYltjHwhqGTw4UVlw+jUqlw/brBiGSbolarOZMaWcvevXsRExODadOmwcXFxejr9GWdNTRp/ygIIfD19cXzzz8PAHB3d6duGLRcuXIFgMYwAJpcYbThohvJlNECAM2H3tE2sVhMFAoF4QorV64kgYGBJCkpibYUlq+++ooEBweT//znP7SlEEIIqa+vJ1VVVSQsLIxMmjSJjB49ul3tCASEaLzouptA0H5tGzZsIC4uLqS4uLj9jViY5uZm8sknn5Cmpiajrykubvu9AQiRSMzXJJfLyenTp8mNGzfIyZMnzW/QAjQ3N5OrV6+SvLw82lJYmpubyY0bN8iNGzdoS2GRy+Xk1q1bBJoM2Y/sYzvkiEGhUHBikklLZWUlioqKOPfUmZ+fj5SUFACap2KaXLlyBT169MD169dx6tQp1LfzEVbf5LM5axhmzJiBCRMm4L33LJkb0jwkEgn+8pe/mOTLN7R+Yfhw8zWJxWJMmDABffv25czCTolEgvDwcE6kyNEikUjQt2/fVqn5aSIWi03KL9chDQPQjqGRFdEOGbWxy1xAO7S+fPkysrOz8frrr1PVM2bMGKxZs4Z9bYq/syWurqbtN4bHHnsMBw4cwPLly9utiwvom1/ojGkweKxLhzUMpoReWRttrDIXRgxKpRIrVqzA8ePHAWhS/g4fPtykzIrW4t1338WwYcMAoN3JzvQNNMzxoWuJjIykHm3TXmQy/esXeHhMpcMaBn7E0DYikQijRo3C3//+dwCaOaTa2lq25CdNxGIxduzYAXt7+3YbBqWeZCz69ncVDLmR+FQhPKbSYQ0DP2LQz/Lly1tVmOOCYQA0qco//fTTdrts9NVc6Oq1GPbu1X+MA9kYeDoYHdYwcGnEEBAQAHt7e1RUVKCiogKEEJ2Uu7ZGJBLh/fff19nHFcMAAM8//zwmT55MW0an4kFy0VaIRPz8Ao/pdFjDwJURg7YAh3bUcOHCBcybNw91dXU0ZWHBggXsBDTALcPAMAz+97//tetaffaWoh2mzoNSBG3SQadMOjXJHaBSUoc1DFwZMezcuRP9+/dnJ3fnzp2LxMREuJoTJmMBGIbBv/71L/Y1lwwDAHh5ebXrOmtOPndUXnpJ/zE+hxS3SExMxAcfcL+yQIf92hQXF0PJgRnH559/HjKZjB05qFQqzsQvT548mY0355phaC/6PvKuGpGTmqq/RgXD6K/kxmN78vPzMXfuXM7kTzJEhzQMIpEIarWaE4vcXFxc8OKLL+rse3jilyYfffQRHBwcTEqrwGX0TTITAnDg62BzZs3Sf4wD2SF4HlBXV4fZs2ejtLQU3bp1e/QFlOmQhkFbY/nu3bsghFBflPTKK69AIpGwr7kyYgCA4cOHY82aNZxJ5mUuhlwjXa0edGoqYMijykcjcQO1Wo2nn34a165dAwDeMFgLbSecmJiI2bNns2X0aOHv749nnnmGfc2lEQOgWVjWWTC0qr+r1YM2NFoQi/lopPr6ehw+fJi2DLz11ls6mWl5w2AltBE/f/nLX3D69GmEhIRQVgT89a9/ZZ/KuTRiAMCZMoyWID4e0JfYsytFJj1qtNAB3NhWpby8HJMnT6buTdi2bRvWr1+vs483DFai5RqBgQMHQsCB0Iu+ffti7ty5EAqFJiWr4jENQ6kfulJkkqHRAtC13UiFhYUYO3YskpKSMG7cOGo6EhISsHr16lb7ecNgAwYPHkxbAsvrr7+OXr16sXMgPJbHkFesq0Qm7dpleLQwenTXdSNlZWUhKioKWVlZGDx4MDwoLol3cHBAfHw8HnvsMXafu7t7hxjBd0jD0HKEwCXDMHLkyDafEHgsx6FD+o91lcikFtNZrXB27rpG4eLFixgzZgy7xmnChAlU9QwZMgRCoRCZmZlwdnbG9u3bOZUe3BAd0jB4enqy/x80aBBFJa155ZVXaEvo1DzKS9eJ5tnbZNcuQKFo+5ijI511C/X19fjwww+Rk5Nj+5s/4MiRI5g0aZJOzWfahgEAvvjiCwDAihUrsHTpUnzzzTeUFRkHQzhY+vFRDBgwgGhLQ1ZXV3eaGH0e43B2BvRlHPHyAu7ft60eWyGTAQEB+o87O9vWMCgUCnz33Xf4v//7P0RHR2P37t22u3kLdu7ciWeffVZnwatAIEBFRQXVDATaNQsKhQI5OTls2hyaMAxzmRAy7FHndcgRg1QqRUxMDHr27MkbhS7IqlX6I5OqqmyrxVbIZMDAgfqPBwTYzigQQvDzzz8jLCwML7zwAsrKylolbbQVhBD06tUL27dvh0gkYvcPHTqUelqazZs3Qy6XY9q0aZwwCqbQIQ0DALz88sucml/gsR2XLumfaFYqO+c8w2uvAYZqLdkqCuns2bMYOXIkFi5cyKaZX716NbXC9wzDYNSoUUhLS4NSqURYWBicnZ2pu5EUCgW+fpDdcO3atVS1aKky5anJmMLQXNsiIiKIUqkk27Zts0ihbJ6OB8PoL3w/dixtdZblp58IAdQPttZ/r0RifQ1paWlk2rRpBIDO5ujoSGQymfUFGCArK4uIRCICgCQmJpIvv/ySHD58mKqm3bt3EwCkb9++RKVSUdWi5fvvvycAUogRfWyHHTEIhUIsWbKEtgyedlJYWGhWavKoKP3HfvvN9PYOHjyI1NTUduuxNPv374ePjw+cnHrjqacMr9wbPtz6egICAvDEE0+0SgD36quvUk3QSAjByy+/zJa0HTlyJF588UXqI4bPP/8cAPDSSy9xYp0VAOw1VM3pIbihuJ1w5Q0HNF9Qtb40l5RQq9Wo59iqL5VKhZs3b2Lnzp3473//2+524uM12UP1cfq08W01NTXhwoULGDFiBD7++GNOfI7Dhw+HRBKM+vqL+P1n2voPDgiwTXiql5cX/Pz8cL/FzL6XlxdeffVV69/cAEeOHMHJkyfh5ubGppkXCASQ6puEsgGpqalISEiAs7Mzli1bRk1HS6qqqtg68EZhzLCCa5udnR0pKSmx3BjLTPbs2UPCwsLIvn37aEthycrKIlFRUeSZZ56hLYVFqVSSZ599lri4uJAePXoQZ2dnUlpa2u72Ro/W705ydja+nf379+u4R8aPH08KCgrarcsS5ObWE6DEoAsJ0LwHtkKhUJA//OEP5P333ycMw5DPPvvMdjfXg1KpJF999RXZunUrbSksSqWSxMXFkY0bN9KWwqJSqcj58+eNdiVR7+TbswHg1Jv+6aefsh0KV8jJySESiYQAIL/99httOYQQQuRyOXniiSd0OuFXXnnFrDZFIv3GwVjX97Vr14hUKtXR5erqSn788UeztJnDvHmEU0ZBi1qtJoQQsnz5ctLU1GR7ATxmYaxh6JDrGBiGIZMmTcLJkydpSwGgGaYFBQWhvr4eaWlpnFl09/bbb+ODDz7AoEGDcPnyZVRUVECpVCLAUDC8laiursarr76Kffv26URHiMViZGdno2c7w2oCAjShnG0xaRJgzFfk22+/RUZGBpqamtDc3IympiZ2W7BgAZYvX27TtOUnTgCPPw5obBTQlguJdtqL5uZm2PF1Qzscxq5joP70354NABEIBGa5ISzNH//4RwKArFq1irYUlvr6etK9e3cCgHz++efkqaeeojrkvnHjBpk/f36ryJYlS5a0u01D7iRTRg1c4epVw38PQIhQSFslT0cFndmV5OLiQsAxd1JmZiYBQOzt7UlZWRltOSyxsbEEAOsq4cKcQ2JiIhk3bhxrGBiGIVevXm13e46O+jtRd/eOYxyuXjUchgto/lYenvZirGHgTliPCbi7uwMwLfzK2vTv3x8xMTFobGzEt99+S1sOCCH46KOP8OOPP0IkEqHpwYqwM2fOaEdd1Bg5ciTOnDmDw4cPY+DAgSCE4M0332x3e4aC0yorgZdeanfTNiM1FYiI0HT/huBQIB5PJ6ZDfs3c3NwgEolw5swZnfA52mhXOP7vf/9j87bQ6oQZhsHSpUuRmZmpk0OmsLAQt27doqKpJQzDYNq0abh69Sq2b9+OzMxMnDlzpl1t1dRoKpbpY98+08JXbY3WKDwqStbWuZB4ui4d0jCIRCJMmjQJarUasbGxtOWwTJ8+HSEhISgoKEBcXBxSUlJwyFCeaCsTFBSE3377DaNGjdLZ394O2BoIhUIsXboU2dnZEAqF7W5nxAjDx2NiuJkqgzcKPIQQZGRk0JahQ4c0DACwcOFCANxyJwkEAqxZswYA8OGHH2L27NnIzs6mqsnDwwMnT57E9OnT2X1cMgxapFIpoqOj2319fLzhUYNaDXTvDjyox04dmUyzetsYoyAW80ahs9LQ0IBly5YhJSWFthQdOqxhmDt3Lr3rzi8AACAASURBVKfcSQ0NDfjzn/+MzMxMAMDly5chk8lQWFhIWZmmktSBAwfwzIMKL1yYZ7AGjxo1KBTA4MH03UqpqZq6EhcvPtooAHz95s7KzZs3MXLkSOzevRtz586lLUeHDmsYPD09OeVOcnBwwLhx41pNPBcUFFBSpItYLMbWrVvx17/+Fffu3aM+krEG8fGAr++jz5s0ic7IoeUooanp0RPNWrpy/ebOyoEDBzBs2DCkp6dj6tSpcHNzoy1Jhw5rGIDW7iS5XE5TDubOnYuPPvpIZx8XRgxaBAIBPv74Y2zYsAFnz56lLccqGBu1Ex6u6aRtMe8gkwETJmjumZho3CjB2fn3INWuWqqzM6JUKvHGG2/giSeeQM0D/+CTTz5JWVUbGBPTyrUtIiKCEEJIWVkZEYlERCAQkPz8fDJr1iwLRPqah1qtJs888wwbo+/j40NbUpvk5+fTlmAVHrXg7eHNzo6QtDTr6Tl+/NFrE8zJ88RjGunp6eTatWtU7i2Tycj48eN1FndKpVJSU1NjMw3ozAvcIiIiSFZWFsnLyyMxMTEEAPHz8yMAOJH7vKmpiYwePZr98PmcMrbH2dn4jlggIMTV1XIGoriYkPHjCRk0yDSDwBsF61FQUECWL19OQkNDSXNzs83vf/PmTdKjR49Wq/4XLFhgUx2d3jBcuHCBCASCVm90Q0ODJd/HdlNSUkKCg4MJAJKbm0tbTpfEFOOgNRAuLoSMGmX6ammtMYiI0BTO0XcPQ6MH3ihYnvLycvLaa68ROzs7AoDs3LmTmhZtdtqW/dXevXttqqFDGAYACwFcB6AGMMzY67SupHfeeaeVYaisrLToG2kO165dI05OTuT06dO0pXRZTHUttezA7e0JcXDQGAyG0eQo6t9f04E7OWn+HTRI869EYrrLiDcI1qOhoYH861//Im5ubmzfEB4eTtWjcOTIEQKACIVCMm7cOOLo6Ejq6+ttqqGjGIb+APoCONsewyCXy8mIESN0DAPtMoMP88svv5AdO3bQltGlaa9xsMXGGwXLolAoyJYtW0hgYGCrh8ajR49S01VSUkJ8fX0JAPLPf/6TFBYWkhUrVthch7GGgRNptxmGOQvgr4QQo1Z5ODs7k4iICABAY2MjUlJS2KpbkZGRVKs3tYVSqYRIJKIto8sTH/8rVCpHPUet9TvQn65bKKzHmDEzrHRfejQ1NaGqqgoNDQ0IDg42a0W7qdTV1aGwsBBlZWU6lfjc3NwwePBgm+l4mPT0dFRUVMDV1RWDBw8GwzBQqVQ2fW8A4Ny5c0al3e4wvRXDMKsBrAY0KTGKi4vZY76+vigvLwcAlJaW8p0wT5v06jUEhYU/oakpoo2jDEwzDgSGOv3f22xjL1OH0NChAIAWX+MOi0ql0qlhoVQqwTAM/Pz8UFJSYnM9Dg4OkEgkOobB1dVVp8+wJbW1tairq4NUKoWnpydk+gqIcAirjxgYhjkJoK1q4esIIQcfnHMWJowYgoODyVtvvaWzb9euXcjOzsYLL7wAX2NWOfF0af70p+VoapLoOWrOb0K/sWAYNb7+erMZbXOH/Px8ZGRk4M6dO+xDmRaRSIQlS5YgODjY5rpKS0uxbds2NDQ0oHv37igoKEBYWBgWLFhgcy0AcP/+fWzatAlKpRILFixAWFgYFR1aXnjhBaNGDFZf4EYImUwIGdDGdtCS95k9ezacnJx0Mony8Ojjv//dio0bv4FU2taiSKbFZgyPPj8kRNZpjAIA+Pn5gWGYVkaBYRjMnz+fulEICQnB0qVL0aNHD0ycONHmWgCNC3nfvn1QKpUYPHgwdaNgCp3G5+Lg4IA5c+bwhoHHJP773634+OPZuHXLX88Z5pX0DAmR4bXX4tp9fXNzM3bt2gWlUgknJyeDmy391Q0NDTolWrXMnDkT/fr1s5kOLQ8bhT/84Q8QiUSYO3cuXF1dba4HAE6dOoWSkhK4u7vrJLHsCFA1DAzDPAHgCwDeAH5lGCaVEDKlve2FhoZCpVJZTB9P16Blx11eXo7k5GRER0fD0VHfRLXtsLOzQ3R0NLZv3673HBcXF4wfPx7h4eFWr02tUCgQHx+PCxcuQKlUws7ODiqVCkqlEhMmTMDQoUOtev+20GcUAFAzCrm5ubh48SIEAgHmz58PiUSf29J25OTkGH0uVcNACNkPYL8l27T1LL8WQohNC8Ybg1qthkqlgthQPmobo1KpUF1dDQ8PD9pSWJqbm5GRkYGAgAD4+PggKysLqampGDlyJKKioqgUva+pqcHx48chk8lQUVHR5jn29vYYO3Yshg8fbpOAi4qKCvzwww/sSGHQoEGIiYnBDz/8gB49epiVNr29VFVV6TUKtGhsbMTBgxpP+bhx4xAYGEhVD6DpC06cOGH0+R3SlVRWVobKykq2xCdtqqqqsH//fgwaNAjaMFraaLPO1tXV4emnn+aMcbh48SLOnDmDUaNGITo6GmKxGLm5uXBxcYGPjw8VTcXFxWxBJaFQCIZhoFQqcf78eVy6dMmmna8WOzs7XL9+ndUkFovZ8qxisRijRo2yudFyc3ODRCKBj48Ppk+fzs4jDB8+nNr33tXVFb1790ZdXR0njAKgqS0SFRWF3NxcjB07lrYcAJoEmuPHj0d6erpR53NiHYOpSCQSEh0dzWZXpU16ejpiY2MhFouxevVqeHl50ZaE6upqbNmyBXV1dQgODuaMcThy5AiSk5MBaH7UU6ZMQU1NDRISErBy5UoqQ//i4mIkJiaiuLhY79O51l0zePBgCGxUeDkjIwNeXl7w9vbGrl27cOfOHURERFB1c1VXV8PZ2dlm74ExEEKgUqk4YRRawkUvgrFRSR3WMHh5eWHlypUICgqiLQcAEBsbi/T0dPj7+2PlypXUXFotKS8vx/fff88541BYWIjDhw/j3oOc1/b29mhsbISXlxeWL18OBwcHatouXLhgcMjt5eWFKVOmIDQ01Gaa1Go1Dh8+jNGjR3NmlMzTMenUhsHDw4NIpVIEBQVh5cqVtOUA0PipN27ciKqqKkRFRSEmJoa2JAD6jQNtVxwhBCkpKTh9+jTrIgGAgIAALFu2jMpkXXl5Ofbv3w97e3uD0T805hx4eCxBpzYM3bt3J3Z2dqivr8fChQvx2GOP0ZYEQPMkvHXrVhBCsHTpUvTq1Yu2JABtG4cdO3Zg1qxZVN1eaWlpOHbsGBobG3X2h4SE4KmnnuLEqIuHpzPBmQVu1oBhGIwbNw4AcPLkSc6EqHbr1o2NzDhw4ECrDo8Wnp6eePbZZ+Hk5IT8/Hxs27YNBQUFOHXqFDVNjY2NaGhoQFBQUKsn8Fu3buHAgQPoiA8tPDydgQ5pGAAgIiICXl5eqKysxKVLl2jLYYmOjkZQUBBqa2sRF9f+hU2WpqVxKCoqAgDcuHEDd+/epaLH3t4eo0aNwuLFi/H6669j1apVmDx5MkJCQiCRSJCRkYFjx45R0cbD09XpsIZBIBCwfvzz589z5ulcu6DFzs4ON27cwOXLlwFo6lHTfAIuLi7GiRMndPz5AEyKbbYWAoEAgYGBGD16NJYsWYI33ngDK1asgIODAwoKCmjL4+GxOYQQVFdXU7t/hzUMANCnTx/06NEDjY2NOH/+PG05LG5ubuwS+GPHjqGsrAwXLlxAXl4eNU3+/v4YMGAAnJ2ddfYXFBSYtCLSFggEgv9v716DojrTBI7/X+4icr9pFIjGEVHUGAW8IJiIt1xUvEwsk5hkTeJstmZ3az/szkzVft/aqp3a1KbKSio7OrnsCmKGGEUjGYXURJSsIBFQISLaEG4iARRouvvsh7Y7tqAySvc53T6/qi5tutt+6mCfp9/3vO/zOKflkpKS9A5HCI9qaGjgww8/1HWK3KsTA8Dq1asBqKys5MaNGzpH87N58+aRnp7O8PAwBw4c4NSpU84NS3pQSjF37lzeffdd1q1b57IO/uuvv5b5fCF0ZjKZ2Lt3L5999hlTp07VtTqA1yeGyZMnM2/ePKxWK6WlpXqH4yInJ4fg4GDa29sxm83U19e71IjXg7+/PxkZGfz6178mJyeHoKAgOjo6qKmp0TUuIR5XXV1d7N+/n48++ojm5mYCAwN1KS9yJ2NtFXxIzz77LHV1ddTV1WEymQyx6a2yspKSkhKXb+K3bt3i8uXLHt0cdS9BQUHk5uayePFiysrKKC8vZ86cOYbbPSqEr+rr6+PkyZNUVVW5nCeWLFlCWFiYjpH5wIgB7KUVsrKyAJwrWRobG3X9dr548WJeeeWVEbt49ZxOGs3EiRNZv349O3bsMNRUnBCeoGkazc3N3Lx506Pv29XVxd69ezl79qxLUggNDWXp0qUejWU0PpEYAJYvX87EiRMxmUxUVlbypz/9iY6ODl1jmj59Ou+8845LdcULFy4YZt/FnaKjo4mLi9M7DCE8wmQycfToUX7/+99z7tw5j9eeio2N5Ve/+tWIbpMrVqwwxM56n5k3CA4OJicnhyNHjnDkyBHA/stPTBytq6jnhIeH88Ybb3Ds2DEqKysZHByksbGRWbNm6RqXEI+bH3/8kfPnz1NXV+csHT558mRdmuhYrVYKCgpob28nJCSEwcFBoqKiWLTogZuSPcInEsPAwACffvrpiMbjJpPJEAfa39+f9evXM23aNA4dOkRtba0kBiE8oK+vj8rKSmpra0dUzg0JCWHbtm0ev65mtVrZv38/DQ0NTJgwgddee43Dhw+TkZFhmDIwPjGVNGHCBH75y1+OKNms167ee0lPT2fXrl10dXUxPDysdzhC+LywsDDi4uJGbfmbn59PZGSkR+MZLSkkJiaycuVK5s6d69FY7scnEgPApEmTeP31113mya9fv26YHdEO8fHx7Ny5k6GhIb1DEcKtLBYL3d3dNDU1ce7cOcrLy/n22289uihEKeWsy3WnFStWMHPmTI/FAfdOCmC/Hmmk3g0+MZXkEBYWxuuvv84f//hH57RSS0uLIZaH3ik4ONgQF5iEGC82m42ysjLa29vp7e3lp59+GnEyTklJYdu2bR5r8nPz5k2Ki4tpaGgAICEhgfb2dqZPn05ubq5HYnC4X1IwIp8ZMTiEhoayc+dOJk+eDBhvOkkIX+Tn50d6ejodHR38+OOPI5LCwoULefXVV5kwYYJH4mlsbGTPnj00NDQQEhLCli1b2LhxIxEREWzevNmj3869LSmAj40YHBwH/5NPPpHEIHzOwMAAnZ2dxMTE6Nbi827t7e2cOXOGvr4+l58rpVizZg2ZmZkeicNisVBaWsrp06cBSEpKIj8/n4iICIaHh9m6datHOwR6Y1IAH00MYF9x8Oqrr3Lw4EFD9l4V4mGFhIRw8uRJmpqaCAkJITo6mtjYWGJiYoiJiSE2Npbo6Gi3t3G12WxcvHiR06dP09zc7Px5YGAgw8PDBAcHs2XLFo9N5XZ2dlJUVER7ezt+fn7k5uayfPly52c/MDDQZU+Ru3lrUgAfTgxgn8vfvHmzIRuFC+/R39+ve4kC+Plibnd3N/Hx8TQ1NTE4OEhrayutra0uz42IiGDNmjXMnj173OMYGBjg7NmzVFZWOktDBwUFMX/+fDIyMigpKeHGjRts377dY5smz5w5w/Hjx7FYLERHR5Ofn+/RJHA3IyaFv2YlpM+fLT3VO9iIoxKr1Yqfn5+h4rJYLJjNZo8O5x/EbDZjMpmIjo4mIiJixPGqr6+npqaGZcuWMWvWLI8cz8HBQc6ePcv169edyaC3t/eBr4uPj2fp0qXMnTt33NfEDw4Ocvz4cWpqapzLP6OiosjIyODpp592LqhISEhg8+bNHvkdm81mioqKnKXjFyxYwLp163TpGe5gxKQAcOjQoTE/1ysTQ3d3N52dnYYp4WC1WiksLOTJJ5/02FzqWJSWltLa2uqcYzWCmpoaSkpKmDt3LpmZmYb4wLS1tfHxxx8D9s2IUVFRREdHO2/BwcGYTCb2799PbGwsS5YsYf78+W7djKRp2ogmSn5+fkRGRhIVFUVMTAw1NTXOxktJSUksX76cp556ym2JKygoiIaGBiwWCzNmzCAjI4OZM2eOeD9HKXxPCAwMxGw2ExISwgsvvMCcOXM89t734ufnR0REhKGSAuBckDMWyhvr8AcFBWmpqam89dZbun4zcGhoaOCzzz4DYO3atYZIDkNDQ7z//vv09fUREhLC888/b4gNNEePHnVeGAT7CS0zM5PU1FTnMsarV68SFRU1oqmQuzj6X3d3d9Pf3z+m14SFhZGVlcWiRYvctvT4+PHjhIeHEx0dTUxMDBEREc5k1NPTw3vvvcesWbNYtmyZxyoKNzY2EhkZSWxsrEfebyz6+vqw2WyG+fID9sTe29trqJgAdu/e/X+apj2wHIRXJobQ0FAtMjKStLQ0tm7dqnc4gL3MtqNGk1GSw61btyguLnYOs+fNm8f69et130Nx/fp1Kisrqa6udm70Cw8PZ/HixSxcuJDLly/z1Vdf8fLLLzNlyhSPxmY2m51TN45pnNbW1nsWZAwODuaZZ54hKyvLY4kM7KuA/P39DXWCFsbn04nhiSee0BxDyNWrV7NkyRK9QwKMmRwAvvvuO44dO4bFYiEqKor8/HxD9KwYGhri3LlznDlzhuvXrwMQEBBAYmIiJpOJwMBANm7cSFpamm4xaprGvn37XFbdREREOFcAOVYBxcXFER4erlucQoyFTyeG5ORkbePGjRQWFuLn58drr71GcnKy3mEBxk0OnZ2dHDx4kLa2Nvz8/MjJySE7OxulFDabjYGBAd3WxGuaxg8//MDp06dpbGwc8Xhubi45OTk6RGa//nDp0iXnclBPLAMVwl3Gmhi8dudzWloaS5YswWazceDAgTHPDbvb4sWLnWV8755P11NcXBy7du0iKysLm83GiRMn2Lt3Lz09PfT09FBUVKRb32elFE899RQ7duzgueeeG/H4yZMnKSoqGrUQmrslJiayYsUK0tLSSEhIkKQgHgtemxgAVq1aRXJyMv39/RQUFOjeT9nBqMnB39+fNWvW8MorrxAWFsbVq1fZs2cPf/nLX2hqauLEiRO6xnfp0iUqKipGfez8+fP84Q9/MMwXACF8mddOJf32t78F7JuPPvjgA/r6+sjKymLNmjU6R/czo04rwcgL0w7bt2/nF7/4hU5R2Q0PD9Pb2+ssxub407GZav369URHR+saoxCepmkaQ0NDhISEPPS/MdapJK/cx3CnsLAwtmzZwr59+6ioqGDq1KmGWMsM9pEDwJEjRzh69CiAMzn89NNPui5lCw0N5fnnn6erq8ulgcnnn3/O22+/TVRUlG6xBQYGOi/sCvG46+npobq6msuXL7N9+3aPvKdXTyU5JCUlkZeXB8AXX3xBZ2enzhH9bLRpJcfUl56jtd7eXoqKikZ0tRocHKSgoECX+XwhhJ3VaqW2tpaPP/6Y9957j/Lycp599lmPVaf1+hGDQ1ZWFiaTidraWgoKCgyz+Q1Gjhzq6+tpbW2lrq5Ot9GNoxf1jRs3OH/+PLW1tc4eFm1tbRw+fJgNGzboEpsQj6v29naqqqqoqalxaTK2bNkyUlJSPBaHzyQGgJdeeomOjg46OzspLi42zOY3cE0OjjXxf/7zn0lNTdW1z2tUVBTZ2dlkZ2fT1dXlTBLV1dVMmzaNhQsX6habEI8Li8VCcXEx58+fH/HYlClTWLlypUfj8YmpJIegoCC2bdtGUFAQdXV1nDp1yvmY3iuWzp07N+KX3t3dzdmzZ3WKaKTY2Fhyc3N599132b17N319fdy8eVPvsITwKIvFgslk8mhf9oCAADZt2jSibE1gYCD5+fke//LoUyMGsJ/cNmzYQGFhIaWlpUyZMoXIyEhqamrIzs7WLa6ZM2fS1tZGS0sLVqvV+fOysjLmz59vmGkvh4SEBBISEvQOQwi36+npwWQyOW9tbW3k5eV5tDqAzWajtLR0xJfHtWvX6rIIw+cSA/y8+e3UqVMcOHCAlJQUrl275tK0w9NCQ0OdnaxOnDjB999/j6Zp3Lx5k1OnTum2s1eIx821a9dobm52JoK7R8V5eXkeXVre399PYWEhV69exc/Pj1WrVvHNN9+QnJys21SuTyYGsG9+a21tpbm52ZmFL1++zIwZM3SNKzIykk2bNrF06VJKS0tpbGzk22+/ZdGiRYZp0yiELwsODqa2tpa2trYRj61cuZKlS5d6LJarV69SWFjobAa1ZcsWkpOTaW9v92j58rv51DUGh56eHgoLC52F2RyMNJ+fkJDAjh072LlzJ7GxsZSXl+sdkhCPhaCgoFH36axYsYIVK1Z4LI6Kigr27dtHf38/SUlJvPPOO86aby+88IKuzax8csQQGRlJZmbmiHaHFy9e5NatW4bqHpaSksJbb73FxYsXsVgs0oJU+IyhoSE6OjqwWCyj3qxWKxaLhfDwcNLT090+zTs4OEh5eTlnzpzBarWilHLuJVq2bJnHVv6YzWa++OILamtrAftS+7y8PGc/EkD384DPnoVSUlLYvXs3X375JXV1dYB900hNTQ1ZWVk6RzfSrFmz9A5BiHEVGBjI6dOnnSfA0Tz99NNkZGS4NSlYrVYqKyspLy937g1IT08nKyuLDz/8kMzMTFatWuW2979TV1cXBQUFdHZ2EhQUxEsvvWSYSg138tnEADBhwgS2bt1KdXU1JSUlmM1mqqqqDJkYhPA1ZrOZ6dOnc+HCBZeVeGBfjPHiiy+Smprq1hjq6+spLS117vBPTk5m9erVTJkyheHhYRYtWsTatWvdGoNDXV0dxcXFmM1mYmNj2bZtm2HaE9/NpxODw4IFC0hKSuLgwYO0tLTQ0tLCE088oXdYQoyb3t5erly5QkJCArGxsbptmhwcHOTChQvU1tbS1NQ0IiEAzJgxg40bNxIWFua2OFpaWjh27BjXrl0DICYmhry8PJeReWBgoLNcjTs5lqI69lWlpaWxYcMGwy1Rv9NjkRgAoqOjefPNNykrK6O6uloSg/Ap4eHhVFVVceXKFfz9/YmLi3PuRUlISCAxMdFt19bulQyUUqSkpJCYmEhFRQUBAQHk5eWRkZHhljjAvvCktLTUOX0VGhpKbm4uzzzzjMscvoO7r2uMthTVKB0n70fXxKCU+nfgRcAM/AC8oWlaj7vez8/Pj5UrVzprAgnhrYaGhpylyR03xwVLq9VKW1vbiOWY8fHxrFu3blxq7jwoGcyZM4fZs2czceJE6urquHLlCvn5+W6bOrn7wnJAQACZmZlkZ2fr1uP8XktRvYHeI4bjwG80TbMopf4N+A3wz+5+08dlR6+mabpt6LsXx2qQ0b696cVisdDf38+kSZPGPAVTVlZGcnKy2wqbWSwWmpubR/SlcNyGhobG/G8lJiaSkZFBenr6I612sVqtfP/992NKBndKSEhg165dbpnestlsVFZWUlZW5nJh+bnnntO1rH1FRQXHjx/HZrORlJTE1q1b3Tp1NhZVVVVjfq6uiUHTtK/uuFsBbBnL63p6eujs7DTUhZsvv/yS+Ph4tw6T/1rffPMN165dIy8vj/j4eL3DAewX4EpKSkhNTWXOnDk8+eSTuieJtrY2PvroI8De3yM8PJxJkyYRERFBeHi48xYREeFMHsHBwezbt8/5O583b964tv0cGhrik08+uefjAQEBI+IMDg7m66+/Buyj49mzZ5ORkUFSUtK4xXXs2DEGBwcfmAzu5M6SDkopqqurGRgYcLmwrLfm5mZsNtuoS1H10tXVNebnGqaDm1LqELBf07RRPw1KqbeBt2/fnQuMLEMoHlYsMPb/NeJ+5FiOLzme42uWpmmTHvQktycGpVQpkDjKQ7/TNK349nN+BywC8rUxBKSU+m4s7enE2MjxHD9yLMeXHM/xNdbj6fapJE3T7rtzRCm1E3gBeG4sSUEIIYR76b0qaS32i805mqbd0jMWIYQQdnpfEfkvYBJwXClVrZTaM8bXfeDGmB5HcjzHjxzL8SXHc3yN6Xga5uKzEEIIY9B7xCCEEMJgJDEIIYRw4bWJQSn170qpC0qpGqXU50qpSL1j8lZKqa1KqVqllE0pJUsDH5JSaq1S6qJSqlEp9S96x+PNlFL/rZTqUErJfqVHpJSappQ6oZSqv/05//sHvcZrEwP2chpzNU2bB1zCXk5DPJzzQD4gbeQeklLKH3gfWAekAduVUmn6RuXV9gKeqYft+yzAP2maNhvIAt590P9Nr00MmqZ9pWma5fbdCmCqnvF4M03T6jVNu6h3HF4uA2jUNO2ypmlm4H+BDTrH5LU0TSsHuvWOwxdomvajpmlnb/+9D6gH7lte2msTw13eBEr0DkI81p4Art1x38QDPnxCeJpSKgV4Gjh9v+fpXV31vv6KchoW4FNPxuZtxnIsxSMZrYytrAUXhqGUCgOKgH/QNK33fs81dGKQchrj50HHUjwyEzDtjvtTgVadYhHChVIqEHtS+FTTtIMPer7XTiXdUU7jJSmnIQygEpiplHpSKRUEvAx8oXNMQqDsTVk+Auo1TfuPsbzGaxMDD19OQ9xFKbVJKWUClgCHlVLH9I7J29xeCPF3wDHsF/cKNE2r1Tcq76WU+h/gFDBLKWVSSv2N3jF5sWXAq8Czt8+V1Uqp+za7lpIYQgghXHjziEEIIYQbSGIQQgjhQhKDEEIIF5IYhBBCuJDEIIQQwoUkBiGEEC4kMQghhHAhiUGIcaCU8ldK/eftevffK6Wm6x2TEA9LEoMQ4+M3wGVN0+YA7wF/q3M8Qjw0QxfRE8IbKKUmAps0TXvm9o+agOd1DEmIRyKJQYhHtwqYppSqvn0/GijVMR4hHolMJQnx6BYA/6pp2gJN0xYAXwHVD3iNEIYliUGIRxcF3AJQSgUAq4FDukYkxCOQxCDEo7uEvck6wD8ChzVNa9IxHiEeiZTdFuIRKaWisPccj8XeQ+BtTdMG9I1KiIcniUEIIYQL2kWpiwAAADNJREFUmUoSQgjhQhKDEEIIF5IYhBBCuJDEIIQQwoUkBiGEEC4kMQghhHAhiUEIIYSL/we2aOACQGESlwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:09<00:00, 2.45it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXd4FNX3xt9JsiEJEHoJJVRBQJogIEiRZkBQivSigBQBpamIIrafqDRFhEgoXxAEFBSUDgqCAlIFQm9SExIgQHrZnff3xzqT3U3bJLtzJ2E+zzNPsvW+mezeM+ece8+RSMLAwMDAwEDBQ7QAAwMDAwN9YRgGAwMDAwM7DMNgYGBgYGCHYRgMDAwMDOwwDIOBgYGBgR2GYTAwMDAwsEO4YZAkqaIkSbslSTorSdJpSZLGidZkYGBg8Cgjid7HIElSAIAAksckSSoM4CiAbiTPCBVmYGBg8Igi3GMgGU7y2H+/xwA4C6C8WFUGBgYGjy5eogXYIklSZQANARxM57ERAEYAgI+PT6M6depoqi0j7t+/j3///RdVqlRBsWLFRMsBkKopICAAAQEBouUAAG7fvo2wsDAUK1YMVapUES0HMTExuH37NqKjo+Hr64vatWu7baz4+HiYzWb4+/uneSwpKQmxsbGIiYlBbGwskpKSAACSJKFhw4aQJClHY8qyjIiICNy9exfJycm50m9LnTp14OPj47L3syUlJQW3b99GhQoV0vzdJJGYmIi4uDjExcUhPj4e8fHxAICqVavq4ruXmJiIyMhI3Lt3D2XLltXNdy8pKQlXr16FyWTC/fv375IsldVrdGMYJEkqBOAnAONJRjs+TjIEQAgAVK1alUeOHNFYYVr+/PNPdOjQASQxZMgQTJ06VbQkfPPNN3jjjTdAEt27d8e8efNyPLm4gkuXLuGVV17BrVu3AADdu3fHt99+Cy8v7T96FosF69evx4wZM3DhwgUAgI+PD4YMGYKZM2fCz8/PpePduXMH77//PhYtWoQ//vgDLVq0wKlTp/Dnn39i7969+PPPPxEeHm73Gj8/PzRr1gwtW7bExIkT0zUmzmI2m/H3339j27Zt2LZtG44ePWr3eLFixfDKK6/Ay8tLPUwmU4a3TSYTXnzxRRQtWjTHmlxJYmIiTp48iRo1auhGEwA8fPgQAFCkSBHBSlKRZRkJCQkoVKjQNadeQFL4AcAEYDuAic48v1GjRhTN6dOnWbRoUQLgiBEjKMuyUD2yLHPq1KkEQAD85JNPhGqSZZkLFiygn58fAbBs2bLctGmTEC3x8fEMDg5mtWrV1PNTvHhxfvDBB4yMjHT5eMnJyfzqq6/UzwcAtmvXzu62chQrVowvvPACZ86cyb///pvJycku16MQERHBFStWcMCAASxZsiQB8O+//3bbeAb6A8AROjMnO/Mkdx4AJADfAfjK2deINgy3bt1iYGAgAbBr165MSUkRqiclJYWvvvoqAdDDw4OLFi0SqufGjRvs2LGjOvn17t2bd+/edfu4J06csBvn3r17/OSTT1iqVClVS+XKlTlv3jzGxsa6RcP27dtZq1atNAZAOSpUqMB+/fpxwYIFDA0NpcVicYuOrLBYLDx06BB37twpZHwDMeQlw/DMf1+akwCO/3d0zuw1Ig3Dw4cPWa9ePQJgkyZN3DbBOEt8fDxfeOEFAqCPjw83bNggTIssy1yxYgWLFCmiXpWvWbNGk7F/++03Fi5cmLdv3+bVq1c5btw4FixYUJ2QGzZsyNWrV7vNiF+6dEn9P6R31K1bl1euXBHuWRo82uQZw5CTQ5RhSEpKYrt27QiA1atXd0sYIjtERUXxmWeeIQAWLVqUe/fuFaYlMjKSPXr0UCfCzp07MywsTJOxv/vuO3p5eREAu3fvTk9PT1VHhw4duHPnTrdOyLdv3+aUKVP46quvslevXuzYsSObNWvGWrVqsVy5cixUqBABcPbs2W7TYGDgDIZhcDGyLHPgwIEEwFKlSvHSpUuaa7Dl5s2bfOKJJwiA5cqVY2hoqGZjO4Y/NmzYwNKlSxMACxUqxEWLFmlyZSzLMqdPn57m6tzDw4P9+vXjsWPH3K7BWcxmMx88eCBahsEjjmEYXMw777xDAPTz8+OhQ4c0H9+Ws2fPqjmOmjVr8urVq5qNHRcXx4kTJ5IkHzx4wJdfflmdkFu1asUrV65ooiMlJYWjRo1KN2zz66+/aqLBwEBLfvjhBz58+DBX72EYBhcyf/58AqCnp6ewlTUKf//9N0uUKEEAbNq0Ke/cuaPZ2LIss1+/fqxQoQJ/++03VqxYkQBYoEABzpkzR7NEamxsLLt27ZphPL906dI8fPiwJloMDLRi48aNLFWqFIODg3OcKzMMg4tYv349JUkiAOGrfbZs2aIu/+zUqZPmie8ZM2akmYQbN27MM2fOaKYhIiKCTZo0YaFChdigQQP26tWLU6ZM4ZIlS7hnzx6GhYUZCV6DfIksy2zatCkBsHbt2ty6dWu238MwDC5g37599PHxIQB+8MEHmoxpi+1VwfLly9Wk6qBBg9y63j09tm3bRg8PDzujMG7cOM11XLt2jbdv3zYmf4NHkp07d9p9Bzt27MiTJ086/XrDMOSSc+fOsXjx4gTAYcOGaT4RXbx4kbNmzSJJzpw5U/0gvPXWW5qvfb948WK6m7OKFCnCr776ypikDfIVev48y7LM1q1bp1lsMXz4cIaHh2f5esMw5ILw8HBWqVJFDdlofVUsyzKDgoLYokULTpo0Sf0AiFjuGB0dzdq1a9t9EP38/NizZ0+uXLmS9+/f11yTgYE7SUlJ4VtvvcXg4GBGRUWJlpOGvXv3prlICwwM5NSpU7PMPRiGIYfExMSwUaNGBMBGjRoxJibGbWNlxE8//WT3T/fy8uKKFSs012GxWNitWze1dMPgwYO5YcMGxsXFaa7FwEBLrl27xmLFitHb25svvfQSf/31V80vEDPjueees5sj3n//fadeZxiGHJCcnMygoCACYNWqVXn79m23jJMZsbGx6mof5ejTp4+QK/NFixZx9OjR3Llzp66+FAYGWrBhwwa772HJkiX5xhtv8MiRI8LDTYcPH1YXfyi5v+nTp2f5OsMwOMmlS5e4Z88eyrLMIUOGEABLlCjB8+fPu2yM7KDsl3A8evfuzejoaE21iP7wGxiI5vXXX0/3+1i7dm3h+5m6devGAwcOcPny5erKyS+//DLT1xiGwUlee+019u3bl9OmTSMA+vr68sCBAy57/+xw9uxZmkymNDt4T5w4IUSPgYG7iYmJ4bVr14QVE8yKxMRENmzYMM2iC1FzhC3//vuvevG2cOFCVV9wcHCGrzEMgxNERETQx8dHdcU8PDz4yy+/uOS9s4ssy2odJpPJxOHDh/PixYtCtBjkT8LCyOeeI51YvKIZsixzypQp9PHxYZ06dditWze+9dZbDAkJ4e7du3nz5k3hnuuFCxfUelfK8cwzz/DGjRtCdTny9ddfq/qWLl2a7nMMw+AEtv0LALBZs2bct2+fkHj6mjVr6Ofnx/Hjx+vuA2eQPxg/nixWjJwwQbSStMyfP18Nhzgefn5+/Pjjj4UaiJUrVxIABw4cyLJly6o5h5xsMnMnX3zxBQFQkiSuWrUqzeOGYciCmJgYFitWLM2HsG3btppfqZvNZgYHBwuv1mqQfwkLsxqFY8fI4sXd7zXkxDtZv369uqHUMb8m2msgySFDhnDv3r28ffs227dvr+p75513hPdkseXDDz+kUsLnp59+snvMMAxZ8OWXX9p9+EqVKsUVK1bo4gNoYOBqxo+3HsrvitcQHR3N06dPc+vWrQwJCeHUqVO5fPlyl4yXE+9k37596sZS26N58+b85ZdfhOYiYmNj1TI0ZrOZH3/8sRqG1lNoSZZlTp48WQ1Lb968WX3MMAyZkJycbLckdOTIkbrcyGJg4AoUb+Gff25zwoQJbNduID0979Pfv0aaCbhMmTK5XqadW+/k3LlzrFy5MgFroUjbXfe1a9fm//73PyYlJeVKo6vYtWuXLkNLsizzjTfeIGAtcql06jMMQyZ89913BKxdtfbv35+r9zIwyAmhoaFcsGCBJmPZegs3b97k2LFj6eExl8DsNIahRIkSfOGFFzh16lT++OOPPHv2LM1mc47Hs/VOskN4eDgbNmzI2bNnMzo6mrNnz2b58uVVneXLl+esWbM0X8KdHnoNLcmyzBEjRqirLf/bMW0YhoxOVtOmTTlz5kyXJZn18CFwRHTL0fS4c+cOExISRMuw4/bt2zx9+rQmYyUnJ3Pt2rVs06YNAXDOnDnqY0lJSfz333/5119/cc2aNVyyZInLxm3RwvpNdzzKlr1otzw6o8PHx4eNGjXikCFDeOHChUzHUrwFpXlfWFjOcxrR0dHcs2ePejspKYn/+9//7HpqFy1aNNPlmVqRXmgpMTFRtCxaLBYOHjyYAJSVVfnXMNSpUyfHJyoyMpLXrl3L8esdCQ0NZfXq1blv3z6XvWduOXnyJAMCArh69WrRUlTWr1/P0qVL8+2339Z03OTk5DQ9K8xmM7ds2cLu3bvTy8uLzz77rFs13L59m5988ondFa8yeTRs2FDtfmd7FCpUyK2aFK5evcrhw4errVG//PJLfv/993znnXfYuXNnVqhQwU7XuXPnMn0/W2/B9j5XroSyWCz85Zdf2Lx5cwIQUi4mI5TQ0htvvCFaikpKSgp79+6teDX51zAEBAS48rzlmKioKFarVo0AOHjwYNFySJJHjx5Vk3fPPfec8GT6/fv3OWjQIHViadOmjWYeVlhYGJ955hkePHiQpLX+zQcffGCXX/Lw8OALL7zg8pi1LMvcv38/+/fv79RVuSRJDAgIYOPGjdmtWzeOGTNGU0/0ypUrHDp0KCekM4NHRUVxz549nDdvXpZhpYy8kxYt3KNb1PLyzIiIiNCFt2BLcnIyExIS8rdhePLJJ115znKE2WxW6yrVr19fF4XlDhw4wCJFihAAO3fuzPj4eKF6tm3bpl4lFyhQgLNnz852vDqn/PXXXwwICCAAzp07l0FBQXbr5KtUqcL/+7//482bN90y/smTJ/nmm2+yffv2LFmyZLrGoHv37jxw4ACvX7+um8nNqJabv8nXhkFEz2dHpkyZQgAsXry4Zn2OM2PPnj3q7szu3btrfsViaxijo6M5cuRIdQJ86qmnNOvyJssyv/76azU0YnuYTCb27t2bO3fu1HTZoyzLvHXrFjdv3sxPP/2UvXr14mOPPcZChQrx33//1UyHgYFhGNzI2rVr1TCEsgxMJDt27KCvry8BsG/fvppffR48eJCTJ08mSf7xxx9qLwuTycRPP/1Us5BIXFwcBw4cmMYgeHl5cebMmZr2x3aGmJgYRkREiJZhkEd58OABf/zxx2y9xjAMbiI0NJQFCxYkAM6cOVOYDoWNGzfS29ubAPjKK69oFqpRCAsLY7ly5di+fXuOHz9eDdfUq1ePx48f10zHpUuXWK9evQxj+D179tTdiihSXP2iBQus3/6QEG3HNXAtderU4eLFi51+vmEY3IBtsrlfv37CE7tr165VQyavvfaa5rtCExMT2axZM7sJ2MPDg++9956mG5A2b97McuXKMTAwkI0bN2anTp04ePBgTpo0iV988QWXLl3KjRs3CumvkRWuql+0ejUpSeTatZnfp+Dpaf32e3rmblwDsQwfPjzN0ufMMAyDi9FDstl2me3KlSvVNdMTJkzQ3EjZ9q+wXVkjojqt6CR7TsnpDuH0JnxfX+u32dc38/vIVG+hTx/Da8jrLF++XP3+ffDBB1nOA4ZhcDGik80Wi4VNmzblzZs3uXjxYjVk8+677wrxXObOnZtuyKZgwYL8+eefNdeTF8lsh7BtqMfREDhO+KtXW2+PHWv9uXZt+vcpeHqmegoeHmkfN0iLXlaNOXLlyhW779/48eMznQ8Mw+BC9JBs/v777wlYq78qH4JPPvlEiJbffvuNnp6edp7CM888w1mzZvHSpUtCNOU1stohbBvqsTUE6U34vr6pRkL5Pb37yFSDo1Tj8PKy3vby0u5vz4tcuXKFb731lm5qNCnIspxm4+TQoUMzzDUahsFF6CHZHB8fn6YP9KxZs4RouXz5MosXL05vb28+//zzXLRokS5j93onsx3CjqEeW0NgMtlP+CaT9X5lk7tiONK7b+1ae29BuV+SDK/BGZ555hk2adKEly9fFi3Fjj59+qTx3Hv16pWuETMMQy6IiYkhqZ9k86effpomwdu1a1fN4/lms5mfffYZf/zxR10UL8vLZLZD2HbyVu4nMzYCJpP9e9u+RkHxGtIbUzlMpoyT1QZkSEgIAdDf3z/by0TdyTfffGM3P4wcOZJbt25Nt7+LYRhySFxcHLt3766LZDNprTLp2FbQZDJxzJgxvHXrlhBNBq7DMV9gG+qxvfoPCUk1DLYTd2YTfXqHgvLe6XkajslqAysPHjxggQIF1O/hiBEjdFHx4MSJEwTA1q1bEwBr1KiRYcjLMAw55H//+x8BsEePHkKTzQpK2VzA2pFp2LBhvHr1qjA9Bq4jvXyBrbegXOUr9zkz4TuLbd7BVosyjkivQU8lQhxxDNvUqVNHs+q8GWE2m9mnTx8mJibyscceIwDOnj073ecahiGH2K7LF72z+eTJk/Tw8KAkSRwwYECWJY8N9E16q4scE8TZvfLPKZm9t6Ils30Q7uTWrVusV68eQ0JCdJfs3bJlS5p4vq+vLxcvXix0X5NSAmfjxo1quCu9XfWGYcgBiktme5QrV44ffvihkH0Czz33HHv27MlTp05pOraBe0hvdVF6CWKtyUiLEroSEVpSmtpXrFiRCxYs0E210pSUFJYpU8bOi//uu+945coV4RteydR5AwCHDx+e5nHDMOSA0aNHp0nyTpkyRciHMjIykkePHtV8XAP34Bg2sl1dpOAY3tGK9MZVjEJ6+yC0wDYsAlg7ts2bN08XZU0mTpxIAGrV3D59+ujCKCicOXOGnp6elCSJx44ds3vMMAzZJCYmhoULF1Y/iFWrVuVff/3l8nEMHg2yChu5M0yUXbLSIspgbd68OY0HHxAQwC+//FJo0vfEiROsX78+z5w5oy5l10MXOVvGjRtHAGzZsqWd0TIMQzZZtGiR3WoDZcmqgUFO0GvYyJE///yTISEhPHr0qBrP15Pe559/Po0X37lzZ/7+++/ai7FBKRC5cuVKAtZ+I45X5yKJiopiiRIlCIA//PCDer9hGLJJ48aNWaZMGW7atMnl722Q/7H1EPQcNnLEbDarNa+8vb3ZqFEjenom0mRK4eHDh9UwqrKZTutk9IULF+w64Pn4+OjuO/rqq68SAKtXr86HDx+KlqMSHBxMAAwMDFQ9LMMwZIOjR4+yZ8+euqvXb5B3sPUQ9Bw2Sg+LxaJObtZDznLVkpZMnjyZyn4iwNpfY9WqVdqKyIT4+HjWrVuXANi7d2/d5BvMZrNaiv6jjz4iaRiGbBEREaGbf6ZB3kHZjDZ8uL2HkN0wjCzLDAsL42+//cavv/5aSIkRi8Vi13VPOYoUKcLQ0NBMi/K5m+joaFasWJH37t3jm2++SaU+1/z587UTkQXnzp1T8w160rVr1y51Se3169cNw2BgkBGJiYnctWtXrt/HdtOZchWdniegeBCyLPPatWvcunUrZ8+ezWHDhvHpp59W+3QrpVdEYbFY0qzMU3bSenun0NdXtvt7tOTkyZMkredw+vTpqrZPPvlENxd1SqFLb29vXa0o7Nmzp/rZMgzDI45eviy2JCcna95MyJHdu3ezZs2a/PDDD0lar0Yz20meUYc1xVto1izVayBTDUN6x6ZNm9i4ceM0E6/tERQUxClTpjAkJETI7l9Zlvn666+rsemqVasSeImAzMqV3+b+/ft1kTwPDg5WS8+L6EeSEUqlgmrVqvHBgwei5ZC0Voa1KeWRfw1D/fr1XXnecsX9+/fZp08fXVVcfPDgAdu1a8d9+/YJ0yDLsl0Rr+PHj7NBgwacO3euED2RkZEcPHiwOgG/8MILbNmyJb28vNilS5cMX5dRhzWlTIWSQ7DthJbZFbUsy9y7dy9ffPFFdWJL7yhQoIAwIyrLMsePH8/OnTszKSmJJlMygXgC4J49e0im/o0iW4SuXr2aXl5efO+997QfPAPi4+NZv359BgUF8e7du5qPn9Fn5t1331XyDfnXMJQoUSLHJ87VvPzyywTAZ599VrQUktYigC1btiRg7bssanL59NNPuXDhQiYnJ/Pjjz9WW5DWrl2bKSkpmumwWCxcvHgxixcvnu4ELEkS27Ztm+4Vp22HNT+/1BU5toXucpNYvnDhAkePHk1fX181BLF48WJOmzaNb731lhvOhvPIsswdO3aQzPxvFN0iNDQ0VDfegkJkZKSw792aNWvSzVElJCTQbDbnb8PwxBNP5OrkuYoNGzaoV3dnzpwRLYdJSUns3LkzlVIeoor/KeelZ8+efPLJJ9VJeNSoUZqW6z516hSfeeaZdA2CyWTiihUreO/evQxfb9szQZkAbYva2ZLefc5y9+5dfvrppyxbtiy3b9+eszcRgNEiVH/Mnz+fPXv2zPDxfG0Y9JBjuHPnDkuXLs3MKhlqiVJhUakIK6q+0smTJ9OUCQ8MDNS0GKHZbObs2bNZvHhxuzXwjkePHj0y7HRl22FNial7e2d+9eyMl5AZiYmJeaoDnq0xzI1hNHAdSm+GtRkkgPKUYQCwFEAkgFPOPF+0YZBlmS+99BKVLecZTS7u5syZM/zrr78oy7Ka9CpUqBAPHTokRM+dO3dYuXJlu8nX399fuDdlsViYkJDABw8eMCIigtevX+fFixd56tQpxsbGpvuaTp2oJliVePr48al5hUcdxxahLs81rFzJlPKVaIHElAqVyJUrXfTG+RvFMJQuXTrdfVl5zTC0AvBkXjEMq1evJmBtfC/yCq9///4cNmyYugGoQIECLlmGmROSkpLURiGOR2BgIE+cOCFEV05R2l06Ho89lmowHmVcHU6zY+VKa1LH9sT7+enOOOixi6FtN7f+/funeTxPGQarXlTOC4YhLCyMxYoVo+jCWefOnaOHhwc9PT0JWMv/at3qU0GW5TSbo6pWrcoJEybwjz/+0DTZ7ArSK2lhi17KWYjEXeE0kmSlSum/caVKLnhz1/HJJ5/ormnWvHnz7L6HjnNCvjMMAEYAOALgSGBgoGvOYjaRZVkt6tWxY0ehqyEGDhxo9wHo3Lkz//33XyFalKuUJk2a8NNPP+WpU6d0t1IkK2xrHdlO/G6dAA3SJyN3TZJEK7Pjo48+YpMmTXTVTMjRMAQEBPD+/fvq4/nOMNgeWnsMSuJ0yZIlBKxlAm7cuKGpBlvOnz9PDw+PNCGbdu3aad4H+t69e1yyZEme7z+t7EdQ+hDoobJoXsAdXd5SyldK1zCkVKjkukFcwNdff00AHDdunGgpKoom22PIkCHq44ZhcBEPHjygv78///jjD7Vfw3fffafZ+Olhu1ELACtXrsyff/45z12l6wUjdJRzbIsHuorvglYyycs+x5Dk5ccVQfrKMaxYsUL9Dq5bt060HJKphkFZjffxxx/z888/V9t8OmsYPGCQKVu2bEF0dDTat2+PmJgYdOvWDQMHDhSm59KlS/j+++8BAH5+fvjkk09w5swZdO/eHZIkCdOVF1mzBvDwAAYPBnx9gXnzrPenpACSlHokJFgPA3vWrLGel7FjrT/XrXPN+y6MGYBXzCG4ikqQIeEqKuEVcwi+jRngmgFcRLFixdTfhw4dikuXLglUk8pnn32G4cOHAwCSkpIwefJklC5dOntv4oz1cPcBYDWAcAApAG4CGJbZ87X0GHr16mV3dR4UFMRp06bZxe205JVXXiEA9u3bl9evXxeiIb9gWxLbCB1lH8fy4u70qkaNGiVsxV1G/PXXX3ZzQ4MGDYS3HlXmpa1btxKwliq3BXnJYyDZj2QASRPJCiSXiNYEAImJidi6davdfX/++ScaNGiAokWLaq7n8uXLOH36NPbu3YvVq1ejYsWKmmvI6wQHW72AESOsV7mentb7vbysP/v2tXoPgweL05gXULyFpUutt5cuda3X4Ei1atXwwgsv4PDhw+4ZIAfYegwAcPz4cYwfP16QGivKvNSmTRsULFgQJ06cwPXr17P/Rs5YD70dWnkMmzZtSrMEMzQ0VJOx0+PatWvCNtPlFxxLZRurjnJGeh6CO72GLVu2ELDu6j99+rR7BskmYWFhaVYAVa9enT///LNoaSTJbt26EQAXKLsQmcc8Br2yfv169ff27dvj8OHDeOKJJ4TpCQwMhKdyiWuQbYKDAYsFaNbMenvgQKsJWL3aenvtWnvTYJAxSt5Fq1yM8r2LiopChw4d8O+//7pnoGygeAwNGzYEAFSpUgUXL15E9+7dRcpS6dKlCwBg48aN2X+xM9ZDb4cWHoPZbGapUqUIWOu957VNWgZpyWmp7EcJWZb5448/6m6FmyzL9Pf3t/Pew8LCRMvia6+9xocPH9LPz48AeOHCBdGSVBSPpkCBAmrpFxgeQ+7Yt28foqOjsWzZMsyZMwdeShDaIE8QHg4EBQHffmtdeTR8uNVbmDcv9arWYjFWHjkiSRKOHDmCF198EVFRUaLlqEiShDp16qi3r1y5go4dOwrX+M0338Df3x89e/YEACxfvlyoHlsCAgLw1FNPISkpCb///nu2XmsYhgw4dOgQ9uzZg5dfflm0FIMcMGMGcOiQdSklCSxebE00v/ZaaqjI09N6GOEjewYOHIiNGzeiYcOGOHDggGg5Ko5h3FOnTqFz586IjY0VpAjw8LBOoco8sWLFCsiyLEyPIzkNJxmGIQPeeOMNNG3aVLQMgxwQHg4sXw689ZbVKxgyxHq/rYcgSdbbFotYrXqkbt26qFevHq5fv45WrVph5syZGU52yl4Qd61GssXRMCxduhTbt29HgQIF3D94Fjz77LOoWLEirl+/jj/++EO0HJWuXbsCADZv3pwtg2UYhgzw9vYWLcEghwwbBty/D3zwgdUjKFrUugTV1zf99UeioI5dlEGDBgEAzGYz3n77bbzwwgu4e/dumucNHWo9h1r+7qn5AAAgAElEQVQs761Tpw4ef/xxTJ8+HQDw5ZdfonDhwjCZTO4fPAs8PDww+L+TsGzZMrFibGjQoAHKly+P8PBwHDt2zPkXOpOI0Nshuuy2gX4JC7Of9hcsIIsXJ4ODqbuNa8nJyRwzZgzff/99Hjt2TFcJ35s3b6bpSV2hQgX+9ddf6nMcS4m4+9xGRkYyNDSUCQkJDAgIIADdLA0lra1aAdDPz09XJbmVyscffPBB3quVlJ3DMAwGjijF3Bo0oLriSJmsxo8nJ0zQ58qjyMhIBgYGqjWvxo8fz7179+piv0q7du3sDEPdunU5cuRItR2qljufHfnqq6/U3cZ6MqjNmzcnAC5dulS0FJV169YRgNJm1zAMBvrBYrEwLi7Obe+f1Wa1jDaupaSk8PLly27T5QzHjh2jr6+v3SRcunRpDh8+PN0uXFqxbNkyO00vvfSSOgkr3oKoUiLx8fEsW7YsAXDDhg3aDOoECxcuJAC2bt1atBSVKVOm0MfHR/k/GobBQD+8/fbb3LNnj1veW5mUOnSw/lSqIGc0Wd24cYOLFy/mSy+9xCJFigivlkuSq1atspuECxYsaBe2EUF0dDR9fX05ffp0tY+30pxK653P6TFnzhwCYMOGDXXjNdy/f1+dhK9cuSJaDuPi4ligQAG2b98+/xuGJ5980pXnLlfIssz58+fzwYMHoqXw2rVrTE5OpizL/Oijj3TTXWrx4sUEwLZt27q8PLEy+ZtM6ZeAViar6OhoTps2jXXr1rWbgAGwR48eLtWUU95++21Vk5eXF48fPy5aEj///HNaLBauXLmSADhx4kSSzntk7iQuLo5lypRhixYthHpWjvTt25fVqlVz24VQdti3bx8BsGvXrixdunT+Ngz+/v6uPHe5Yv369QTAWrVqCb9qmTx5MpcsWcL58+cTsPZaFt1dateuXfTy8lInvGeeecal50lprKP8zGyyiomJ4dq1a9m/f3+7XbSfffaZy/TkBrPZzKCgIHbo0IGbN28WLYck7f5Xhw8fFqgkfW7duiX8e+fIw4cPdaNJycUEBgYyOTk5fxsGUa09HbFYLKxfvz4B8MsvvxSqxWw2s1y5cgwICKC3tzcB8Pvvvxeq6fz582p/bOWoWbMmt23bluv3XrAgddK3TTSTzoU0EhMTuXXrVg4fPpyLFi3KtR5XERUVxYULF4qWYZBDwsPDRUuwY8CAAep3779S3PnXMDRo0MCV5y7H/PTTTwSsVRXj4+OFatm2bZvdBNy0aVNeuXJF2JXL3bt3Wb16dVWPj48Pn3/+eS5YsMAlIS7bKqmiQxoGBqTVIx0xYoRoGXbUqFFD/Q527949fxsGkcnnuLg4yrJMi8Wixqvnzp0rTI9C375908TOK1WqxCNHjmiuJSkpia1bt2alSpU4evRobt682aWG09ZbAMiQEKPBjoF49u3bR19fX0ZFRYmWQtKaCLedDzw9PQ3D4C5++uknBgcHc+3atQTAcuXK6aJrU4ECBdIsLRTVZe7ChQs8deqUy70VZa+ChwfVJLNSMZXU5z6F/I7yPzEMMtXc3pw5c0RLIUn+9ttvaS4WnTUMRkmMbHLy5EmMHz8eb7/9NgBgypQp8PHxEarphx9+QFJSEgDA19cXISEh+PHHH4V0mQOAxx57DHXq1HFZD2qlUuqQIVYfQSn5kpCQWu/IqJAqBi1LYuid48ePAwDmz5+vi0J6hw8fhqenp1reR+kb4QyGYcgmoaGhSEpKUhuFHD9+HFOnTkVycrIwTUptlrp16+LIkSMYPny4yyZlPTBjBrB3L5CYaDUAgH1THccqqQbaoLT3HDvWvW090+Pu3bu4ceOGdgM6gWIYLl++jB07dghWA3h5eeHYsWOoX78+AGDevHnOv9gZt0Jvh8hQkm1CFbDWRRG5EencuXMEwNGjRwtPgLuDsDDndzUbaIvIkhh79uzhm2++qd2AWZCSkmK7u5hdunQRLUnl+eefJ2CtKwUjlOR64uLicPnyZfW2t7c3NmzYgBYtWgjTtHHjRqxfvx7z58+Hr6+vMB3uYsYM4L8oGTw8gAkTjFacekDxFpYutd5eulRbr+Hs2bMICQlBdHS0NgNmwfnz55GYmKje3rx5sy7ajwJAmTJlAAARERFOv8YwDNng9OnT1ow9AE9PT/z444/o0KGDUE2jR49Gt27dhGpwF8HBwFdfWXMKnp7WnwsXAm3aWEtoG3FtcQwdav0f9O1rvd23r7b/k7NnzyI6OhqLFy/WZsAsUMJICiTx7bffClJjT+nSpQEAkZGRTr/GMAzZIDQ0FIC1zeB3332HF198UbAiwM/PT7QEt/H666m/Kw114uOBgAAj0awlTMcdU86/beMjLf8nZ8+eBQB89dVXSElJ0WbQTDh+/DgqVKgAf39/AMCYMWPw559/IkEHH1LDMLgZxTB8++236N+/v2A1+Zc1a1I7rKVHjRpG+EhL9u7dm6ZJT2bZHi1QDMONGzewdu1abQbNhMaNG+PMmTN4/PHHAQB9+vTBvn37dNFEyAgluZmTJ09i9uzZGDFihGgp+ZbgYKBfv9TbSuc1pfuary+gs8Uo+Z6zZ89i5syZomWoxMbG2q1ImjVrVrpejZb06dMHhQsXRvny5QEAt27dgiRJ8PLyEqoLMDwGt0ISPXv2xMSJE0VLydeMHWt/WwlPKGELI4SkPTdv3sQ333yTrStOd3L+/Hm72//8849u+izbGga9YBgGNzN69GjREvI1wcGpm9cAwMvL3lOw7dlsoB03btxAfHw8Pv/8c9FSAKSGkWyZNWuWACVp0aNhUEJJhmFwA5Ik5atNY3pjzRrA0e6azY+ep6CHRKojN2/eBAAEBwfrYsI7e/YsWrZsiapVqwIAli5diqeeeipNHkQEejQMJUqUgCRJiIqKcvo1hmEwEIpS7mLQoNT7SGDBAuvvtl7Do+AprFixAmFhYaJl2KEYhqSkJEyfPl2wGuDFF1/E7t271RIP3t7e+PDDD1GyZEnByvRpGLy8vLJ9bgzDYCCUGTOAXbus3oGCJKV6D4rX8Khw7949jBkzRngyVYGkahgAYNGiRbh27ZpARUCTJk3g6empegxXrlwRqscWPRoGIDXP4CyGYTAQRni4dcNaVtETncyRmiDLMjZs2ICffvpJtBQAwIMHDxAfH6/eTklJwf/93/+pt9esse5I17JOkkK1atUA6NMwhIWF6ca4A4ZhMMhDzJiR1hsYN87607bcxaOEUpVzzJgx2YoJuwvHQnWBgYFYtWqVWhpGZHVVxWOwLVMjmkKFCsHf3x/Jycm6yHkoKAloZzEMg4EQwsOB+fPT3r9woXalFfQWywcAy3+7+iIjIzFp0iTBaqz5hbZt2+LVV18FAPTv3x/h4eEoUKCA0OqqgD49BkCf4STDYzDIEwwYkH4IKTFRuxVI+/fvx6RJk2C2TXAIxraO/7Jly7Bz506Baqw1/Hfs2KHWBDtx4gT8/f1RoUIFtV7SvHlialdVrFgRnp6euHXrll0BO9FUqFABgGEYDAyyze7dGT+mrEJyN0FBQViwYAGCgoJ04/bbGgZJkjBixAjExsYK0xMQEABPT0+1pv+JEycAiK+uCgAmkwmBgYEAoJtKpoA+PQYjlCSAGzdu6CrR9Oeff+Lu3btqVze9cO7cOZw+fRrDhmX+PK1WIRUqVAhBQUE4cOAALly4oM2gWWCxWNC8eXMAwIgRI7Bnzx5dXA1Xr14dvr6+iI+PR3R0tPDqqgrVqlWDt7c3wsPDtR04E8qXLw9JkvDgwQPRUlSy6zFIeprQnMXPz4+2KyVEQBJHjhxBvXr1UKRIERQuXBhXr15FwYIFheoCrInLtWvXokyZMli4cCGeeuop4cW8Ll68iDZt+iExcQOioipk+lwtP5IHDx5E9erVUaJECe0GzYQ9e/agadOmuHv3rhqS0AsREREoXbr0f5s9M36elv+/hw8fonDhwvDw0M81bnx8PLy9vXVRJ0khJSUFJFGgQIGjJBtn9Xz9nM1soIcTLkkSunTpgnfffRdJSUkoXrw4ChQogIsXL4qWhjt37uDOnTs4deoU1q5dK9woANbzVafOgTRG4b+cpt1GNi1p2rSpbowCALRu3Ro+Pj66MwqANRyh7P4XXV1VoUiRIroyCoC1FL4e5ihbTCaT2vvZGfR1Rp3Ex8dHtAQA1g/AnDlzAAC3b99GsWLFhCcLAathAICWLVtixowZgtVY2bmzOnbuTGuglD4rj9pGNgMDPWMYhlxgu808Ojoa5cuXx/DhwwUqsnLnzh0EBATgxx9/1IW3AKStg5QeeTCqaWCQLzEMQy5wDEHMnDlTFxPxw4cPsW7dOpQtW1a0FABIk2y29bJNJjEhJAMDg4zRVyDMSfRoGNq0aYMuXboIVGNFlmW899576soW0YSHpy5pVLDdNpCSknVJDAMDA23Jkx5DbGws3n77beFLRG0Nw+zZs3VRlluSJIwcOVK0DJUmTbJ+juEtGBjoizzpMfz7778IDAwUPhErOYZBgwbhySefFKpFQfQ5sSU8HLApzJkuhlEwMNAfedJj8PLywrCsdklpQIkSJeDj44NPP/1UtBRdUqtW5o8bRsHAQJ/owjBIkhQkSdJ5SZIuSZL0TlbPL1OmDHx9fbWQliklSpTApEmTULFiRdFSdEd4OPDwoWgVBu7m2Wet/TPatxetxMCVZBlKkiRpNYDjAE4COELyjisFSJLkCWA+gA4AbgI4LEnSryTPZPSaUqVKuVJCjqlVqxY6d+4sWoYuadQo88cNbyHvM2wY8Mcf1t9//12oFAMX44zH8C2AeAA9AeyUJGm9JEmFXaihCYBLJK+QTAawBsCLmb3A09PThcPnnPr168Pf31+0DF2io9I1Bm7CcbWZ4TXkH5wxDIEA9gAYRbIBgHUAPnKhhvIAbLuB3PzvPjskSRohSdIRSZKOKDt7DfRJVukfw1vI+zz7bNr7DK8h/+CMYagB4P8AnJMk6R8AHQH0kCSpnSRJrojppLeMJs3UQTKEZGOSjfUSSjJIH8crSYP8hxJCcsTwGuw5d+6caAkq+/fvd/q5zhiGr0m+QLI6gLYAVgLwAzAAwJYcKbTnJgDb7G0FAPprrWVgYAAAqF0748cMryEVkhg7dqxuyt9/9tlnTj/XmX0MOyRJKgbgLIDzAB4HsJrkuJzJS8NhAI9JklQFwC0AfQH0d9F7G+gMI4yU9zl7VrSCvMHWrVvx+++/4969eyhXrpxQLSdPnsSmTZucfn6WhoFkw/9WDj0OoCaA3wBsy7HCtO9vliRpLIDtADwBLCV52lXvb6A9xuSffwkKyvxx439vxWw248033wQAXRiGzz//PFvPd2ofA0kLydMkfya5iaRLm+SS3EKyBslqJI3dYgYGOmX7dtEK8gZLlizB2f9cK9FtY69fv44HDx5gxIgRTr9GFxvcDAwM9E96K5H0xMaNG0VLAGAtwT9t2jT19r179wSqAQIDA7Fly5Zsle0xDIOBgYFTZLQSSUFkGGnp0qX4+eefxQmwYcaMGYiMjFRvizYMCtlZIWUYBgMDgyzJylto0UIbHelx5MgRjB49WhcVEW7cuIHZs2fb3acXw3D+/Hmnn2sYBgMDg0xZsyZrb+GvvzSRkoa7d++iZ8+eSEpKQunSpcWIsGHq1KlITk62u88wDAYGBvmKNWuAfv0yf46oEJLFYkG/fv1w/fp1AOJrqCUnJ6NPnz44ceIEAKBIkSJo3bq18OQzACQlJeHq1atOP98wDAaaI7rBUnpYLBZERUUhXEdFnsLCwhAXFydUw+DBQofPlBs3buC5554DAHh7ews3DN7e3ujcubMay2/atCl27tyJbt26CdUFAJcuXYIsy04/P08ahtDQ0Gz9ke5m0KBBqFSpEo4fPy5aisqsWbNQrVo1LF68WLQUlZ07d6JOnTq66KUBAPHx8bBYLGjdujWaN2+O1q1b42ZWnYU0gCS+//57PP7449i6daswHcOGZd12VaSNr1y5MiZNmoQDBw5g9+7dqFSpkjgxNvTs2RPnz5/HjBkzYDKZ0L17d9GSUKtWrfzvMSQnJ+P+/fuiZahERkbi+vXruHHjRtZP1ojExERcuXIFFy5cEKZhzRrAwwNYt85628/PD2fOnMHRo0eFabJl27ZtqFChAg4cOIBDhw7h1KlT8PAQ/5WQJAmSJMFsNuOnn34SomHNGvuaV76+gMlk/d1kst7Wg+MnSRKaNWuG5s2bo06dOqLlALBqqlGjBurXry9aioqHh0e2DKf4b0EOsV0OJpry5a3FYG/duiVYSSpVq1YFAFy+fFmYhqFDrZOHEo6oV68eAODs2bNITk5GUlISzGaX7pXMFj169ECLFi2QYnNZrAfDAAD9+/fHvn37cPr0aSQmJmo+/oAB9rcTElK9h5QU622D/Is+vgU5QE+GoUKFCgD0aRiuXLkiZPw1a6yTx9ix1p8rV8ajcOHCqFq1KlJSUrBlyxa0bt1aiDZbvvnmGxQtWlS9rZdeHwDQsGFD7Nq1C1FRUZqNuWaNtSNbVpFaPXgLBu4jzxqGiIgI0RJUFI9BD/FphWrVqgGwegwikr1Dh1rDDfPmWX8OGeKFZs2aqZUmu3fvjps3b8LLy5k6ju6jbNmyduvO9eIxKJQsWVLTOjtDh2b9HMMo5H/09S3IBnryGPQYSipZsiQKFSqEmJgYzddRK96CEqNeuhQwm004ebKG3TlSPC3RDBkyBO3atQOgL49Ba5T/m8LatUCnTtbfPTwAT0/DKDwqGIbBBejRMEiSZOc1aIniLfTta73dty/g6yshJcV+hZReDIMkSQgJCYGfn5/uPAYtcVya2qsXoCyKkmXAYtFek4EY8uy3QI+hJD0ZBsA+z5CSkqLZGv2EBOshSalHQoLVayhZsqT6vIoVK2byLtpStWpVfPLJJ4+kYVDyCnpemmqgLXn2W6Anj6FkyZIwmUx4+PCh8A1JAPD3339jz549qFy5MgDrssynn34aFy9e1GR8MqNDwuTJk9Xn6cVjUBg3bpzwuvkisM0rlCmT/nNE1kIy0B6xmb9coCePwcPDA+XKlcO1a9dw69Yt1KhRQ6ieChUqoEqVKmrS+bvvvgNg3eQimtGjR2PWrFmIiIjQnWHw9PREwYIFRcvQlGHD7PMK6X2tDE/h0cPwGFyEnsJJFSpUQL9+/WCxCQqXKFFCeMkAwLrJbcqUKQD05zE8ithuYlM2rq1ebb29dq1hFFyNxWLB5s2bRcvIEsMwuAg9GQYAmDRpkt1tPXgLCiNHjkT58uUNwyAYx8okr7xi9R68vKwGQs91kvIiJPHaa6/h1KlToqVkSZ41DDExMUjQ0fZL270M9+/fx8mTJ4XqqV+/Pjp06KDefvzxxwWqscfHxwfTpk17JOP5eiE42N5bAIBFi6w/e/VKXUBg4BpI4s0338SiRYtQt25d0XKyJE8aBtN/RVv04DXs3r0bY8aMwYMHDwAAGzZsQK1atXSRA1GakQP68hgAYNiwYer/0UB7xozJ/HFlwYCBa/j4448xZ84cAKmlYfRMnjQMym5ZPUy+zzzzDDZs2IBly5YBAA4ePIiIiAhdFNDq0KGDenUiwjAEB1uXQSpXorY8yhvJRKEUNRw+3H7SDwmx3vb0zH+b2PRQhXnOnDn48MMPAQBFixZVowt6Jk8aBj15DCaTCaNGjbK7r1y5crroJiVJkuo1iDAMr79u/fnaa5oPbZAOSlFDx0rsI0ZYDbjFkn82sZHEsmXLsG/fPqE6QkJC7PJ99erVgyRJAhU5R540DIrHoAfDAADDhw+3C4s0bNhQoBp7+vbti+rVqyMwMFDTcYODrZNMnz7Wn+l5DQbaoZS7aNXKevvVV61GYsEC623Fa8gP3kJ0dDQGDhyId999F08//bQwHatWrUpz0ZgX8gtAHjUMyiQcERGBI0eO4C9RDWf/o2zZsujZs6d6u0GDBgLV2OPt7Y358+drvqP39detYYk1a6w/Da9BHEp7TpMJUC6gv//e+vO11/LX/+fQoUNo2LAhVq1ahUGDBgkr0nj58mWsWLEiTY8IwzC4EWV38bfffosmTZrA19dXsCJgjE02T0+GAQA6duyo6XiKtzBvnvX2vHmG1yAS22WnSqjItmRJfgghybKMGTNmoEWLFmqp+ZdfflmYnmrVqmHr1q1qorlEiRIA8kbiGYA1FpfXDgBUDm9vbyYlJVE0siyzXr16BMCLFy+KliMUT0/rkdV9Bu5l9erUYiSentafa9daH/P1tR6u4tatW4yNjXXdG2aD8PBwduzYkbbzQpMmTYRoseXMmTOUJIleXl48d+4cGzVqxOjoaKGaAByhE3NsnvQYbGnQoAG8vb1Fy4AkSRg7dqzajOZRRrkCtS2ilx+uSvMatjWQlHPfq1dqUcPc7FOwWCw4cOAApk6dioYNG+Kjjz6Cn59f7gTngO3bt6N+/frYsWOH3f2vvPKK5loc+fjjj0ESQ4YMQc2aNbFp0yYULlxYmJ5srdByxnro7ZAkSb0yGDNmjAvtae6IjY1lly5dRMswMLDzFhRPQblP8RqyS1RUFFevXs2BAweyZMmS6newbdu2TE5Odu0f4CTnzp3jihUr6OfnZxdFuHfvnhA9CqdOnaIkSTSZTLx69apQLQq//fab0x6D8Ek+J0fx4sXVD8GyZctcee5yzdmzZ0VLMMgh69atEy1BRZZlvvfee1y1ahUfPHjg9OsWLLB+q728rD+VkJESNsppCCkxMZGjRo2i7UUZANasWZNRUVHZf0MXMnnyZAJg4cKFCYC9evUSqocke/XqRQAcNWqUaCkqAwYMyN+GoUaNGuoH8/Tp0648d7lClmXREuyQZVkX+RdbZFlmZGSkaBl2yLLM0NBQFixYkL/++qtoOSTJ5ORkdu/enQBoMpnYqVMnhoSEMCIiItPXKbmErI6ccOPGDZYuXVr97hUvXlx4Pu3gwYMEQA8PD+7evZstWrTg5s2bhWo6d+6c6rlcv35dqBaFhw8f0sfHJ38bBh8fH1atWpWFChWi2Wx25fnLEStWrGD9+vW5ZcsW0VJUjh07xpYtW3L8+PGipajExMSwf//+rFy5Mu/fv8/bt29z165domXxf//7nzrZFS5cmGfOnBEtiQ8fPrS7MleOwMBALl++PM1FiG3oyMPD+jMkJPVxVySbZVlm165dWaFCBZpMJu7Zsyd3b+gCZFnmV199xRkzZpC0GoqUlBThmjZu3MjZs2cL1WGLLMvct29f/jYMANivXz+2adPGlecux3z88ccEwN69e4uWonL06FECoI+PD8PDw4VoUMIaygSVmJjIJ598kgDYs2dPTpw4kf369ROizZa5c+faTb6PPfYY79+/L1STLMscOnQoTSYT27Zty5kzZzI0NDRDr9THx32egqOucePGcfny5bl/MwPNyfeGoXv37nzvvfdcec5yzNWrVwmABQoUEB5vtaVr164EwIkTJwoZXwlr2C5TvXjxohoLliSJvr6+Qpfw7du3j4899liaK/NOnToJ9UYtFgu3bdvGmJiYLJ+bXqLZ0Si7kps3b7r+TQ00Id8bhqJFiwq7Ek6PZ599lgAYHBwsWorKkSNHCIC+vr68ffu2pmMrE1OfPqkT1D///MNp06bRNkekhwUEsizz5MmT/Oijj9igQQNV1zvvvCNUl7Mo3oJiiH18rPcbe0cMHMnXhqFAgQIEwD/++MOV5yxXLFu2jADYrFkz0VLseP755wmAb775JkntVk3ZTkrK7/Hx8RwxYkSaq/P27dtroslZrly5wtmzZ7Nly5Zcm9O1nW5m9WpSksjx4+29BXeEjwzyD/naMCgrIyZNmuTKc5YrYmJiWLBgQQLguXPnRMtROXToEAHQz8+Pf//9N6tUqeL21VOKt7Bggf1tJayxatUqFipUSDUMkiTx1q1bbtWUUx4+fChaQrr4+tpP/mFh1vvDwuy9BgMDW/K1YVBCETVr1nTlOcs1L7/8MgFwypQpoqXY0alTJ3X5HAC3T8LOlMQ4f/4869evrxqHmTNnulVTfkLJKYwda3gK+QWtlro7axjyZEmMQoUKwd/fH+fPn8fFixdFy1FRtuGvWLECFh3Uf9i3bx8CAwPV6rPJyckAgNOnT7t1XGdKYtSoUQN///03XvuvrOfKlSvdqik/oDTaGTzY2pN53jzruU2PFi201WaQc7Zt2ya8QrQjedIwSJKEoKAgAMCmTZsEq0mlVatWqFSpEm7evIldu3aJloMWLVrg888/R2xsrN397m5Gntl1rC0+Pj5YsGABfvjhB1y5cgWhoaFu1ZXXURrtpKSk9mtetcr6c+1a+/Oss3nGIB1IYubMmejduzcaN24sWo4dedIwAEDXrl0B6MsweHh4qKV+ly9fjoSEBCxcuFCopv79+2P+/Pl297nbMGSX3r1749ixYzhz5oxoKbpFabSjdERV2gz07Wv1HmxLaxvon4SEBAwcOBBvv/02OnTooIvWAXY4E2/S29GoUSPevXuXHh4e9PLyylYtGXdz6dIldYlop06d+Nxzz4mWRJKcPn26Gs9v2rSpaDkGTqKsPjKZ0iacjZxC3uT69ets1KiR+n1csWKFZmMjP+cYAGvji+bNm8NsNmP79u2i5YAk3nnnHUyZMgWFChVCQkICtm7divv374uWBgB455138NZbbwGw5hi0aJKuxMTXrXP7UPkWx/ARCaxebX3MMXxkkDVmsxnx8fHCxv/rr7/QuHFjHD16FIC1TfHzzz8vTE9G5FnDAABdunQBAGzcuFGwEmve4/XXX8cff/xhF9N/8OCBQFWpSJKEL774AsOHD0dsbCyuX7/u9jGVSc0Ic2SP4GBrUnnECCN85Ep27dqFHj162PVn15JFixahbdu2dr3qn332WRQrVkyInszI04ZByTNs2bIFFosFJGE2m4XpKV++PL7//ntINktF9OIxAKAFaAQAAB94SURBVFbjEBwcjD59+rg9z6DExMeOtf40vAbnef11689Fi6wGwLHJjisa7TxKXL16FS+99BLatWuHrl27CjEMhw8fxi+//KK2+FTo3r275lqcwpl4k96ORo0akbSu/a1SpQoBcM+ePRw5cqQummJMmzZNjR96eXnprhx3UlISjxw54tYxXNED4FFE2QzYrJn15/Dh1vtz22TnUSQuLo7vv/++Um6agYGBQsvQx8XFpSkHo/XGTuSFDW4AegE4DUAG0NjZ1zVq1IhHjx7l77//zoEDBxIAS5UqRQC6MAxms5lt27ZV//mieuGKQpnEVq+2v21MauljuzNc2QioJJptNwUaBtY5ZFnmmjVrWLFiRbtJ+NtvvxWqa/z48QTAxx9/nFOnThVSPievGIZaAGoC+CO7hiE8PJzFihVLU3dHD4aBJG/fvs2yZcsSAG/cuCFajqakN4EZk1rGKMXvJIlqKZG8vvro4cOH3LFjh+be8j///MNWrVqlmRcqVqwo1FvYvXs3AdDT05MHDx5kXFwcV61apbkOZw2D0BwDybMkz+fktWXLlsXcuXPT3C9ltBVUY8qUKYM1a9bAw8NDV3kGLVDi37Y7n42YePoEB1tzCH36WKd9SQJeey3VDHh6Wg9b06BXbty4gfnz5+O5555D2bJl4eHhofn3sVy5chg2bBjKlCljd/+UKVPg7e2tqRaFmJgYDBkyRNXRpEkT+Pn5oV+/fkL0OIUz1sPdB5zwGACMAHAEwJHAwECSVpexc+fOdlcG165dc6WBzTXTp0/XRacrA31iW0Mqr3kJsizz+PHj/Oijj9QGTMoxb948YbrmzJljp6V8+fJMTEwUpmf48OEEwPr16wtvtQu9hJIA/AbgVDrHizbPydIw2B5K8pm09qH19/fXrWGwWCy66huhJcrmLCO3YI9yXl59NTV0RLq3uY6rWbp0KStVqpQmZAOAI0aMELbgYsmSJaqO+fPn09/fX6iR2rJlCwFr3+4TJ04I06GgG8PglIhcGAaSDAkJUT8Memm+bZCaQDVyC/bY7mDOqgptSkoKLRaLtgKdwGw284svvkhjFFq1aiXsqnjdunX08PAgAM6ZM4ck+cEHHzAhIUGInnv37jEgIIAAOH36dCEaHHmkDIMsy2zXrp1hGHSEY2novOI1uLvXc3ZLZh8/fpz+/v40mUwsVKgQS5QowXLlyrFKlSp8/PHHWb9+fbZq1Yq7du1yq25HNmzYwDJlytgZhcqVKzMyMlJTHQo7duxQy8q///776v0ijeqAAQMIWJt3paSkCNOhIMty3jAMALoDuAkgCUAEgO3OvM7RMJDWrlsFCxZ85FYA6ZW8uo/h1Vdf5aBBg/jPP/+45f2ze14SExPt9sU4Hu3ateOFCxfcojU97t27py4RB8AWLVqwXLlyLFiwoLBQyf79++nn50cAfP3113Wxb2jdunUErDXTzp8/L1oOSfLHH3/MG4Yhp0d6hoEk582bJ8wwpKSk6OIDaUtSUpKQPRSZ7WOIi4vj6dOn7Z7veFtrIiMj+eWXX3LDhg2cPXu2Oum1bduWmzdvztVVp22eJTv7Oy5dusROnTqpE57jUbp0aa5cuVLTz9zp06fVJdg+Pj6cPXs2zWYzg4KCuH79es102HLp0iUWLVqUADh48GBdhN3u3LnDkiVLEgDnzp0rWg5JMjk5mY899lj+NgwZWWGLxSJk9cH169f59NNPC01yOWI2m9mrVy82a9aM9+7d03TszPYx9Ov3MwELW7X6mlevXqXZbGbJkiWFJuZ+//33DK/IAbBWrVoMCQlhfHx8lu/lmHC3zbNkZ3/H/fv31Xh57dq1WblyZVXPyJEjGRUV5YK/PHskJSWxXr16fPrpp+3a1545c0ZzLQopKSkcMmQIX3zxRV2Ea0jrd2/WrFns1KmTLgwVaZ0bV61alb8NAwB26dLFlectV/zwww8ErK0zDx8+LFoOSfLmzZvqzs8nnniCYUpTYA3ILHbu6ZlEQCYQS29vb44ePZoAWLx4cbeFb7Li5MmTHDVqFJ977rk0cXPbo1SpUvzggw8YERGR4XvZGgJn8wkZLUf99ddfefPmTZJk8+bNWbduXe7fv98dp8BpwsLCaDabhWpwxGKxCF8Gmh56iyCQzN+GQbmS2rp1qyvPWa4YNWoUAbBKlSpuT2A6y/Xr11mzZk0CYNWqVXn58mWSZGxsrJAeFspEOXBg1H/GobvdxFusWDEePXpUc10KiYmJrFu3rp2mSpUqMSgoiBMnTuTixYu5f//+DM+doyFQeiiQucuzyLLM+fPnMzk5OYd/mYGBlXxtGMqXL0/AWnNEL1+WhIQENmjQgADYo0cP3VwtREZGqpuPAgICGBoayg0bNnDSpEmaa3FMvJpMKWmuyosWLcpDhw5pro20rmyZPHkyly9fzsOHDzMmJibL19juPbD9+0wmOp1PMDBwRJZltyyzzdeG4cknn2TVqlUJgF999ZUrz1uuuHDhAgsXLqyrpBNprVvTunVr9aq8devW9PLy4tmzZzXT4Jh4ffvtI+l6DQBYpEgR/v3335ppyw1KnSMPD/u/TzEMtoYgL63OMhDHzZs32b9/f8MwZPdo1KgR169fr04iotZOp4eSbzCZTMKufNMjPj6eXbt2tZuAO3bsqJlnk96k6OMj08PDTEDm008vYb169ejp6UkA9Pf3Fx5PTw9bD0H5vU8f608vr9TnZTefYGBAkmvWrGGxYsU4YcIEt7x/vjcMtpvaRo0a5cpzl2uUhGrlypXVfIOSRBSBxWLh5s2b2a1btzRX57/88osmGrJKviq7fRMSEnjw4EEuWLCAEyZM0F05EcVDUHYo59U6Rwb64t69e+zXr5/6vXSXN5/vDQNJhoaG0sPDgx4eHjx+/LjLTl5uSUhIYMOGDQmA3bt3Z0REBJs1ayYs7yDLMnft2sU2bdqkMQxVq1YVVjLA8Ypb7zWCHPUCebPOkYG+2L59O8uVK6d+J9u0aeO2sR4Jw0CSY8aMUU+mXhK+pHXjjVLcr3bt2gQgbDmmLXv27GH79u3tjMOnn34qRIvtFbenZ2o/Ar1Mro57EtLzEGxxrHNkkDc4d+6ckLkjLi5Onb9sj9VKosoNPDKG4e7du2rDnnXr1rnk5LmCuLg4vvvuu3b/cHfFDXPCvn37GBQURAD08/PTfMe4coXteMVtG1YSje2eBEe9Rugo73Pq1Cn27NmT06ZN03zs+/fvp9tQqGTJkm7dpPvIGAbSWgpDiekru1NFeg/379/ns88+m+afXrp0ad0sr1U4ePAgu3Tpwn79+mk6ruPVtWPXMtFeg+OeBA+PrCuhGuQNLly4wAEDBlCSJJYtW9apZcnuQJZlTpkyxW6OeOutt9w65iNlGFJSUlinTh0C4P/93/8xJiZGeJnblJQUTps2jZIk2f3jN23aJFRXRhw9epTR0dGajZdVItrDQ7teDun1jXDcc2F4CHmfq1evctiwYerKNwBcsmSJMD27d+9WtSg5yYsXL7p1zEfKMJDkzp071bBInz59+Pjjj+fqBLqKXbt2qTXZAbB3796iJemOzMJKrlj375gYzqyekfI4YGxOyy/cunWLY8aMoclksrtIq1evnrDyHteuXWOpUqUIgJMmTeLly5cZFBTk9nEfKcMQFRXFixcv8qmnnrL7x+tlf0NkZCQ7depEACxQoICQAmh6xjEko0zESjI6owk5vSv9sDCyXr20SWPb3EVm9YzWrs1esTsD50hKSuL27du5ZcsWTcdNSEjgG2+8oVZgtT127typqRaF+Ph4NmrUiIC1bLpS/O/WrVtuH/uRMgz79+9P9x8vqhRwelgsFs6aNYteXl5cuHChaDm6IrMwjbV0RvphpfQ6xI0fb/9axyWmw4fbG4L06hkZYSPXEBMTw7Vr17J///4sUqQIa9euzYcPH2quw2KxcOTIkXZzg6ginLIsc/DgwVTqcN25c0fT8R8pw0BaO12VLl3a7p8/ceLEXJ1Ed3Dw4EEOGjRItAzdklEYx9EApHelHxaWOrF7ezNN0ljxHIx6Ru4jIiKCixcvZpcuXVigQAH1u1isWDFeunRJcz1ms5lDhw4lYK1+HBgYSE9PT03Lwdgyd+5cAtYGPiKWrz9yhoEkz58/r5aaBsAmTZrk+AS6k4cPH+qmTrvecAzZKJO1Mqnb5gUcr/THj7c+T/ldCUUpuYuhQ6l6DaRRz8iVmM1mjhs3Tu0hYXt4eHhwx44dmmtKSUlh//79CVgbC23bto0zZ87k2LFjNddC2iebV61aJUTDI2kYSGtS579ORfTy8hLSwcwg52QVVrLNCzhe6dt6AGFhqa9zTDIbZSzcg8Vi4YgRI9IYhjlz5miuJSkpiT169CAAFixYkLt37yZpXZmkdfiGTJtsFoWzhkGyPjdv0bhxYx45ciTDxyMiItCxY0ecPHkSv/32G9q1a6ehOgNXsWYN0K8fsHo10Ldv6m2TCfDyAuLjU5/r5QVYLICvb+r9kuT8WHnpaxAVFYXbt28jMjISd+7cUQ/b297e3vj6669Rs2ZNTTTFx8djypQp+Prrr+3uHzx4MJYtWwYpO/+MXJKYmIiXXnoJmzdvhr+/P7Zu3YrmzZtrNr4jCQkJaNmyJY4ePYp27dph27Zt8PLyEqJFkqSjJBtn+URnrIfejsw8BoWoqCg2a9aMH374YTbsqYGeyGh1UGZX+o+CB7Bnzx4WKVIkzZW5crRq1UrT4oP79+9XvXRPT0++8847aihX6zpcsbGxasmX4sWL88iRI5qO74joZLMjeFRDSbbExMTws88+c/qkGegLPUz0eukjbMuDBw84duzYdI3ChAkTNNtdn5iYyMmTJ6t5hVq1aqml5p966ilNll/aEh0dzZYtWxKwtmEV2UdcQXSy2RHDMPyHkeQ1yA2fffYZn/j/9u49qqq6zQP496coAqK+qKgJLfMGvF5Ss8TlUnrlVZnyFjBWXpaJgaZJMw45GcvUVHIwp0YnyktT3lalMjGS6YspmbocLW8RZfqiCOINGQhDbuec7/xxOHtxAJXgnL0P8nzW2ksOnMN+1k/Ofs7+7d9+nv79OX36dL777rv85ptvDPnUZ7FYePToUc6cOZMeHh61EoKnp6dTi6/VdOrUKfbv358AqJRiXFyc3dmB3uXSCwsLOWzYMALgI488Ytiqo+pc4WJzTZIYRJNjNptdqkKuyWRidna2XUlk29a9e3c+++yzjI+P565du5zW5zs/P59r165lUFCQ3f5DQkL43HPW7nd9+vRhRkaGU/ZfU0VFBZcvX043NzcCYK9evXjkyBFd9n0v+fn5WkmJRx991JBlsTW5ysXm6nJyciQx6M2ongb3U1BQ4HJx5eXl8cSJE3WuFjOZTBw3bhz37Nmja4K4dOkS16xZw9dee42RkZEMDg6mv7+/XU2duraWLVsyIiKC6enpDo/3woULfP7559m6dWttf76+vly0aBF//fVXkuTSpUs5ceJEFhUVOXTf93Lp0iXtjl0AnD9/vuGr/m7evKnVSevVqxezs7MNjYe8953NRrJYLLbqCw9vYvD09NSWn7kCk8nE0aNH8+WXX9aqu7qCuXPnskuXLkxISHDaJ9o/at26ddr0Q+/evRkeHs5ly5YxOTmZFy9e5PTp0wmAQ4cO5d69e3VJEGlpafc8+Pv4+LBTp0523/P19WV8fDxzcnKcFlN2djaVUlRKMSwsjMnJySwvL7d7zrlz53SdKi0sLGT37t3p7+9vWDmJmkpKShgSEsLAwEDdr2ncS1lZGaOjox1+sfnq1asNfj+YTCauXLny4U4MqFqbfOzYsQYNkqOdPHlS+2Q3YMAAl5jfNJvN2pwrAHp7ezMuLq5Wi1G9L9Bt3LiR/fr1e+Cncds2bNgw7t+/36kJ4sqVK1ywYAFXr17N7du3Mz09nRcvXmRJSQlJai1Rg4ODuX37dqfWy69uy5YtLvEJuLqzZ8/qdoZSX8XFxbx586bRYdRy+/Zth/yesrIyrlixgrGxsY3+XQ91YvDx8SFgbRj//fffN3qwHOH06dPs1auXdkPN9u3bjQ6JFouF+/bts2vp2apVK0ZFRWnJKyQkhOvWrdM9trKyMp45c4Zbt25lXFwcx44dy65du94zQQwfPpwHDhzQ/RpEcXExY2JiDF/2KJqn9PR0BgYGUimlTSE2xkOdGIYMGcKIiAgC1hosrtLv+bfffuOUKVO0g5krTS2dOHGC4eHhdv0hJk2apF3UfP311w1fwXXy5MlapZFtW7t27divXz8mJCTUmlIR4mFz69Yt7f4HAAwPD3fI732oE8MTTzzB8vJyjh8/XluznJmZ6ZCBayyLxcKkpKR7Ti0ZnSjOnz/P6Ohou4uatm3q1KmGHXQrKioYFRXFGTNmMD4+nh999BG//vprZmRkuNzUhRDOYjabuWnTJq1dsW07ceKEQ37/Q58YSOtKoDFjxhAAu3Xr5vTuR3/E6dOn2bt371pTS8uWLePx48cNjs66dK16wUHbFhoaKgdi0azdvn3bkMUtGRkZHDFiRK335NNPP+2wfdQ3MbRAE9amTRukpKQgJCQE169fx+jRo5GdnW10WACAwYMH49SpU5gyZQpKSkowffp0REdH4+jRo3jxxRdRVFRkWGx37tzBrFmzkJubW+tnBw8exKhRo5CXl2dAZEIY59q1a4iLi0OfPn3QtWtX3fdvsVgwceJEeHt7231/0aJFusdi+Kf/hmw172MoLi7m8OHDCYA9e/Zkbm5uozOro9ScWrJtERERht7MVVpayszMTKakpHDNmjWMiYnhX/7yF/r5+REA/f39XWZ6TghnysrK4pw5c7T36BtvvGFYLImJiXbHiYEDBzr0OIHmMJVUXWFhIYcMGUIA7Nu3r3ZLfmFhoUvcTbt58+Zap4hJtkYBLqakpIQZGRn89ttvXWLshHCGjIwMTps2za6HhL+/v2E37e3YscPu2ODh4eHw1Y3NLjGQ1rnBAQMGEAD79evH/Px8rl69mqmpqQ0eSEdYt25dnQ1M3N3dXWZFlRDNRWZmJidNmlTn6rfk5GRDYjp48KC2Ii8xMZGk9XqkowsiNsvEQJI3btxgYGAgAXDw4MEMCgrioEGDDF+KmZuby9WrV9eqeRMQEMA7d+4YGpsQerNYLDx58iTffPNN3T8cVVZWMjU1lT169LB7L4aFhRlyhnzu3Dm2a9eOALhgwQItBmfE0mwTA2mtx2O72cy27XKRRr4Wi4U//PADY2NjtVILM2fONDosIZyusrKS6enpXLBggbYiLj4+Xvc4LBYL33nnHbvjQ+vWrXnhwgXdY8nJyWH37t21exVMJpNT99dsE0NeXh7feustbamobQsKCnL6oP9RFRUV3LNnDyMjI/nFF18YHY4QDldaWsrU1FRGRUWxY8eOdu/J8ePH634mbzabGRsbq8WwePFiAuCSJUt0jYO0Xv+0FQAcMWKELvc4NdvEYDabuXXrVi0LV9+2bt3aoMHUg6tVQRWisYqKirRuajW3gIAA3e+XKS8v5wsvvKCVhrH1SJgwYYLuN56WlZUxJCSEABgYGMiCggJd9ttsE4NNSUkJV6xYQS8vL+2PsWfPnrp1txLC1ZjNZt0KANrcvXvXrpgjqsqbnD9/Xtc4iouLtSTl5eXFtLQ07Wd6X+Mzm81a6ZyuXbvy8uXLuu272ScGm2vXrnH27NlajaCNGzfW+7VCNDUmk4mXLl1iWloak5KSuHDhQk6YMIFBQUGMjIzUdSnmqVOntKkS26aU4t69e3WLgbT2bLD1R+jcubPhhTcXLlxIAGzbtq3u7T4lMdRw9uxZhoaG0s/PT6ZtxENn/fr1DAgIuGcRwpiYGN0axtTs8ta7d2+t93FCQoIuMdhkZWVp1xsfe+wxQy4wV/fee+8RAN3c3OzOWvQiiaEOFouFX331lSH/IUI4k8lk4qxZs+pMCqtWrdJtGebPP//MoUOHavt+9dVX+fvvv/P27ducMmWKrstBz5w5wy5duhAAH3/8cd37UNe0c+dObeZiy5YthsQgiUGIZuLHH3/kjBkztE/ots3NzU23A5DZbObatWvp7u5OAPTz87Pr8maxWLTGR3o4dOgQvb29tSJ0RheGPHz4sFZyY9WqVYbFUd/E4AYhRL2VlpYiPDwcOTk5aNeuHdq3b6/9W/3rLl26ICIiAq1atXJKHCRx+PBhJCYmYt++fQCAFi1aIDAwEOfPn4e3tzeSk5MxZswYp+y/usuXL+Oll17Cd999BwCYOXMm3n//fXTo0EF7jlIKnp6eTo8FAHbv3o1p06ahoqICkZGR2LZtG9q0aaPLvuuSmZmJSZMmoaKiAnPnzsXixYsNi6Xe6pM9XG2TMwZhpHPnztXZz8K2RUREOG2liclk4q5du/jkk09q+/Pw8OD8+fOZlZXFTZs2sVu3brpc1LRYLNy4cSPbtm1LwNoL+8svv3T6fu/ngw8+0KZr5s2bZ/i9S1evXtVu5ps4caLh8UCmkkRTZ7FYeOzYMcOXGN+4cYO7du1ibGwsBw8eXGfdK8DalOnQoUNOieHu3bv88MMP7e7o79ixI5cuXcpbt25pz0tLS+OVK1ecEkN1eXl5fOaZZ7RYwsPD7eLQm8Vi4ZIlS7R43n77bcMLQBYVFXHgwIEErP3C9ZxKu5cmkRgArAFwHsCPAL4E0KE+r5PE0HzMmTOH3t7enDx5Mjds2MDs7Gyn7s9isTArK4uffvopZ8+ezb59+9ZKAC1btrS7gdLHx4dJSUlOWfVTUFDAFStWsHPnztr+evTowfXr1xtWBfSzzz7TOoy1b9+e27ZtM/QgXFlZyejoaAJgixYtuGHDBsNisSkvL2doaCgBsE+fPszPzzc6JFZUVDSZawwHACwmaVJK/RuAxQD+1eCYGqSiogKtW7c2Ogw7hYWF8PLycqm4rl+/juzsbJhMJphMJlRWVmpf1/XY19cXd+7cQUpKClJSUgAAQUFBCAsLQ1hYGEaNGtXo+ePc3FykpqbiyJEjOHLkSK0mRR4eHggODsbIkSMxcuRIBAcHIzExEQkJCXjllVewfPly+Pj4NCqGmq5du4bExERs3rwZJSUlAKzNnxYtWoTIyEi4uen/1i0oKMC8efOwc+dOAMDYsWPx8ccfw8/PT/dYbEpLSzF16lSkpKTA3d0dn3/+OSZPnmxYPIC14U5UVBQOHjwIX19f7N+/H506dTI0JgCIj4+v/5Prkz302AA8B2BHfZ7r5eXFTZs2GX6qWN24ceM4btw47t271/BKrjZz586lu7s7n3rqKc6bN4+ffPIJf/rpp3vOc545c4b79+936rjWbETS2O3RRx9lcnJyo2LevXu33e/s0KEDJ0yYwMTERB4/frzOPtgrV65kRkZGY4bivk6fPq3FM2bMGB44cMDwv/crV66wXbt29PT0ZFJSkuHxkNZS+wEBAWzfvj0PHz5sdDgkrVUXQkND6enpafjNdDYWi4VRUVH1PmNQtB6UDaeUSgXwBcnt9/h5DICYqof9AfykV2zNQCcAt40O4iEhY+lYMp6OFUDS+0FPcnpiUEp9A6CuBqrxJP+n6jnxAIYCCGc9AlJK/UByqGMjbb5kPB1HxtKxZDwdq77j6fSJSpJ/vd/PlVIzAYwHEFqfpCCEEMK5DL34rJQKg/VicwjJu0bGIoQQwqqFwfv/TwDeAA4opc4qpT6q5+s2OjGm5kjG03FkLB1LxtOx6jWeLnPxWQghhGsw+oxBCCGEi5HEIIQQwk6TTQxKqTVKqfNKqR+VUl8qpTo8+FWiLkqpf1RKZSqlLEopWRrYQEqpMKXUr0qpvyul3jA6nqZMKfVfSqlbSim5X6mRlFL+Sql0pdQvVe/z1x70miabGGAtp9Gf5EAAF2AtpyEa5icA4QC+MzqQpkop1RLABwD+AcCfAbyolPqzsVE1aZ8CCDM6iIeECcC/kAwCEAxg/oP+NptsYiCZRtJU9fB/ARhXsKWJI/kLyV+NjqOJewrA30leIlkB4HMAkwyOqcki+R2A/zM6jocByeskT1d9fQfALwC63+81TTYx1BAFYJ/RQYhmrTuA3GqPr+IBbz4h9KaU6gFgMIAT93ue0dVV7+sPlNMwAdihZ2xNTX3GUjSKquN7shZcuAylVFsAyQD+iWTx/Z7r0olBymk4zoPGUjTaVQD+1R77AbhmUCxC2FFKtYI1Kewg+d8Pen6TnUqqVk5jopTTEC7gewB9lFKPKaVaA3gBwB6DYxICSikF4GMAv5D89/q8pskmBjS8nIaoQSn1nFLqKoDhAPYqpf5mdExNTdVCiFcB/A3Wi3s7SWYaG1XTpZT6DMBxAAFKqatKqdlGx9SEjQAwA8DoqmPlWaXUM/d7gZTEEEIIYacpnzEIIYRwAkkMQggh7EhiEEIIYUcSgxBCCDuSGIQQQtiRxCCEEMKOJAYhhBB2JDEI4QBKqZZKqf+oqnefoZTqaXRMQjSUJAYhHGMxgEsk+wFYB2CewfEI0WAuXURPiKZAKeUF4DmST1R96zKAZw0MSYhGkcQgROP9FYC/Uups1WMfAN8YGI8QjSJTSUI03iAAb5EcRHIQgDQAZx/wGiFcliQGIRrvTwDuAoBSyg3AWACphkYkRCNIYhCi8S7A2mQdAP4ZwF6Slw2MR4hGkbLbQjSSUupPsPYc7wRrD4EYkqXGRiVEw0liEEIIYUemkoQQQtiRxCCEEMKOJAYhhBB2JDEIIYSwI4lBCCGEHUkMQggh7EhiEEIIYef/ASUKpue+ddguAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:05<00:00, 2.23it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXdYFFcXxt+hCQIK2Atgxa4RNYktRo0aCxo1sREr9lhj4mePJcZE0Vhj7BpjjV0TRYlibARRQzEIKqggCErv7O6c74/NjixFF92du8D9Pc88ssPs3NfZ5b63niMQETgcDofD0WDCWgCHw+FwjAtuDBwOh8PRghsDh8PhcLTgxsDhcDgcLbgxcDgcDkcLbgwcDofD0YK5MQiC4CgIwiVBEEIEQbgrCMJ01po4HA6nNCOw3scgCEI1ANWI6LYgCLYAbgH4hIj+ZSqMw+FwSinMewxEFENEt//7ORVACIAabFVxOBxO6cWMtYDcCIJQC0BLAH8X8LvxAMYDgJWVVavGjRvLqq0woqOjERMTg3r16qF8+fKs5YCIEB0djWfPnqFmzZqoUqUKa0lQKpV4+vQpXrx4gQoVKqBWrVpM9ahUKsTHx+PFixfIzMyElZUV5Po+KZVKJCYmolKlStI5IkJqaioSExORlJQEpVIJQRDwzjvvwMRE/rbbixcvEBUVBZVKle93jRo1QtmyZWXXlJuYmBhER0dLr52cnLSeJ0vS0tIQFhaGypUro2bNmqzlSGi+WwkJCS+I6PUPi4iM4gBgA/Uw0oDXXVuvXj1ijUKhIA8PDwJAJiYmtGPHDtaSKDw8nN5//31J0/Lly5nqUSgUtGHDBrKzsyMAZGpqSl9++SWJoii7FlEUydfXl0aPHk1WVlYEgABQxYoV6auvvqLs7GyDazh+/DhVqlSJpk2bRunp6XTs2DEaPny49Hw0h7OzM82YMYOeP39ucE25CQ0NpU6dOmlp0Ry1a9emSZMmUWhoqKyacvPo0SPq2LGjli5BEOjcuXPMNOXm8ePHVKlSJTIzM6Nhw4ZRWloaa0kSCxcupPLlyxMAf9KlPtblIkMfAMwBeAH4UpfrW7VqpefHVjTS09OpT58+BIAsLS3pxIkTTPUQER0+fFjzwVONGjXo8uXLTPX4+PhQs2bNpD/grl270t27d2XXkZSURJs2baIWLVpoVSidOnWi/fv3U1ZWliwaRo4cqVXJ5jYnANSoUSOaP38+3bp1S3bjzM7OpmXLllGZMmUKNAUAtHfvXlk15eXx48c0evRocnd3p7Fjx9K0adPof//7Hy1ZsoR27NjBpLGRG6VSScuXL6dff/2VEhMTmWopiM8//5yuXLmiszEYw+SzAGAPgAQimqHLe1q3bk3+/v6GFVYI8fHxcHNzw40bN2Bvb4/Tp0+jffv2TLQAQGZmJmbOnIktW7YAANzc3LBr1y5UqFCBiZ6oqCh89dVXOHToEAB1N3/NmjUYMGAA1B+1/gkKCkKzZs2k10QEf39/bNmyBQcOHEBGRgYAwMHBAaNGjcK4cePQsGFDg2jJy8WLFzFq1ChERkbm+12rVq0wYMAA9O/fH40aNZJFT16ICIcPH8adO3egVCqhUCigUCiknzX/AsDq1atRowaf/iuO3Lt3Dw0bNoQgCLeIqPVr36CLexjyANAB6lZJIIB//jt6veo9rHoMjx49ooYNGxIAqlmzJpMWcG6Cg4OpSZMmBIAsLCxo3bp1zFpOWVlZtHz5cipbtqzUk/rmm28oPT3doOXu2LGDXFxciIgoJSWFNm/eTC1bttRq7Xbs2JF+/fVXyszMNKiW3KSnp9O0adMKbYFv2LBBNi0cjgYUp6Gkoh4sjCEwMJCqV69OAKhJkyYUGRkpuwYNoijStm3bpOGI+vXr061bt5jpOX36NNWtW1eq9Pr3708REREGLTM7O5smTZpEAMjJyYnGjRtH1tbWkgY7OzuaPn06E/P29fUlFxcXSYuZmRlZWVmRra0tOTg4UJUqVahOnTrk7+8vuzZO6YYbgx7x8fGRxu87dOhACQkJspafm6SkJBo0aJBU6QwfPpxSUlKYaAkLC6NevXpJWho2bEjnz583eLkxMTHUvn37Alvi7du3p19++YUyMjIMrqMw0tLSKCMjgxQKBfOxbw4nN9wY9MSRI0ekSbn+/fszrXB8fX2pdu3aBICsra1pz549THSkpqbSnDlzyMLCggCQra0teXp6yrKyx9fXV+q55T7q1q1LQUFBBi+fwynOcGPQA5s2bSJBEAgATZgwgZRKpSzl5kWlUtHKlSvJzMyMANA777zDZNmgKIq0b98+rYp55MiRFBMTI0v527dvl8yooGPSpEnMPiMOpzigqzEY1QY3Y4GIsHDhQixfvhwAsHTpUixYsMBgq2peRVxcHEaMGAEvLy8AwNSpU7Fy5UpYWlrKqiMgIABTp07FlStXAKhX1GzYsAFt27Y1eNkKhQKLFy/GsWPH0K5dO1SpUkU6qlatqvUzh8PRA7q4h7EdhuwxKBQKGjNmjLRJbOvWrQYr63VcuHCBqlatSgDIwcGByX6J+Ph4mjx5MpmYmEgbwrZu3cpb5hxOMQR8KKno5N24dvLkSYOU8zpycnJo3rx50jBWhw4d6MmTJwYv9/Hjx3ThwgUiUm/Y+fnnn6lChQqSSU6ZMoXpxDuHw3k7uDEUkRcvXkjhJOzt7enq1at6L0MXHj16RG3btpW2+y9atIgUCoXBy42NjSUXFxdas2YNXb16VWsvwAcffEABAQEG18DhcAwLN4Yi8OjRI2rQoAEBIEdHR2Yb144ePSrFzalevTpdvHhRlnKTk5PJ1dVV2rinMYQaNWrQgQMH+JJLDqeEoKsxMA+7zZqgoCC0a9cOoaGhaNKkCa5fvy5bpE0NmZmZmDx5MgYOHIikpCT06tUL//zzDzp37ixL2X379sXt27cBqENaWFhYYN68eQgNDcWQIUOYTLpzOBx2lGpjuHz5Mjp27Ijo6Gh07NgRV65ckT1UbkhICN577z1s3rwZ5ubmWLNmDU6fPi1LGGGlUokhQ4bg8uXLWucrVaqETp06wdra2uAaOByO8VFqjeHo0aPo0aMHkpOT0b9/f3h5ecHe3l628okIO3fuROvWrREUFIS6devi+vXrmDlzpiwx+EVRhIeHB06dOqV13tTUFNWrV4e3tzfi4+MNroPD4RgfpXIfw08//YQpU6aAiDBx4kRs3LgRpqamspWfkpKCiRMn4sCBAwCAoUOH4ueff0a5cuVkKZ+IMGvWLPzyyy8wNzdHmzZt0KlTJ3Tq1Ant2rWDra2tLDo4HI5xUqqMgYjNxjUvLy907doVZmZm8Pf3x5AhQ/Dw4UOULVsWGzduxKhRo2Qdx/fx8YGtrS28vb3Rtm1b5hm5OByOkaHLDLWxHW+yKinvxrVt27YV+R5vwuPHj8nBwYHu3r1Lq1evJnNzcwJAzZs3p3///VcWDRwOh0Ok+6qkUtFjyMjIwODBg3HmzBlYWlri0KFD6Nu3r8HLVSgUGDJkCBISEuDm5obw8HAAwOTJk+Hp6QkrKyuDa+BwOJyiUuKNIT4+Hn369IGvry/s7e1x5swZtGvXTpay586dixs3bgAAwsPDYWdnhx07dmDAgAGylM/h6AuFQoEHDx4wyzTHkZcSvSrp8ePHaN++PXx9feHo6Ihr167JZgqnTp3C6tWrtc6ZmZnh0aNHyMzMlEUDh/O25OTkYOvWrWjQoAFu3rzJWk4+Hj58iNTUVNYyShwl1hgCAwPRtm1bhIaGomnTprh+/brBWjuanLgaHj16hJEjR+a7rm7dujA3N0d6erpBdOQmJSXF4GUUlfj4eGRnZ7OWoUVSUhIePHjArHxvb+985+Lj4/HXX38xUPOSrKwsbNq0CfXq1cOECRMQERGBZ8+eQalUMtUFqD+zbdu2oUOHDujatausKwp1ISAgAI8fP2YtIx8qlUr3i3WZiDC2o2nTpq+cYMmdca1jx44GDfzm5+dHtWrVIl9fXyJSp5x89913pbAS9evXp8WLF1NYWJjBNOTF19eXKlWqRAcPHpStzNfh5eVF1apVo9mzZ7OWQkRET58+pa+++opsbW2pS5cuspefmJhIw4YNow4dOhCROlbX9u3bqXv37mRqakoODg6Uk5Mju6709HT68ccfqVq1agXmvJDze5wbURTp3LlzNGjQIClxlubYv38/E015efDgAQ0bNowEQaAffviBtRwtLl68SOPHjy/ZsZKqV69e6AP47bffpGQuhs64Fh4eTpUrVyYANG7cOCIimjFjBlWpUoWmT59Ofn5+sscZ+v3336ls2bIEgPr27cs8zlFGRgZNmzZN+iPu0KEDkwpPQ2hoKI0dO1Yr4U/nzp0pLS1NNg0+Pj7k5OREAKhp06bUo0cPKQkTADI1NaWPPvqIoqKiZNOUmppKP/zwg/R9Luh47733mCSI0pCcnExeXl60cOFC6ty5s5RHW87nVBgKhYKOHz9O69ato7lz59Lx48dZS5KIj4+nRYsW0fHjx0u2Mbi6ukr/aR8fH0pNTSUioo0bN0qhqidOnGjQnAEJCQnUqFEjqWLJzs6m+Ph4On/+vCzRUAti165dZGpqKuWCZlkBExHduXOHGjduTADIzMyMvv32W1mejSiKdPnyZa1zfn5+NHDgQOn7IQgC9e/fX+rpyUF2djbNmTNH0pD70JjB1q1b6fnz57Jp0hAeHk7Hjh2j1atX05QpU6hPnz7UpEkTqZEBgGrXrk1JSUmyayuMnJwc+vvvvykiIoK1lGJDiTYGzT6G7OxsatiwIZ06dYrmz58vfYGXLVtm0JZydnY2ffjhhwSAGjVqRImJiQYrSxdEUaQVK1ZI///Zs2eTSqVipkepVNLKlSulPRsuLi7k5+cnS9kqlYpmzJhBvXr1IlEU6fz589S1a1fp2Zibm9OYMWMoJCREFj0aQkJCpAi2eY8hQ4ZQXFycrHp0RRRFio2NJV9fXzp48CD5+/uzlsR5C0qFMWgqw0qVKsm2cU0URRo+fDgBoMqVKzNvrahUKq2hmh9//JGpnsePH0umqem5yTVMk5WVRYMGDSIA1KBBA62K2NrammbNmkWRkZGyaNEgiiJt2rSJrKysCh2isbCwoDNnzsiqi1M6KfHG8OjRI60/NkEQ6OjRo/p8hgWyePFiAkBWVlaytYILI3dFaG5uTgcOHGCqZ9++fdKkf6VKlej06dOylZ2YmKhlSJqjYsWKtGzZMoqPj5dNS27u379Pe/fupd9++41Onz5NFy5coCtXrtDNmzcpKCiI7t+/T5GRkTwzHkcWSrwx9OvXL18lUL16dYP2GHbv3i2ZEIv8y7lJSkqizp07EwCysbGRUnKyIDExkYYOHSp9Dn369KFnz57JVn5UVBQ1a9Ys3/ehTp06zAyBwzFGSrQx1KtXL18l0LhxY/rll18MNuH6559/SitH1q1bZ5AydCU6OppatGghDWfdunWLmZZLly6Ro6Oj1Iv6+eefZV0JFRwcLJVf0NGzZ09KT0+XTQ+HY8yUaGPIvdTwvffeoxMnThh0svXu3bvSEMn06dMNVo4uhIaGUq1atQgA1a1blx48eCBb2blXpGRlZdHXX38trbBp3bo13bt3TzYtRER//fUX2dnZka2tLbVq1YqGDh1KixYtol9//ZX8/PyYLwrgcIyNEm0MAKhbt2508eJFg7dOY2JiyNnZmQBQv379DLoE9nX4+flRxYoVCQC1atWKYmNjZSs7Pj6ePvroIyJSt9I1PRYTExNauHCh7EtjRVGkmzdv0rNnz5jv1eBwigsl2hgaNWqkz2dVKGlpadS6dWsCQG3atJF1E1Rezp49K60p7969O6WkpMhWtlKppI8//phMTEzI09NT2nlau3Ztunbtmmw6OBzO21GijeFN8jEUFaVSSX379iUAVKtWLVknU/Pyyy+/SPMb7u7ulJ2dLWv5CxcuzDd2P3r0aEpOTpZVB4fDeTu4Mbwlmr0BdnZ2zBLqiKJIK1eulCrjWbNmyb5x7eTJk/lMYcSIEXz4hsMphnBjeAvWrl0r7Q24ePGiQcsqDJVKRTNnzpQqY09PT9k1hIWFUbly5Qpc7ePh4cE85AaHwykauhpDiU/UU1ROnDiBmTNnAgB27NiBzp07y64hJycHo0aNwoEDB2BmZobdu3fD3d1dVg1paWno37+/Vvju5s2b47PPPsNnn32GBg0ayKqHw+HIBzeGXPj5+WHYsGEgIixZsgTDhw+XpVwiwoMHD1C/fn2kpKRg4MCB8Pb2hrW1NY4dO4bu3bvLoiO3nrFjx+Lu3bto0aKFZAYuLi6y6uBwOGzgxvAfERERcHNzQ2ZmJkaOHImFCxfKVvb+/ftx9epVLF68GD179sSdO3dQqVIl/PHHH2jdurVsOjT8+eefaN68OZYuXcrNgMMphQjqYafiRevWrcnf319v90tMTET79u0REhKCLl264OzZs7CwsNDb/V9FUlISGjZsCFNTU1haWiI8PBx16tSBl5cX6tWrJ4sGDodTOhAE4RYRvba1Wep7DDk5ORgwYABCQkLQuHFjHD16VDZTAIBFixYhNjZWeu3q6oo//vgDVapUkU0Dh8Ph5KbE5nzWBc1Yuo+PD6pWrYo//vgDdnZ2spV/+/ZtbNq0SetcTk4Ojhw5IkteaA6HwymIUm0MS5Yswd69e1G2bFmcPn0azs7OspUtiiImT54MURS1ztva2sLJyQlWVlayaeFwdCUmBvj4Y+DZs9efL+xajvFTao1hz549WLJkCUxMTHDw4EHZJ3l37NiBv//+W3rdo0cP+Pj44Nq1a3Bzc4OJSan9aDhGzMqVgJ+f+t/XnS/sWk4xQJfNDsZ2vO0GN29vbynExIYNG97qXm/C8+fPycHBgQRBoE8//ZSnS+QQkTpl7JIlS2SPUpuX6GiiHj2IYmLUr0VRpOvXr9OCBZvI3p7o9m0iB4eXv4+OpnznCzpX2P3fhoyMDJ7k6DXk3ogKvvO5YIKDg6UQ2jNnznzj+7wNkyZNojFjxjCvAOSGZR7qwhBFkWlwRA3Xrl2jxo0bk4WFBWVkZND9+/eZaZkxQ12pjxuXSt9//z01bNjwv9DqV2jaNJV0jebPZ8YM9ZH7fEHn8t6/qH9+Dx48oE8//ZSaN29ONWvWJCsrKxIEgby9vd/yf/z2REdH0/fff0+LFy+m+fPnM8+mmJsdO3bQJ598okk0VnKNoUWLFkV6MOHh4USkDqHt5OREAKh///56CaGdmppKI0aM0DkvgkKhoKioqLcu91VkZWVR//79jSryaVpaGvXs2dPgOblfRWpqqtbrO3fuUMeOHWnYsGGMFBElJyfT5MmTpbwW5ubmVK5cOapevbpB41EV1mqPiMgia+tsatfuCwJeEFDlvzAoVQmIp+vXI6T3OzgQ/fOPupKPjn55X3t7ovLltc+9riehay8iISGBZs2aRebm5lJ4lp07d+rvwbwFN27coObNmxMAWrBgAWs5EqIo0tixY6lr164l2xgcHBx0figxMTH0zjvvUGpqKrVq1YoA0Lvvvqu3rF5ffvklAaB27drp5X5viyiKNHr0aCmRjzHEM4qLi6M2bdpIGefkDBmu4dGjR9S/f38iUg/lTZw4kUxMTKS80M+fP5dd04kTJ6hGjRoFxqKqX78+xehjrKUQCmq1i6JIbm4PqGnTC9SkSRMCfiRg9X+a1lC1agcoWlPb/3ePli1f9gw0tGypPvKW96qeRFF7EZrew/vvv29UQ0k5OTn0ww8/0JMnT1hL0SI7O5tiYmJKtjE0adJE5wcyf/58AiA5uT5DaN++fZtMTEzIxMSEbt68qZd7vi3r168nAGRpaWkUcxcPHz6k+vXrEwBydnZmMnz27NkzqlevHtWqVYs2bNhAdnZ2BIBMTU1p6tSpsueFjo6OpoEDBxaajrRTp06kUCgMWH7hrfbcrf+QkCSytc2mWbNWkZ1dEAGU77C1zX+usKNNm/y9i9y9joLmI15HQECAfh9OCadEG4OucwxpaWnk4OAg/cGVKVOGAgMDdX6Ir0KpVEpJfKZNm6aXe74t3t7eZGpqSgBo3759rOXQ7du3qUoV9VBEixYt6OnTp7JrSEhIkLLN5T66dOlCQUFBsuuJjIwkDw8P6tevH/Xu3Zt69OhBXbt2pU6dOlG7du3o3XffJVdXV1q7dq1eyitoiOZVrfa8rf/cv1cqlZSVlfXGWgq7f+5eR975CI5+KVbGAGAngDgAwbpcr6sxbNq0KV+FYGNjQ5s2bSrKsywQTcu8Ro0aRpGw5uHDh5IJzp49m7UcunDhAtna2hIA6ty5s1a+aLlIS0ujtm3b5vsO7Nq1q9Tkk8g7RJO3V5B7/L99+4Jb+u3b60dLYfc3Nc2vJ3HTr6So4UwqCKSo6Uz066/6EVHKKW7G8AEAV30ag1KppHr16mlVCFWqVKHDhw+/daUQGRkpVXrHjh17q3vpg9TUVGratCkBoJ49ezLJS507//T+/fulycFBgwa9VSvzTcnKyqLu3bsXOFTj6OjILM+GnBQ0ZPS6XoHcFKTnl49/pWyzstruUbYsNwc9UKyMQa0XtfRpDMePH9eqDMaNG6e3Sar+/fsTAOrbty/zlqdKpZL0uLi4UGJiouwaEhMTqf1/zco1a9ZIz3zatGlMlqgqlUr69NNPtT5/e3t76tu3L3l6epKfn59RTMobmoKGjAzdKygqBemJgHPBIp2d2YgsQZQ4YwAwHoA/AH8nJ6fXPoAOHToQAGrQoAFdvny56E+wEE6cOEEAyNramh4/fqy3+74pixcvJgBUrlw5CgkJYaLhiy++IECd8lNTEf/www9MTFMURfLw8KCqVavS4MGDaePGjRQYGGiUeyj0RUHzCK8aMjJ6BKFgYxAE1sqKPSXOGHIfr+sx+Pr6krm5OS1atIgyMzPf4PEVTEpKCtWsWZMA0Jo1a/R23zfl2LFjBIAEQaAzZ84w0eDv7y+twQdAZmZmtGfPHiZaiIji4+Pp/v37zHtyclLQUk9jGzIqCooazgUag6KmM2tpxZ5SbQzr1q2ju3fvvsFjezWaHMyurq4GXU6oC4GBgWRtbU0AaMWKFUw0KJVKaX9C7vH7LVu2MNmrUBopbOmpsQ0ZFYWC5hiyzcrS3o/5HMPbUqqNwRCtxVu3bkl7FljvD3jx4gXVrl2bANCQIUOYtY43b96cb2LX0tKSJk+eTI8ePWKiqbTxqtATxZX27YmG4leKgHpVUgScaSh+LRamZuwUK2MAcABADAAFgCgAHq+6/m2D6BUVpVIp7ZqePn26rGXnRaFQaLa2U8uWLfW2g7uoxMbGShvFNHMcc+fO1dvmQY42JW4egcOEYmUMRT3kNoZ169ZJexZYDJFER0dLvYLp06cTAKpUqRLTye+RI0cSoA5xsWLFCib7FEoTJW0egcMGbgx64smTJ2RjY0MA6Pjx47KVm5spU6bQhQsXaOfOnQSoA6399ddfTLQQEV2+fJlq165NP/30E2VkZDDTUVooifMIHDboagylPufz65g2bRrS0tLQr18/fPLJJ7KXn5aWhj179uDy5csIDQ0FAGzcuBEdO3aUXYsGW1tbhIWFwcyMf33kYOVKYORIoGVLYMQI9es1a4CrV1kr45RUBLWJFC9at25N/v7+Bi/nxIkT6N+/P6ytrRESEgJHR0eDl5mXrVu3YsKECdLrwYMH48CBAxAEQXYtHPmJiQGaNAHu3gWqVVO/btpU/bpqVdbqOMUNQRBuEdFr01Xy/JGFkJqaiqlTpwIAvv32WyamQETYtGmT1rlDhw6hZcuWiIyMlF0Px7AUlCNZ01uoVk39ulq1l70GDsdQcGMohEWLFiEqKgqurq6YMmUKEw03btxAYGCg1rm+ffvCy8uLiVFxDEtBOZJv3gTWrgUE4eWxdq36Og7HUHBjKIBbt25h/fr1MDExwdatW5mNpW/evFn6uXz58tizZw9OnDiBKlWqMNHDMRwxMcCePcCff6r/1fQarl4taHqZzy9wdCM5OfmN3seNIQ9KpRLjx4+HKIqYNm0aWrVqxUTH8+fPcfjwYQBAt27dEBQUhBEjRvC5hRJKQRPMnPwY65xodHQ0Dh48yFpGPu7evYuVb/Jl0mXpkrEdhlyuunbtWgJANWvWZBrW4fvvvydra2v6+eefS1Xcn9II36imO3FxcbRw4UImUYRfR6NGjWjRokVG9feanJxMAGjz5s1EpPtyVd5jwMvuVmRkJBYsWABAvSTU1taWiR6VSoWQkBAEBgZiwoQJvJdQwuETzLpTqVIlpKSkoF69eti0aRMUCgVrSRJ9+vTB0qVLMWTIEGRmZrKWAwAoV64cnJ2dMXnyZPz666+6v1EX9zC2Q989hv79+1NsbCz169ePANAnn3yi1/sXlZycnBIdJtpYYBW+I294C2PcqBYfH09hYWH07NkzysjIMKpW8LNnz6hs2bJSWP3Tp08bhb7Lly9LIWLatGlD0ZouIGP69OlDADRpf/nOZ11ISUkhc3NzKS+wjY0NPXnyRG/35xgnCoWC3nvvPSahPAoKb6EhLCyMJkyYQOvXr5ddV26ys7Np1qxZWuHUK1asyCy8e17mzJkjaatVqxadPXuWtSRSKBRkb29PAMjCwoIGDhxIqamprGXR3Llzcwe6LLnG0LJlS709tFOnTmlFB+3Vqxd5eXlRVFSUzvc4cOCA0Y157t271+gMbseOHXTjxg3WMoiIaNWqVQSAhg0bRqtWrZKt3MLCW/j6+tKAAQOk3Bbt2rWTTdOrOHPmDFWoUEEyhzt37rCWRETqHk25cuXIzMyMpk2bxlqOxLBhw6hChQrUrFkzo8kSuH//fqpduzZVrFixZBuDtbW13h7alClT8oWObt++Pb148UKn9wcGBhKgzifNOkeDhvv375OpqSmVLVtW5/+Hobl58yaZm5uTmZkZPXjwgKmWsLAwsrS0lD5vQRDo33//laXsvGGyPTyS6ZNPPsn3HXz//feNZjgxMjKSOnbsSB4eHkzyiRfGkiVL6K+//jKaCphInVI4LCxMrwnC3pYHDx5Imkq0MVSrVk1vD83FxUXrD/Kzzz4r0of65ZdfEgAaP3683jS9LcPoYjwvAAAgAElEQVSHDycANHLkSKY64uLiiEi9MqJu3boEgCZPnsxUk0qlok6dOml95hUrVqTt27cbPCBgYauPoqNFiouLoytXrtC2bdvoq6++otGjRxtVgEKFQmGQ5FdvQ1ZWFmsJxY4SbQyNGjXSy0OKiIjQqiBmzZpVpFZaTk4OVa5cmQAYzRDJv//+S4IgkJmZGT18+JCplm7dulFsbCy5u7sTAGrWrBnzyu7nn3/O1zo3MzMjd3d3CgoKMmjZPEw2hzUl2hj0Nfm8detWaSjhTSb7Tp48Ka2MMIZVEUREgwYNMooezMOHD6VkQgDIyspKtuGawoiMjCRbW1utnsL8+fPp6dOnBisz9wokY1x9xCld6GoMpTpuspeXFywtLbF//37079+/yO/ftWsXAGD06NFGsdcgICAAhw8fhoWFhbQfgxUHDhwAANy5cwcAMGHCBDg5OTHTQ0SYOHEiUlNT0bRpU8yYMQPDhg2DlZWVQcvNHf+Ih7HgFBt0cQ9jO/TRY1AoFFS/fv03HgKKjY0lMzMzMjExMWiLsyho9mFMmTKFqQ5RFKlRo0b5hmzatGlDsbGxTDTt37+f+vTpQ97e3rL17gpbgcThsAJ8KOnVPH36lO7fv//G7//xxx8JAPXs2fOtteiDmzdvEgCytLRkvrHmzp07+Uzhiy++YDpZyGJ1Vt4VSHwugcMaXY2h1A4lVa9e/Y3fS0Raw0isUCgUMDMzgyAIWLhwIQDgiy++QDVNbAVG7N+/X/rZxsYG27dvx+DBgxkqAipUqCBreZpoqXfvql/Pnq1OsDN7Nk+wwzF+eAa3N+DOnTtwdXWFvb09oqOjYWlpyUTHxYsX8ejRIzRo0AAdOnSAtbU1IiIiUKlSJSZ6AEAURTg7OyMqKgrNmjXDkSNH4OLiwkwPK2bOVP/744/a5wRBnZaTw5GL5ORklC1bFubm5jpncCu1PYa3QdNbGDZsGDNTANSTzfPnz0eDBg0AANOnT2dqCgBw5coVREVFwcPDA+vXr0fZsmWZ6mHFzZvAtWvqpDq5ad+ejR5O6cXPzw/x8fEYMmSIzu/h0VWLSHZ2Nvbt2wcAGDVqFFMtAQEByMzMxD///ANAnUti7dq1yMrKYqbpxIkT2L17N7Zv317qTCF3ak6eYIdjLAQFBWHdunVFeg83hiJy5swZJCQkoGnTpsyS+GgICAjQeu3p6Ylq1aox7cV8/fXXGDlyJLPyWVJQak5O6cIYh+aDg4Ph6+uLv//+W+f3cGMoIrt37wag7i2w3LuQk5ODu5qZzf/YsWMH80net5nUL84UlpqTU7o4dOgQlEolaxlaBAUFAUCReg3cGIrAs2fPcPbsWZiamuLzzz9nquXevXtaSUp++ukn5kNbpRmempMDAOfPnzeqFJ8qlUpqQP722286v48bQxHYu3cvVCoVevfujSpVqjDVknsYafXq1Zg0aRJDNaUbTW9h9mz169mzea9BDoytZQ4AERERWL58OURRZC0FABAeHi5lkyvK8+LGoCNEpDWMxBqNMSxbtgxffvklYzWlG56akw1r8y75MgLCw8Nx7949HDt2jLUUAC+HkYoKN4bXkJ2dDQC4efMm/v33X1SsWBG9e/dmrAr4559/MHfuXMyfP5+1lFJNTAywe7d6WaogvDzWrlVPRHMMx86dO3Hp0iXWMiRycnIQGRkJAPj222+NYiKaG4OB8PT0hI+Pj9RbcHd3h4WFBVNNRITOnTtj+fLlRhG8rzSzcqXaCGbO5EtT5SYhIQGzZs0ymmGbJ0+eSGYQEBCAM2fOMFakXpFUq1atIr+PG8NriImJgZubm7R3YfTo0cjIyGA+vjlv3jxuCowpLSuRNPFzjAkiQnx8PO7cuYO9e/eylgNAPYyUG2PoNXz44YcIDg4u8sZXbgyvISEhAWlpaUhJSQGgftCffvopTEzYPTpBELgpGAGlaSXSzz//zFqCFmlpaVLjbN68eUhPT2esKL8x+Pn5wdvbm5EaNV988QWsra2LHPKeG8NrSEhI0Hpta2uLvXv3MjUGDntK00okQRCwbt06oxga0ZD77zI6Ohqenp4M1ajJawwuLi749ttvGanRxtnZuUjX89rtNSQmJko/m5ub4/Dhw7JH6uQYH6VtJVKNGjUwdOhQBAYGspYCAIiPj9d6vXLlSkRHRzNSoyY2NhZbtmyRKuHjx49j+/bt0gIWlvAeg57J3TLx9PTE+++/z1ANxxgojSuRnJyckJaWBjc3N8TGxrKWk68nr1KpmGctXLt2LcaPH49GjRoBAEJCQlC/fn2UKVOGqS6AG4Pe0XwBP/vsM0ydOrXQa1hPMuXlxYsXUKlUrGUAADIyMnD+/Hm8ePECaWlprOVoce3atXyVzOsw5EqkjIwMzJ49G5999pnWznbWODo6wsbGBu3bt8fz589Zy0FCQgKaNGmCli1bwtraGjdv3sT48eOZfuft7e0BAI0bN4apqSnzHkxuijqUxDwb25scZcqUecs8RrqhUqnIxMSE6tevT8nJyQVeI4oilS9fnqytrZlkCSuMDh06kKWlJV25coW1FEpLSyNzc3Nq164dWVhYkLe3N4WHh5NCoWAtjbp160ZWVlZ08eJFna6XI11nVlYWHTx4UP83fgvu3LlDcXFxpFKpWEshIqLAwEBKSUmhZ8+eGcX3KDdJSUlMsxUWRFZWFmVkZOicwa1YJuqxtrYmOVYhJCUloVq1avj777/RvHnzAq+Jj49HxYoVYW1tjdTUVKNYLUREsLe3R3JyMqKiolCjRg2mejIzM7VCcFtaWsLNzQ2HDx9mqEq9sqVChQpwcXHB6dOndVrvnTsBD0+8wylu6Jqop1gOJZmbm8tSTkJCAn766adCTQEAHj58CACoW7euUZgCAERFRSE5ORl2dnZGEe007wouKysrbNiwgZGal3h7e6NLly64du2aTqZQmlYicUo3xdIY5Np57Ojo+NqczrmNwVjQbINv1qyZUZhVXmP48ccfmQchBIBq1arh9OnTKFeunE7Xr1wJfPopMHq02gxK+kokjn4wlp3ZycnJOl9bLFN7ytVj0KWcBw8eAADq1atnaDmvJT09HdbW1ggODgagNgZjILcxdO/eHSNGjGCo5iXvvfdeka7XpOsEXi5TBXi6Tk7hJCcn49y5c8zzpAAvc8noQrE0BtaxinJjTD2GrVu3IiUlBaGhoQDUxqBQKJCZmalzq9gQaIzB2toaW7ZsMYpezJvw229AkybqEBgffQTcvQtUrcpaFceY2b59O54+fcrcGERRxE8//aTz9Xwo6S3R9BiMwRhq1qyJxYsX48CBAwCAXbt2oXbt2sw32GiMYMWKFW8U0MtYKE0hMDhvj0KhwNq1axESEsJaCu7cuYOPP/5Y5+uLpTHINZSkC5oegzEMJeXdxOLn54fPP/+8yAG0DEHHjh0xefJk1jLemJgYYNcu4J9/1PMLBU08x8Soh5UcHAAj2SDMYcjhw4cRFRWFe/fusZaCVq1aFSm1Z7Fcrurq6kq3b99mLQPp6emwsbGBubk5MjMzYWpqylRPTEyM1ioka2trREREGIUxhIWFwcXFhbWMN2bmTODyZeDRI2DUKPUS1dzLVWNigNwLwMzNgZwcVmo5rCEitGzZEgEBARAEAWlpaVpLtllRrJarCoLwsSAIoYIgPBAEYc7rrmcdwC4+Ph4RERFSb6FWrVrMTQEAqlSpojXMNmXKFKMwBQDF2hQA4NIl4M4dIDFRvYchbwiMxo21r1coeK9BbhITE41mBdCff/4pZVkkImner7jw2hpWEIQDgiD8TxCEnoIg6L2WEQTBFMAmAD0BNAYwVBCExq9+F1vKlCmDFi1aYOV/g8yOjo44ffo08yTgJiYmcHR0BKDuLXz11VdM9ZQkTEyAMmXUvYQZM16Gw7h6Vd1bSErK/57Wr22XcfTJmjVrjCKOE4B80V6NYTipKOjS9P4ZQAaAgQAuCIJwXBAEWz1qeBfAAyIKJ6IcAAcB9NPj/fWOjY0N7OzspOQ9Fy9eRN++fVGnTh3Gyl7GRJk6dSoqVqzIWE3J4J9/1MepU+p5hVGjtOcX8vYWNPBeg3zEx8dj7dq1ePLkCWspCAwMhJeXl9Y5Y5iALgq6GIMTgMsAJhLROwCOAFiiRw01AETmeh313zktBEEYLwiCvyAI/sYQxKthw4Zarz/44AO8++67jNS8xMnJCTY2Npg1axZrKSWGMWPUy1TXrAEGDlSbgmZVUmG9BQ281yAPnp6eSEtLk3Ius2TNmjVwcnKCmdnL3QDG0GMoyupEXfYxuAD4DEBjQRBSAQQC6CQIwu8AAonobWvpgha155sRJ6KtALYCQOvWrZnPmDdo0AAXLlyQXn/99dcM1bzEycmJ9xb0SEwMEBQEKJXAf/sGJdq3B5o2ffX7jShAaoklLi5OCrHC2hiICFOnTsXmzZthbW0NExMTnDt3Dhs3bmSqC0CRor3qYgzrNZW/IAj2AFpDPR/gDuB7AG3eQGNuogA45npdE4DxxKsthNw9hkaNGqFXr14M1bykadOm6NKlC2sZJYaVK9UhMI4cAQ4eBPr0AQYNAipXVvcgiulevRLFqlWrpNSerI1BEAS0atUKISEhICI4OzujW7du6NixI1NdAPD06VOdr9XFGM7/ZwghAEIBNARwgIimv5m8fNwEUF8QhNoAngIYAmCYnu5tMHIbw1dffcV8pZSGgQMHGo2WkkDuMBg9eqj/3bdP3Vv45x92ulijUqmMYiXes2fPsGnTJuk1a2PQoEnzqZl3tLS0ZCkHgDq4pq68tgYhopYA6gL4CsBfADYC0NsANhEpAUwB4AW1+Rwmors6vE9fEt4IjTFUq1YN7u7uTLXkhpuCfvntN8DeXr1UtXx5QBNoNycHGD6crTZWqFQqrF+/nrUMAOqUnpmZmdJrYzEGYwqVo6EoPQadahEiUhHRXSI6RkRn/qvM9QYR/UFELkRUl4iWv+76+/fvM89uVb16ddjY2GDatGlGkbqPYxg0YTD27AHq1AE0y9Fv3sw/51AQxXD/6GtZt24dbty4wVoGoqOjsXnzZq1z3BgKR99DSUaHtbU183hJgiCgdevWmDhxIlMdHMOSeyipICpUADIy1D9PnKg2gsuX1a8//NDg8mQnLCwM8+fPh5ubG2spOHv2LP73v//h/PnzuHHjBpydnfHkyRMoFArmYXPyDiUZAyXeGIxlN++qVatgZ2fHWgbHgFy9+jIchoaMjJc9h/j4l+d//FH7vUYQAUGvqFQqjBkzBllZWUYRIdfDwwMA8NtvvwEADh06BF9fXzx//px5gipj7DEUZY6hWBoD69aAhtZ8kXqp4No19RxDQdjbA//+C/TqBTx9Cri76z/VpzG0gAFg48aNuPaq7hMDsrKyEBoaCkEQ0LRp0yLn2DAEoihKPQZjMga9zzFwOKWZ9u3VobZbtlSHw7DNte8/MVGdtOfOHSAu7mXsJH2gVCoxd+7cIv1BG4oHDx5g7ty50mtj6DEA6h3FKpUK9erVg7W1NWs5ANTBLLOzs+Hg4IDy5cu/8trcE+eGRBTFIu1j4MbA4byGmzfVFf+dO+rAeamp2r9v3149t6CJnaQPnj17hm7dusHHx4d5DgtRFOHh4SFbJVYUAv+LOdKiRQvGSl6i6zBSdnY2Fi1aJIckvHjxokgLdrgxlHBEUcSzZ8+M5o+aiJCSkoKEhATWUiREUURYWFihv7969WXFX9ChLzPQQERYs2YNfHx8MHToUP3e/A1ISEjA4sWLpfznTk5ORtNj0BhDc806YiNAV2OYOXOmdK2hKcr8AgD1l7C4Hebm5qRQKMhYGDduHFWrVo1u3LjBWgolJydTZmYm7du3j5ydnWnKlClUs2ZNysrKYqpLFEUKCwujDz74gOrWrUtXrlxhqic3v//+O9nZ2ZGPjw9rKRJZWVm0Y8cOio6OZi1FIjs7m7y9vSk+Pp62bNnCWg4RqZ/TnTt36PHjx6ylSGRlZdG9e/coNDS00Gt++eUXAkBjx46VRVNOTg49fPiQAPiTDnUs80r+TQ4ARvVFGDRoEAGgnTt3spZCCQkJVL16dXJ0dCSoY05R2bJlWcsiIqJly5ZJmg4dOsRajhZpaWkUHBxMoiiylsIp4QQEBJCVlRUBoDlz5shatq7GUGyHkoxhIwv9t3upUaNGANQRFC9duoQjR44w02Rvb485c+ZoPR8HBwdmenIzf/58fPrppwDUE3TGhLW1NZo0aWI0QySckklSUhIGDhwoDe0aa7DLYmsMxhJ3vWfPnlJI3Z07d6Jr167Md0JPnDgRDRo0kF7b29szVPMSQRCwa9cuNG/evEgrJDickgARYdSoUXjw4IF0rkKFCgwVFQ43hregRYsWUKlUOHToEAD1zD8RMd/taG5urpVBylh6DIA6ydGJEyeYhzThcORm5cqVOHnypNY53mPQM5qhktS8awdlZv78+fnO1a5dm4ESbXr37o2uXbsCMC5jANTPZ968eaxlcEoRcXFxTMu/ceMGtm3bJqXe1cB7DHomLCwMc+bMkRJ0sOKDDz5A+/btpdfVqlVDWSOIhSAIAlavXg1BEIzOGADjbSlxSh63b9/GihUrmGpo27YtHjx4INUVjf/LB2usfwfF1hguXLiAH374QXrArBAEAQsWLJBeG9MW+BYtWsDDw8No5hg4HLkJCQlBjx498rXUWZCQkIDjx49DEAT88ccfmDJlCjcGQ9GsWTPWEtCjRw+0atUKgHFFUwSAZcuWwdnZmbUMDkd2IiIi8NFHH+HFixdGUU/s27cP2dnZ+Oijj+Ds7Ix169YZbRDOYm0M1tbWRjGeLwiCNGZuTD0GAKhatSrGjh3LWgaHIytPnz5F165dpdVvrI2BiLBjxw4AwJgxYwCok2oZ6/LoYm0MTZs2NZqMZZ988gkaN25sdD0GwDjSCnI4cvHixQt069YNERERANTj+FWqVGGq6fbt2wgICIC9vT0++eQTplp0oViG3dZgTPFRTExMMG/ePKM0Bg6ntJCcnIwePXogJCREOtesWTPmLfOdO3cCAD7//PNi0VArlsZga2uL1NRU5t3DvAwePBhZWVmsZXA4zCAiZpVweno6evfujdu3b2udZ11PZGZmYt++fQBeJhcydoxjHKaIVK5cGYBx9RgAwMzMDDY2NqxlcDhMuHLlCk6dOsWsfFEUsXPnTnz33Xda51kbw7Fjx5CcnAxXV1ejCg/+KoqlMdjZ2aF27drMP3AOh6OukJcvX47u3btr7emRG1tbW9StWxd79+4FAMybNw8ODg7M6wnNpHNx6S0AxXQoCQBWrFhhlBu3OJzSRGxsLIYPH44LFy6gb9++zNflHz58GCEhIXB0dMSiRYvQrl07NGnShJme8PBwXLp0CZaWlhg2bBgzHUWl2BrDoEGDWEvgcEo1f/75J9zd3REbGwsAGD58OFM9KpUKS5cuBaAOVVOmTBn07t2bqaZdu3YBAAYOHGi0exYKolgOJQHGk3OWwyltKJVKLFq0CN26dZNMoXz58ujTpw9TXYcOHcK9e/fg5OQkZZtjiUqlwu7duwG83LvwJrDI+V1sjYHDKa2EhoYyy0ei2Ti2bNkyKR8JoO7Bs1yGmbe3YGFhwUyLhvPnzyMqKgq1a9fGhx9++Eb3OHPmDFatWqVfYTrAjYHDKQakpaVh165d6NChAyZNmoQaNWow0REXF4cBAwbAyclJ6zzrYaSDBw8iNDQUzs7OGDVqFFMtGnLvdH6Tjbg///wz+vXrx2ZCX5c0b8Z2tGrVSj957jgcI0YURbp+/TqNHTuWbGxsCADZ29tTZGQkU13nz58nQRBIEAQyMTGhWrVqkUqlYqZHoVCQi4sLAaBt27Yx05GbuLg4Mjc3J0EQ6MmTJ0V6r0qlojlz5hAAEgSB4uPj9aLp8ePHOqf2LLaTzxxOSSUuLg579+7Fzp078e+//2r9btu2bahZsyYjZeqUrO7u7iAiLFq0CI8ePYKzszPT0DQHDx5EWFgYatWqhZEjRzLTkZtff/0VCoUCH3/8cZEiu+bk5GDMmDHShrg2bdrobfVl3iRBr4IbQwmHGO5ELYyEhASjWmp86tQpnDp1CtbW1ihbtqx02NnZYejQobLn14iMjMTVq1fzmcKYMWMwcOBAWbXkRqVSwd3dHc+fP8eHH36IRYsWISIiQmuuQW6USqU0t7BgwQKYm5sz06KBcgXMK8rehaSkJAwYMACXLl2SznXr1k1vuk6cOKH7xbp0K4ztaNWqFQUFBemle6UvRFGkS5cuUVpaGmspEtnZ2bRhwwZ6/vw5aykSycnJNHjwYDp69ChrKRJBQUFkZWVFAKSjS5cu9O+//zLTtHfvXi099erVo9TUVGZ6iIg2bdpEAKhSpUr09OlTplo0HDhwgABQ7dq1KScnh7UcIiL6+++/CQBVrFiRsrOzdXrPkydPqEmTJlqfOQC6fPmyXjTFx8eTqampzkNJzCv5NzlsbGyoevXqlJKSopeH9rYEBwdTkyZNqE6dOvT777+zlkNEREqlktq1a0flypWjqVOnspYjMX/+fGns1NPTk0RRZC2Jbt68SeXLlycAVL16dTp48CBzXUlJSeTq6kp169YlMzMz8vPzY6qHiCgzM5MmT55M586dYy1FIjs7m7Zu3UpHjhxhLUVCoVDQ6dOnadeuXTq/Z9euXTRlyhSytraWTMHGxkZnY3kdSqWSLl++XLKNQfPgjOGP5fbt29SjRw/pwzSWSnjHjh1UoUIFAkBmZmYUGhrKWhLl5OSQh4eHVoto4sSJpFAoWEujmTNn0qxZs4ymsUGknoScP38+fffdd6ylcGTg9OnTBICsrKzIxMSE3Nzc9F6GrsYgqK8tXgiCQADwyy+/MF8mBwAbN27E9OnTIYoi6tevj7CwMNaSkJqaivXr12PVqlVITk5Gv379ijbGaACICPHx8YiIiNA6GjZsiGnTpjGdwExMTDTKFKhhYWGoW7cuTE1NWUsp0aSlpTENgJmeno7GjRvjyZMn8PT0xKNHj9CgQQNMmTJFr+UIgnCLiFq/9kJd3MPYjjJlyhAAmjt3rt6c9G05deoUlS1blgDQgwcPWMuRSEhIoHnz5pG1tTX5+PiwlsPhGBWiKNLu3buZ98q++uorAkAtWrQghUJBSUlJ9PjxY72XAx17DMVyg5uLiwtq1qyplYyDNW5ubvjrr79QtWpVeHl5sZYjYW9vj+XLlyM8PBxRUVGs5XA4RoNms96oUaMwePBgZjoCAgLw448/QhAEbN26FWZmZihfvny+TYRyUiyNwcLCAl5eXoiLi2MtRYtWrVrB19fXKCvgypUrw93dnbUMDscoOHnyJJo1a4YTJ06gR48ezDIvqlQqTJgwASqVCpMnT8a7777LREdeiuUcQ+vWrcnf3x+3bt1Cy5YtjSbvs4bs7GyUKVOGtQwOh5OH5ORkzJgxQwpuBwDHjx9nlof5p59+whdffIFq1aohJCQE5cuXN2h5us4xFOsNbq1atWItoUC4KXA4xselS5cwatQoPHnyRDpXvXp1ZlFho6OjMXfuXADA+vXrDW4KRaFYGwOHw+Howrlz5zBixAg8f/5c6/y4ceNgZsamGpwxYwZSUlLQu3dvpjvaC8K4xmA4HA7HAHz88ccICwvTiltkYmKCsWPHMtHzxx9/4LfffoOVlRU2btxodGFruDFwOByDk5qaiuDgYGbli6KI4cOHIzIyEo0bN4a9vT3c3NyYBCRMT0/H5MmTAQBLlixBrVq1ZNfwOrgxcDgcgxEfH49vvvkGTZs2ZZracvHixThz5gzs7Oxw8uRJTJ48GRMnTmSiZenSpXj8+DGaN2+OGTNmMNHwWnTZ7GBsB8/HwOEYN5GRkTRz5kxp0+eqVauYaTl69CgBIBMTEynOU3x8PJMcEgEBAWRqakqCINCNGzdkLx88HwOHw5Gb+/fv44cffsAvv/wChUIBAGjSpAmmT5/ORM/du3cxYsQIAMCKFSvQo0cPAGAS9l0URWnPwqRJk/D+++/LrkFXuDFwOJy3JiAgAN999x2OHDkCURS1fvfTTz8xyZOQmJiITz75BOnp6Rg8eDC+/vpr2TXkZuvWrfD19UXVqlXx3XffMdXyOpjOMQiC8JkgCHcFQRAFQXh9YCcOh2OUVK1aFa1bt4a1tbXW+REjRuCDDz6QXY9KpcKwYcPw4MEDNG/eHDt27GC68icmJgZz5swBAKxbt07v8y2///47/Pz89HY/1pPPwQAGAPiLsQ4Op9hCRHj48CFOnz6tCUsvO5UrV0ZKSgpSU1Olc+XLl8fKlSuZ6FmwYAHOnTsHBwcHnDhxIp9hyc3MmTORnJyMnj174rPPPtPbfWNjYzF06FBMmTIFrq6uersv84nk/77IPgBa63o9n3zmlHaePXtG+/fvJw8PD3J2dqZy5crRP//8w0SLQqGgsWPHShO87u7uBIA2btzIRM+hQ4ckLd7e3kw05Obs2bNSnoXw8HC93FMURdq5cyfZ29sTAFq7dq1O70NxStSjizEAGA/AH4C/k5NT0Z4ih1PMSU1Npd9//51mzpxJzZs310p2ZG5uTn/++ScTXRkZGdS3b18CQGXKlKHjx49TWloatWvXjpRKpex6AgICpJVQq1evlr38vKSnp1Pt2rUJAH3//fd6uef9+/epS5cu0udfvnx5nRNMGY0xAPCGesgo79Ev1zW8x8DhFIIoivT999+TJg9J3uPAgQNMdMXHx1O7du0IANnZ2dFff/0l/S4uLk52PS9evJAqYXd3d+bpWYmI5syZQwCoadOmb52TOicnh1asWEGWlpZan//XX3+t8z2Mxhh0EsGNgWOEiKJImZmZlJCQQE+fPqX79+9TYmIiEy1ZWVk0ZsyYfKawZs0aJnqePHlCjRs3JgBUo0YNCgoKYqJDg0KhoI8++ogAkKurK2VkZDDVQ0QUFBREZr6o1BUAABkiSURBVGZmBICuX7/+VvdKTU2lnj175vv8zczM6MmTJzrfhxsDh1MElixZQi4uLuTo6EgVKlSgsmXL0n8pZAkACYJAc+bM0Vty9qLg7e1NLi4u+SqFWbNmya6FiCg4OJhq1qxJAKhhw4YGyTRWVGbNmkUAqFKlSkahR6VSSb2pCRMm6OWeoijSokWLtL4Dw4YN0/n9CoWieBgDgP4AogBkA4gF4KXL+7gx6EZiYuJbd1/1za1bt2j48OG0b98+ev78OWs5EtnZ2dShQ4cCh2pq1qxJly5dkl1TdHQ0DR06VNLh4uJC+/fvlyoEFjt3r169Kk14tm3bll68eCG7hrzs27ePAJCpqSmTz6kgtmzZQgCoSpUqlJCQoJd7Xrp0iczNzQkAOTs7EwDy9/fX+f27d+8uHsbwpsc777yj88OQi7t37+ptxYG+CAsLozp16tDOnTtJoVCwlkNERKGhoVS9enWpFf7ee+/RN998Q76+vkwmK4mIzpw5Qw0bNizQFD799FOKj4+XXdO5c+eoXLlyBIAsLS1p2bJllJWVRUqlknr06MGk53LlyhVpfLtPnz6Unp4uu4a8BAUFSZrWr1/PWg4RqVeM2dnZ6XX+JyQkRLrn1KlT6dq1a9SpUyed35+Tk0N16tQp2cZgYWFBJ06c0PmhGBpRFKlt27ZUtWpVZksGC2Lw4MFSBVe3bl3avXs3c4NYtWpVgRWwlZUVjRs3jsmkpY+PDwEgBwcHqTK2tramnTt3MpvAfPr0Kdna2lKvXr3o4cOHWr9jNX6emppKbdq0oTFjxjD/HmnIysqicePG0ahRowz2WYmiSF5eXlKcpdehUCjI09OTBg4cqBdNsbGx0qS6m5sbKZVKEkWRAgMDdb6HUqnU9KxKrjE4OjrStGnTmE94aYiNjaWOHTuShYUFlStXjnx8fFhLIiKipUuXSssI69evT127dqXvvvuOsrKymGl69OgR1apVS1rJMnz4cDp+/DjT1qdSqaRz585Jrao2bdrQ/fv3menREB4ebhQra3KTkpJidJqIyCBGJYoi/f777/Tee++Rs7NzkQ1ZH88pIyOD3n//fWlSPTU19a3uV6KNwVjnGBQKBd2/f5+8vb2ZDYvkJigoiGJjY43qD/nevXs0efJkunDhgtHNfyiVSvrmm2+MThdHXkRRpJMnT1KrVq2kHu2RI0dk16FSqWjgwIEEgBwdHSk6Ovqt76mrMQjqa4sXrVu3Jn9/f9YyOBxOCUIURZw4cQJLly5FQECAdL5Lly7w9vaWPdbS7NmzsWrVKtja2uLatWto1qzZW99TEIRbRPTauHQ8uiqHwyn1+Pn5wcPDI1+WOVNTU6xfv152U9iyZQtWrVoFU1NTHDlyRC+mUBRYB9HjcDgc5rRp0wY7duxAjRo1tM5PmTIFTZo0kVXLuXPn8MUXXwAANm/ejO7du8taPsCNgcPhcCCKIrZt24anT59K5ypWrIjFixfLqiMwMBCDBg2CSqXC//73P4wbN07W8jVwY+BwOKWa7OxsDBkyBNu3b4elpSW2b98OQJ3xTc481dHR0ejduzdSU1MxaNAgpsl8+BwDh8MptaSnp2PAgAE4f/48ypUrh9OnT+ODDz6Av78/Ro8eLZuOtLQ09OnTB1FRUWjbti12794NExN27XbeY+BwOEyJiIjA+fPnZS83ISEB3bp1w/nz51GpUiVcunRJyja3YcMGmJqayqJDqVRiyJAhuHPnDurUqYOTJ0/CyspKlrILg/cYOByOrIiiCH9/f5w6dQqnTp1CVFQU/v77b1k1xMTEoHv37ggODoajoyMuXLiABg0aSL83M5OnaiQizJgxA7///jvs7e3xxx9/oFKlSrKU/Sq4MXA4HIOTmZmJixcv4tSpUzh9+jRiYmIAqJeDenl5oX79+rJpCQ8PR7du3RAeHo4GDRrg/PnzcHJykq383KxduxabNm2ChYUFTpw4oWVOLOHGwOFwDAYRYdmyZfjhhx+QkZGR7/fr169H165dZdMTHByM7t27IyYmBq6urjh37hyzFvrx48cxa9YsAMDOnTulYSxjgM8xcDgcgyEIAubPn4+JEyfm+92kSZMwefJk2bT4+vrigw8+QExMDDp16oRLly4xMwU/Pz+4u7uDiLB06VK4u7sz0VEY3Bg4HI7BUCqVWLlyJTZu3Kh1vnPnzli3bp1sOry9vfHRRx8hMTERbm5uOHv2LMqVKydb+bl59OgR3NzckJmZiVGjRmHBggWylPvixQudr+XGwOGUMIgIkZGROHv2LDw9PfHw4UMmOu7evYu2bdti3rx5yMnJgYeHB8zNzVGnTh389ttvMDc3l0XH0aNH0bt3b6Snp+Pzzz/H0aNHma36SUpKQq9evRAXF4cuXbpgy5YtBg+38eTJE0yfPr1o8yi6RNoztsNYo6tyOHLz/PlzunjxIq1fv57Gjx9P7dq1k3JKmJiY0Pbt22XXpFAo6LvvviMLCwspA97Zs2eJiMjV1ZXu3r0rm5YdO3aQiYmJlOCGRdY7DdnZ2dSlSxcCQI0aNTJ4/vDg4GAaMWKElHf6vxzdPOw2h1OS+fPPPyUTyHuYm5vT4cOHZdcUHBxMrVu3lnR4eHhQUlKS9PuIiAjZtHh6eko6vvnmG6bh50VRpNGjRxMAqly5skGzPV6/fp369u2b7ztx+fJlbgwcTmlg165dBWbD07TQ5eJVvQS5EUWR5s2bJz2PtWvXMtGRm2+//VZK0+rr62uQMhQKBU2YMKHAhsKIESOIiLgxcDglGR8fH+rcuXO+CqBcuXJ05coVWbUEBwdTmzZtCu0lyIlSqaSJEycSADI1NaU9e/Yw0ZGb/fv3SznOjx49atCyRFGkb775Rus7YW9vT7GxsUSkuzHwfQwcTh5u3LiB7du3v2w9IX8DCgAmTJiADh06yKrNx8cHS5YsgY+PDwCgXLlyGDduHFavXo2KFSvCy8sLrq6usmhRKpVYtWoVFi9ejJycHNSsWRPbtm3Dxx9/LEv5ecnJycHIkSNx8OBBlClTBocOHUK/fv2YaNFw5coVjBo1CgCwatUqDBgwwKDl7du3D8uXLwegXipMRFixYgUqV65ctBvp4h7GdvAeQ/ElMDCQfHx8KDw8nLKzs1nLKRBRFGncuHEFdskBUK1atejixYuyarp06RJ16tRJq2ewaNEiSkhIoOTkZKpZsyaFhITIpidvL2HMmDHMeglEROnp6dSzZ08CQDY2NrJ/PgURGhpKDg4OBIAm/b+9ew+qquz3AP59UGQbvC/oRnOAKJFuYoKXxBTN6O1NRTpGI57QrKGUODapaGpTlJp38zhpR8lLF29HczruAiqwFEvGxKNcjqFpiY2KqGfa3rjohv09fwDrsA2RhL3W3vr7zOwZNnuteb6z2KzfujzreZKTnXqPw263c/HixdrfY8qUKRw/fjz79evncMMdcilJFBQU8MyZMy415/Pp06fp7++vnVoHBASwf//+jI+P57Rp07h8+XJaLBan3py7EZvNxpycHKakpDA0NLTRojBx4sQWT8jeXHa7nTt37uTgwYO19n19ffnuu+/yjz/+0JarrKzkiRMndMnkSvcS6lmtVg4cOJAAaDabmZeXZ2gesra3WP13aPjw4bTZbE5rq6amhpMmTdK+I++//z5J0mKx8ODBgw6ZbuvC0K1bNy5btszQrmcNXbt2jUuXLuW8efO4aNEiZmdnGx2J5P/3yjCZTHzwwQf59NNP89VXX+WhQ4cMy5STk8MhQ4bc8GjcbDZz4cKFuu18STIvL49jxoxhhw4dbpgrJCSEu3bt0i1TUVERBw0a5FAQZs2a5fQujk0pKSlxqbMEkjx37hzDw8MJgIGBgSwuLjYkR01NDXfv3s2vv/6alZWVWqGKiIjgpUuXnNZuVVUV4+PjtZ5oGzdu1D5reEBot9sZFxd3excGk8mk2xFSc/Xu3ZteXl6cN28er127ZnQckqz/ImhH56NGjWJhYaGhmep7Z1z/6tixI+fPn+/Uf6IbycjI0HKEhoYyJSWFOTk5fOGFF7T+71euXNE107Fjx9imTRv6+flx9uzZhhaEehcuXGBQUJBLnCXUq6io4OOPP87Q0FDd9wl2u5379u3jlClTGBAQwG7dutFqtfLatWscP348AwMDeerUKae1f+HCBe0gy8fHhzt27LjhsjU1NVy4cOHtXRh69ep1SxvSmXbs2MEjR44YHcNBUVERPT09+fzzzxt6ltDQ/v37OX36dIceE3PnzuXFixcNy1RRUcFFixbx8OHDDkdZCQkJzMnJMSyXxWIx/Ij8evn5+S6X6eLFiywrK9OlLbvdzsLCQr755pvs2rWr9j02mUzMz893WM6ZmU6dOsVHHnmEAHj33Xc7XDJqym1dGOQeQ/OcPHlS1xuSzWWxWOjn58f33nvP0IJwM65y5ieMZ7fbuXz5cj788MONnvGuW7dOtyzFxcUMDg4mAN5///1/6X5ccwuDdFe9jQUFBRkdoVGBgYE4ceIEfH19jY7SJL3G8hGuTymFMWPGoLi4GIcPH3b4LDExEYmJibrkyM3NRWxsLKxWKyIjI5GRkQF/f/9Wb0cG0RO669u3r8sXBSGud+jQIWRmZjr8LiIi4k8jxzqLxWLRRoiNiYnB999/75SiAEhhEEKIJtlsNqSmpuKJJ57AyZMn0bdvX3Tq1Am+vr66jdSalpaG5557DlVVVXj55ZdhsVjg7e3ttPakMAghxA0cP34cgwcPxty5c0ESM2fORG5uLnr16oX169cjJCTEqe2TRGpqKpKTk2G32/HOO+9gzZo1Tp+TWu4xCCFcks1mQ35+PnJzc2E2mzFu3Dhd29+0aROSk5Nx+fJlBAQEYMOGDYiOjgYALF26FD169HBq+9XV1UhKSsLHH38MDw8PrFy5EklJSU5ts54UBiGES7Bardi7dy9yc3ORm5uLvLw8VFZW4sknn0RGRoZuOS5duoSJEydi48aNAICRI0di7dq1MJvN2jLOLgrl5eUYPXo0MjMzYTKZsGXLFl3HfZLCIIQwzNWrV/HWW2/h22+/RXFxcW0f+gYGDhyIL7/8EiaTSZc8P/30ExISElBSUoL27dtj2bJlmDBhgtNnWWvo/PnzGDFiBPLy8tCxY0ekp6djwIABurUPyD0GIYSBvLy88Nprr8Hb2/tPRaF3797IzMx06k3WejU1NZg3bx6ioqJQUlKC8PBwHDhwAElJSboWhZKSEgwcOBB5eXkIDg7Gnj17dC8KgJwxCCEMdOnSJaxatQoFBQUOvw8LC0NWVpYu3ZpPnjyJsWPH4ocffgAATJ48GQsWLNDtLKXewYMHMXz4cJw9exY9e/bEN998g4CAAF0zaJrzFJyrveTJZyHcW3V1NVevXs3OnTtrTw8/9NBD2nhVpaWluuTYtm0b/fz8tCk3jRoDKjs7mz4+PgTAIUOGOG3YEciQGEIIV7Rz50727NlTKwiRkZHcu3cvt23bxuDgYP7+++9Oz3DlyhW+8sorWoZhw4bpNt7S9TZs2MC2bdsSAOPj41lVVeW0tqQwCCE0NTU1LCsr4/79+7l9+3Zu2bJF92Hrjx07xpEjR2o746CgIG7atEkbuPDgwYM8evSo03McOHCADzzwAAGwXbt2/OCDDwyZs+T6yXUmT57s9L+JFAYh7kDl5eX88MMPOX36dCYkJHDQoEHs2rWrNrEOAPbo0YMlJSW6Zbpw4QKnTZtGT09PAuBdd93F2bNns7y8XLcMZG1xXLJkiZaje/fuLCgo0DVDwywNJ9dZsmSJLsVJCoMQd6itW7fSy8ur0VFAY2NjdZvzwmazMS0tjZ06ddLaHzdunFPnKLiR0tJSPvXUU1qO5ORk3QtTvaYm13E2KQxC3IHKyso4Z84cms3mPxWFGTNmsLq6Wpcc3333nTZfAAAOGDCA+/bt06Xt66Wnp2vTyXbs2JEWi8WQHORfm1zHGaQwCHEH2bdvH8eOHetwyaj+1a5dO3722We65Dh69CifeeYZre3g4GBu2bLFkGv4FRUVnDhxopYlOjrakLOVerc6uU5rksIgRCspLS1lZGQk77vvPgYFBbFLly709/enn58ffXx8aDKZaDab+emnn+q6A6yqquKGDRvYr18/hylcR4wYwaysLIaFhbFz587Mzc11ehar1cqUlBTt+r23tzfnzp3LiooKp7fdmKKiIoaFhREA27Zty8WLFxs6R3xLJtdpTVIYhGhFu3btooeHR6PX7aOjo3Wdb/j06dNMTU11eAbAz8+PKSkp/O2337TlYmNjnZ7LZrNx5cqVDpeuXnrpJZ4+fdqp7d6I3W7nihUrtHssoaGh3L9/vyFZ6u3Zs4cdOnTQuuaeP3/esCxSGIRLW7NmDXv37s0+ffrw0UcfZWRkJB977DEOGDCAUVFRHDx4MEeNGuWwo9NbWVkZV69ezWHDhmlHwg1f7du354oVK3Q5ErXb7fzxxx85evRorc87AIaFhTEtLY1Xrlz50zrO7A9PUjsrqc8SFRVl6E743LlzHDFihJYnMTGRly9fNiwPSW7fvp0mk4kAGBMT0+jfSU9uURgALAFwBEARgO0A/JqzXp8+fXjs2LFW32gtVVlZyYyMDMOenmzIarVy9+7d/OKLL7h69WrOnz+fU6dO5YsvvsivvvrK6HisqalhbGxso0fgAJiQkGDIkdXx48e5dOlSRkVFUSnlcIkmJCREe9+/f3/+8ssvTs9TUVHBdevWMSIiQmvbw8ODcXFx3LlzpyHX7o8cOcKYmBgtz7333svPP//ckCz1srKy2KVLFwKgr68vt27daliWeqtWrdLOMhMTE2mz2YyO5DaF4Z8A2tb9vAjAouas5+fnx+zs7NbeZrfs559/Znx8PH18fBgeHm74UQFJXr16lXFxcQ47W5PJxE8++cTQXAcOHODMmTMdeqw0fAUGBjI9PV3XTL/++itnzZrF8PBwhyyenp4cOnQoP/roI545c4Zr166lp6cnFyxY4PTePaWlpZwxY4bDJRqz2cyZM2fq8mRwY6xWKydNmqSdsfj4+HD+/PmsrKw0JA9Ze1Y0depUh7MWPS/rNcZut/Ptt9/WMqWmphpaNOstX77cPQqDQxDgWQCbmrOsl5eXS1TfejabjQEBAfT399f1waGbiY6O1r6cISEhzM/PNzoS33jjDS2Tt7c327dvr71PSkpy2hgxTdm8ebNDplGjRnHz5s1/yrJ+/XoWFhbqkqmwsFDLFBERwXXr1hl2I7fe2bNn+fe//51KKSYmJuo2nlFTysvL2b17d7Zp04Zz5sxxif2CzWZjTEwMPTw8mJaWZnQczeuvv97swqBYu1M2nFIqHcBWkhtv8PkEABPq3vYAcEivbHcAfwD/a3SI24Rsy9Yl27N1PUjybzdbyOmFQSn1HYAujXz0Fskv65Z5C0BfAHFsRiCl1H+T7Nu6Se9csj1bj2zL1iXbs3U1d3s6fT4Gkv9o6nOl1IsARgB4sjlFQQghhHMZOlGPUmoogBkAHidZYWQWIYQQtYye2vNDAH8DsEMpVaCUSmvmequdmOlOJNuz9ci2bF2yPVtXs7any9x8FkII4RqMPmMQQgjhYqQwCCGEcOC2hUEptUQpdUQpVaSU2q6U8jM6k7tSSo1SSv2slLIrpaRr4C1SSg1VSv2ilPpVKTXT6DzuTCn1sVLqnFJKnldqIaXUPUqpXUqpw3X/55Nuto7bFgYAOwD0INkTwFEAbxqcx50dAhAH4Aejg7grpVQbAP8BYBiA7gCeV0p1NzaVW/sUwFCjQ9wmqgFMJfkwgP4AJt7su+m2hYFkNsnqurc/AQgyMo87I3mY5C9G53Bz/QD8SvI4yWsAtgD4F4MzuS2SPwD4w+gctwOSZ0gerPv5MoDDAAKbWsdtC8N1EgF8Y3QIcUcLBHCywftTuMk/nxB6U0rdB6AXgH1NLWfoA2438xeG06gGsEnPbO6mOdtStIhq5HfSF1y4DKWUD4AvAEwmeampZV26MMhwGq3nZttStNgpAPc0eB8EoNSgLEI4UEp5orYobCL5Xzdb3m0vJTUYTuMZGU5DuID9AO5XSnVVSrUD8K8AvjI4kxBQSikA6wAcJvnvzVnHbQsDbn04DXEdpdSzSqlTAB4DkKmUyjI6k7up6wjxGoAs1N7c+5zkz8amcl9Kqf8EsBfAg0qpU0qpl43O5MYGAngBQHTdvrJAKTW8qRVkSAwhhBAO3PmMQQghhBNIYRBCCOFACoMQQggHUhiEEEI4kMIghBDCgRQGIYQQDqQwCCGEcCCFQYhWoJRqo5T6oG68+/9RSoUYnUmIWyWFQYjW8SaA4yTDACwH8G8G5xHilrn0IHpCuAOllDeAZ0n2qftVCYAYAyMJ0SJSGIRouX8AuEcpVVD3viOA7wzMI0SLyKUkIVouAsA7JCNIRgDIBlBwk3WEcFlSGIRouQ4AKgBAKdUWwD8BpBuaSIgWkMIgRMsdRe0k6wAwBUAmyRID8wjRIjLsthAtpJTqgNo5x/1RO4fABJKVxqYS4tZJYRBCCOFALiUJIYRwIIVBCCGEAykMQgghHEhhEEII4UAKgxBCCAdSGIQQQjiQwiCEEMLB/wGVD346P2QrjgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:08<00:00, 2.34it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXl8TNf/xp+bPfY91kisCVpLUGuFVlUVRVFqV9WiS7SlVGl91S6UVn+lal9aa7XEvtS+JNSeqD0kkZBN1lme3x/TuTISTGQy5ybO+/W6L2Zylyd3Jue553PO+XwUkpBIJBKJxIyDaAESiUQi0RbSGCQSiURigTQGiUQikVggjUEikUgkFkhjkEgkEokF0hgkEolEYoFwY1AUpZKiKHsVRbmoKMp5RVE+Ea1JIpFInmcU0esYFEUpB6AcyRBFUQoDCAbwFskLQoVJJBLJc4rwHgPJCJIh//0/EcBFABXEqpJIJJLnFyfRAjKiKIoXgPoAjmXxs/cBvA8Abm5ufrVr17artsdx//59XL9+Hd7e3ihevLhoOQAeaipXrhzKlSsnWg4AIDo6Grdu3UKxYsVQpUoV0XJAElFRUYiIiICrqyt8fX2hKIpoWXjw4AGuX78OnU6HOnXqwNnZWaieq1evwtPTEwkJCZr6nt+6dQs6nQ56vR5ubm4oX748nJzENmfx8fFwcnJCSkoKEhMTUbJkSRQpUkSoJpJQFAXJycmIjIxEbGxsDMnSVh2ohQ1AIZjCSF2ftq+3tze1wNatW+nk5EQAnDJlimg5NBqNnD59OgEQAD/55BMajUahmqKiotihQwdVU79+/Zieni5U0549e+jr66tq6tKlC+/fvy9UU0JCAocPH65qql27Ns+dOydU0/nz5wmAXbt2pbOzMwFw8uTJQjWZ6dWrl3qvFEXhvHnzOHfuXOp0OmGatm3bRkdHR1asWJEA2KdPH/bp04dHjx4VpunixYvs2rUrp02bZr5fJ2lNe2zNTrm9AXAGsB3ASGv29/Pzs/Htyz6HDx+mu7s7AXDkyJHCG2C9Xs+PPvpI/WOZMWOGcE1bt25lmTJlCIBFixbl6tWrheq5ffu2RYNStWpVbt26VYiWH3/8Uf3/jh07WLlyZQKgo6Mjx40bx9TUVCG6MtKvXz/1XgHgxx9/LPw7ZaZNmzYW2gBwzZo1QjVdvnw5k6aGDRsKvWdGo5ElS5bMqClvGAMABcAyAHOsPUa0MZw7d47FixdXn4ANBoNQPcnJyezWrRsB0NnZmStXrhSqJyUlxcKkWrZsyRs3bgjTk56ezsDAQBYuXJgA6Obmxm+//ZYpKSlC9KxYsYKKojAqKoqDBw9W71O9evUYEhIiRNOjXLt2jY6OjhaNXKNGjfjdd98J7/GRZJ06dSy0ffbZZ6IlMS0tjQ4ODha6Nm3aJFoWO3XqlCeNocV/gs8AOP3f9saTjhFpDNevX2eFChUIgB06dBD+R3Lv3j22aNGCAFikSBHu3r1bqJ4zZ86of7SOjo787rvvqNfrhen5+++/+cILL6h/GB06dOCVK1eE6Tl8+DBdXV0JgCVKlCAAuri4cNKkScK/SxkZNmxYpqffdu3aMSwsTLQ0klR7ogDYpk0boSGkjJh7fgD4wgsvCH9oJJkxjJR3jOFZNlHGcPfuXdaoUYMA2Lx5cyYlJQnRYeb69etqrLx8+fL8559/hGkxGo2cM2eO2uhVrVqVx44dE6YnMjLSIhTi5eXFzZs3C9NDmj6vjA0aADZu3Fj4WMKjREREqJ8jAFaqVInr16/XTBhJr9erT+aenp68e/euaEkqrVu3Vu+b6NCpmYMHD0pjyC0SEhLYsGFD9UlA9GDl6dOnWa5cOQJgrVq1hIZqIiIi+Prrr6tfvkGDBjExMdFu179z5476f51Ox7lz57JIkSLq0/jXX38t3MQTEhIyhT/Mn92OHTuEanuUUaNGEQCdnJw4evRoPnjwQLQkC6KiogiArq6uPHnypGg5Frz33nsEwOrVqwvtKWckNTU1o9FLY7AVqamp6mCXl5cXb9++bdfrP8rOnTvVeHnLli2FmtSff/7J0qVLEwCLFy/OtWvX2vX6+/bt41tvvUXSFKapV6+e5kIfer2eb775ZiZTKFu2LN977z1u2rRJM43I/fv3WahQIbZp04YXLlwQLSdLzpw5QwBcvHixaCmZmDx5sia1NW/eXBqDLdHr9Xz77bcJgGXKlBHe0CxfvlydItu9e3dhA6hJSUkWcWh/f3/evHnTrhpOnz7NIkWK0MfHh4MGDdJs6OOzzz5Ttfn5+XHChAk8ceKEJuLPj7Jo0SKuXr1aM/cuK3bt2sVhw4aJlpEla9asYeXKlTU1XkSaeoFubm7SGGyB0Wjk0KFDCYCFCxcWOmPEaDRy6tSpagPz6aefCmtYTp06pY5tODk5cerUqXZ/4r169SrLli1r8QTu7OzML7/8UlOhj1WrVrFTp05csGCB8J6mNWil5/IkLl26xLS0NNEysuT48eOcP3++aBmZ2Lx5M9955x1pDLbg66+/VmOZe/futcs1s0Kv13PEiBFqAzhr1iwhOgwGA2fNmkUXFxcCYI0aNYTEeO/evcvq1atbmIKDgwODgoLsruVpaGW2jMQ+JCYmCuvFP4mYmBhu27ZNGkNO+f7779UGZ8OGDbl+vceRnJzMLl26qE/EomY63L59m23btlUb4iFDhgh5Mk9MTFQnATy6aWG6rkSiVYxGozSGnLBy5Uq1sVm4cGGuXutJxMTEsFmzZmqjt2fPHiE6Nm7cqK6eLFGihDCjTEtL42uvvWZhBnXr1mVAQAD//PNPxsXFCdElkeQVpDE8I0FBQZrIf3Tt2jXWrFmTAFihQgWeOXPGLte9fv26+v8HDx7w/fffVxvhV155RVic3GAwsHfv3vTx8eGwYcO4bt06RkdHC9EikeRVpDE8A4cPH2aBAgUIgAEBAcJmZoSEhKgDq7Vr17bbbJ8HDx6wdu3ajImJYXBwsGpMzs7OnDlzptBZNLGxsRbrFSQSSfaRxpBNMuY/6tu3r7BGcMeOHSxUqBABsFWrVoyNjbXLdY1GI3v37k3AlP/JnE3Tx8dHM/l7JBJJzpDGkA20kv9o2bJlahirR48eds2wOW/evEyDuR9++KHwFcMSicR2WGsMwiu4iSY6OhqvvfYabt++jebNm+P333+3e3EUkpgyZQr69esHvV6PgIAArF69Gq6urna5/pEjRzBy5EiL9xo0aIAxY8agQIECdtEgkUi0w3NtDImJiXjjjTcQFhaGF154AX/++afdG0KDwYDhw4dj7NixAIDAwEAEBgbCwcE+H83du3fRvXt36HQ6i/fPnDmDjz/+GDExMXbRIZFItIOmSnvak7S0NHTp0gUnT56El5cXtm3bZveShSkpKejduzc2bdoEFxcXLFu2DD179rTb9fV6PXr16oXbt28DABwcHNC6dWv07NkTXbt2RcmSJe2mRSKRaIfn0hgMBgP69OmD3bt3o0yZMtixYwfKly9vVw337t1Dx44dceTIERQtWhSbNm2Cv7+/XTWMHz8ee/fuxcsvv4yePXuiW7du8PDwsKsGiUSiPZ47YyCJ4cOHY926dShcuDCCgoJQvXr1XL+u0WhUw0PXrl1D+/btERoaigoVKmDbtm2oU6dOrmvIyLVr1+Dh4YFbt26hQoUKdr22RCLRNs/dGMOECRPw888/w8XFBX/88QcaNGiQ69c0GAwYPXo0ACAkJARNmzZFaGgo6tSpg6NHj9rdFADA29sbn3zyiTQFyVMxGAzYunWraBkSO/JcGcPcuXPxv//9Dw4ODlizZg1at25tk/MajcYn/vynn37C999/j40bN6JVq1aIioqCv78/Dhw4gIoVK9pEw6OkpqbmynlzQnx8PAwGg2gZFqSmpuLu3btCNZhmET7EaDTiypUrgtRkZvz48fj5559x//590VIs2Lp1a6Z7J5r09HTREmyDNXNatbbVrl072/N3cyv/0aVLl+jj48MDBw5k+fPbt2+rRXXMW8+ePXN1jcK1a9fo5eXFVatW5do1sktoaChr1KjBUaNGiZaicvjwYfr4+PCVV14RtsrdaDTyq6++Ul8fOnSIfn5+LF++vF2r4D2OzZs3EwALFizIwoUL8+zZs6IlkTSlSPH29uYbb7zBpUuXipaj8sMPP3DGjBmcMGGCJj4/ktyzZw8PHz7MMWPG5O8FbmXLls3WjcmY/2jy5MnZOvZJJCcn88UXX1Qb+6zo2bOnhSn4+PgwKirKZhoeJSIiglWrVlWru2mhGMyuXbtYrFgxtSyq6EVzSUlJDAgIoKIoahlGEek2jEYjR44cSVdXV4aHh/Pdd99Vvyfly5cXvuL8ypUr6udm3rTSCO/cuVPV1KBBA+7du1cTxYXGjx+v6urevbvwwl6k6e/P/F3P18ZQv359q2/KkSNHci3/kbm+a9WqVbPM7Plf/vNMW82aNRkaGmozHWbu37/PF154gQBYr149u6XTeBLz58+no6MjAbBjx45MSEgQqmfPnj2sUqWKmlJ91KhRTE5OFqLlf//7n/qdMH9HXVxcOHbsWOFPmykpKaxfv36W393t27cL1UZaPnBVrFhRWObhR/noo49UXV9++aVoOSTJsLCwjJ9h/jUGa1NinD9/niVKlCAA9unTx6ZPz8uXL1f/kIODgzP9PDk5WX1yN29169blqlWrcqV4S2JiIps0aaIW0MnNXok16HQ6Dh8+XP3dR40aZffqYBnvc3x8PD/44ANVT+3atXn8+HG76snI3LlzMzW6nTt35pUrV4Rpyoj5oce8FS5cmH379uWWLVuEV0+Ljo5Wi0X17NlTaM3zR+nTp4/aW9dKkaaUlBRpDGZyM//RhQsX1Ce8x5XxM1d/A8DWrVszKCgo17q6KSkpfOWVVwiY6h3fuHEjV65jLbGxsWpRH2dnZyGF0RcvXqw+2QYFBbFSpUoETKVIx48fb9c8VI+ydOnSLHuSbdu2tUh7LorFixcTAN3c3Ni9e3euX79eWK8qKwIDA1m4cGEuW7ZME+GjjHTo0IGlS5fWXBlXDw8Pc8/9+TWGu3fvskaNGgTAZs2a2TSmbU5NbX5ayeqLefHiRbq5ubFbt248duyYza6dFTqdjm+99RYBsHTp0rkSosoOYWFharruUqVKPXZQPjf5+++/6ezszGnTprF///4WsejTp0/bXU9GNmzYQAcHBwtDcHZ2ZrNmzTh69Gju27dPqL4LFy6wR48eXLlypfCwX1aY67Bfu3ZNtJQsadmyJXfu3ClaRiYaN27MAQMGPH/GcO/ePZJkQkKCWvqxTp06Nu9m/ndzWb16dcbHx2e5z+rVq+3SQBsMBvbr148AWLRoUZ46dSrXr/kkdu/eraYur1OnDq9evWp3Df/++69abc68ubq6csqUKcK79jt37qSLiwsLFizItm3bcuLEidy7d6+mnsa1MFnhSej1eruHJLPD2rVrRUvIkl69evHy5cvPlzHcuHFDTVNtDql4eXnZvDuXsYst+snTaDSqA13u7u48ePCgUD3/93//p8786tChw2NNMzeJi4ujr6+vhSl4enry4sWLdtfyKElJSfz55595/Phx4QYlef4wt1fPlTGMGDGCTk5O7NChgxpSsfU0sbNnz9Ld3Z0AuGDBApue+1kwT4tzdnbmtm3bhOnQ6XT8+OOP1Yb4s88+E/JEp9PpMtWDNm/t27e3WxU8iUTLPDfGEBERQVdXV4vZE1nNEsoJiYmJ9PHxIQC+++67wge8Zs2apU63tHfXNePvHhsby3bt2qkGtWjRIrtqyUjGGVDme9OyZUtOmzaN58+fF/6ZSSRa4Lkxhs8//9yiQXB3d2enTp24e/dum9xIo9GoTkHz8fERPr/8l19+UX9XezfEaWlpnDVrFkny8uXLqlmWLFmS+/fvt6uWjPzwww8EwGLFirFXr15cuXIlY2JihOmRSLTKc2EMMTExLFiwYKb51oGBgTabnrpw4ULVcESnA1i7dq06o2X27Nl2v/63335LLy8v7t27V10fUqtWLaFz7y9fvswxY8Zw//79MnYvkTyF58IYMq4VAMC+ffsyIiLCZjfxn3/+oZubGwHw119/tdl5n4Vt27bR2dmZADhhwgS7X//MmTPq9c2DzO3btxcyyCyRSJ6NfG8McXFxLFq0KAHwxRdftPl8+YSEBHUtRP/+/W167uxy4MABdeD7448/tnu8XKfT0c/Pz8KEO3TooOlpgxKJJDPWGkOeTbv9448/AgDmzZuH4OBgtGjRwmbnJon3338fYWFhqFWrlnotEZw6dQodOnRASkoK+vfvj9mzZ0NRFLtqmDFjBoKDgy3e27JlC958803ExcXZVYtEIsl98mQFN6PRiPj4eISFhaFMmTI2P//PP/+MNWvWoECBAli7di0KFixo82tYQ2hoKNq1a4eEhAR06dIFv/zyi1oFzl5cuHAB33zzjcV7vr6++Oijj9C3b18UKlTIrnokEokdsKZbobXN2iR6z0JISIg6/XXZsmW5dp2ncePGDTW/T9u2bYXk9tHr9XzppZcIgIqisFOnTty5c6ec+imR5FFgZSgpT/YYcov4+Hh0794daWlpGDx4MPr27Wu3a5NUQ0RRUVFo27Ytbt26haZNm2Ljxo1wdXW1mxYzs2fPxqVLlzBy5EgMHz4cVapUsbsGiURif6Qx/AdJvPfee7hy5QpeeOEFzJs3z67XX7FiBZo0aYLSpUujXbt2CAsLw4svvogtW7YICWUlJyejdOnSCA8Pl+EiieQ5QzH1LvIWDRs25MmTJ216zh9++AEfffQRChUqhJMnT6JmzZo2Pf+T0Ov1qFWrFjp27IijR4/i8OHDqFatGg4cOICyZcvaTYdEIsnfKIoSTLLh0/aTPQYAJ0+exMiRIwEACxYssKspAMCaNWtw+fJlBAYGAgAqVqyIXbt2SVOQSCRCyLPTVW1FXFwcevToAZ1Oh6FDh6JXr152vb7BYMD//vc/i/datWqFu3fvwmg02lWLRCKRAM+5MZDEoEGDcO3aNdSrVw9z5syxu4Y1a9YgLCzM4r1169bhjz/+QEpKit31SMRy8eJFbN68WbSMTJDE3bt3RcuQ2Inn2hjmzp2LjRs3onDhwli7di3c3Nzsev2segtdu3bFxYsXMWnSJGHrJ3ILLY5nkYROpxMtAwBw7NgxtGjRAhEREYiNjRUtRyU6Ohpdu3bFrl27REuxQK/XY/Xq1aJlZCI5OVmT3/VsYc2cVq1tL774Yo7n8x47dkzN/fP7778/83mSk5P53nvvPVP9h1WrVlkUp9+1a9cz68iIXq9n3759hRfvyYhOp2OvXr2E1H9+HPHx8ezVqxcHDhwoWgq3bdum1hEvV64cq1evromUI3/99Rc9PDzULLpaqWX877//smnTpixZsiT37NkjWo5KWloa27dvr7lKbsePH+dPP/2Uv3MlFS9ePEc36d69e6xcuTIBcPjw4Tk613fffafWE87Owi+9Xk8fHx8WL16c8+bNs2lm0EmTJhEAy5cvz5SUFJud91l5tARpdHS0EB3BwcFqPd4TJ06wSpUqBMACBQoIrSG8evVq9SHFvBUuXJj//POPME0PHjzgBx98YKGpaNGiNi+AlV2MRiN/+eUXFipUSNWllYcNvV7Pd955h46Ojnz//fc1VSb1vffeY9myZfO3Mfj4+GT7xjx48ICk6YvVqVMnAqCfn1+OVhTfuXNHTfu9Y8eObB37+++/88MPP7R5I3n48GE6OjoSAIOCgmx67mfBaDSqDYy7uzv//vtvITri4uJYpUoVTp48mbNmzVIb4rp16/LSpUtCNJGmWhKKomSqOteuXTub1yu3ltDQULZu3ZpVqlShr68v69aty8aNG7Nly5ZcvXq1EE1m4uLieOjQIZ48eZJnz57l5cuXGRkZKVSTmQsXLnDbtm1MSEgQLcWChIQEduvWjbdv387fxvAsKTEGDRrEiIgIzpw5U336yWkdgYEDBxIAO3bsmO1j4+LicnTtx53Ty8uLABgQEGDz82cXo9HIkSNHEgBdXV3Vp3UROrp166bW6zY3viNGjBDWozIajZwwYUKWpUg9PDzo7+/PmTNnyvQjkhzz4MEDtfeSp4wBwK8A7gI4Z83+2TWGuLg4urm5sV27dmotgQ0bNmTrHI9y8uRJKopCJycnhoaG5uhctsBoNLJ3794EwHr16gnJrfQo5noZTk5O/PPPP4XpmDdvnkXD6+LikuPPPyfo9XqOGDGCXl5efOONN/jZZ5/xl19+4aFDh4T1EjTHihXUVahMAxTqKlYmV6wQrShfkNeM4WUADXLLGMxV2MzbBx98kK3jH8VoNLJly5aaeTInyWXLlqnx8osXL4qWwylTpqi1l3MyuJ9TTpw4kSl+D4CNGjUSFtZKSUlhUlKSkGtrmTt3yHbtyNgfV5AFCpiaJ/NWoIA0BxuQp4zBpBdeuWUMLVq0yNQwNG7c+JlnWKxdu1adpaGFJ7zLly+rg3ELFy4UouH69evqAO7333+v3uelS5cK0UOSsbGx9Pb2ztRb6NKlC9etW6eJgXnJQz79lCxenLxXuLKlKZi3ypVFS8zz5DtjAPA+gJMATnp6elp9I/79999MpuDv78/w8HDr72YGUlJS1Dj+jz/++EznsCXp6els1KgRAbBbt27CYtKDBw/mpEmT+Msvv6j3+aeffhKihTT16rp06aKmDPf39+fChQs1YeSSh70DcyXeO3dMphASQhqgZG0MiiJWdD4g3xlDxi07PYaMA3wODg6cOHFijuaHm0MktWrV0kTx+S+//JIAWKlSJWGN3uXLl+no6MiSJUuqM2wCAwOFaDEze/Zs1q1bl9OnT+etW7eEanneedQEyIe9A3Mk9tNPTRtJxhSqnKUx6CpWtrf0fIc0Bprmz5tDCRUrVsxxTDkiIkIN2Wzfvj1H57IFu3fvpqIodHBw4P79+4Xp6Nu3r0WPbPDgwUJn0xgMBk1MCHgescYEMvYOSpQgT582vb5zx/Tzha1X8AEsxxjSnApw+etyjCGnSGMguX//fgJgp06dGBMTk43blzWDBw8mAHbo0CHH58op0dHRLF++PAHw66+/Fqbj4sWLdHBwyBSua9OmjQzb5HOexQQiIix7B59+Stav//A1STZvTvbCCl6DaVbSNVRmL6xg8+b2+93yK3nKGACsBhABQAcgHMDgJ+1vrTEMGzaMc+fOtcnTa0hIiDo9VfSsH6PRyM6dOxMAmzZtKjSk1bNnTwtDKFCgACdOnChn3eQzbGUC779v2Tu4c4d0cuKjUSMClEaQC+QpY8juZq0x/Pvvv1bfsCdhNBrZqlUrAuAnn3xik3PmhPnz5xMAixQpwqtXrwrTcebMGdUQFEXhwIEDNZNLR2JbbGUCbm7kkCGZz62RWd/5HmkMNmT9+vUEwBIlSvDevXt2vbYZ8yrts2fPqqt3V61aJUSLGfOsn1atWjE4OFioFonteNKMoZyaQLlysncgEmkMNiI1NVUdwJ43b57drpuR9PR01qxZk1FRUaxTpw4BsH///kK0mAkODma1atW4YcMGmbYhn/GkGUPSBPI20hhsxLRp0wiAvr6+TE9Pt9t1MxIUFEQA9PT0JABWq1ZNeKKukJAQTaTdkOSMp/UOHp0xJE0gb2OtMTzXhXqeRlRUFCZNmgQACAwMhLOzsxAd5mIkN2/eBAD06NED4eHhQgvM1K9fH66ursKuL7EN06cDx4+b/jW/7t8fqF8f6NcPGDjQ9LpcOdPPy5UDihcHFi4EFOXhFhEBNG+e2RoOHhT3u0lygDXuobXNXj2GIUOGEADbt29vl+tlRUpKCgsXLpxpOuiQIUNkSgeJ1WQ1q8ia3oGcMZS/gOwx5IzTp0/jl19+gaOjI2bNmiVMx9atW5GYmKi+dnd3x5IlS7BgwQK7lyKV5F0e7RmY33ta72DECCAgQPYEnjuscQ+tbbndYzAajfT39ycAfvTRR7l6rafx9ttvq72E6tWrC63qJcmbZDWryPye7B08X8DKHoNi2jdv0bBhQ548eTLXzr9p0yZ06dIFxYsXx+XLl1GyZMlcu9aTSExMRJkyZZCamopu3bph0aJFKFq0qBAtkrxDRITp6X/JEqBsWdMTPwDMnm36v6KYmnzze2bMPwsMtLvkfIHRaISDg/aCMMnJyShQoAAAQFGUYJINn3qQNe6htS03egzmCkepqamsWrUqAfD777+3+XWyw/Lly+nk5MTAwEA5JVRiNRmnm2bVMyhRgmzUKO/2DpKTk0VLyJJFixZlu8SvPRg1ahQvXLhAUo4xZJtp06YhOjoa8+bNw5UrV1CzZk18+OGHQjUdOHAA+/btQ0BAABRFEaolPyJyVlduEREBLF0K7N5t+nfChMzjBv36AS1aZGULeWPs4OTJk2jXrh2WLFmChIQE0XJUXn/9dXTo0AGDBg1CbGysaDkqNWrUQLNmzbB3717rD7LGPbS25UaPoVGjRmzfvj2LFClCANyyZYvNr5FdZBK63GX8+PG8fv26aBmZ2LhxI/ft22fVvo/ONnp0MVr58s/eMzh9+jQXLFjA6dOnc+zYsRw2bBgvX778jL+Vbfnf//5HwFTDe+jQoZqZoWcur1uuXDmhGY8zEh4eTgDmssb5d4Fb/fr1bXnf+ODBA7UWNAD6+PjwxIkTvHHjhlXH//bbb5prxNesWcObN2+KlmHBihUrePz4cdEySJKhoaF0cXHhu+++y7lz54qWQ9L0INCnTx8C4Ntvv23VMdaEjTJOUc0O6enpnDNnDosVK6Y2wubULKIxGAxs27YtAXD27Nmi5agcO3aMrq6ubNu2rabCv/Xr1zdncMi/xlCwYEFb3jPu2bMn0zqBokWL8tChQ0899vz58wTA0qVLa6JwD2l6QnB2dqaLiwujoqJEyyFJhoWF0d3dnQ4ODmq8UxRGo5Gvvvqq+lk7OTkJTUZImla3m9OoA6C3t/dTn4IfnW00ZIhl+mrSNgnqoqOjOXz4cL722muaWu0eFRXFKVOmaG7MYfPmzZrpwZj5559/qNPp8rcxlCtXzpb3TO2WmreSJUtanRTOXEFt0KBBNtWUE0aOHEkA7Nq1q1B/ss+vAAAgAElEQVQdN27c4N27d6nX69m8eXMCYO/evYVqIslVq1ZZfN6FChXiyJEjhYWVtm3bxh49evCdd95hnz592L9/fw4ePDjT03luho2s4e7du7Y5kQ3R0lN5XiBfG4OPj48t7xVff/11tZEoV64cz58/b9VxBoOBFStWJACrY8K5TUxMDAsWLEgAPHHihFAtgYGBHDZsGGfNmkUA9PDwsEnBpJwQFxfHsmXLWhiDj48PFy9ezLS0NKHankZuho0kzwf52hhsOfhsMBhYtGhRAmDlypWzVcNh9+7danI783RX0ZhrXLdt21a0FLZq1YoODg50dXUlAG7atEm0JI4YMUI1hJdeeokbN27UzGf3JOwVNpLkb6QxWIm52Ez16tWzPVg7YMAAAuDYsWNtpicnJCQksHjx4gTAPXv2CNUSExNjUfKzePHi/Oabb4TO9jpx4gQdHBzYvn177tu3T/NhiIyhI3uHjST5E2uNwcn6ia35k0OHDqFOnTrYuXMnypYta/VxycnJWLduHQCgb9++uSUvWyxYsACxsbFo0qQJ/P39hWrZsmULjEaj+jo2NhYbNmxA//79heghiQMHDiAkJAR169YVoiG7mPMbTZgArF0LnD9ven/UKGDZMtOahWx8ZSUSq3nuF7jpdDrs27cvW6YAmNJmPHjwAI0aNYKPj08uqbOetLQ0NdnfmDFjhC+I++OPPyxev/XWWzh06BC8vLyE6FEUBQEBAXnGFDIuVFu2DHj77cyL1DImxJNIbMlzbwzDhw9/plxIy5YtAwD069fP1pKyRVRUFABg6dKliIiIQO3atfHmm28K1ZSamort27err8eNG4f169ejUKFCAlXlLTJmPs2q/sGcOabehESSK1gTb9LaZu+az49y584dOjg40MnJidHR0UK1vPrqq7xw4YKa32nFihVC9ZDkX3/9RQB0d3fnmjVrRMvJE2QcT5AzjiS5BeQYQ+6xatUqGI1GvPnmmyhVqpQwHSRx7NgxNGvWDHFxcfD29kbPnj2F6TGzefNmVKxYEZs2bYKfn59oOXmCjPUSyKzzG02fLjOfSuzDcx9KehaWL18OQPygc2RkJBITExEXFwcAiI+PR7169bBq1SphmoxGI2JiYnDixAlpClbyaOK7Q4dMoSIZOpLYitu3b2drf2kM2eTMmTP4559/UKxYMeGx/NDQUIvX9+/fh7+/P3r16iVIEZCeno6VK1dmezD/eSQiAnj99YcZUM2V1PJy5lOJ9rh79y6mTZuWrWOkMWQTc2+hR48ewktrPmoMb7/9Nr7//nuhM5Lc3NyE35e8wvTpwLFjpllHo0aZ3hs1ytRriIwUq02Sfzh37hx+/fVXNbJgDdIYsoHBYMDKlSsBiA8jAZbG4O/vj+XLl8PR0VGgIom1mMNHb7zxMFwEyKmoeZ0jR44gJiZGtAwLzp07h6SkJPz6669WHyONwQpMg/nA7t27ERERAW9vbzRv3lywqofGULduXWzatEk+qechzNNRb9wAUlNNhiDHE/I+Z86cwZw5c0TLsODcuXMAgLlz51p9jDQGK5g9ezbu3btnMegsegEZYDIGLy8vBAUFyVrQeQDzmMI//5h6C6NGmcYN7twBSpQw/VyOJ+Rtrl69ih9++AHx8fGipaicPXsWAHDjxg2rj5HGYAUHDx5Eu3btsGHDBgDaCCOlpaUhKSkJ27dvRznzvEaJpjFPSR048PHTUSXWs2nTJrU3rxWuXr2K+Ph4/Pjjj6KlADBFO8w9huwgjcEK4uPjERwcjOTkZLi4uKB///4YNGiQ0C9lVFQUNm/ejBo1agjTILGejFNSz56V01FtQVBQEFavXi1ahgVXrlwBAAQGBiIpKUmwGuDmzZt48OBBto+TxmAFGbuF6enpuHr1KqZMmSI0nOTp6YlGjRoJu77EeiIigKZNTfmO6tcHRowAAgLkdNScEhsbi9GjRyM5OVm0FACmp3OzMdy7dw8LFiwQrAjP1FsApDFYRUZjUBQFK1euhIeHh0BFkrzEhAnAzZsPZx7lxSmpV69eFS0hE3FxcQgPD8fMmTNFSwFgMqqEhAT19YwZM5CamipQkckYPDw8st1eSWOwgozGMH78eLRp00agGkleIiLCtE6hVy9g3TqTGeTFMYVvv/0WFy5cEC3DAvO8/GnTpiE8PFywmodhJDMRERFYsmSJGDH/UbNmTZw/fx5NmjTJ1nHSGKzAbAytW7fG119/LViNJC+QcVVziRLAqlXA/fsPp6XmtTGFIkWKoGPHjpqaox8bGwvAVBtl7NixgtVk7lUVK1YMU6dOhU6nE6TIlO6+ZMmSqFy5craOk8bwFFJTU5Geno4yZcpg5cqVcgGZxCoyrmoODjaNITw6LTUvjSlUrFgRV69exdtvv4309HTRcgDAYiXv8uXLcVyw0169ehX9+vVDq1atAJgKZ23YsAH37t0TqguANAZbEx8fr44rPG5a6P379zU3bS46OhoGg0G0DJV9+/YhPj5eEzM1MnLmzJlspQqwhpysajYajZg3bx569+4t9EnzUSpVqoQCBQqgTJkyuHnzpmg5anroRo0aoVChQggODha+tqhv375YunQp/Pz84OjoiMjISDRo0EATecOyawzCays8y+bq6mqDzOTWERoaynHjxj1xn+LFi7NgwYLCazNkpEWLFnRzc+PBgwdFSyFJ1qhRg02aNKGLiwt3797NkJAQ0ZJIkkOGDKG7uzv3799vw3OSlSuTjRpllQrv6XWZjUYjd+zYYTM9tuDatWuMjIykwWAQLYUkqdPpeOHCBd6/f586nU60HAvi4uKYmpoqWoYFqampTE5Otroeg0KNPelaQ8GCBWmvJ8/4+HgULFgQTk5Zl66IjY1FiRIl4O7ujqSkJOFPLYDJ7IsVK4aEhATcuXNHEwvgatWqhYsXL6qvZ86cic8++0ygItN98vLyQrVq1bB+/XoUK1Ysx+eMiAC8vQF3d9NCti++AOrUMdVr1sCDo+Q5R1GUYJINn7ZfngwlOTs72+1aRYsWfawpAMC1a9cAAFWqVBFuCklJSdDpdLhx4wYSEhJQqlQpTXRjAcvPrEGDBvjkk08EqjERGhoKf39/BAUF2cwUGjc29Qv27DGFkxQl781AkkjyZAU3FxcX0RJUzFPUqlSpIliJaayjV69eaj0Gc+H7mJgYoZXmAKjm6uDggIULFz7RbO1FqVKlsGTJEpsZ+vTpwO3bJmNo0MD0nrmzpoGcixKJ1cgeQw4xT1HTgjGUK1cOR44cwYgRIwCYTMvb2xvbtm0TrOzhZxYQEIAG5lZTMKVKlbKZKUREAEuWAIUKAcWLm15nnIWUl2YgSSTSGHKIlozByckJ5cuXV19fv34d7u7uQiu6mXFycoKXlxe+/fZb0VJyhQkTAIMBeOcdU4K86dPz5kI2iW0xT3fXAtkp7ym+P/8MaCmUpCVjAEzTCjOuAv3mm280sfbC2dkZP/30EwoWLChais0xT09NTwcWLnz4/uzZpn9lGOn5ZcWKFWjatClq164tWgp+/vlnq/eVPYYcokVjMFO7dm10795doJqHDBgwAK+//rpoGbmCubdQpAjg6moyik8/fZgoT4aRnk+MRiMCAwMtZuOJIj09PVtJ/fKkMWihx7BgwQKkpaWpxS+8vLzECvqPjMbw7bffwsFBGx9xv379REvINTZsMBlDQgKQlmYKIeW1lBcS2xMUFISLFy9qwhjWr1+frZCWJloNRVFeVxQlVFGUfxVF+fJp+2shNPLrr7+iUaNGMBgMKFKkCObMmYMPPvhAtCzVGOrWrYsuXboIVvMQ0VN5c4uICCA29uHq5ozvy57C882sWbMAQBPG8OKLLyIiIsLq/Z9qDIqirFYUZbSiKO0VRSmdI3VZn98RwI8A2gOoBaCXoii1bH0dW+Pr66uWzEtISMBXX32F1157TbCqh8agpd5CfuaLLwCj0RQyysiECWL0SLRBSEgI9u7dC0AbxlC7dm24urpavb81Lcf/AUgG0A3ATkVRNiqKUvgZ9WVFYwD/krxKMh3AGgCdbXj+XMHX19fiddWqVdG5s3jZlSpVQoMGDdCpUyfRUp4L/qv2mgkN1Gh57ggKChItQcXcWwCAS5cuaSpvmTVYYwyeAPYD+IBkPQDrANhyzmEFALcyvA7/7z0LFEV5X1GUk4qinIyOjrbh5Z+NR40hICBAEyGuSpUqYeLEifk2dKMlIiKAlBTRKiSAaRHn559/LloGAFM5zd9++019nZqaqo5FiiQlG19Wa4yhBoBJAC4pinIKwGsAuiqK8oqNQktZtWCZEjiRXECyIcmGpUvbPKKVbTIaQ4kSJTBgwABxYjLg4eGBN954Q7SM54KnhYukN9uPmTNnIjQ0VBNP5nPnzs2kQwvhpOysY7DGGOaS7ESyGoA2AFYAKADgXQBbn0mhJeEAKmV4XRHAnScdQNLmqZKzi7e3txqz+/DDDzUzP19RFNlbsBOPCyNJ7Mvdu3cxb948GAyGbA2w5gbx8fHYuXMnevToAQAoVKgQXFxc8qUx7FAU5bqiKEEAJgD4DMBqkoNI2qIa/QkA1RVF8VYUxQXAOwA2P+mAs2fPWpTbFIGjoyNq1qwJFxcXNQWF5PlCY6UlnlumT5+O5ORkAMCtW7eesnfu4u7ujtOnT6vZBlq0aIHg4GC4u7sL1QXYeOUzyfr/zRzyAVATwC4ANku+Q1KvKMoIANsBOAL4leT5Jx1ToECB7BeeyAV8fX3RsGFDzWQwldgXjWQ6sDvp6ek4fPgw/P39RUtBREQEfvzxR/X1rVu30LRpU2F6zGusMi58rVOnDurUqSNMkxmbp8QgaQBw/r/N5pDcimyEpcqUKZMbMrJNrVq10K1bN9EyJIIoWBBITHz8z/NgqROrmDlzJtzd3TVhDFOnTkVqaqr6WnSPwYzWMiIAtg8laY4iRYqIlgAAeO+99zSRA0UihoSErOqzPdzyI2FhYZg4cSL0er1oKQgPD8+U/0caw+PJ98agFTJmMpVI8jskMXToUKSlpWmiHvWUKVNQoEABi9oe0hgejzQGiSSfoNPpNPF0DgCLFy/Gvn37AEC4JpIYMGAAbt26ZapRrCiYOXMm7t69K1QXYEqeZ67s6O3tLVjNQ6QxSCT5gISEBAwdOlQTCyejoqIsFpCJ7jEoioJGjRohLCwMBoMB1apVw2effYalS5cK1QWYGuD09HSUKlVKM2Fvo9GIO3eeuArAAmkMEokGCQ8PR8uWLdWnYdEEBAQgNjZWfS26x2DmzJkzAExJ4gBthG6sDSNlHDTPbaKjo7P1mUljyOeQRFRUlGgZKlrTA5g0Xb9+XbQMFZKYNm0azpw5g3bt2omWg8TERHTp0gV9+/YFAHh6egrvMZgxG4O5vrkWMBtD1apVH7sPSYwbN85ekrIVRgJgEpjXNmdnZ6anp1MrDBkyhOXKleORI0doNBr54MEDYVqMRiNDQ0O5fft2enp6csiQIezRo4cwPRk5f/4827Rpw0qVKjE5OVm0HJVDhw6xcePGPHjwoGgpKikpKVy9ejWjo6NFS1FJTU3l7t27ef/+fa5du1a0HJImTadOneKNGzdES1FJTU3lpUuXGBoa+th9Zs2axYYNG9pNU3p6Oq9cuUIAJ2lFGyu8kX+WDQCvXbtmw9v2bNy8eZM6nY49evQgAM6YMYOdO3dmSEiIUF1Dhgyhu7s7Yco5xf79+wvVY+bAgQN0dnYmAF6+fFm0HIlECEePHqWTkxNfeeUVu1/bWmPIs6EkLWQrvHTpEjw8PHD8v1JdX3zxBf744w/hcc5JkyZZTOErVqyYQDUPadGihVpeUCvTCiUSexIbG4uePXtCr9ejaNGiouU8ljxtDJGRkQgLCxOm4dVXX0XVqlUt4tMlS5YU/oGXKVMGX3/9tfq6ePHiAtVYMmDAAHz++ecIDw8XLUUisSskMWjQIPWhVnQ78STyrDEsWbIEtWrVUpNniUBRFHz11VcW74nuLZj5+OOPVS1a6TGYmTp1KmrV0nyRPonEpsydOxebNm1SX0tjyAX27t2L+Ph4+Pj4CNXRsWNHvPDCC+rrJ81EsCeurq6YOXMmAO0Zg6OjI/z8/ETLkEjsxokTJ/DFF19YvCeNIZeoXr063NzchGpwcHDA2LFj1dda6TEAwFtvvYXWrVtrzhgkEnty+PBhodePi4tD7969MxmBNIZcQgupbAGge/fuqF69OgBtGYOiKJg9ezZKliwpWopEIoS9e/di8uTJQjW4ubnhwoULmDZtGgBT+V1HR0dpDLmFVozB0dERY8aMAaCdUJKZunXrolmzZqJlSCR25/Tp0+jcuTO8vLyE6nBzc4OzszOWLVsGABg/fjwWL16sqUkhj2JVPQatkjG2L5o+ffrgm2++0VSPwYyDQ572f4kk21y7dg3t27dHYmIiatasKVoObty4gf3798PV1RVvv/02ihUrppm0IlmRJ1sMc5k8rfQYAMDZ2Rnjx49HhQoVREuRSJ5roqOj0a5dO0RGRgKAJoxhxYoVAIDOnTurY34Z1xppjTxpDGXKlIGrq6vmwjYDBw7URCZMieR55cGDB+jQoQMuX76svifaGEhi+fLlAKDmm9I62rWsJ1CyZEnUqFFDc44rQzaS5xmdTgdnZ2eh13/77bdx4sQJ9T03NzdUqlRJmCbANFU1NDQUpUuX1kRSRGvIky2ZebaNRCLRBpcvX8bUqVOFXd9oNGLw4MHYs2ePxfvVq1cX/sBm7i306tVLqHFmhzxpDABkrWWJRCPs2rULL730kjplWwSKomDp0qUIDQ2Fo6Ojagaiw0jp6elYs2YNgLwTRgLyaChJIpGIhyR++OEHBAQEwMHBAe3btxemxVzMaMaMGTAYDHj33XeFT1MFgG3btiEmJga+vr55arW/NAaJRJJt0tPTMWLECCxcuBAA0KZNG+ELtiIjI/Hrr78CAL788kv4+voKTbIJwGLQWQuV+KxFGoNEIskW0dHR6NatGw4cOKC+17lzZ4GKTMyePRtpaWno2LGjOpXd19dXmJ7Y2Fhs3rwZiqLg3XffzfbxV69exe3bt9GyZctcUPdk8uwYg0TyPHLu3LlMA6z25MyZM2jUqJGFKQBAp06dBCkyERcXh59++gkALHKXiWTt2rVIT0+Hv78/PD09s3XsxYsX0bJlS5QrVy6X1D0ZaQwSSR7g0KFD6NixI1555RXUq1dPiIa0tDT8/vvvmVKmN2jQQPiU0B9//BGJiYnw9/dHkyZNhGoxY06B0a9fv2wdd/r0abRq1QoGg8Gma7VMBdysQxqDRKJRjEYj/vrrL7Ro0QItWrTAX3/9henTp6NEiRJC9Li6umLSpElo1KgRgIcDvqLDSMnJyZgzZw4AqDnLRHP16lUcOnQI7u7u6Natm9XHHT16FK1bt0Z0dDSaN29u03GJCxcuWL2vNAaJRGPodDosX74cdevWRceOHXHo0CEAQKtWrbL99GlrQkJC1GylGzZsQKlSpYSHkX755RfExMTAz88Pbdu2FarFjDkFRpcuXVC4cGGrjtm3bx9effVVxMXFAQCaN29uU01//fWX1fvKwWeJXTEYDACgqdQhu3btwqlTp6DX62EwGKDX60ESAwcOFDLlccuWLZg2bRrOnz+vvufk5IT58+cLndmSnp6OAQMGQK/XY/jw4Xjrrbfg6OiIunXrCtVkLkg1ZswYTcz8IamGkaxdu7B161Z069YNqamp6nsijQEk89zm5+fHiIgIagmj0ciTJ0+KlmGBXq/nokWLRMuwIDY2li1btuS+fftES1E5duwYHR0dCYAAWKVKFf79999CNS1evFjVA4BffvmlUD0kOXPmTPX+JCYmipZDkly+fDkBsGbNmjQYDKLlkCQPHz5MAPTw8KBOp3vq/uvWraOzs7PF5+3m5sa0tDSbaYqJiaGDgwMBnKQVbazwRv5ZNnd3d06dOtVmNy2nxMbGsmHDhvT19aXRaBQtR6VTp050dHTkxo0bRUtR+f7779Uvf9euXXnlyhXRkhgSEkIPDw8C4IcffqiJRu/+/fts3bo1fX196eXlxaSkJNGSmJSUxICAAE2ZempqKhcuXKip73h6ejo3b97MZcuWPXVfg8HAP/74gz/88IO54SYAvvzyyzbVpNPpuG/fvvxtDADYqlUrG962Z8doNPK7775TP9Dt27eLlkSS/Pfff1mzZk0CYLFixXj16lXRkkiSK1eu5GuvvcaePXty6NChHD9+PO/evStaFr/99lvu2LFDtIxMTJ06lX/++adoGfkaWz6ZPyvjx48nAPr6+rJQoUIcM2ZMrlzHWmNQTPvmLUqWLMn4+Hjcu3dP+GpLMxs3bsSwYcPQoEEDbNmyRbQcAIBer8euXbuwYsUK3LlzB9u2bYOLi4toWZrEaDQKT7aWFfHx8Zr5judHtmzZgsjISAwePFiYhps3b6JmzZpITU3Fvn37cPHiRVSqVAkdOnSw+bUURQkm2fCpO1rjHlrb/Pz8+PXXX3P9+vW2s1IbcP/+fQ4cOJBhYWGipWQiMTGR9+7dEy1DItEEer2eY8eOpYODA2/cuCFUS+/evQmA3bp1I2mKQqSkpOTKtZCfewwNGzbkyZMnERUVBQ8PD9FyMpGcnIwCBQqIliGRSLIgKioKvXv3xp49e9CiRYtMq7jtyZEjR9CsWTO4uLjg4sWLuV4a2NoeQ56erqpFUwAgTUEi0SgHDx5Ez549cefOHQDAO++8I0yL0WhEQEAAACAgIEBT9eK1F1SVSCQSG0MSs2bNgr+/v2oKDg4O6N69uzBNq1evxrFjx1CmTBnN5Hcyk6d7DBKJRPI04uPjMWjQIGzYsMHi/VdeeQVlypQRoikpKQmjR48GAHz33XcoUqSIEB2PQ/YYJBJJviY2NhZvvfVWpuR6vXr1EqQImDlzJm7fvo26deti4MCBwnQ8DmkMEokkV0lNTUVUVJSw63t5eaFJkyY4e/YsAKBgwYJwcXFBly5dhOgJDw/HtGnTAJhqSGgpPYwZaQwSiSRXIIm1a9fi5ZdfFjohIz09Hb169UJSUhK6d++O+fPno3379ihWrJgQPWPGjEFKSgq6dOmC1q1bC9HwNOQYg0QisTknTpzAyJEjcfDgQUyfPt3qDKO5wddff43g4GB4enri559/RpEiRYRVdjt27BhWrFgBFxcXzJgxQ4gGa5A9BolEYjPCw8PRr18/NG7cGAcPHoSHhweGDx8uTM+uXbswffp0ODg4YOXKlShevDgcHR3VmhL2hCQ+/fRTAMCnn35qsyI8sbGxNjlPRqQxSCSSHJOUlIQJEyagRo0aWL58ufr+mDFjhIWRoqOj1foVX3/9NVq0aCFEh5k1a9bg6NGjKFOmDL766qscn89gMGDixInYunWrDdRZIkNJEokkR5w4cQJdunTB7du3Ld6vUKEChg4dKkQTSQwePBgRERFo3rw5xo0bJ0SHmeTkZHV66qRJk3I8PfX27dvo06cPTpw4gcjISFtItEBoj0FRlO6KopxXFMWoKMrTEztJJJIsSUhIEHbtRo0a4fDhw5lCI1999RXc3NyEaJo/fz7+/PNPFC1aFCtXroSTk9hn4FmzZuHWrVt48cUXMWjQoByda8uWLahbty727duHbt26oVChQjZSmQFrEirl1gbAF0BNAPsANLT2OD8/P9tllZJI8igxMTGcP38+X375Ze7atUuYDqPRyKFDhxIAXVxcCICVK1cWls76zJkzdHV1JQD+9ttvQjRkJDw8nAUKFCAA7tmz55nPk5aWxoCAAIuCPrt3787WOZCX6jFIY5BIrCMpKYlr1qxhx44d6eTkRAAcP368MD1Go1FtrFxdXblz5076+Pjwl19+EaInOTmZtWvXJgAOHDhQiIZH6devHwHwrbfeeuZzXL58mX5+fham4Onpme2qdfnOGAC8D+AkgJOenp7ZuhkSSV5Gp9Nx+/bt7NevHwsVKmTROLRp04Z6vV6YtnHjxhEAnZyc+Ndff5EkV69ezfT0dCF6hg0bRgCsXr26JirxHT9+nADo7OzMy5cvP9M5tm/fzsKFC1t87gD41VdfZftcmjEGALsAnMti65xhH9ljkEiywGg08ptvvlF7Bxk3Dw8PobXPJ0+eTAB0cHDg77//LkyHmT/++ENthLVQf91oNLJZs2YEwM8//zxH54qIiGC1atUsPv9Lly5l+zyaMQarREhjkGgEo9HIGzduMCgoiIGBgRwyZAhbtmzJRYsWCavnbTQaOWHCBItGwcHBIUfx6pwyZ84cAqCiKFbVNs5twsPDWbJkSQLgjBkzRMshSa5Zs4YAWLp0acbFxeXoXObPv3Tp0vTw8GCTJk2e6Tz53hj0er2wP1RJ/iEuLo6TJ09mnz596Ofnx4IFC2ZqgBctWiRMX0JCAt99991MvYWJEycK07Rw4UJVx//93/8J02HGYDCwTZs2BMC2bdtmO+5uDTqdLlv7Jycn09PT0yb3aOfOnVQUhYqicPv27QwMDORPP/2U7fM8ePAgbxgDgC4AwgGkAYgCsN2a4+rUqcMvv/wy2zcmt9Hr9QwODtZEbNOM0WhkWloaExISGB0dLdRM9Xo9J06cyMGDB7NPnz7s3r07O3fuzNdff50BAQHC7tv69euzjOG6urpy48aNQjSR5MmTJ9Xwgbu7OxctWsQGDRqwbdu2wsYVVqxYQUVRCICzZ88WouFRpk2bRgAsVaoU79y5Y9NzR0VF8cMPP+TVq1ezddykSZMIgC+88EK2TSUjd+7cYZkyZQiA48aNI2magBAbG5vtc/3Xy9O+MTzr5uDgoInuq5no6Gh269aNRYsWFTpDJCMGg4Fdu3ZV/4iLFy/OtWvXipbFpUuXWjS+iqJw1KhRTE1NFaqpSJEiFrqKFCnCffv2CdO0du1aOjs7q43LhQsXSJJjx45lVFSUEE3bt2+no6MjAXDSpElCNDxKcDeSVikAABheSURBVHCwOv7y559/2uy86enpDAwMZNGiRTlgwIBsHXv79m2155mTacQ6nY6tWrUiAPr7++foYSAtLY2VKlXK38ZQrFgxJicnP/NNsjVGo5GvvfYaR4wYoanw1gcffKB2r8PDw0XLIUnOmjXLYrqdyMbXzP79+9VBSwAsU6YMQ0JChGq6efMmS5QowWHDhll810XOQIqNjWXTpk05ZswYYRoeJSkpiR988AE/+ugjm50zKCiIPj4+BEBHR8dszyZKTU3lzJkz2bdv3xzp+Oqrr9RJBjntCel0Oi5btix/G4MWB58jIyNzJbaZEyIiIjhnzhxN6UpOTua7777Lvn375nhAzpacOnWKHTp0oLe39zNPK7Q1kZGRoiVkIiUlRVMPP2Zs8R0PCwvjm2++adFz7Nevnw3UZZ9t27ap4wq2XLwojUGiWf755x/RErJk1KhRNo9RS7RPQkICR40apfYYM048CAsLs7ueW7dusVSpUgTAb775xqbnttYYZHZVid158cUXRUvIkilTpqBcuXKiZUjszP3791G6dGl4enpavN+7d29Ur17drlr0ej169eqFmJgYvPrqq8KS/0ljkEj+w8FB/jk8j1SuXBktW7a0yFLq4OAgpFEeN24cDh48iLJly2LFihXCyn7KtNsSieS55ty5c2jfvj2SkpLQq1cvHD16FM2aNUPNmjXtqmPLli2YNm0aHBwcsGbNGnh4eNj1+hmRj0gSiUQYqamp2Ldvn7DrX7lyBW3btkVsbCzefPNNLF26FAMGDLB7b+HmzZtqUaGJEyeiVatWdr3+o0hjkEgkdufWrVsYO3YsPD09YTQahWi4ffs2Xn31VURGRqJVq1b4/fff4ezsjNGjR8PHx8duOnQ6Hd555x3cv38f7dq1w5gxY+x27cchQ0kSicQukMTBgwcxd+5cbNy4EQaDAUOHDkWbNm3sriUmJgZt27bF9evX0bBhQ2zevBnu7u4AAFdXV7tqGTNmDI4cOYIKFSpg+fLlmhjrEq9AIpHka1JSUvDrr7+ifv36ePnll7Fu3ToYDAZUqlQJ06dPt7uehIQEvP7667h48SJq1aqFoKCgHJfafFY2b96MWbNmwdHREWvWrEHp0qVtfo2IiAgsWbIkW8dIY5BIJLlGcHAwqlWrhsGDB+Off/6x+NnChQvt3iCnpKSgU6dOCA4Ohre3N3bs2IFSpUrZVYOZ69evo3///gCA7777Di1atLDp+XU6HQIDA1GzZk14eXll72BrFjtobZML3CSSvMO1a9fURHDmbdCgQXbXkZ6ezg4dOhAAy5Yty3///dfuGsykpaWxcePGBMA33njD5tkJ9uzZw1q1ahEAmzdvrq5Wh1z5LJFIRHPnzh21ATRv5cuXf6bsoDlBr9fznXfeURNKnj171q7Xf5RPPvmEAFipUiXGxMTY7Ly3bt1ijx49LO53UFCQ+nNpDBLJc4rRaOSZM2c4f/58pqSkCNMREhLCihUrqgkTFyxYQABqCVB7YTQaOXToUAJgoUKFeOzYMbte/1HWr1+vlkM9fPiwTc6ZlpbGqVOnZqon4ufnZ5HbShqDRPIckZyczC1btnDYsGH09PSko6Mjd+7cKUzP+vXrWaBAAQJg06ZNGRkZyfT0dH7wwQd21zJ69Gi1vobIqnckeeXKFRYtWpQAOHPmTJuc01z+tUSJEplqimzYsMFiX2kMEkk+Jzw8nAsWLGDHjh3p7u5u0SA8S4UvW2A0GtUiNQDYp08fi15LTorWPAtTpkxR02f/8ccfdr32o6SmptLPz48A2LFjR5tnqV23bp3Fd6B27dqZxi6kMUgk+ZitW7dmWXUOAD/++GMhmlJSUizKkE6ePFloiu6ffvpJ1bJ8+XJhOswMHz6cAFi5cmXeu3fPpufeu3cvXV1dCYD16tUjAK5atSrTfvneGLRSeEbyfHH9+nXu3btXtAySJnNwcHCwMIX27dvb/amcNNX+eOmllwiABQoUyBTCsDcrV65Uqxf+8MMPQrWQ5G+//aYWgzp69KhNzx0SEqI+JAwdOpTR0dGsXbt2lkWd8rUxeHt7c/Xq1Tm6mbmB0WjkwYMHRct4LFossKJljEYjz58/z59++om9e/dmpUqVWLJkSbXMpihSU1M5btw4taRlxtBBfHy83fWcOnXKXDaSFStW5KlTp+yuISObN29WS5B+9913drnmlStXHvt7h4WFqQ23retkX758WZ0K3K1bN9UMHjcVN18bg5ubG6dNm/ZsdzIXmT17tt2+iNnl/Pnz/Pnnn0XLyJK0tDT++eef/PLLL5mUlCRMh16v5/Hjxzlr1ix27tyZJUuWtGh4CxcuzJMnTwrTR5JHjx5V56cD4LBhw/jyyy+zVKlS2S5Ybws2btyoDjK/9NJLjIiIsLuGjGQMqXzxxRe5/jAUEhLCnj170tvbmw8ePMj085SUFDW006VLF5vquXPnDr29vQmAbdq0sapuer42BvMfhJY4cuQInZycOH/+fNFSLDAajZw3bx7d3NyEN2oZ0el03LFjBwcNGsRixYrR2dmZR44cEarJYDBw7ty5akOXcXNzc+P+/fuFaUtKSuLnn3+uho6qVaum1sv++OOP7d5TNRqN6sAuAPbu3Vvo1FiSPH78OAsVKkQAHDJkSK6ZgtFo5K5du9i2bVv193/cwLZ5mqy3t7dN127ExsbyhRdeUKekJiQkWHVcvjeGDh06WH0Tc5uYmBi1K62lEFdERATbt2+vDkiJDiUZDAb+/fffHDZsGEuXLm3R8M6dO1eoNjNhYWFs3ry5hTYnJydu2bJFmKb9+/ezWrVqarnJzz77zKJnZe/wUUpKCvv27aven0mTJgn/bp07d06drtmzZ88s4+s5Ra/X87ffflNnFpm3zp07Z7n/qlWrCIAuLi48ceKEzXQkJSWxRYsWBMAaNWowKirK6mPzvTHUqVPH6puRmxgMBrXxBcBt27aJlkSS/OOPP9S6sQD4448/CtVjMBg4evRodUAw4/bOO+8Ib1ji4+P5xRdfZKr7qygK16xZI0RTQkIChw0bpmqpVauWzQcus0tkZCSbNm2qDjKvW7dOqB7SFN8vV66cOvielpZm82usX7+eVatWzfTdLVCgAG/cuJFp/0uXLqm9l3nz5tlMR3p6Ot98803ivxXk169ft/rYf//9N/8bQ5EiRay+IbnJkiVLLL4woldVkmRcXBwnTZpENzc3NQxi7xQEWWE0GtmnTx+LPyxfX18mJiYK1bVu3Tp6eHiomgYMGMDFixcTgLBxmYMHD9LT01Odgz9u3DirYsi5yYULF1RNFSpUYHBwsFA9pCnOXqVKFQJgy5Ytc22MKi0tjStWrMj04DBjxoxM+yYlJalhnu7du9vsocdgMLBfv34ETGk9zp07Z/WxRqORr732Wv42hjJlyvDTTz9lXFyc1TcmNzl69CjfeOMNdujQgWFhYaLlkCQTExPp7+/PatWqsW/fvqLlqAQEBKhx8oIFCwqf4UM+nErYpEkTHj9+nKRpzOj/27v/oKrKdQ/g3wfBpJA8zUlS1K6paOYQcSyvE6UclKGuGmJB/tHonCNMP86QUHBDx/6oKVIs6c51xmminAwsnZt2zxijHrpspOhaAyHH8RdJYqlhYnRjowLre/8A1rDQBGGz373h+czs0Q17u7/zuvd69nrXWs+7YcMGY5lqamoYFBTEqKgoVlZWGsvR3blz5zhp0iQ+8MADPHPmjOk4JDv29ObNm8fo6OhB3R5cvHiR8+fPdxSFyMhIXrly5arHut1urlq1ilOmTPFYJsuy+MILLxAAg4OD+cUXX9zQ89va2vjqq68O7cLQdYGb6emHntxuN91ut+kYtvb2dlZXV7OsrMx0FNulS5dYVVXFgIAAnzkeY1kW9+zZ47hK1MS1AD0dOHDgmhsek06cOOFT73Gy43PnyUZ0PZ0+fZqzZs0iAIaFhTEzM5MAeu1z1NjY6LEM69evt493ffbZZ/3+d4ZFYVD+Kz8/33QEpXpVU1NjNwKMiIjgyZMn+eOPPzItLc1rGQoKCuy9lA8//HBA/5YWBqWU32tsbOTHH388KAeUe1NaWmo3vJs7dy7Pnz9v/85be027du2yp1498WWqr4VBV3BTSvmUX3/9Fdu2bcOiRYsQFhYGy7IwcuRIr2bYsWMH4uPj0dTUhMTERJSUlDhWeutaH3owuVwuPPnkk7AsC2vXrsXzzz8/6K9p60v18LWb7jEoNbT89ttv3L59OxMTE+0rlwEzDQHfeustx5Xlg3FNRG8qKysZGhpKAExLS/PY8VToVJJSytcdPHiQycnJV7UNR+f0jTenkNrb25mRkWG/fm5urpETXLr3P0pKSvJoYeprYdCpJKWUMVFRUYiLi4OIOH4+duxY7Ny502tTSJcvX8by5cuxadMmBAYG4oMPPsBLL710Va7BdvbsWcTHx6OhoQGxsbEoLCzEiBEjvJoBAAK9/opKKdWpubkZLpcLbrfb/llAQAA++ugjhIeHeyXDL7/8gsTERLhcLoSEhOCTTz7BwoULvfLaPXMkJCSgrq4O0dHR2L17N0aNGuX1HAB0j0EpZUZ5eTmioqJQVFSE4OBg3HfffQCA119/HbGxsV7JcPr0acTExMDlcuGOO+5AWVmZkaLQ0tKCxYsX49ChQ5g2bRqKi4sRGhrq9RxdtDAoNcy43W5YlmXs9VtbW7Fu3TrMmzcPp06dQnR0NCorK/H0008jMTER2dnZXslRU1ODuXPn4vDhw5gxYwYqKirs4uRNbW1tSElJQXl5OcaPH499+/Zh7NixXs/h0JcDEb5204PPSvXdpUuXWFpaypdffpkxMTHMzc01lqW2ttZe6U1EmJ2dbR9gPnbsmNfa3Hz++ef2WT8PPvigx5fa7Kv29nauWLHC7n9UU1MzqK8HPStJqeGptbWVFRUVfO211xgXF2c3U0Tn6ZcmzrSxLIvvv/++3XE0PDycJSUlXs9Bktu3b+fIkSPtxXNMtvh48cUX+93/qD+0MCg1zFiWxVdeecVeRrLn7fHHHzdyTn5jYyOTk5PtHElJSYPa2+h63nzzTTvHc889Z2Q8unTvf+St9T6GdGGIiIjw5Fh5jK81F1PDT1tbG5955pmrikJsbKyRtt2lpaV2r6FbbrmFBQUFRvZY2tvbuXr1ans83njjDaNNOLv3P9q2bZvXXndIF4ZRo0b5RPfLntauXWs6wu9qaGjwuU6d/qqpqYk7d+5kamqqT7QN79LU1MSMjAyOGDHCURSioqK83qL+ypUrzMnJsRdmmj17trGW9C0tLXziiScIgEFBQQNuRDdQu3fvtvsfbdq0yauvPaQLAwCf6VHfpba2lkFBQcYXU7mW1tZWJiQk+Fyb8u4sy+LWrVsH/eBbf9XW1jI/P58LFiywF2t57733TMci2TF2RUVF9ipmIsKUlBQCHWsNnz171qt5jh8/ztmzZ9tZcnJyjH0paWxs5MMPP0wAHD16NPfv328kR5fS0lK75ceaNWu8/vpDvjB4crk8T0hNTSUAHjt2zHSUq2RmZnLChAmmY/yu6upqxsTEcM6cOT5TvFpbW+lyuZiVlcW77777qqmZrKws0xFJkocPH2ZsbKyd6/777+fXX3/N5uZm3n777Txx4oTXsliWxXfffZc333wzAXDixIksLS312uv3VF9fz5kzZxIAx40bx6qqKmNZSLKqqso+Eyo1NdXIe33IF4aUlBRPjteA1NfX298ii4uLTcdx6FqQPDo62nSUqzQ1NXH16tX21Menn35qOpKtoaGBq1atuuYa1UuWLDF60JLsWKEvOzubgYGBBMDbbruN77zzjmOxoerqaq/l+fnnn5mUlGSPUXJyskcXqrlR1dXVHD9+vL187I2sjTwYamtr7eVjPd3/6EYM+cLgS9+A09PT7Q/E5s2bTcexVVdX283JHnnkEdNxbD2nPgDwnnvucWzUfME333zDyZMnO4rCvffea3SNasuyuGPHDoaHh9uZUlNTHWsFeFtJSYmdJyQkhFu3bjW651dSUmJ/M4+JiTF2jUKXM2fO2O+j2NhYtrS0GMsy5AsDAJ46dcqTY9Yv586dc5wnnpmZaToSSfLChQv2IukAuGLFCtORSF499dF1M31AsLuWlhbm5OTYezJdf4aFhRl9zx09epQLFy60xyw6OppfffWVsTyXL19mVlaWvVc1Z84c1tbWGstDduwhd+29L1u2zOhGmOxYKzoyMtL+/2pqajKaZ1gUhsLCQk+OWb9kZ2c7NnCJiYmmI7GtrY0JCQmOXNnZ2aZjsb6+nvHx8fYHt+s2efJknznL7Msvv+SMGTPsA6fp6eksKCjgTTfdxIqKCiOZmpubuWbNGnvcxowZw82bNxudzjpy5Aijo6MJgAEBAVy3bp3Rs94sy2JeXp79nkpPTzc+3ed2u/nQQw8RAKdNm8affvrJaB7STwoDgDwARwEcArALwJg+Po/ovIrTpAsXLthXcnbdIiMjjWYiO06b7fmNfOPGjaZjkew4jTE+Pt6RbcuWLaZjsbm5mRkZGfa334iICB44cIAkWVFRwaKiIq9nsiyLu3bt4qRJk+yxWrlypdENjGVZ3LJliz1Feeedd9rjZEpbW5tjOjcvL8/4SQytra1cvHixfeC7rq7OaJ6uTP5SGOIBBHb+fT2A9X18Hjds2MD58+d7euxuSG5uLhctWsSIiAii8wKekJAQo2/K77//nmlpaVy6dKlj4+vNi2h+T3t7O5966in7YOldd93FcePGGd/dd7lcnDJliv3tNzs723Gxoon/z++++46PPvqo4wuH6Q3w+fPn+dhjj9mZli9fzosXLxrN1NLSwmXLlhGd1yj4wiyCZVlcuXKlvXfnK6dg5+Tk+EdhcAQBlgIo7Mtjg4ODaVmW8YNKXdMf6enpnDp1Kl0uF5999lk2NDQYzUWSxcXFnDp1KpcsWcJbb72Ve/fuNR2JbrebcXFxDA4OZkVFBd9++23m5eWZjsWNGzfaB8APHjxoOg5JsqyszD73Pj8/3yem2urq6hgaGsrRo0f7xBcNsuNsqOnTpzM0NNRY76We3G43FyxYwODgYJaXl5uOQ7KjWHWeUt+nwiDs2CgbJyJ/B/AxyQ9/5/dpANI6784C8E9vZRsG/gjgZ9MhhggdS8/S8fSs6SRH9/agQS8MIvIPAHdc41drSX7a+Zi1AGYDSGIfAonINyRnezbp8KXj6Tk6lp6l4+lZfR3PQV/ak+SC6/1eRFYAWAQgri9FQSml1OAyuuaziCQA+HcA80i6e3u8UkqpwWd6ac//BDAawH4R+VZEtvTxee8MYqbhSMfTc3QsPUvH07P6NJ4+c/BZKaWUbzC9x6CUUsrHaGFQSinl4LeFQUTyROSoiBwSkV0iMsZ0Jn8lIk+IyGERsURETw3sJxFJEJFjIlIrIi+ZzuPPROQ9EWkQEb1eaYBEZKKI/I+IHOn8nD/f23P8tjAA2A9gFslIAMcB5BjO48/+CSAJQJnpIP5KREYA2AzgEQAzASwXkZlmU/m1rQASTIcYItoAvEDybgD/CuC53t6bflsYSO4j2dZ59ysAE0zm8Wckj5A8ZjqHn3sAQC3JkySvAPgIwGOGM/ktkmUAGk3nGApIniVZ2fn3/wNwBED49Z7jt4Whh78AKDYdQg1r4QBOd7v/A3r58CnlbSLyLwDuA/C/13uc0QvcenMD7TTaABR6M5u/6ctYqgGRa/xMzwVXPkNEQgD8F4DVJH+93mN9ujBoOw3P6W0s1YD9AGBit/sTAJwxlEUpBxEJQkdRKCT5SW+P99uppG7tNJZoOw3lA74GME1EJovISABPAvhvw5mUgogIgAIAR0i+1Zfn+G1hQP/baageRGSpiPwAYC6APSKy13Qmf9N5IsTfAOxFx8G9HSQPm03lv0RkO4AKANNF5AcR+avpTH7sQQBPAfhz57byWxF59HpP0JYYSimlHPx5j0EppdQg0MKglFLKQQuDUkopBy0MSimlHLQwKKWUctDCoJRSykELg1JKKQctDEp5gIiMEJG3O/vd14jIXaYzKdVfWhiU8owcACdJ3gPgPwA8aziPUv3m0030lPIHInILgKUk/9T5ozoA/2YwklIDooVBqYFbAGCiiHzbef82AP8wmEepAdGpJKUGLgrAyySjSEYB2Afg216eo5TP0sKg1MD9AYAbAEQkEEA8gL8bTaTUAGhhUGrgjqNjkXUAyACwh2SdwTxKDYi23VZqgETkD+hYc/yP6FhDII1ki9lUSvWfFgallFIOOpWklFLKQQuDUkopBy0MSimlHLQwKKWUctDCoJRSykELg1JKKQctDEoppRz+H9L4w4Qev4A5AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:05<00:00, 2.55it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXdYFGfXh39D74KCWFCwx1gQGyYaFZRgixq7sUejRqPmTWJvUSOJJeqnhqixl2jErkGxx67YUBQL2EBQpNcFlj3fH5MZWLHs4sIzmOe+rrl01x32loU5c55yjkBE4HA4HA5Hwoi1AIfD4XCUBQ8MHA6Hw9GCBwYOh8PhaMEDA4fD4XC04IGBw+FwOFrwwMDhcDgcLZgHBkEQKgmCcEIQhDBBEG4JgjCOtROHw+H8lxFY72MQBKE8gPJEdFUQBFsAVwB0JaLbTMU4HA7nPwrzjIGIYojo6r9/TwUQBqAiWysOh8P572LCWiA/giC4AfAAcPEV/zYcwHAAMDc3b1S3bt1idXsd2dnZuHPnDpydneHs7MxaBwCg0Whw+/Zt2Nvbo0KFCjAyYh7/AQD37t2DsbExKleuDFNTU9Y6AICYmBgkJyejcuXKsLKyYq0DAMjIyMDDhw9Rrlw5lClThrWOzP3792FhYYGKFSsq5mcqJiYGWVlZcHZ2hqWlJWsdAEBSUhISExNhb28PBwcH1joAgMzMTDx79gwJCQlxROT01hOISBEHABuIw0jd3vba8uXLk1IYPHgwAaDu3buzVpGZPn06AaB69epRTk4Oax0iItqyZQsBIHt7e3r27BlrHSIiioqKIisrKwJAx48fZ60jM2zYMAJAY8eOZa0iEx4eTgDI0dGRNBoNax0ZT09PAkCnTp1irSIj/f7NmDGDtYrMoUOHCAABuEw6XI8VEfYFQTAFsBPAFiLa9bbXly1btuildCAkJAQbNmyAiYkJfv75Z9Y6AIDw8HDMmzcPAPDbb7/BxIR9UpiQkID//e9/AID58+crJrOaMmUKMjIy0LVrV3h5ebHWAQAkJyfjzz//BACMGDGCsU0e58+fBwB89NFHEASBsU0e0dHRAIAKFSowNskjPT0dAGBtbc3YJI+cnBy9Xs88MAjiT9kaAGFEtEiXc5RwsQOAiRMngogwcuRI1KhRg7UOiAhjx45FdnY2BgwYgE8++YS1EgDx+xQbG4vmzZtj6NChrHUAAMHBwdi4cSNMTU2xYMEC1joymzZtQkZGBlq1aoUPP/yQtY7MuXPnAIiBQSloNBrExMQAUFZgSEtLA8ADw7vSHMAAAN6CIFz/9+jAWuptHDlyBEFBQbC1tcWMGTNY6wAA9u7di4MHD8LOzg7z589nrQMAOH36NFavXg1TU1OsXLlSEWPTRIRvv/0WADBu3DhUr16dsZEIEWHFihUAgJEjRzK20SZ/xqAUXrx4AbVaDQcHB8XMLwB5GYONjQ1jkzz0DQzMb72J6AwA5eSmOqDRaDB+/HgAwKRJk+Dk9Pa5nKImIyMD48aJW0Bmz56NcuXKMTYSJ+al4ZAJEyagTp06jI1Etm/fjnPnzsHJyQnTpk1jrSNz5swZ3Lp1C05OTujWrRtrHZnU1FTcuHEDxsbGaNKkCWsdmadPnwJQVrYAKHMoSa1W6/V69rdvJZDNmzcjJCQEFStWlO88WePn54cnT56gXr16GD16NGsdAOJ8QlhYGKpVq4apU6ey1gEgrs6YMGECAGDOnDkoVaoUY6M8pGxh6NChMDMzY2yTR3BwMDQaDdzd3RV1sZPmFypWVNbqdj6U9B8kMzNTvsucM2eOIpY43r9/Xx4nV8qE8/379/HTTz8BEC94Skn1Fy1ahCdPnqB+/foYNmwYax2ZFy9eYMeOHRAEAcOHD2eto4U0jPTxxx8zNtFG6RlDSR5K4oFBT5YuXYrIyEjUq1cPAwcOZK0DIsKYMWOQnZ2NgQMHKmLCmYjw9ddfIysrC/3790fbtm1ZKwEQ7zCl1WOLFy+GsbExY6M81q1bh+zsbLRr1w5VqlRhraOFEieeAeVmDHwo6T9GXFwc/Pz8AIjDJEq4sOzZswdBQUGKmnDevHkzjh07BgcHB/z666+sdWSmTp2K9PR0dOnSBd7e3qx1ZDQaDVauXAkA+PrrrxnbaKPRaHDhwgUAygsMSs8YlBQYeMZQhPz0009ISUlB27Zt4evry1oH6enp8hzHTz/9pIj9AfHx8fjuu+8AAAsWLFDMnpMrV65g/fr1ilueCogr3B48eIBKlSqhQwdlLci7d+8eEhISUK5cObi5ubHW0UKJexiAvDkGPpT0HyAiIgL+/v4QBAHz589XxCYfacLZ3d1dMXeaEyZMQFxcHFq2bIkvv/yStQ4A7eWpY8eOVcSek/z8/vvvAIDhw4crIgsFxJ93tVqt2I1tQF7GwIeS3g4PDEXElClTkJOTg/79+8PDw4O1Du7du6e4Ced//vkHa9euhampKVasWKGYC0lAQADOnDkDR0dHxSxPffToEY4fP46oqCjs378fJiYmitn8B4jzCr6+vggMDAQgTjyr1WqkpKQwNgPGjx+Pu3fvamUMd+/e1Xsc3ZAQEaKiokBEWoEhNzdXKvnDFL2/N7rUzVDa0ahRo3esHKIfFy5cIABkbm5Ojx49Ktb3fhUajYY+/fRTAkCDBg1irUNERCqVimrVqkUAaPr06ax1ZDIyMsjV1ZUA0O+//85aR+aff/4hOzs76tu3LwGgHj16sFbS4sCBA1JtHQJAderUoXLlylFUVBRrNfrqq6/I3NxcdmvatCl5eXmx1qIWLVrQt99+SwDI2NiYFi9ezPxzDQwMpCVLltCkSZP0qpXE/CJfmKM4A4NGo6FPPvmEANCECROK7X3fxI4dOwgAlSpVSjEF6WbNmkUAqEaNGpSZmcnURaPRyIXe5s6dSwCobt26iikoSES0bds2rQtv7969acKECfTgwQPWakREdO7cOS0/APTjjz+y1iIiIn9//wJuAQEBrLVo/PjxBbwWLlzI1Ck6OvplJx4YDMHevXsJAJUuXZoSExOL7X1fR1paGlWqVIkA0LJly1jrEBHRnTt3yMzMjADQsWPHWOtQaGgobdy4kaKjo8na2poA0OHDh1lrabFkyZICF5HRo0ez1pK5c+eOlluFChUoLS2NtRYREZ0/f76AW3Z2NmstCgwM1PISBIEiIyNZa5G7uzsPDIYkJyeHPvjgAwJAixcvLpb3fBuTJ08mANSgQQNF3AFrNBpq3bq1ooa1Vq5cSfb29tSlSxcCQJ999hlrpQJMnDhR6yLSsmVLRVzcJGJjY7X81q9fz1pJJj09nYyMjBSXyaSkpJCxsbHWZ6oEXvpZ44HhXVmxYgUBoCpVqpBKpSqW93wTd+7cIVNTUwJAZ8+eZa1DRETr168nAFSmTBl68eIFax0iIho4cKDWRW3btm0UHh6uqAtvfsdKlSrR8+fPWStpkZOTI/s1bNiQcnNzWStpUbt2bQJAJiYm9PTpU9Y6MlJ/CAC0YsUK1jpERHTixAkeGAxFSkoKOTs7yxcW1mg0GvLx8SEANGTIENY6RET04sULKlOmDAGgdevWsdaRqVatWoFhmjFjxijq4iZ9lhYWFnT58mXWOq+kVKlSBIBOnDjBWqUA0qR9z549WatoIU3ympiYUFxcHGsdIiLKysoiGxsbHhgMwcyZMwkANWnSRBEdqwICAuQOaCzvLtPS0uSx5kGDBhEAat26tSK+R0REz549KxAUJk2apBg/iXr16hEA2rJlC2uV11KlShXq2rUra41XMn/+fAJAJ0+eZK2ihdQprUOHDqxVtOjcuTMPDO9KdHS03PJRCT94qamp5OLiQgBo+fLlTF0OHDhAkyZNouPHjxMAMjMzozt37jB1ys/OnTu1gsLcuXNZK70SR0dH+uGHH1hrvJFmzZrRvXv3WGu8kiNHjlCdOnUUF/BTU1PJxMSENm3axFpFi3wruXhgKCzDhw9X1KSlNHnk4eFBarWaqcvYsWPJxMSEKleurKiJP4nvvvtODgpLlixhrfNKsrKyyNfXVxGLB97E33//zVrhtcTFxdFvv/3GWuOVtG3bllJSUlhraBERESENsfLAUBhu3bpFRkZGZGRkRLdv3y6y99GVsLAwMjExIQB07tw51jryJjZpHNXf35+CgoIUc+fm6elJgiDQ6tWrWau8lrS0NIqPj2etUeJhvV/mdVy9epW1witZvXo1DwyF5bPPPiMANHz48CJ7D13RaDTUtm1bAkBffvklax169OhRgfF7a2trxdxZpqenk6WlJf3555+sVTgcxZGbm6tzYCiRtZKk6oWG5p9//sH+/fthbW2NWbNm6XROeno62rVrh927d4uR1oDs2LEDR48ehb29PX755RedzyMidO/eHStWrNC7eNabOHLkiNbjcuXK4dSpUzpXBP3uu+8wffr0Ivv8bt68ia1bt6Jv3746n7NhwwZ8+eWXiIyMLBKnwnD37l1069YNZ86cYa0iQ0QYOnQo1q1bZ9CfqXdl+fLlWLBgAaKioliryBw9ehRz5syRCxAqgfDwcLlxlk7oEj2UdpQpU8ZgUVQiNzeXGjduTABo5syZOp+3ePFiAkCNGzc2yHDK48ePae/evZSamkoVK1YkAOTv76/X19izZw8BIEdHR4OOdfbo0UPOFGrXrk0PHz7U+dzQ0FB5iC40NNRgTvnRdzlqRkaG/D1W0mThqFGjFLUsmYjo2rVrBIDKlSunqGW/0gbU4OBg1ioy33//PQEgPz8/1ioyUgUHvM9DSbVr1zbk94yIiLZu3UoAyNnZmVJTU3U6R6VSUYUKFQgA7d692yAe69evp4oVK9LXX38tby7SZ8JZrVZTnTp1DL5bW61Wk729PQGgVq1aUUJCgl7nt2vXjgDQyJEjDeb0rvzyyy8EgNzd3RVzsYuPj5dXxN24cYO1jsycOXMUM6QpoVKpyNjYmARBUEy5DiKi/v37EwBas2YNaxWZP//88/0PDIaeY1CpVFSlShW9dyuuWrWKALHypKEuLNLeAOnQd4fzxo0b5d20hpyckyrM9unTR+9d4NLabltbW8Xs8I2Pj5c3cB06dIi1jowUrNq0acNaRYtmzZoRANq1axdrFZkbN24QAKpatSprFS2kzYsHDhxgrSIjXat4YNCDRYsWEQD64IMPdF5CmJOTQ1WrViUAtHnzZoN4aDQaeRmodAiCQF988YVOXllZWeTm5lYkdyuzZ8+miRMn6h0Ac3Jy5Azm559/NqjTu/DDDz8QAPL29lbMiqrs7Gx5aGv//v2sdWRiY2NJEAQyNTVV1DJMKctXyrJyifr16ytueEsa8uaBQUcSEhLIwcGBANDevXt1Pm/Lli3y3Yqh1qNHREQUWPXTt29fysrK0un8ZcuW6R3gdKWwP+QrV64kAOTq6qqY5YWPHz+W6/kr6ZdXutDVrFlTMUNbREQbNmwgAOTj48NaRYupU6fKO9uVhFRK5/Hjx6xVZKShQB4Y3kJsbCwR5dVQb9mypc53jrm5ufJd8MqVK9/ZReKPP/7QCgrjxo3T+QKRmpoq/0Du2LHDYE7vQkpKCpUtW5YAKGoJqTRc17t3b9YqMhqNhpo2bUoAFLNxy9/fn+Lj46lnz56K2jC4Y8cOSkxMpK5duxo0Y38XNBoNZWVlkVqtliu/KuVGiEirwioPDK8jLi6OWrVqRQ8ePJDvHC9evKjz+dKqnwoVKhi06uoXX3whBwU/Pz+9hjh++ukng66OMgRTpkwhAOTp6akYpxs3bpAgCGRiYkL3799nrUOnTp2iW7du0dmzZwkAOTg4KGYidfDgwVSnTh2ys7MjAHT//n16+PAh8yq106ZNIzc3N/lGaPny5TRhwgS9F0QYGh8fH7kki9REi/Vqt0uXLlFCQgJ98803PDC8DamhhlR/SJ87R41GQ02aNCEAtGjRonfyePnrli9fnoyMjOiPP/7Q69z8E6lHjhwxmNO78PjxY7KwsCjUBHpR0qFDBwKU0xTnt99+o2rVqpGvry8BoIkTJ7JWkhkyZIhWBmtra0vdu3dnrSXt4NU6+vXrx1orf6E6MjY2JhMTE5o2bRpTp71795KDgwPVrFlTr8BQIje4vSuXLl0CAHlTTFpaGr7//nvExsa+9dxjx44hODgYZcqUwfDhww3mdO/ePSQkJGDnzp0YNmyYXufOmzcPycnJ8Pb2Rtu2bQ3m9C5MmTIFKpUKPXv2xMcff8zURdqQdfLkSQQGBsLGxgbTp09n6iTx6NEjREREICgoCABgbm6OJUuWFNkmQH0QBEHrsYmJCZYvX87IJg83Nzetx4IgYNq0aWxk8tG4cWP577m5ucjNzdX7d9nQfPLJJ0hKSsK9e/f0O1GX6KG0410zhvbt2xdY+aPrKh6pW9mcOXPeyeFltm7dSv/884/e50VFRcl35hcuXDCoU2G5ePEiAWLl1YiICNY6NHjwYMrOzpbH8JVU+E8av89/GDITfReGDRum5bVhwwbWSkREFB4eruXVp08f1kpERHTw4EEtr/bt27NWIiKihg0b5vfiQ0mvQqPRyM1lpKCga9tCaRzY1tbW4P2fC7uKaMSIEQSAPv/8c4P6FBaNRkMtWrQgAIooK52cnEyCIJCXlxcBoLJlyypqyaUUrKTj66+/Vsx8zFdffSV7tWvXTjFeWVlZJAiC/PtbVDvp9eXFixdan+WePXtYKxGRdsVhHhheQ/67DSMjI70mhzp27Kio5XH3798nExMTMjIyolu3brHWISJxxQggtvo0dPAsDFLfiPx3cRs3blRMDwlp1RYAxZXilsrP29jYKGrpJRHJ84NK6+Am7SMqX768Yj7Lffv28cDwNqT9B8bGxrR161adz5NqxVhYWChm967U3nDQoEGsVYhI3EEutdVk3VBIYt68eQWGary9vSk9PZ21GqWnp8tOdevWpeTkZNZKWkjZqL61uooDKStVUtkQorx6YqwnnfOTmJgoL6HVNTD85yafL168CGNjY2zduhV9+vTR+byff/4ZAPDVV1+hbNmyRaWnM9evX8fWrVthZmaGH3/8kanLqlWrkJOTg99++w0RERGoVauWQSfm34Xg4GCtx97e3ti/fz+srKwYGeXx+PFjAEDZsmVx4MAB2NnZMTbSxsjICC1btsSIESNYqxTAzc0N3bp1Q7169ViraNGkSRMIgsB80jk/9vb28PDwgImJic7n6P7K94Rr165h+/bt6Natm87n3L17FwEBATAxMcH48eOL0E53pk6dCgAYOXJkgVUaxc1vv/2G0NBQbNq0CQCwcOFCmJqaMnWSyB8Y2rRpg3379ikiKABiYLCwsMC+ffvg6urKWqcA1tbWWL16NYyMlHf/WKVKFb1+h4uLxo0bo127dor7PFu3bg1nZ2cEBgbqdoIuaYXSjsIOJeXm5haqYJq0nlsplSVPnz5NgNgkh/WwVnJycv40lRo3bkwvXrww6Ma/whIbGyt7tW3bVhHDR/lZsWIFBQQEsNZ4LdHR0awVXsujR49YK7ySpKQkvUrrFBcHDhygzZs38zkGQ/Ho0SN5glcJjdE1Gg01b96cAND06dNZ69CRI0cKjOFbWFgoomLp33//LQeFjIwM1joFiImJYa3AKQKUsnorP8nJyZSamqpzYPjPDSXpy8KFC6FWq9G7d2/UqFGDtQ4CAwNx9uxZlC5dGt9//z1rnQJdqqytrXHgwAG0bt2ajVA+goOD4ePjg71798LS0pK1TgHKlSvHWoFTBLy8MVAJ6Dt/pbzBQwXx/PlzrF69GoC4k5cVWVlZOHHiBDQajTy3MHnyZJQqVYqZk0T+wGBra4ugoCBFBAUAKF26tGKDAoejZHhgeAOLFy+GSqXCZ599hvr16zPzCA0NRf/+/eHv74+QkBBUrFgRo0ePZuYjodFocOHCBQCAg4MDjh07hubNmzO2yuObb77hQYHDKQR8KOk1JCYmwt/fHwDbbAEArly5gujoaIwZMwYAMGPGDEVc8O7du4fExEQ4Ojri6NGjcHd3Z62khRJTeg6nJMAzhtewfPlypKamwtvbG82aNWPqcvXqVa3HI0aMQP369REXF8fISOT8+fMoV64c/vnnH8UFBQ6HU3h4xvAK0tLSsGTJEgDsswVAzBjyU7NmTQQFBcHR0ZGRkUhUVBROnTqliEl5DodjOEpkxpCVlVUkXzc7OxuAuJM3ISEBnp6e8Pb2fuM5RIQZM2bg+vXrReKUk5ODGzduyI+rV6+O48ePo3z58m88b8GCBThx4oS4JrmI+OGHH/QKCuvWrcO2bduQm5tbZE76cuzYMfz666/IyMhgrSITFRWFiRMn4tmzZ6xVoFKpkJGRAY1Gg+nTp2v9LLJk+/btUKlU2LBhAw4dOlRk1wR9uHnzJjIzM3H27FkEBAQgJiaGtZL8+//kyRP8+eef+p1Y0g5bW1uDre/NT8+ePSktLY3Kly9PgG49oE+ePCl3c1Or1QZ3kmo0AWJ/6cjIyLee8+jRIzIyMiITExPFbFJKS0uTq9oeP36ctQ4RievNGzdurKhS10RE48aNU0w56bCwMOrSpQsFBQURAKpYsWKR/Jzry4ABA8jb25tKly5NACgsLIwyMjKYFq7btGkTubu7U5s2beR6YdevX6eHDx8ycwoODqbZs2fT2rVr3/8ieq6urgb81olIJXPd3d0JANWrV0+nfsv9+/cnADRlyhSDOxHldatyc3PTucLlDz/8QACob9++ReJUGH799VcCQE2bNlXMBqD9+/cTAHJycmLeTvPBgwd0+PBhev78OVlaWhIAunr1KlMnorwbH6m954wZMyglJYV56XKpb7d01KpVi3lp8GPHjmk5WVlZkZOTE6WmpjJzSkpKkjedvveBoUGDBob83hER0ZkzZ7Q+1CZNmtCwYcPe2PwmMTFR/oaHh4cb3ImIaNSoUVS5cmWd7zpSU1PlNp9KadyTmZmpVxZWHGg0GmrUqBEBoAULFrDWoQMHDlCZMmXkC16HDh1YKxER0V9//aX1e2FsbExly5bVKXMtSl5uO2plZUUPHjxg6nTnzp0CVQAWL17M1ImIqFKlSnqX3VbEHIMgCGsFQYgVBCFUl9cbGxsb3OHOnTtaj4ODg0FEaNq06WvP2bp1K1QqFVq3bo1q1aoZ3AkAYmNjcfz4cZ0L5W3cuBHJyclo1qwZPD09i8RJX9avX4+YmBjUq1cPnTp1Yuoitczcv38/rly5grJly+Lrr79m6gQAYWFhiI+Px4YNGwAAnp6eOHDgABISEph6PX/+XOuxIAgICAiAi4tL0b7xli1Qu7hBIxhBXckN2LJF659fvgb4+fmhSpUqRev0FipUqKD12MXFBSNHjmRkk0ehKtDqEj2K+gDQEkBDAKG6vL4oaiVJwy/S0aVLl7eOV0ot8zZv3mxwH4moqCidX5ubmys3/d62bVuROelDdna23LxEn/4XRcXnn39OcXFx5OHhoai5haFDhxa42xw8eDDzYbepU6dqOS1btqzo33TzZiIrK3FAQzqsrMTn/0VqIgSAPD09FTHvQURkY2Mje61atYq1DhERTZw4seQ26gHgxjIwdOrUSf7mtWjR4q1F165evUoAqFSpUoop0CYVjXNxcaHs7GzWOkREtH79egJANWrUYP7Lm5OTQxYWFnLwLFeunGI+O6kwonR06tRJER3A8vd9HjhwYPEEKldX7aAgHfnmFkeOHEkAyNTUVDGtPYmIatWqRQCoevXqivkd/LeqaskbStIFQRCGC4JwWRCEyy9evDD415eGkurWrYt9+/a9dWfxmjVrAAD9+vVTxC5kAPLei9GjRyuiH0Jubq7c4Gjy5MlFMgSoD+Hh4VCpVLh37x4AsYzHt99+iyNHjjD1IiKEhYXJj5s3b46//vpLr8YqRYU0lNSwYUOsWLGieHaTP3ny1uelHhHTpk1DnTp1it5JR6ThpFmzZinidxAowUNJxDhjUKlUZGRkRK6urvT06dO3vj4jI4Ps7e0Vs3KEiCg0NJQAkKWlJcXFxTF1kcqTb9++nQBQ5cqVFXH3JPnkPz7//HPmd+b5+0bUrVuXEhISmPrkp2nTpuTo6Fis/Q9yKrq+MmPIcXGVX/PNN99Q3bp1KSsrq9i8dKFfv346r2gsLrKyssjExIQ6dOjw/mUMRUl4eDhKly6Nw4cPF5hAehW7d+9GUlISPDw84OHhUQyGb2fp0qUAgIEDB6JMmTJMXb777jsEBgZi7ty5AIAJEyYo4u7p5c1Zvr6+2Lp1K/M7cylbcHV1RVBQEBwcHJj65Cc+Ph7bt28v1o5kW+vNRbaJdpe9bBMrbKs7V35samqKNWvWwMzMrNi8dKFixYqYM2eOorremZmZoWbNmvj22291P0mX6FEcBxhmDIcOHaJLly7p/HovLy95A4sSiIuLk5fN3rp1i7UOVa1alczNzQkAOTs7K2Ycv0uXLvKd+SeffKKYjm4rV64kR0dHunv3LmsVLTQaDf3+++/F/r7NmxP1xWZ6CFfKhUAP4Up9sZmaN897jdK+VxJnz55lvmDgVcyePZs0Gk3JmnwGsBVADIAcAFEAhr7p9YYODPqkfeHh4fKGEaWk/D///DMBoE8//ZS1CmVkZJAgCPIF2MzMjBwdHWnJkiWs1ahKlSoEiO1Hk5OTWevITJ8+nYKDg1lrFECj0SjyIsfRn8zMTCIinQMD+9ktAETUl+X765P2rVu3DgDQvXt3RaT8OTk5WL58OQDolyoWEffv35eCPQCx/lSvXr0wduxYhlZAamoqHj58iLp16+LQoUN6d7QqSsaNG8d8+O9V8LLl7w8WFhZ6vV45A2ElALVaLQeGoUOHMnU5ePAgEhISsHPnTjx9+hS1atWCr68vUycAWqtrAKBXr15YunQp84tMaGgoqlevjiNHjijuIqw0Hw5HERlDSSEoKAjR0dGoWrUqWrVqxdTl2LFjWLhwIVJTUwEAY8eOVcSEV/7A0LZtW2zcuJH5MlUASE5OxtGjR3mfZQ5HB9hfSUoQ0t6FoUOHMr8IP378GMePH0dwcDAEQYCRkRHWrl0LtVrN1EvaD9K4cWPs2rUL5ubmTH0kfH19i3VlDYdTkuGBQUeeP3+O/fv3w8jICIOsbxQ8AAAgAElEQVQGDWKtgyf5NvsQEb7++mtYWloqYullzZo1ERgYCFtbW6Yu+WE9lMXhlCT4UJKObNy4EWq1Gh07dkTFihVZ6+Dx48daj3/88Uf07ct0Dh+5ublIT0/H0aNH4eTkxNSFw+EUHp4xvAEiwt27d0FE8jDSsGHDGFuJXbXyV7384osvMGPGDIZGIomJidizZ4/OlWA5HI4y4YHhDaSkpMDHxwfbt2/H3bt34ezsjI4dO7LW0hpG+vjjj7FmzRpFDJU4Ojqibt26rDU4HM47wgPDG4iLi0NkZCT69OkDAGjVqhVOnDiB0FCd2kYUGdIwkpubG3bv3q33GmUOh8N5E3yO4Q3ExcVpPd6+fTvOnz+Pq1evMjISefz4Mezs7HDgwAGULVuWqQuHw3n/4BnDG3i5vLeZmRl27NgBR0dHRkYi0dHR2L59u6LKDXM4nPcHnjG8gZczhqVLl76x1WdxMWTIEFSqVIm1RolGo9EgMTFRcbuOc3NzodFoFFGNNj9EpIh5LE7xUCIzBo1GUyzvkz8wDBo0CMOHD3/l6w4dOlQgiBQlugSFY8eOaU1SK4Fz584hJCSEtQYA4OnTp+jduzdu3LiBoKAgrfpOLAkLC4Ofnx/27t2LnJwc1joya9aswf79+5GSksJaRYaIsHz58gJLt1lz4sQJuRmUUoiMjMSVK1d0P0GXSntKOywtLd+52qAuSL1SGzRo8NrS0VKTFQsLC7mCIWvUajU5Ozsrpgy3RLNmzQgA7dq1i7UKnThxggCQg4MDAaBffvmFtRIREa1Zs0auTjtjxgyKiYlhrURERL6+vgSAevXqRQ8fPmStQ0R57XUbNWpEz58/Z60j07p1a6pYsSJFR0ezVpFZv349GRsbv9+NeqytrYvlfeLi4mBvb4+dO3e+tn3nsWPHAAAfffSRYlYHnT9/Hs+fP4erqytq167N1EUq0REWFoYLFy7AxsYGn376KVMnAIiIiAAg7r0AxGHCevXq4cGDByy1cPHiRTl7mTt3Lk6fPs3UBwAyMjJw8uRJAGIlYqXUm9qxYwdsbGwwefJkxSzCiI+PR1hYGDZv3ozy5cuz1pG5ePGi3MxLF0rkHENxlVqIj4/Hpk2bULVq1de+5vDhwwCgiIudxK5duwAAn3/+OfNx4WXLlqFJkybYv38/AKBnz57FFtjfhBQYJGJjY7F+/fo3ftbFwaVLlwAAJiYm2LZtG7p3787UBwBOnjyJrKwsTJs2DbNmzWJeJwwQRzpu3ryJixcv4sMPP2StI/Po0SOcO3eO+c/RywwcOBDNmjXD6NGjdTtBl7RCaUe9evUMl2O9gYMHD77x3zUaDbm4uBAAunz5crE4vQ2NRkNubm4EgE6dOsVah77//nsqVaoUOTo6yk4ajYZ5T9xevXpp9X5et24dUx8iovT0dDI2NiZTU1Pas2cPax2Z7777ThHfn/yoVCpKSkpirVHiQEnq4KbvYegOboUlLCyMAFCZMmWYX+gkpHFXJycnUqvVrHVoyJAhWhdgNzc38vLyYt7EvVGjRrLTjz/+yNRF4vTp02RmZkb79u1jraJFeHh4sbxPdDSRry+RQqZV3kt0DQzsc8ISjDSM1LZtW+bptbSCZffu3QCArl27KqIPQkJCgtbj1NRUbNiwgXkTd2koafDgwYqoMwUAISEh2L17Nz777DPWKlpUq1atWN5n/nzg0iXxTw5beGB4B44cOQJAGfMLY8aMwaNHj+T5hW7dujE2EskfGARBwJYtW5jvwUhISEBSUhJ8fHywatUq5vMwEv3790eHDh1YazAhJgbYsAE4dkz889kz1kb/bXhgKCTZ2dk4ceIEAMDHx4exDXD37l189NFHuHXrFmxtbVG9enWcOnVKXuHCivyBYcaMGYpoPxoREYH69etjx44ditpIVqpUKdYKzJg/Hxg0CPDwAAYO5FkDa3hgKCQXLlxAeno6PvjgA+Z3wIC4LPTZv7dZqampqFGjBq5cucL8blgKDD4+Ppg+fTpTF4msrCz8/fffsLOzY63CQV62MGGC+HjCBJ41sIYHhkIiDSMpIVsAUKClZ6tWrTBu3DhGNiJEhISEBFSsWBFbtmxRxJwHALRo0QIuLi6sNTj/ImUL0rL/8uV51sAaHhj05Nq1awCUt38hf2CwsbHBunXrmE+IZ2ZmIjc3FwEBAbyjG6cAMTFAu3bA2bPAkiWAIOQdS5aIE9EcNpTIDW4sGTZsGPr06YPLly/DxMQErVq1AhH7AmP5A8OiRYtQpUoVhjYiCQkJWLhwIT766CPWKhwFIq1CGjyYBwGlwTMGPTE2NsaECROg0WhgY2ODXr16MR+yAfKWq7Zv314R7UcBwMnJCWPHjmWtwVEQUpYQEsJXISkZHhj0xNzcXP57UlISzp07h8mTJzM0ElGr1XBwcMDq1auZZy8S5ubminHhsEUKCDNnitnBkCF8FZKS4YFBT/IHBgDw8/NTRLEstVoNf39/VKhQgbUK5z9O/qygXTsxG5g/H7h4Edi4Edi2Dbh+XRxCAvgqJCXCA4Oe5A8MTZo0wciRIxna5NG9e3e5NzWHU9xIwUAKAlJWcOmSmCVs2AB06CBOLO/YATRoID4H8FVISoRPPuuJFBiMjIywcuVKxSzBnDVrFmsFzn+EmBjxor9+PUAk/r1y5bwgEBAgZgXt2gFBQUDnzkD37kBgIDBgAPD330B0NHDtGrB4cd7Xbd6c2X+J8xI8MOiJFBjGjRsHDw8PxjZ5KKUXBOf9QwoE8+YBEyfmBYH588XAcPEicPIkcP488PHH4sX/4EExK9ixQ3xNSIg4pzBhArBzp/g1580TM4hFi1j/D99/4uPj9WpjywODnpibm8PFxQWzZ89mrcLhGJyXg8D69dpDQw8f5gWBNm0AjQbo2BHYtQswMhKDQEaGGBCOHwc++gjo0QP46y8gNFTcnwDkbWbjWULxsHPnTri7u+v8ej7HoCdmZmZYvnw5bGxsWKtwOO/MyxPF+VcN5Z8fkCaMvbzEu/zy5QE3N6BSJTE7GDBAPGfgQDEj6NFDzBgcHIAtW4CXNuajeXMxiJw5w+S/XaQcP36ctUIBIiIi4Ofnp/sJutTmVtrBsh/D0aNHmb03h/OuSD0Prl8X//zqKyIHByIPDyJ7eyJzc6KgICJBIDp8mMjCQnzNt98S1a0r/vtXXxENH05UqlTe4+hoIhMTscPL647mzQ3//9FoNIb/ou/IwIED6dixY6w1tOjevbvUf4T3YygK2rRpw1qBw9GLmBjxTt/LSzsjeHn5qJQNSKuGpPmBjAwxa3B3F/999GjxvF69gNKlgT/+ACpU0M4KpIwg/1EU2cEff/zBvILwy8TFxeGHH36ARqNhrSITHh6u3wm6RA+lHUrp4MbhKJFXZQXm5nmHlBF8/nleRiBlA/36iX9euyb+W79+ea9p3vzNGUFRZQVvokuXLrRixYrifdO30LRpUwJAGzduZK1CRGJWZWNjwzOG4iY5OVkxdy2PHz8GESExMRG5ubmsdWSio6ORk5MDlUrFWkWLFy9eKM4JEEub6LNHJv9cwUcfARcuaGcFZmbipRsQM4E6dcTlo927i/8uZQOA+Ge5cnnzAyqVmBWcPav9nsWVFbwJJycnrFq1CmlpacX7xm/A3Nwc5ubmSEhIUMR1ITY2FrVr19ar90iJDAw3b95kraBFtWrVYG1tjefPn7NWwV9//YWePXuiffv2sLKywpEjR7B3717ExcUx9QoMDETz5s1ha2uL33//HVeuXGHqI7Fhwwb54qIkLCws3hiw8g8P5Q8G/fsDT56IK4ak4SG1WtxLIAhAlSqvDgT37okBQAoE5cuL7yHRvDkwefIUNGv2EbMg8CoWLlyI8+fPK2oxyL59+5CcnIxx48YpoiSMjY0Nzp49i+TkZN1P0iWtUNphaWlpsDTrXUlPTycAZGJiQmq1mrUO7dq1S25yL3k1btyY+STdvn37ZKfSpUtTYmIiUx+J2bNnk4WFBYWGhrJWeSv5h4hcXYnMzMRhn7p1xaGhbt3ES7Y0RFSrlvjvZmbia/IPKTVpoqwhIU7xAB2HkkrkPgYltGPMzs6GqakpoqKiAAAuLi6K2AVds2ZNrcdqtRqTJk1ifudStmxZ+e9Tp06Fvb09Q5s8MjMzsWDBAtSpU4e1yiuJiQG++ALIygIiI4HU1LyswMQEMDcX9wd8/rm4o9jICLCyEi/vgiBmC3365O0jkAgO1n6f5s2VkQFwlEGJHEpSQmBITExEhw4dcObf36ZKlSohKSkJ58+fZ+pVrVo1rSBQs2ZNdO3alaGRiLOzMwCgcuXKGDVqFGObPLy8vDB69GjWGlpIw0Qffww0bQqcOyeuJIqKEoeIQkOBqlUBY2NxNZAgiMFArQZq1szbRxAeDuTmvnkfgZKGhTgKQpe0QmmHs7OzIbOrQlO2bFl5eMTe3p7Mzc1p8+bNrLXI1dVV9lq9ejVrHSLKG3JTykoNpXHtmrifoFEjIhcXcfjH2Fi8bJua5v1pZkZkZCT+2a9f3t/NzYnKlOHDQ5w3g/d5VZISMgYAqF+/vvz3pKQkODg4oGfPngyNRGrUqAEAqFChAvr378/YRsTKygrNmzfHF198wVpFEUhZQZMmgL29mB0kJgJXr4qZAZF4ty8I4p9GRkC1akBODlCqlPgYEF+XnS0ONcXHF3yf/JkBzwo4ulKiA4MYANmRPzAAwMiRI2FmZsbIJg8pMPzvf/8r0D+CJUqqRsuCmBjxQl2qFODqKtYcunwZSE4GMjPFoSHpR1oKBoIg1iOqWVOsU0QkBhBpBdGrfgV4MOC8KyUyMGRmZqJbt26Ijo5m6pE/MJiammLEiBEMbfKoWbMm7O3tMXz4cNYqWih1grcouX497w6/QgVxviAlRbzzf5n8G2U1GvE8abrozh0xK3gVfL6AY2hKZGB49uwZsrKyULFiRaYe+QND7969Ua5cOYY2edSoUQOjR4+GnZ0da5X/JNu2iRd0QRBbV6akvPrO/mWIxGAgkZgoZg6vgmcFnKJEEctVBUFoB+D/ABgDWE1Ev7ztHCXcndeuXRvGxsbIzc1VVNP7unXrokmTJqw1/nO8y4pgQRAv8m/ag8SXlHKKC+Ft4/SCIGwFcB3ADYgz2i8MKiAIxgDuAfABEAUgGEBfIrr9unPMzMwoIyMDJibs49qHH36IUqVKMV+mymFPUWwV4cGAYyhycnJgZmZ2hYgav+21ugwlrQCQAaA7gCOCIOwWBMH2XSXz0RRAOBE9IKJsANsAdHnTCU5OTooICoA4nDRu3DjWGhzGGDIo8GGi94OwsDD9q5oWIfv27dP5tboEhsoA/gEwkogaANgBwJANhisCiMz3OOrf57QQBGG4IAiX/z0M+PbvRvv27dG9e3fWGpwSDg8G7x/Lly9HSEgIaw2ZFStW6PxaXQJDTQA/AbgjCMI1AJ8C6CYIQhtBEJwKp6jFq67yBca3iGgVETUmosZKmeQFgAEDBihmXwWHDYW9T7G15cHgfSUpKQkbNmxQTMHP8PBwHD16VOfX6xIYlhJRZyKqDsAbwGYAVgD6AQgslKU2UQAq5XvsAoDtOlQ9MDIqkQu7OIzIHwxSUljbvD88ePCAtYIW69atQ3p6Om7cuMFaBQD0rh6sy0D9YUEQHACEAbgL4AMAW4nIUAPrwQBqCIJQBcBTAH0A8O2xnPcKxnsx33vGjBmD/fv3K+JGLTc3F8uXLwcARQSGrKwsrF27Vq9z3hoYiMjj35VDHwCoBeAogEOFMnz111cLgvANgCCIy1XXEtEtQ319Dqeo4Rd9tly4cAGBgYGIjo6Gi4sLax0cPHhQzmAiIiKQlpbGtF/E7t274eHhgaysLJw+fVqnc3QKr0SUS0S3iGgXER0gIvXbz9IdIgokoppEVI2I5hrya3M4HMPCuuLAy8ybNw8AcO/ePcYmIkuXLtV6HJq/3jkDunbtiiNHjsDNzU3nc9jnXRwOp8Tw7NkzzJ2rnHu3sLAw7NmzBwBw//59xjbA7du3ceTIEa3nWA8nWVhYABA/O13hgYHD4ejMnDlzEBERwVpDZsGCBfLflRAYli9fXqBQpFJWJvHAwOG8B6SlpSlqg9T9+/exatUqxMbGslYBAERGRmLz5s3yY9ZDSRqNBg0bNpQ9TE1NsWzZMsWsmIrJ38T7LfDAwOEolHHjxinmIgwA06ZNg1qtxvPnz1mrAAAWL16MnHxlallnDEZGRhg2bBiys7MBiO1+v/nmG2zYsIGpFyCWw4iLi9P59TwwcDgKZOfOnVi7di0sLS1ZqwAAgoODsX37dgBAbGwsNPlrhDMgISGhwNr8iIgIqF/uYcqAJ0+eABDb2AKAo6MjSx0A0PsGo8QGBiX8ALyMEp1yXlX4nxEPHjzAZ599huvXr7NWkUlPT0efPn2wa9cu1ioyKpUKv//+OwAoJjBcu3YNn332GczMzGBnZ4ekpCSmPjdu3IC/vz8GDx4MAOjQoQOsra3lizJLJIdKlSq95ZXFhz7zCwBKZs9nOzs76t+/v979TouC2NhY8vPzI09PT5o5cyZrHZkbN25Q06ZNac+ePaxVZE6dOkVmZmYUEBDAWkUmPj6eLC0tadKkSaxVtEhNTaWrV69SQkICaxWZtLQ0unbtGj18+JDi4+NZ6xCR2Es8JCSEnj59SpGRkfT48WPWSpSRkUFhYWEUHh7OWkUmOzubwsPDde75rIwSpXqSkpIClUrFWgOAmCYePHgQFy9eRIcOHVjryNSsWRNqtRqJiYmsVWQ++eQTJCQkwNramrWKTOnSpZGUlKSYar0SNjY28PDwYK2hhbW1NRo0aMBaQwsrK6sCLXZZY2lpiQ8++IC1hhampqaoVq2azq8vsUNJ1atXZ60AABAEAQsXLgSgjLFECXNzc3lMWEkoKShImJmZKaKUAoejFJR1m6QH+kS/oqZp06bo27evogIDIH6PpAkwDofDlszMTERFRaFGjRqsVd5KibxNEgRBUYEBAPz8/Jj3oH4VvCQ4h6MM/Pz8mO+10JUSGRjKlCmjmKEkCTc3N3z88cesNTgcjgIJCwvDvHnzkJWVxVpFJ0pkYChfvrwi786V1FmOw+EoAyLCyJEjkZOTwwNDUcInCzkczptgvQEvP+vXr8epU6cAgAcGDofDYYFKpcIff/zBWgMAEBcXh/Hjx8uPpXIZSqfErkricDicVzFjxgzF7PgfP3484uPj5cc8Y+BwOJxi5syZM1i4cKEiNiyePHkS69ev13qOBwYOh/Peo6Sx/LS0NAwaNAhExHyZdlZWFsaMGYNatWoVeL4kwAMDh8MpNMuWLWOtIDN+/Hi59wHrjIGIEBwcjMWLFwMA6tSpA09PzxIzx8ADA4fDKRRr166V22qyJigoCCtWrJAfsw4MFhYWsLCwwOHDhwEAnTt3xvHjx/HJJ58w9dIVHhg4HI7eXL9+HaNHj0bp0qVZqyAxMRFDhw7Veo51YJCQ+j/7+PjAysoKbdu2ZWykGzwwcDglgODgYGRmZrLWAAAkJyejR48eUKlUiggMY8eOxdOnT7WeU0JgePr0KW7dugUrK6sSVxWBBwYOR+E8fPgQgwcPVkTTHiLCkCFDEBERAQDMA0N8fDy8vLywZMkSAGJVYUAZNcKOHj0KAGjVqpXsVVLggYHDeQmlrIEHxBaW7du3V0y58sWLF2P37t3yY9aBoUyZMvjyyy8RHR0NAPjqq68wf/58RWQM0vzCp59+ythEf9h/9zgcBbFixQo0b94c9erVY60ClUqFLl264O7du+jTpw9rHZw5cwYTJkzQeo51YADELEZqzfr555/D29ubeetRjUYjZww+Pj5MXSSISOfX8sDAYUZCQoIiLiwSy5cvx+TJk5lfVADxwjJ48GCcOXMGAPvGVLGxsejduzdyc3O1nlfC53fr1i2Eh4ejdOnSaNmyJQDA3t6eqdPNmzcRGxuLChUq4MMPP2TqIqFPyW8+lPQfQCltUCWICH5+fnJhMSXwf//3fxgzZgwaNmwIY2Nj1jqYPHky/vrrL/kx6/4jxsbGuHLlCmbPng0AKFWqFABlBAYpW+jcubMihpCAvGEkHx+fN1Zd1mg0uH79erE4STcZulBiA4M0+aUkQkJCkJGRwVpDiwsXLmD+/PmsNWSys7MxdOhQzJw5E97e3qx1AACLFi3Ct99+CwDw9PRkbAP4+/sX+MxYB4YyZcrA2dkZGzduBABs2rQJ/fr1U0RgkOY8unXrxtgkj/zLVN/E/PnzcenSpeJQ0iswgIhK3OHs7Ew7duwgJREQEEAtWrRgrSGj0WhoxYoVZGpqSocPH2atQ0RECQkJ5OXlRQDIy8uLtQ4REc2bN48AyEdAQABTn3379pGRkZGWEwB6+vQpUy8iolOnThEAKl++POXk5FB2djalp6czdXrw4AEBIGtra8rMzGTqIpGRkUHm5uYEgJ49e/ba1x09epSMjIxo165dxeJVvXp1AnCZdLjGlsiM4fnz52jWrBlrDZmgoCD07NlTUZtXTp06he+++w52dnZo3bo1ax0AwNmzZ3H//n0AQPv27RnbiNlLgwYN4O7uLj/HOmPw8vJCRkaGvO7dxMQElpaWKF++PFMvAHJBuAEDBsDExASmpqawsrJi6iRlCx06dICFhQVTF4kzZ84gKysL7u7ucHZ2fuVrIiMj0bdvX2g0mmLpFf/s2TOEh4fr/HplDMjpSaVKlRTVwc3LywtLly6VJ76UQMuWLbFu3TpEREQoYk03AHTq1AlGRkbYt2+fIgKDmZkZPv30Uzg5OeHSpUvYvHkzXFxcmDrZ2NgAADZv3ozffvsNHTt2xPjx4xXRHXDu3LmoXbs2OnfuzFpFZvDgwXB0dESVKlVYq8g0a9YMe/fufW2BwaysLPTs2RMvXrwAgGIJDA4ODjh69KjON68C6bGESSk0btyYLl++zFqjREBEirio5Cc7OxumpqaK81LaKimJu3fvFqjSydGf5ORkedKcJaNHj4a/v7/8ODY2Fk5OTsXy3oIgXCGixm97XYkcSuLojtIuvoB4p65ELyUGBQA8KBiAZcuW4datW6w1sGnTJq2gIAgCHBwcGBq9mhI5lMThcDi6EhgYiG+//RZPnjxh6nHjxg2MGDFC6zkHBwfFLLHND88YOBzOe8vNmzfRp08fGBsbM5/Av3nzJhYvXqzlUVxDSPrCAwOHw3kvefbsGTp16oTU1FS4uLjAyIjt5a5fv35o3rw5YmJiYGNjg7lz5xbLxHNhUF4Ow+FwSixhYWGoXbs2aw1kZmaia9eu8vCRq6srYyORNWvWAAD69u2LKVOmKGrZfX54xsDhcAzChQsX5JIZLJHqTF28eFF+TgmBISsrC5s2bQIAubGQUnb/vwwPDBwO5525ffs2OnbsiEqVKrFWwcyZM7F9+3at55QQGPbt24f4+HjUqVMHTZs2Za3zRnhg4HA478STJ0/g6+uLhIQE5sNIkZGRSE9PR48ePbSeV0JgkIaRhg0bpsjl2vnhgYHDKWEEBwcjLi6OtQYAIC4uDr6+voiKigIA5oGhUqVKWLRokbzbv127djA3N2ceGB4/fozDhw/D1NQU/fv3Z+qiC3zymcMpQdy8eRO9evXCgwcPWKsgLS0NHTt2xJ07d+TnPvjgA4ZGIk+fPkVAQACMjIzw+++/4+zZs3Bzc2PqtH79ehARunbtqtiVSPnhgYHDeQ0qlUoxhdkAsdGKj48PqlWrxnwoIjs7G927d9cqGV2uXDnmDXIAsWy5Wq1Gt27d4ObmBjc3N726lxma3NxcrF27FkDepLPSKbFDSa8rUMXhGIKdO3fqV7++iHn8+DHatm2L58+fo379+kxdNBoNBg0aJDejkWA9jAQAGRkZWLlyJQDIPTYAtqVhjh07hidPnqBy5cqKqsD8JkpkYMjJycHff//NWqMACQkJcsVEJaHRaBTpRUQ4cOAAa40CnDhxAl988QVq1KjBWgUAEBMTg7Zt2yIyMhIAFBEYli5dWqADnxKGkbZs2YL4+Hg0bNgQLVq0YK0DIG/SeciQITp3B9y5cyfTpl9MA4MgCD0FQbglCIJGEIS3VvyTePHiBa5evVqUaoViwYIFihj7fZnVq1fjxo0brDUK4O/vj4MHD7LW0OLatWvo0qULTExMFLH0Mj4+Hj4+Plq19OvVq8fQSOwR4eTkhBUrVgAARowYgU6dOjHPGIgI//d//wcAGDduHPPhNkD8/Pbs2QNBEDBkyBCdzjl+/DgmTJjAtteFLt18iuoAUBtALQAnATTW9TwTExPq3r27wTobGYKYmBiytLQstm5MuhIZGUl2dnaK6eImcfr0aTIxMaEff/yRtYrM/fv3qWzZsgSAPDw8WOtQcnIyNW7cuEA3t6SkJNZqdP/+fTIyMiJjY2N68OABJSQk0M2bN5k6HTlyhACQs7MzqVQqpi4SS5YsIQD06aef6vT6q1evkq2tLbVp06ZIfKBjBzemk89EFAboP/6nVqtx8+bNInEqLH5+fsjMzMTTp09Zq8gQEUaNGoWUlBRFzck8ffoUPXr0gFqtfm2Hq+ImJiYGvr6+iI2NBcB+vJyIsHDhQlhaWsLCwgIqlQoAULlyZUX0FPjll1/kuQapSQ7r8tFLliwBAIwaNQrm5uZMXQDxM1y9ejUA3SadIyIi0L59e6SmprIfltMlehT1AR0yBgDDAVz+9yAjIyPKyMgwaDQtLI8ePSIzMzMCQJMnT2atI7Nt2zb5LjMwMJC1DhERqVQq8vT0lL2UkGElJSWRu7u71l357NmzWWsREVFoaCgJgkCmpqZkZWVFnTp1Yq1ET548IVNTUxIEge7cucNah4iI7t27RwDIzMyMnj9/zlqHiIguXrxIAKhMmTJvzWBiYmKoatWq8s/fsmXLisQJSskYBEE4CqDcK/5pKhHt1fXrENEqAKv+/Zqk0Whw+/ZtNGrUyMuKeYYAAB69SURBVECmhWf27NnIzs4GAERHRzO2EYmLi8OYMWPkx7m5uQxt8hgzZoxWDRvWGYNKpULnzp0REhKi9TzzO7Z/mTVrFogIQ4cORbNmzXD37l3WSliwYAFycnLQs2dPxTQRWrp0KQCxgmnZsmV1Pi81NRW2trZF4iRNOg8YMOCNGUxycjLat2+vNT/J/OdPl+hR1Af0nGPAv1F13bp1hgulheTu3btkbGwsR/q2bduyViIiov79+2vdAe/du5e1Eq1cubLAeHl4eDhTp4sXL9LChQupZcuWWl6sx8uJiEJCQuS74CdPnhARUVRUFFOnZ8+ekYWFBQGg69evM3WRSExMJGtra72dzp07RwsWLCgSp7S0NLK1tX3rz1JmZia1bt26wO9FZGSkwZ2ysrJ0zhhK5HJVidDQUNYKmDlzptbduBIyhsDAQGzevFnrOdZzDOfPn8c333xT4HnWGUPTpk0xatQo3Lt3DwDQqVMnGBkZKWKp6qxZswCItXWkFVIVK1ZkqYTFixdDpVKhU6dOcHd3Z+oisWbNGqSnp6N169Y6O126dAnt2rUrss85ICAAqampaNq0KerWrfva1/n7+0Oj0WjNG1lbWxfJ53z06FHdX6xL9CiqA8DnAKIAZAF4DiBIx/P0mukvKq5fv14g0pcqVYqpU0pKClWqVEme85COnTt3MvUKCQmhkJAQatSoEeHfOSIrKyumThLLly8nAOTu7k65ubk0fvx41kp07do1AkDm5uZFcvdYGOLj48nGxoYA0Pnz51nrEBFRTk4Oubq6EgDas2ePTudcvnyZSpUqRQDkTMzQtGjRggDQypUr3/ra/FlY2bJlqVGjRkXiNGDAAJ0zBubDSIU5ANDBgweZB4aDBw/S8ePHqX379gSAfHx8yMjIiNLS0pg5PX/+nB4+fChf7GrXrk0WFhYUEBDAzEni7t27BIAsLCzo2LFjVL9+fdZKlJ2dTZUrVyYA9NdffxERkUajYWxF1LVrVwJAY8aMYa0i8+OPPxKAIltKWRh27txJAKhq1aqkVqvf+vqrV6+Sg4MDASAnJ6ci+azDwsIIAFlZWVFycvJbXz9x4kQCQJ06daILFy7QkCFDDO6UkZEhDW0pY/K5KHB2doavry+8vb1BRMw2srRr1w6AOIH14YcfYtSoUXjy5AnS09NhbW3NxEmaeGvVqhUmT54MT09PlC5dmukuSglHR0fMnz8fKSkp8Pb2xs6dO1krQRAEzJ07Fzt27ED37t3l51gzduxYpKWlYdKkSaxVZHr06IF79+7hq6++0us8jUZTZG01GzdujB9++AG1atV6667ikJAQtG3bFomJiQCAhg0bFsln7eTkhHnz5iE9PR12dnZvfG1iYiL8/f0BAFOnToWnp2eRDW/9+uuvGD58uE6vFYjYFZcqLI0bN6bLly+z1uBwOG/h7NmzSEtLg6+vL1OPmzdvwsvLC/Hx8fJzU6ZMwdy5cxlaAXPmzMGMGTPg5eWF48ePF/n7CYJwhYjeWmWiRE8+czgc5XLy5En4+vqiTp06TD1u376NNm3aaAUFAMyXuqelpcmb8qZOncrU5WV4YOBwOAYnKCgI7du3h4ODA1xcXJi6ODk54ezZs/LQr0TDhg0ZGYmsWrUKCQkJ8PT0VFzvZx4YOByOQdm3bx86d+4MlUqFjz76iLUOnJycoFarcfjwYRgbG2PSpEkoXbo0065uKpUKCxcuBCAOaSlhXis/JXLymcPhiLx48QKhoaHw8vJirQIA2LFjB/r27Qu1Wg0AiggMADB9+nRoNBoMGzYMfn5+cHNzY3ox3rBhA2JiYlCvXj106tSJmcfr4BkDh1NCiY2Nhbe3t2K6zG3ZsgW9e/eWgwKgjMAQHByMnTt3wtzcHDNnzoQgCBgxYgQzH7VajXnz5gEAJk+eXGQrtt4F5RnpgFLq/nDef4gI6enprDUKIAWFO3fuoEGDBqx1sGbNGgwYMEBrh72ZmRk8PDwYWolMmTIFAPDNN98wn+8AgG3btuHhw4eoXr06evXqxVrnlZTIwBATE6PI4KDXlvNiJCsrS5EXN4nU1FTWCq9l7ty5iut+JwWFW7duoW7durC0tGTqQ0Ro2LAh9u/fDzMzM/n5Ro0aMS9/ffz4cRw9ehS2traK2BOi0Wjw888/AwAmTpyoc0c3ievXrxeFVgFKZGCIi4srtm+QrqhUKowZMwZK3Beybt063L9/n7XGK9m7dy/OnTvHWuOVbN26FbNmzVLEXaZEbGwsvLy8cOvWLQBAkyZNGBuJGwI9PDxw4cIFZGdno1GjRqhSpQo+/vhjpl5EhMmTJwMAxo8fD0dHR6Y+ALBnzx7cvn0bLi4uGDhwoF7nLl68GLt27Sois5fQZXu00g4ARVYVsbBs2bKFANDDhw9Zq2iRlZVFlStXpt27d7NWKUBiYiKVL1+eDh48yFqlAGfPniVzc3NydXVlrSLz7Nkz+vDDD7VqYOlSi6c4ePLkiVzv5/Tp03Ty5EnmvTZ27doll75ISUlh6kIkllqRaoUtWbJEr3Pnz59PAGj//v3v5ID3vVZSx44d3+kbZGhatWpFABRRkyg/q1atIgC0ePFi1ioF+PLLLxXVREgiIiKCHB0dCQC1bNmStQ4RvTooAKCrV6+yViMiuUAb9ejRQ34uNzeXmY9arZa/X/pehIuKQ4cOEQBydHSk9PR0nc+bO3eu/HnHxsa+k8N7Hxjs7OwoJyfnnb5JhuLOnTvyBzdhwgTWOjLZ2dnk5uZGAGjcuHGsdbQ4fPiw/D07cOAAax2ZxMRE+uCDD2S3gQMHslYiIrEb38SJE8nZ2Vl2s7CwoOzsbNZqFBwcTADI1NSUeX8NifXr1xMAqly5smL6P0s9P+bOnavzObNmzZI/7ypVqryzw3sfGADQpUuX3vkbZQi+//57+cPz9vZmrSOzZs0a2atLly6sdWRSU1PlUsmGSI8NRXZ2NrVp00brjnzGjBmstWSuXbsmt/msXLkyNWvWjLUSaTQa+uSTTwgAff/996x1iEhsHytVzC1sMy9DV109ffo0STe0SUlJOr3/9OnTtX4We/fu/c4e/4nAMH/+/Hf+Rr0rmZmZVKZMGfnDs7OzY5pCS2RnZ2v1kHV3d2etJDNmzBitH/h9+/axViKNRkNDhw4tMFSzdu1a1moy7dq1IwA0duxYOnfuHP3vf/9jrSSP45cuXZoSEhL+v707D666vPc4/n6yEFmCASxbCA1XFlnEBcQLtF4UZbtImxQQlMXKiEWYCgqFgEVBpKPIvgg6gq0EkCp4cSgNaMVMEBHZxMBFb0QhDWEJhEDIevK9fxzOzxzDcpL8Ds+T+LxmzowJ+Y2f+WX5nt+zfB/dcUREZOHChU7L+UBacf/U+vXr5fvvv3c1k681/9SpU6/7tSUlJTJ16tQyP4vz5s2rdI6fRWHo27dvpW9UZa1Zs6bMN9CEA9J9j9K+l+4DhHxSUlJEKeWXzYRjR/ft2ydjxoxx5op8r3/961+6o4mIyMcffyyAREZGOuPMgbzzDKaCggJp2bKlALJo0SKtWXxycnLkF7/4hQAVmvxeunSpxMTEuPrEsGfPHud8hkDmCD7++GPp3bu3NGvWzO9ncceOHZXOUu0LQ9OmTaVOnTra5xmudF7r6tWrtWYqKipyfmFLv86dO6c1V15enrRp06ZMLpNWTHXv3l3Ae+gSIGlpabojicfjkc6dOwsgM2fO1B3HMX/+fAGkdevWRsx1iIjMnDlTAOnSpUu5/riXlJTI9OnTBZBhw4a5mmngwIECyPjx4wO+pnTRrVWrloSFhcmlS5cqnaXaF4YtW7bI+++/Lz/88EOlb1ZFnT59Wl544QVZu3atANKuXTsZN26cPPvss9oyiYgkJSXJqFGjnFPAoqOjBfQf3n7s2DHZsWOHvPbaawJIs2bNRCmlfVmjzxdffOEMB+bk5EhCQoIUFBTojiXvvvuuANKoUSOtpwOWlpWV5ZyEZsITn4jImTNnpG7dugLIRx99FPB1xcXF8tRTTzlvVN566y3XMh06dMiZFyrPEa2LFi0SQFq1aiU7d+6Ue++915U81b4wpKSkuHKj3OAbZ/Utoa3skjK3+JYQvv7667Jhwwb59NNPdUcSEZEBAwY4udasWWPEHIOIyKOPPiqAU9hNOOKzsLBQbr31Vud+meKZZ54RQHr06GHEfRIRmThxogDy4IMPBnxNXl6exMfH+z3Bfvfdd65lGjlypADy5JNPBnxNdna2s1zad1a7W8PT1b4w7Nu3z5Ub5Ybly5cLEJSzWivjrrvuEvBuODJFXl6e1KpVS+DHg9hNmKxPT0+XsLAwCQkJMWqTou/sbpOGa44cOSJhYWGilJI9e/aU+/qSkhLXn/SPHz8uERER5VqtmJ2dXWYoODY21rVMR48eldDQUAkJCZFvv/024OsSEhIEkG7durledAMtDFWyJQZAnTp1dEdwnDx5EvCeRW0Kj8fD4cOHAbSfoFXa9u3buXTpEh07diQmJgbAiO6SS5Ysobi4mLi4OGJjY3XHAbw9pGbOnAnA7NmzCQ8P15zIa/LkyRQXFzNixIhyH3ZTWFjIiBEjOH78uKuZZs6cSUFBAfHx8QG1CcnMzKRHjx5s377d7/Nuti9/9dVX8Xg8DBkyhJYtWwZ0TXp6OvPnzwdgzpw5+lqDB1I9THsBkpGR4WYhrZSnn35awKzdxd9++60A0qRJE91R/IwbNy7gZXs3ysWLF53xcpOGKF988cUKTaQG0/bt2wWQmjVrSnp6ermuPXfunNx///2ub049cuSI88780KFDAV1TWFgoGRkZMn78eL8nhr/97W+uZMrIyHCeYA4ePBjwdY8//rgAEh8f70qO0s6fP1/9h5JM6H3i87vf/U4ASUxM1B3FsXHjxnKPtwZbSUmJsxPbjaV3bnn99dcFkHvuuceYP8CZmZlSu3ZtAWT79u2644iId8jv7rvvFij/xr9jx45J+/btBZC4uDhXcw0ePLhCQ7knT56Um2++WQB57LHHBCjXBPG1+OY7yrOx9MCBA6KUkrCwMDly5IgrOUq7PKFdvQtDRTauBMuvfvWrcq+ECLZZs2aVe4lcsKWmpgogDRo0MOb75/F4nCW0a9as0R3HMXbsWL8FDSb461//6jyFXrhwIeDr9u3bJ02bNnXelbs5ie7bI1CjRo1yz1v43p0/9NBDUlJS4trvSlZWllPUd+3aFfB1vXv3FkDGjh3rSo7SPB6PtGrVKuDCUCWP9qxfv365+5gHU69evWjUqJExY9MAbdu2ZdCgQfz617/WHcUREhLCyJEjiYqKMub7V1BQQFxcHP/4xz8YOHCg7jiOu+++m+joaKd3f6BWrVrF8OHDCQtz/1e7efPmtG/fnmeffTbgOb6kpCQGDhzIxYsXnc/17t3btUw33XQTvXv3pm3btjRv3jzg6z777DPefvttwsPDWbx4MUop5s6d60qmwsJCBg8eTGZmJl26dAnomm3btpGUlERkZCTTp093JUdp+fn5xMfHOyfHXVcg1cO0V6dOndwsppZlzBBSaeVdhfSXv/xFevToEaQ0XkVFRQE/7a1cuVJCQ0P9xvBbtmwZtFzl+do777xTAElISAhKHpHAV9t5PB4nz6xZs4KWR0Sq96qk8+fP645QhsfjcX2lhVtKH7doXdn1Vn/o+JkLdBWSiPD888+TkJBA9+7dg5opLCwsoKe9s2fPkpmZyW9/+1u/z/fq1StouQK1fPly9u/fT0xMDNOmTQtKHgh8tV1iYiL79++nadOmTJgwIWh5yqNKFoYTJ07ojlDGp59+ygcffKA7xhWtWrVKd4SrEhH27t2rO8Y1ZWdnB/UPSGWICBMmTODll18GCHphCFT9+vWZMmUK+fn5AERFRQHBKwyBOnnyJM8//zwACxYsoHbt2lrz5OXlOT9bL730ErVq1dKax6dKFobc3FyysrJ0x/Czdu1aPvnkE90xysjMzGTatGm+SXvj/P3vf2fLli26Y1yVx+Ph0UcfJScnR3eUMjweD6NHj2bhwoWA96mna9eumlP9aMOGDWzevJnIyEh27dpFixYtXN0nUBGTJ0/m/Pnz9OrVi7i4OK1ZABYvXszx48fp0KEDI0eO1B3nR4GMN5n2AmTdunVuDbtVWn5+vkRFRUn9+vWN2MVb2ksvvSSA622E3ZCXlyexsbHae0tdi28XqkkHMIl45x+GDh3qN35/++23647lyM7OliZNmgggixcvFhGRw4cPa83kOxMhPDw8KMtBy+vMmTPOctkbdYoh1XmOAeCf//yn7giOpKQksrOzOXv2LAcPHtQdx1FcXMyKFSsA2Ldvn+Y0ZS1atIjvv/+es2fP6o5yRevXr3dWBTVp0kRzmh/l5+czaNAg1q5d6/d5U4aRAKZNm8aJEyfo0qULY8aMAeC2227Tlqe4uJixY8cCMGnSJFq3bq0ti8+sWbM4f/48PXv2pE+fPrrj+KnShUEMGR4p/Qv60y32On344Yekp6cD5hWG06dPO+PiJhaGAwcO8Pvf/9752KTCkJWVxeOPP85jjz3m93lTCsOuXbtYtmwZoaGhrFixwoilycuWLeOrr76iefPmTJ06VXcc0tLSWLp0KeBtnaGt9cXVBPJYYdqLy4/OuttIi3iPqfQ1haOcOx2DrfQxlQMGDNAdx4+vjQgg3bt31x3Hz+nTp50d2r6XKbuPfS5duuQcj+rbYOlmV9CKKiwslI4dOwogEydO1B1HRLy7yH3tuE1p8f7II484O65vJKr7zmdAXnnlFTfvWYUkJib6/QGJiooyYlfv4cOH/XLFxMTojuRITU31W9/etm1b3ZEcRUVF8sADD/jdO8CIMenSXn75ZQGkQ4cOUlBQIIMHDzZiL8arr74qgPzyl7805uyIESNGCCB9+vQx4h7t2rXL2a19o+f+fhaF4f7773fznlVI//79y/wR2bt3r+5Y8sc//rFMrjNnzuiOJSIi/fr188vVqFEj3ZEc69evl4EDB5Y5Ac+k3lwZGRlOy4WtW7eKiHcBhG5Hjx6VmjVrCiCbN2/WHUdERJKTk50/wt98843uOFJSUiL33Xeftieqal8YlixZIg899FC5era4LSsrS1q0aOE8FsbGxkrr1q1l7ty52jKJeLuF1q1b1znsw/fatm2b1lwi3tPlQkJCpE6dOk6u8PBwI97J+RQVFTmn3vXs2VNq166tO5IfX4+fhx9+WHcUR0lJiXPg/aBBg3THERHv9/H2228XQKZNm6Y7joiIbNq0SQCpV6+enD179ob//6t9YThw4ICUlJRoHbbJycmRwsJC5wS3/v37S2FhoezevVtbJhGRtLQ02bNnj7z55psCyNChQ2X27NnOskGdDh06JNnZ2dKrVy8BZPjw4VKzZk2tBf6nfJ1pW7ZsKcXFxUFtm1BeX375pQBB68BZUb7jR+vWrWtMS/wFCxYIIM2bN5fc3FzdcaSoqEhuu+02AbS9eaz2hSHQvus3wjvvvCOADBkyRHcUPzNmzBBApkyZIiLl770TLB6Px5kMPHbsmOzZs0fLu6er8RWtOXPmiIg5fZRKSkqcieYJEybojuM4d+6cNG7cWABZtmyZ7jgi4h1u8/2Mbdy4UXccERFZsWKFM7Kga+gv0MJQJburQvl6owRbbm4ugPbt9T/173//G4Do6Ggg8N47wXbo0CFycnKIjo4mJibGOcnNBGlpaWzdupWIiAhnuaopSwnfe+89UlJSaNCgAX/+8591x3EkJCSQmZnJvffey1NPPaU7DgB/+tOfyMnJoW/fvvzmN7/RHYeLFy86XVNnz55NRESE5kTXVmX3MZjyRw5wWgqbVhgyMjIAaNq0qeYk/nbu3AlAt27dNCcpy7chcPDgwTRo0EBzmh/l5+czadIkwHuMZb169TQn8tq5cyfLly8nLCyMN954w4hjWpOTk1m9ejU1atRg0aJFRhT2uXPncvLkSTp37swjjzyiO8516f8uVpBJhcH3xGDSOdRQ9onBFJ999hmAUX19wHs2w8qVKwH4wx/+oDmNv/nz5/PDDz/Qvn17Ro8erTsOAEVFRU6W5557jo4dO2pO5M3k2+E8efLkgM9aDqbMzEzmzJkDeM9xNqF4Xo/5Ca/CxMJgnxgCY+oTw3vvvUdWVhYdO3Y0qmidOHGC2bNnA94CYcow6ty5c/n666+JjY0NyuEyFbF06VIn05QpU3THAeDFF18kNzeX/v3706NHD91xAhPIRIRpL0CysrLcnJOpFN8xjAsWLNAdxVFYWChKKVFKGTPpLOJtHAZIRESEFBQU6I7jp3v37kZNoPo88cQTzqo3U6SlpclNN90kgGzZskV3HBHxTjhHRkYKIB988IHuOCLiXYUXGhoqISEhkpqaqjtO9W+iZ9ITg2+OwaShpMzMTESEhg0bGnWvPv/8cwA6depEjRo1NKf50cGDB9mxYwd16tRh2LBhuuM49u7dy6pVqwgLC+O1117THQfwvpkcM2YM+fn5DBkyxJgGcJMmTeLChQv069ePAQMG6I4DwJQpU/B4PIwaNYp27drpjhMwWxhcYOJQkqnzC6YOIy1fvhyAYcOGERkZqTmNl4j3EB4RYdy4cbRp00Z3JADWrVvH1q1bufnmm5k/f77uOID3oKzExEQiIiKMmXBOTk5m06ZN1KpVixkzZuiOUy5VtjCYMs4KZhYGU+cXTJx4vnjxIu+88w5g1qTzhg0bSE5Opn79+saM4Z87d47x48cD8Morr9C4cWPNicpOON96662aE3mL+sSJEwGYOHGiUd15A6G1MCil5iil/lcp9ZVSaqNSKirQa01o5etj4qokE58YiouL+eKLLwCzCsOaNWu4cOECXbt25Y477tAdBzB3eerkyZM5deoU3bp148knn9QdB4AlS5aQmppq1ITz+vXr2b17Nw0bNnQKhG4pKSkBf63uJ4ZtQAcR6Qh8AyQEcpFSyohHRR8T9zGY+MRw8OBBcnNziY2NNeYdlIg4w0gmPS0sWLCAo0eP0q5dO2M2jaWkpPDmm28SFhbGihUrjFh2mZGRwQsvvAB4D36qWbOm5kTeZc8JCd4/ZTNmzDBmaLI8w1lax2NEZGupDz8HBgZynSkHZvu0adMGj8djzLs6gFtuuYU77riDVq1a6Y7iyM3N5Z577jFqEi43N5fo6GjS09MZNGiQ7jiOgoICwsPDmTdvnjHDpqdOnSIqKooxY8bQoUMH3XEA71Lehg0bct999/Hwww/rjgN4D6Fq3LgxNWrUYNSoUbrjAN4n0Lp16wb89cq7gkk/pdSHwLsisvoq/z4a8O3s6QB8faOy/QzcApzRHaKasPfSXfZ+uquNiFz3ESbohUEp9RFwpRmqaSLyP5e/ZhrQGYiXAAIppb4Ukc7uJv35svfTPfZeusveT3cFej+D/owqIg9e69+VUiOB/kDPQIqCZVmWFVxaBy+VUn2AycB/icglnVksy7IsL93LCpYAkcA2pdR+pdTyAK97I4iZfo7s/XSPvZfusvfTXQHdT2Mmny3Lsiwz6H5isCzLsgxjC4NlWZblp8oWhsq007D8KaUGKaVSlVIlSim7NLCClFJ9lFJHlFL/p5QyozdDFaWUWqmUOqWUsvuVKkkpFaOU+kQpdfjy7/kz17umyhYGKthOw7qir4F4IFl3kKpKKRUKLAX6Au2AoUopc7Z4Vz1vA2b08676ioHnRKQt8J/A2Ov9bFbZwiAiW0Wk+PKHnwPNdOapykTksIgc0Z2jiusC/J+IfCcihcA6QP8p9FWUiCQDZ3XnqA5E5ISI7L383xeAw8A1u2tW2cLwE08AW3SHsH7WooHjpT5O5zq/fJZ1oymlYoG7gF3X+jozunNdRTnaaRQDiTcyW1UTyL20KuVK7X7tWnDLGEqpOsD7wHgRybnW1xpdGGw7Dfdc715alZYOxJT6uBmQoSmLZflRSoXjLQqJIrLhel9fZYeSSrXTGGDbaVgG2A20Ukq1UErVAIYAmzRnsiyU9/Cat4DDIjIvkGuqbGGg4u00rJ9QSsUppdKBrsBmpVSS7kxVzeWFEOOAJLyTe+tFJFVvqqpLKbUW2Am0UUqlK6XMONigauoODAceuPy3cr9Sqt+1LrAtMSzLsiw/VfmJwbIsywoCWxgsy7IsP7YwWJZlWX5sYbAsy7L82MJgWZZl+bGFwbIsy/JjC4NlWZblxxYGy3KBUipUKbXwcr/7g0qp/9CdybIqyhYGy3JHAvCdiLQHFgFPa85jWRVmdBM9y6oKlFK1gTgR6XT5U0eB/9YYybIqxRYGy6q8B4EYpdT+yx/XBz7SmMeyKsUOJVlW5d0JTBeRO0XkTmArsP8611iWsWxhsKzKqwdcAlBKhQG9gA+1JrKsSrCFwbIq7xu8h6wDTAA2i8hRjXksq1Js223LqiSlVD28Z47fgvcMgdEikqc3lWVVnC0MlmVZlh87lGRZlmX5sYXBsizL8mMLg2VZluXHFgbLsizLjy0MlmVZlh9bGCzLsiw/tjBYlmVZfv4fLskAMLJ8DBkAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:06<00:00, 2.54it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXdYFFf3x7+zLCwgCCI2EBF7xRobUbBhL1Fsscao0cRYYqLmNUX9JTGWaHxTrVHfGCsxGjsau0ZFQcGGIk2poiAdlj2/PzYz7sJidoGdO4vzeZ55ZGfL/bqw891z7r3ncEQEGRkZGRkZHgVrATIyMjIy0kI2BhkZGRkZPWRjkJGRkZHRQzYGGRkZGRk9ZGOQkZGRkdFDNgYZGRkZGT2YGwPHcR4cx53iOO4Ox3G3OI6bzVqTjIyMzKsMx3ofA8dxtQDUIqLrHMc5ArgGYCgR3WYqTEZGRuYVhXnEQEQJRHT9n58zANwB4M5WlYyMjMyri5K1AF04jqsLoA2AywbumwZgGgAolcp2rVq1ElXby4iJiQERoXbt2lAqpfGWPnr0CGq1GjVr1oStrS1rOQCAhIQE5OTkoGbNmrC3t2ctBwAQHx+P9PR0eHp6MtVUUFCAyMhIZGVlAQAUCgW8vb1hZWVV7LFxcdp/PTz0fy67BuDWLaB5c8Da+sXtOnUyEBf3EBzHoUmTJrCxsSn7YOVEVFQUqlWrBgcHB9ZSBNLT0/HgwQPUqVMH1apVYy0HAJCfn4+wsDAAeEJE/y6KiCRxAHCANo00zIjHkpRwcnIiAJSSksJaikC9evUIAN28eZO1FIEmTZoQADp58iRrKUREFBMTQ3Z2dgSATp8+zUzHpUuXyM3NjQAIR6NGjSg9Pb3YY+PjiapU0f7L33ZxIUpIKLuOOXO0R9Fzc+cShYYmUatW8eUyTnlSUFDAWoJBLl26RHl5eaxl6BESEkIAgsmY67ExDzL3AcAawDEAHxj5eCosLCznt610qNVq4cMslT/SzMxMAkBWVlaUm5vLWg4RET148IAAUOXKlSXzgRk5ciQBoBEjRjDTsGHDBrKxsSEAVKlSJapfvz516dKFhg0bRoGBgcUe/7KLd1nx8dFeEYoePj7aMapUKZ9xZNhhrDEwz3twHMcB2ATgDhGtNvZ5eXl5sLOzM58wI0lPTwcAODo6SiaNdOfOHQBAo0aNoFKpGKvRcujQIQBAnz59JJGKOHPmDHbv3g1bW1usXLmSiYaMjAw0a9YMt2/fRo0aNYxKh1y9Cly4AHz7rf55H5+y6zl/3vD5hARteunkSaBXL2D+fKBmzbKPJyNdmE8+A/ABMB5AD47jQv85+v/bk/Lz882vzAiePn0KAHBxcWGs5AW3bt0CADRv3pyxkhccPHgQADBw4EDGSoDCwkLMnq1dFT1//nx4enoy0eHo6IguXbqgfv36RufIz5839J2+5It6ebBiBTBxItCmDTBhgva2TMWGuTEQ0Xki4ojIm4ha/3Mc/rfn5eXliSHvX3n27BkAoEqVKoyVvEBqxpCRkYHTp0+D4zj069ePmQ6NRgMA2LBhA27cuAEPDw8sWLCAmR5jSEgA+vYFEhPZjb91qzZKALT/bt3KTo+MODA3htIilYhBisYQHh4OQDrGEBQUhIKCAnTs2JHZKo1Hjx7h+++/x7Nnz/DJJ58AAFauXCmZ1VElsWIFcOUKu2/pfLRQq5b2dq1actTwKmCxxiCViEHKqaQWLVowVqJFCmmkc+fO4eOPP8bUqVORmpqKrl27YuTIkcz0GAP/bf3kSXbf0q9e1c5ncNyL49tvtWbFOpqRMR8WawxyxGCYjIwMxMbGwtraGg0aNGAtBxqNBocPazODrI0hOzsbgYGBAIApU6YgLi4OBQUFzDT9G1LI7b9sToN1NCNjPizWGKQSMUjNGG7f1lYSady4MaytrRmrAa5du4akpCTUrl0b3t7ezHScPXtW7/bEiRPx2WefQbsoTnpIPbcvhWhGxnzIxlBGpJZKktr8gm4aidVFODU1VUiv8bz//vvYvHmzZJYYF0XquX0pRDMy5kOanwojkFNJhpHq/MKAAQOYabhw4YLe7c8++wyLFy+WbLQAmHe/QlnhowXea+fPB1q0kPc3VCTkiKGMSNUYpBAxxMfH4/r167C1tUWPHj2Y6dBNI61evRpLliyRtCkAbPYrGIvUoxmZsmOxxiCViEFqqSQpGQM/6dyzZ0+my0LPnTsHhUKBTZs2Ye7cucx0VBTklUoVH4s1BjliKE5aWhoeP34MlUqF+vXrs5YjiWWqmZmZCA8Px65duzB58mRmOioS8kqlio9sDGVESsbARwtNmzY1WK5ZTHJzcxEUFASA7fxCWFgYfv/9dwQEBDDT8Kogr1SqOFisMcippOJIKY10+vRpZGdnw9vbGx7l0SyglHTs2BF9+vRhNv6rhLxSqeJgsauSpBAxFBQUICsrCxzHoXLlyqzlSMoYpJBGArQNb2TMj7xSqWJhsZ8aKUQMfBrJ2dlZEhcgqexhICLJGIPUqSiTtfJKpYoF+6tZKZFCxCClNBIgnT0Mt2/fRkxMDFxdXdGhQwemWqRORZmsfdlKJRnLw2KNQUoRgxQmnlNTU5GUlAR7e3vUrVuXqRY+Wujfvz/zSXApU5Ema6W870LGdCzWGKQQMUjJGHRXJLFOa8lpJON4VSZryztdRkRISEgonxeTMYg8+VwGpJRKYj2/UFBQAGtra6SmpuLixYtQKpXw9/dnosUSKGmy9oMP1Ni+/RuMGzcO7u7uzPQlJibi8OHDsLe3h52dnfCvu7s7vLy8THot3XTZaqOb95YMx3H4+eefcfv2bbz//vvo2rWrZHayx8XFISoqCt26dWMtpUxYrDHIqSR9WM8vXLp0CadOnUKDBg2g0Wjg6+sLJycnJlpMQaPRgOM40S8shiZr+/d/gvbtjyM9fTGGDBkiqp6i1KxZE87OzpgyZYrwd65SqXD58mWTXkc3XVae/aL/85//oE2bNvD19cX48eOxadMmSVQTrl27NgYPHgw/Pz8sW7YMtra2rCUJ8JG8MVhsKik3N5e1BOEDExsbi8WLFyMpKYmZlqJLVbdt24avv/4akZGRoozPcRwWL14s9FJu27YtDh48iLt37wqP2bhxIxYvXoyoqChRNBnDJ598goCAAGRkZIg6rqHJ2l9/dUVSUh3k5uaiS5cuUKvVomoqyrBhw3Dz5k2hzpVarYZKpTLpNcyVLlOpVPjll1/g4eGBgQMHSsIUAO3nYObMmWjYsKHJ75U5iYuLw6BBg4x/AhFZ3AGAxo4dS6yZPXs2ASA3NzcCQMHBwUx0aDQaqlq1KgGg6OhoIiLy9fUlAHT8+HFRNJw9e5YA6B3169enrKws4THe3t4EgA4ePCiKpn9jz549BIAUCgWdPn2aiYbQ0FBq06ZNsffOx8eH0tPTmWgqSmFhIS1fvpxWrFhh0vPi44mqVNH+y992cSFKSCg/bQ8ePCi/FysnNBoNawkG2bVrFwEIJmOuscY8SGoHAPL39y/P96xUTJgwgQBQgwYNCACzi0tiYiIBIAcHB+GPsnHjxgSAbt68KYqGc+fOFbu46b4fkZGRgsacnBxRNBni8ePHREQUFhZGlSpVIgC0cuVK0XXk5+fTl19+Sfb29mRtbS0cNjY2ZGNjQ46OjvTXX3+JrutlZGdnm/T4OXO0R9Fzc+eWoygZkzDWGCw2lcRP/LKETyU5ODgA0BZsY4FuGonPlfNprRo1aoiioWiOfsaMGfD19RVu79u3D4B2CSurvGtMTAzGjx+PZ8+eYejQocjKysLo0aMxb9480bVYW1vjP//5D7KyspCfny8ceXl5yMvLw/Pnz9G9e3fRdb0MOzs7kx4v722wXCx28jktLY21BMGc+HIYYuepeYrOL+Tm5iItLQ1WVlaoWrWqKBp0jaFOnTpYvny53v28Mbzxxhui6DHExo0b8ddff6FHjx6IjIyEt7c3Nm7cKJkVLRUNeQ+D5WKxEUN6ejprCXolMQBpRAwAkJycDACoXr26aBvMdC+u69evh6Ojo3A7KSkJFy9ehI2NDfr37y+KnqIUFBRg06ZNAIDQ0FDY2Njgf//7HypVqsREj4yMlLFYY2B1EdaFNwZ+HwMrTUX3MCT+s5NIrDQS8MIYJk2aVKya6f79+0FE6NmzJ7NigwcPHtTbFJWfn4/WrVtj1apVTPS8ylSU+lAVGYs1hpycHOab3PhUEp+uYWEMRFRsDwNvDDVFLGvJcRxq1qyJ1QZ2MEkhjbRu3Tq9266urggMDMSHH37ISNGrS0WpD1WRsVhjAICHDx8yG5s3JqVSKWxwY2EMCQkJSEtLg5OTE9zc3ACIP/HM89NPPxXb7Jeeno6TJ0+C4zgMHjxYVD08UVFROH78uHB74MCBCAsLY2pUryoVqT5URcaijeHevXvMxtbd9czn01lMPhtakcQiYmjVqhWGDh1a7Pzhw4dRUFAAHx8f0Y2KZ8OGDSAiODg4YMOGDThw4ICo743MC16V+lCWjsWuSgKAiIgIZmPr1kliuVzVUI0kPmIQ8+JX0hJU1mmkgoICbN68GT4+Pti2bRvq1avHRIeM3MzHkrDoiIGlMehGDCyNwVCNJBaTz4bIzc3FkSNHALAzhiNHjmDu3Lk4c+aM6KYgT7LqIzfzsRwsOmKQWiqJpTHoRgwsUkmGOHHiBDIzM9GqVSuTK3KWF/7+/szmNsq7qqilc/UqcOGCdpObLj4+bPTIlIwcMZQSlqkkIkJGRobeiiRDqSTWEQPrNBJQcorL3MiTrMWRm/lYDhZtDMnJycx2QBtKJYk1+cxxHPz9/bFv3z5kZGTAxcUFNWrUQFxcHAC2EUNeXh5yc3OhVqtx4MABAGyNgRXyJKuMJWOxxsCvwGEVNbCeY1Cr1Rg+fDgAoLCwEE2aNMF3332HrKwsZGZmwtramkmfiCdPnmDw4MEICgrCkydPUK9ePbRs2VJ0HSzho4X587W358+XowYZy8JijYGH1TwD61VJun2d09PTERcXh3nz5umlkVjUAFKr1QgKCsKwYcMAaPsy7N271+QGL5aMPMlqOvJEvbSwWGPQVpB9dSMGXWMAtNVMa9SowXziubCwEMCLRkp79+7F7Nmz0bBhQyZ6WCBXFTUdeTe0tLBIY9D9JswqYtA1Br4QW05OjnBhNDe6xmBrayuUdmA98Wyo69jGjRsl0RdbLORJVtOQJ+qlh8UbA6uIQTeVpFAoBHPIysoSZXxdY5g2bRpq/ZO3YB0xFDWGKVOmMKuoKmMZyBP10sPijeH+/fvQaDSia9CNGACIvjKJNwaVSoUFCxYI51nsetZF1xjq1q1rsKiejAxPaSbq79+/L444E8nIyMCNGzdYyzCIqZkMizQGhUIru0qVKsjOzsbjx49F11CSMYg1z+Dp6QlA+42cL54HsN/1rGsMv/zyi15fBhmZopRmoj44OBg9e/aU3IIGR0dHvP322zhx4gRrKcVYtmyZMC9rDBa585mPGLy8vPDs2TNERETAw8NDtPGJSEglsTIGBwcHuLm56UULAPtUEv/NZPbs2fDz82OiwdJ5/Pgx0tLS9DYtis3Ro0dx6tQpVK1aVe9wd3cv19IipdkNPWrUKKxZswadOnXCkCFD8MUXX+iVhGFJhw4d0K9fP/zyyy8YN24cazkCQUFBsLa2Nv4JxjSGltqhUqkIAA0dOpQA0A8//FAefbKN5vnz5wSAbG1thXM+Pj4EgE6fPi2ajk2bNhU716lTJwJAZ8+eFU2HLhcvXqTGjRub3DhebOLi4lhLKEZGRgZ99tlnZGdnRyEhIUy1aDQaWr16NVlZWREAAkAqlYrOnz/PVBfPmTNnBF0tWrSgu3fvspZERES///47ASArKyvasmULazkCEydO5N+vYDLiGmuRqST+WykfJYg1AV1QUACNRlMsjRQSEiK0GhVzyeqkSZOKneMjhsTERAQGBgq7ocWCiLB161aDjeOPHj2K3bt3S6It64QJExAdHY1Vq1bhgw8+YDJPxVNYWIjNmzejUaNGWLp0KXJycjBw4ECTQv/yhuM4zJ07F6dPnxYWNvD9R6RAt27dMHjwYDg5OWH8+PFo3Lgxa0kAgO7du6NBgwYYNWoUJk6cyFqOQLNmzUyrQGCMe0jtwD/fFJYtW0YAqG/fvuVnrS8hJyeHunXrRhs2bCAA1Lx5c7p27Ro1adJE+PayY8cOUbQYQqPRkJ2dnV40tX37dlE1qNXqEu/r3r07E01FOXv2LAGgLl26CL+3c+fOMdESFBRE3t7egg7+8PHxkUzUlZCQQH5+fvTVV1+RRqNhLUfgzp07dOrUKUlpIiKKjY1lLaEY+fn5RERGRwzSsP9Swn+TEStisLW1RUFBAaZOnQoAuHPnDtq1a4cePXrg7t27ANj2os7IyEBOTg5sbW1hZWUFAKLvfubHLUpaWhrOnTsHhUKBvn37iqqpKF9++SUA4OLFiwCAb775Bq+//rroOmJiYhAWFoZBgwahS5cuePr0KVJTU/H06VNkZGQgOTlZWGTAkpo1ayIoKAixsbFMdtOXRJMmTdCkSRPWMooh5nynsZg0vwALnXzmqVatGjiOQ3R0NPLy8qBSqcw+ZpcuXXDp0iUAgEajgZ2dHQYOHIi//voLAFtjMDTxzK/gYs3x48ehVqvx+uuvM93sduXKFRw7dkzv3DfffIOUlBT83//9n6ipEk9PT8ydO1e08cqCUqmUmxy9QkjiqsFx3GaO45I5jgs35XlZWVnw9PSERqNBZGSkueTp0aVLF73bw4cPR7t27YTbLIwhMTER4eHhensY+Jy5VL7hHTp0CIC23zJL+GiBR6FQYPjw4Zg/f75k8ucyALZvh7p2XWg4BdQedYHt21kreqWQyidhC4DvAWwz5sFWVlYoLCzEtWvX0LhxY0RHRyMiIgLNmjUzq0iguDFMmjRJb1wWfZ8rV64MLy8vdO7cGYB2LwG/0UYKxlBYWIjDhw8DAAYMGMBMx40bN4RS4ADQtWtXfPfdd2jVqhUzTTIG2L4dmDYNyuxsAIDiUQwwbZr2vrFjGQp7dZBExEBEZwE8NfbxfL7s2rVraNSoEQDxaibVrFlTCKk9PDzQvXt3uLq6CiUxEhISRNGhi729PRo1aoRTp04B0G4AevjwIQBppJKuXLmCJ0+ewNPTk+nafD5aqFWrFrZv344zZ86UyRTkiqBmYtEi4B9TEMjO1p6XEQX2Vw0j4ThuGsdxwRzHBfPnbty4ISxTE7NmEh81TJw4Ubjwuru7AwDi4+NF06GLbjoL0M6/AGwjhpSUFAD6aSRWeu7cuYMDBw7go48+wr179/Dmm2+WWYtcEdRMxMaadl6m3LEYYyCi9UTUnoja89/OU1JShB3HYlZZ1TUGHn71SHJysmg6dGnfvr3e7Tp16gBgawwLFizA7t27cfDgQQBs00hXr15FaGgoVqxYUS5lOuSKoOZD7VbH8Hl3w+dlyh+LMQZddNMjDx48ACBuxODj44OuXbuiQYMGwrn69esDeFF1VWx0jaFmzZqoXr06ALbGUFBQgNGjR+PGjRvgOA4PHjzAkiVLDJbmNjcTJkwo16WNckVQ87Gj5ZfIV9rrnctX2mNniy9LeIZMeWORxpCtk39cvnw5bGxskJKSIuxINjfNmzfHrFmz9M7xKS1Wu3q9vb2FVTWTJ08WDIHlHAPHccLuXSLCrFmzUK9ePYtf/SO37jQv6zLGYpJ6PaLhCQ04RMMTk9Tr8XOGPPEsFpIwBo7jdgC4BKAxx3GPOI57+2WP1+15oFarhe5gYkUNVlZWQr9lHn5lUnZ2NpNSBra2tmjRogU4jsPUqVMFDSwjhqJj9+vXT1KFxUqL3LrTvJw/D/xGY1GXoqEgDepSNH6jsXKjIxGRxFc3IhpThucKE60RERHo2LFjuel6GUUvevwcg0ajQXx8vDAZLSbt27dHrVq1ULduXckZg6OjI9atWyeJ5bNlpTQVQWVkLAlJGENZ4XPWrNp8Atq9BDy3b99mZgz8BjJ+gxvrVBLPypUrJVkqoDTI31xlKjqSSCWZStFvnfzeAVZtPoEX/RgArTGwoE+fPsLKHylFDH5+fkJ9KRkZGeljkcbg5OQEAGjVqhWUSqWwmYtlxGBv/2IVRXi4SZU9yo26desKE7tSMQY7Ozts3LhREhvtZGReNUq7AtAiP618H4R+/fqhc+fOwkWQVf/nxMREWFlZCUX8wsPDERQUxLTGvxSMAdDuNuaX8srIVFRYLDgxhvv372P//v0mP88ijcHJyQk2Njbo3bs3+vTpA0C7KicnJwePHj0SXc/s2bMREBAgfCu+evUqFi1axPRbshTmGLp06VJsWa+MTEUkODgY5yU4+WRtbY2pU6eavPHWIo3BysoKQ4cOhY+PD/z9/QG8cGwW8wyjRo1CYGAgcnJyAGiLxr322mui69BFChHD5MmTS+zPICNTGqT6zdzLywsDBw4UildKBX6P17Rp00x67yzSGADtxjaVSoW2bdvCxcUFeXl5ANgYQ//+/YV5D57atWuLrgMAtm3bhvDwcOGPQK1WY9OmTUxqOLFOY8lUPP7++2+sW7dOcgbh6uoKlUqFPn364P79+6zlCPAFR/fv34+tW7ca/TyLNYa6desC0EYPvXr1Es6zmIC2tbUttuHN1I5J5YVGo4G3tzcuX74MABgxYgSWLFkidLuTkbFkOnbsiG+++Qb+/v6IlVhRvWbNmiEpKQm9e/fG48ePWcsBoI0YeExJ61qsMejCp5MAdktW33zzTb3bUVFRTHT069cPRITc3FwA2sZBgwcPlr+9y5hEWloas7pfL0OhUODdd9/FiRMn0KJFC2zatEky0QNfUj4mJgb+/v5ITU1lrEj/C6opvWIqnDHwvZfFxs/PT6+lJqu9DDVq1Cg2vzFkyBAmWmQsFwcHB7zzzjto3LgxJk2ahJ9//hmhoaFMCiAWZdKkSbC3t0dGRgamTJmC/v37M1l0UhTdXiO3b99G//79mTTu0kU3YjCFCmEMHh4eQhG7mJgYYb5BTKysrDB69GjhNitjAPTbZzo6OsLX15eZFimj0WgQFxf30seI3YynoKAAgYGBWLdunTgDloBSqcT27dvRuHFjbN26FTNmzECbNm2wePFi5t/QnZ2dMVank1tERAR+++03psvDARTrIOnu7o5ff/2VkRotpU5pE5HFHfXq1aPCwkLSZfbs2QSAAFB4eDiJSW5uLp08eZKCgoJIoVCQnZ0dAaCUlBRRdfAEBwcL78WgQYOYaDDEgwcPKCwsjPLy8lhLISKiAwcO0Lhx42jPnj0lPmbOHKIqVYjmzjWvlkePHtHnn39Obm5uBIC6dOli3gGNJDc3l/r06SP8PZ0+fZq1JCIiCg0NJQBkb29P48aNYy2HiIhSUlIIALVp04YaNmxIkZGRrCUREZGtrS1NmDCBqlevTgCCyYhrLPOLfGkOAHTq1Cm9//yhQ4eEP97ff/+9rO+lSQwaNIgA0JYtW2jMmDHUrl07AkBnz54VVQdPYWEh2dvbEwDJfGiIiN59910CQCtWrGAthYiIunfvTgBIqVRSTExMsfvj47WmcP06kYsLUUKCeXTcv3+fJk+eTC1atCCFQiEYg0ajMc+AJpKdnU09evSgNWvWSEYTEVFAQABFRUWRWq1mLUVg2bJllJ6eLilNQUFBlJ+fT2q12mhjsNhU0vbt24WfiQi+vr7CZq7r16/j2LFjOHbsmCha+FTNiRMnsGrVKiGkZJVOUigUgoby6FZWVv773/8iOjpaeD9Y9n3muXHjhtAjW61WY9q0aXj+/LneY8RqxtOgQQNs2rQJYWFhyMzMxOXLlzFt2jTmqREeOzs7HDhwAKNHj5bUIoYtW7agbt26ktors2DBAlSuXFlSmnr16gVra2uTNFmsMezdu1eYSzhz5gxGjRollMr4/vvv0bdvX9Euir179wagNYZatWoxNwYAeP311wGwazWqS0JCAlq3bo2rV68CAM6fP4+AgACmE3Pf/lMz28nJCevXr8eRI0f0KuSyasZjZ2eHDh06YOLEiZK6uFSqVElvcYUU4Fv8SgkpGWdZsEhjsLOzQ1paGg4fPgxA+409Pj5eWB6WlpYGAHqtN81Jy5YtUaNGDSQmJiI8PFwSxtCvXz8AkMRaby8vL6SnpwsNlpYtW4aGDRsyi2YSExPx22+/YejQobh9+zamTp1a7AMtN+OReZWxSGNwcXEB8CKdxHEcFi5cqPeYypUrCw18zA3HccImuxMnTkjCGPj+xjExMcw08PCbEXns7e3xwQcfsBED4I8//sD27dvx+++/w83NzeBjrl7VNuLhuBfHt98CV66ILFZGhgEWawwcx+HgwYNCj+Xhw4cLLT4B7RJWMcM6Pp0UFBQELy8vqFQqxMfHIy0tDUQk+vpvNzc3WFlZITk5WajhxAovLy+92++++65opm2IKVOmICAg4KV/H+fPA9rFGfqHBOukycjokZaWVuYNthZpDDY2NujWrRvy8vIQGBgIQLuPYD6fEEbpN3aUFj5iOH36NNRqtfCN/cKFCwgICBAMTCyUSqXQRY715p86deoIF2FbW1vMmzePqR6+Z4WMTEWkoKAAb731VpkWL1ikMQAQNrjobiAZP348nJ2dAaDYChNz4+7ujqZNmyInJwft2rUTxh86dChOnDghpL/EpE6dOgDYzzOoVCohZfPOO+9IbhJTRqYioVAocObMGXz//felf41y1CMqAQEBsLGxwenTp4WCVSqVCu+//z4A7cWQrxckFnw6KTIyUgjl1Go1vLy8mKxWkIoxABDSa7pRnYyMTPnDr2ZbuHBhqSu9WqwxVKlSBf379wcRYceOHcL5jz76CFZWVigoKMCFCxdE1cQbQ9WqVfXOF82xi4WuMeTl5TGdDK9bty7efvvtEid7ZWRkygfeGHJycjBp0iQUFhaa/BoWawzAi3SS7mY3R0dHoYjc8ePHRdXj6+sLpVKJ+Ph4vaWYYhvDtWvX8NVXXwlRyokTJ9CmTRuEhYWJqkOXxo0bY8GCBczGl5ExF/wybKmg27Xx4sWLWLNmjekvYsz2aKkd7dq1IyKinJwcqly5MgGOhvzOAAAgAElEQVSgW7duCVvAAwMDCQC1bt26jJvJTadr164EgIYPHy6U6Pjvf/8rqoaCggLy8PAQxucP3fdIbFJTU5mNLSNjTqZNm1asdhtLcnJy9D73KpVK+OyjopfEALQrXAICAgDoRw39+vWDSqVCaGgokpKSRNXEp5MqVaok7MysV6+eqBqUSiXee+89vXM2NjZ6y3nFhsXku6mIXUlVpmJw7do1fPrpp6xlCBTdMZ+Xl4dJkyaZtGTeoo0BeJFO0i27a2dnh27dugHQ7isQE94Yzp8/j3fffRcAmzmGqVOnws7OTrjdtGlTZl3lLIUVK7Qb2OTdzTKm4Obmhq+++go7d+5kLQWAfioJ0FaAcHZ2NqkEuMUbg6+vL9zc3BAdHY2LFy8K5/nmPWLPM7Rv3x5OTk54+PAhAgICYG9vX2znrxi4uLhg/Pjxwu2WLVuKrsGS4GsjnTwpTk0kmYoDv6Bi8uTJuH79OmM1WmOwsbHB7NmzAWgzCMePH8ekSZOMfw0zaRMNKysrjBkzBoB+OqlPnz4AtMagTa2Jg1KpRPfu3QEAoaGh+Oyzz2Bvby/a+Lro9niVjeHliFVJVaZsXL9+vVSrbMwJbww5OTkYMmSI6OnronAchwMHDmDlypVwdnbG3bt3Te5safHGALxIJ+3evRv5+fkAgBYtWqBmzZpISkoSfTWObnmMuXPnijq2Ls2bNxd2ZMvGUDKsKqnKmE5sbCzGjh2LgoIC1lIEdJdgP3r0CMOHDxeti2RmZqbB83369IG1tTUGDBgAANi/f79Jr1shjKF169Zo2rQpnj59KvRg4DhOL52Un58vlH02N7wxnDx5knnpZD6clI2hZORKqpZD586dsWvXLgQEBIi+gbUkiu7NuXDhAmbOnClKpuK3335DaGhoifcPHToUgLZwpClUCGPgOE5vTwM/Cc0bwx9//IEBAwbgxIkTouhp0KABPD098ezZM+Y5x/79+6NDhw5C3SSZ4siVVC2HGjVqoH79+jhw4AAGDx6M7Oxs1pKKGYO3tzeSkpJw7tw5s49tbW2NUaNGvTRyUKlUuHz5MhISEox+3QphDADw5ptvAgAOHDiAx48fo3379kJD9QsXLuDEiRNQqVSiaOE4Tq95DwBm3bgUCgV+/PHHCtNAxBzIlVRL5uzZs6JXBv43fHx8AGhTtX379hW9LlpReGPgdTk4OODAgQPCykhz4ujoiIiICMycObPE+3v16gUiwp9//mn061YYY/Dy8oKPjw9ycnJw6tQpfPTRR8UcW8yKq7rzDHfv3sVnn30m2thFadeuHbOxZSybpKQkdO7cGTdu3GAtRaBLly7Cz+fOnUPv3r3x9OlTZnpcXV0xa9YsHDlyBI6Ojrh48eJL0zvlCV9hYevWrfjf//5n8DFDhgwBYFo6qcIYA6BfImPkyJHo27ev3v1iGENBQQE2btwIBwcHANpoxcfHx6QwTkZGKrzxxhtISUlB+/btsWjRIknk9flv5jxXrlxBjx49mLWxVSgU+Pbbb+Ho6IgJEyYAAH766SdRxtYtvTNjxgxEREQUe8ygQYPAcRxOnjxp9OtWKGMYMWIElEolTpw4gaSkJPz44496m7zEMAZra2tER0cLqwHy8/Px9OlT0dJYMjLliVKpxPvvvw+1Wo2vvvoKbdq0QWRkJFNNzZo1g5OTk3DbyckJnTp1wsGDB5lp4lO1M2bMAKBtByBGDxZdY8jKysLo0aOLrYiqWbMmOnfuLKzYNAaLNIacnByDM/6urq7o27cvNBoNdu7cCS8vL3z++efC/eY0hqioKKG5/aJFi4qVwbC1tTXb2CXx7NkzJEpszWVBQQFycnIQHx/PWgoAbbmA6Og8yZTCuHnzJnx8fNC2bVtJfDsHtB3v+Aj4/fffR/369ZnqUSgU6Ny5MxwcHKBSqeDs7Izly5dj8uTJTHUB2iXivr6+AIDg4GCzj8f/XnhCQkIMFqscOnSoafOMxhRUktoBgK5fv26wgNSOHTsIALVv356IiPLz86lFixYEgPbs2WNiOSrjmDVrFgGgjRs3CueOHDmiV8hq4cKFZhm7JH744QeysrKiuXPnijpuSZw+fZp+/fVXsra2Jj8/Pxo9ejRrSURE9PDhQ7Ky+i85OuaTRN4qSk1NpZ9++om1DD0WLlxI58+fJ7VazVoKEREtXbqU1q9fT6dOnaLs7GzWcvS4d+8ePXv2TJSxUlJS9K4zzs7O5OjoSPv379d7XGpqKiUmJhpdRI/5Rb40BwCaN2+ewTcqKyuLHBwcCADdu3ePiIguXrxIHMcVe7PKiw0bNhAA6tGjh975kSNHCr+wzz//3Cxjl8SZM2cIANWrV480Go2oYxviwYMHZGVlJbwfc+bMYS2JiIguXHhIVlbpdPWqmlxciBISWCuSJvn5+awl6PH48WNJ/F2zJjc3lwBQ06ZNCQD5+vqSRqMp0SyNNQaLTCUB2o0dhrbG29vb44033gDwokRG586dMX36dLOlkoYPHw5ra2ucOnVKL0WyZs0aVK5cGYD4qaQuXbqgatWqePjwIcLDwwGA6Zrv+vXr69Vq8fDwYKZFl82bq2LcODXat7eSN7W9BKkVYHRzc5OXYEPbtfKtt97CuXPnYGNjgzNnzuDRo0d6c6ulwSKNwcbGBgkJCTh9+rTB+3VXJ9E/cxFfffWV2S5Gut3kdu3aJZx3c3PDl19+CQCiTz4rlUoMHDgQgHY7/DfffIN9+/aJqqEon3zyiXCBkYIxJCQAv/9eGcuWaUuCy6UwZEzhr7/+Yi0BALBx40ZUrVpVWPCi29GytFikMfC1/XWL5unSs2dPVK9eHZGRkbjyz/ZVZ2dnNG/e3Gya+A12v/32m975GTNmoH379qIaw+PHj7Fnzx40bdoUALBixQp8+OGHzDbZ8fDtPQFpGINcCkOmLHzxxRfMKxsAL8psjxs3DkDJ10WTMCbfJLWjefPmBIAqV65MOTk5BnNps2fPJgA0c+ZMY1J1ZcbQ3AbPtWvXaMuWLaLoICIqLCwkPz+/Yh3cfvnlF9E0lERsbCzZ2NjQo0ePWEshHx8ysN9Ze15G5t/w9/enRo0aUUZGhmhjXrt2rcT7cnJyyMnJiQBQWFiYwcegIs8x2Nraok2bNnj+/HmJa5f5dNKuXbtEqcSoO7dRNJRr27Ythg8fbnYNPAqFAps3bxY6yPGwjhgAbaTw3nvvoWbNmqylyKUwZMqEg4MDIiIi8P7774s2ZmBgoF66WpeSOlqWBos0BkB/HsEQ7du3R8OGDZGSkiJa8Tw+nbRjxw5hboOn6Hpjc+Pl5YVVq1bpnZOCMQDA4sWLmVed5ZHbecqUFv4zvWXLlmIpZHPh6OiIadOm4eHDhwbvN9TRsjRYrDGMHj0aHMfh0KFDBuukFK24CgC3b982q6aePXvC1dUV9+7dQ0hIiFnHMoZ33nlH6McASMcY+JVaUqA823kmJADNm7+o0CqRuUkZM6EbkU+fPr3Ei3V54ujoiOfPn2PMmDEGdzL7+vrC3d0dsbGxOF+G0FcSxsBxXF+O4+5xHPeA47iFxjzH3d0d3bt3R0FBAfbu3WvwMbwx/PHHH9i1a5fZd0ZaW1tj5MiRAIpPQrOA4zhs3LhR2DYvFWOQCuXdztPNDdD97vHPn4JMBUU3C5CRkYExY8aYPW3Nf5avXLmCTz75pNj9CoVCyFyUJZ30r8bAcdwOjuMWcBzXj+O4aqUeqeTXtwLwA4B+AJoBGMNxXDNjnvuydNKOHTtw4cIFeHh4CDVEUlNTy094CeimkwoLC5GSkiJaNydDeHp6YvXq1QAguZaIrCnPdp6GaiSmpspRgzkomqZlRdH08JUrV8xeRVm3NtLKlStx9OjRYo/hr4t79uwxqT6SLsZEDD8DyAYwHEAQx3H7OI5z/JfnmEIHAA+I6CER5QPYCWCIMU8cPnw4VCoVzp49i9jYWL37GjdujGnTpiEuLk44V1Izi/Kkc+fO8PT0RHx8PPbv3w9/f3+kpaWZfdyX8fbbb6NPnz5yxKBDebfzLNKrRUCOGsqfbdu2sZYAoLgxzJ8/HyqVyqxfQHWNAQAmTJhQrHKzt7c3mjdvjmfPnuHIkSOlGscYY6gD4AyA6UTUGsBeAEtKNZph3AHE6dx+9M85PTiOm8ZxXDDHccEpKSkAtFUV+U1chlYCrVy5Uu8cX+TOXISEhODAgQPo1KkTAGDkyJEIDQ0VxZBeBp9SklJunzXluYfhZRXV5aih/Pn1119N7mFsDipVqoQBAwZg/PjxALSbShcvXoyqVauabcyixpCSkoJx48bpZQMMza+azL+tZwXwfwAOAHgAIATAVgDRAHoCqGbMmth/ef0RADbq3B4P4LuXPaddu3bCutx9+/YRAGrRokWxNbsajYYGDRqkt5a/sLCwxHXAZSU1NZU8PDyK7R+4ceOG2cY0BanVu2FJee5hMLzo9cVRtWr563+V8ff3pxo1atCTJ0+Y6rh9+zbl5OTQyZMnCQDVrVvX7PWbwsPD9a4tPXr0oNmzZ9PZs2f1HhcdHU0AyNbWltLT04XzKK8ieroXfwBVAPQGkAxgM4CrxgzyL6/fGcAxndsfA/j4Zc/RNYbc3FxydnYu8QKckpJC7u7uwhup+yaZg7Nnz5JCodD75V24cMGsY8qUjTlziKpUoVJXV/03YwDKV++rTt++fQkAjRkzhrUUIiJSq9VUq1YtAkAXL14061gxMTHk7OxM8+fPJwDUqVOnEh/btWvXYhtbjTUGY1JJxzmOi+Y47giAzwHMA7CDiCYT0WtGBiYv4yqAhhzHeXEcZwNgNLQRilGoVCqMGDECgOGwydXVFdu3bxe2jZs7ndS1a1e9HhCAOHMbMqWjvFcmGcLevvxf81WG/yzv2LEDgYGBjNUAVlZWGDVqFADzr0asUqUKjh49ik8//RT29vb4+++/8eDBA4OP5dNJv/76q+kDGeMeAKwANAcwDMBAAEpjnmfsAaA/gAgAkQAW/dvjdSMGIm2tfwDk4eFRYqpo8eLFBIDu3LlTosOWF2q1mrp16yZEDIGBgWYfU6Z0zJmjPfify9KTQaEwHC3Y2JSPVpZIKQ2pmx6uVq0aJScns5ZEV65cIQBUvXp1KigoEGXMsWPHEgBasmSJwftTU1PJ2tqaOI6jx48fE1E5ppKkeBQ1hsLCQiG3f/r0aYNvklqtJl9fX7py5UpJ73O5EhsbS1WqVCEAtHXrVlHGlDGN+HhtCik+Xnv4+RE5O5vek4F/bklppIpQe+nYsWMUHBzMWgYREQ0ZMkQvVTtixAjRNRS9+Gs0GmrQoAEBoGPHjomi4fDhwwSAGjVqVOLcxuDBgwkAffPNN0RUvqkkyaNQKDBmzBgAJYdNVlZW2L59u2hVTj08PLB582YAcipJquiuTFqxArhxA/DyMn1l0ooVwIUL2p+PHQNcXIDQUEClAqZNqxi1l2JjY7F48WLWMgC8SCXx7NmzB7t37xZVw5o1a/SWf3McV2KFZXPRu3dvVKtWDREREbh27ZrBx5R2dVKFMAbgxRuwd+/eEjeUubu7w9vbWzRNQ4cOxbvvvisbg0S5ehX49ltt+YpvvwWePQNCQoy/kCckAN27A1u2AEql9lyfPsDTp0Dr1kBeHsCwP325EhcXh4MHDwpl7FmiUCgEc7CyssL69esRHR0t6j6dU6dOYcOGDXrn+C+nv//+O3JycsyuQalUCnMbJV34Bw0aBEdHR1y/fh137941+rUrjDF4e3ujZcuWSEtLw+HDh1nLEVi1ahXq1avHWoaMAfjqqnPmaA8iYOpUIDn53yehExKAzp2BS5eA2rWBkjaYenmVv24W8BtFiy6sYIGtrS127tyJpk2borCwEHXr1sX8+fOLRRLmJC8vDwsXLkRSUpJwrkmTJmjbti0yMjJw6NAhs41979494Wf+C/HOnTsNVjaws7MTKjubEjVUGGMA9MOmrKwsfPfdd4wV6f9iZKRH0R3QABAbC3z0UfGqq7qVWD//HIiJ0ZrJ/fvA5MlAfLw2jZSQoDWauXPLlka6ceNG6Z9czvDGcPToUVy8eJGpllWrVmHEiBEYMkRbIIHFZre8vDykpaXhww8/1DsvRjrphx9+EFJHHTt2RP369ZGYmFhiR7lSpZOMmYiQ2lF08pknJiaGAJBKpSI/Pz/q27evEVM4FZ+MjAxJNU6XkhbdVUn8ZPSbbxJZWWknoufO1Z7v04do6lTt/VOnEqlURI0ba/+tUaP8J51TUlLI19e3XP6P5UHjxo2Fyd5evXqxlkNERJcuXRJWI4r9N9WuXTvh/Thx4oRwPi4ujjiOI5VKRc+ePTPL2FOmTKG2bdsKE+CffvopAaCJEycafLzuPgtU5FVJbdq00fuPazQamjFjBnXr1o3s7OyEX5iPiMtBMjIyKDc3V7TxjCEzM5MSEhLonXfeKdZVjhU5OTm0f/9+un79OmspRFTyDmiOIxo7lsjFRWsETk5aE7h+Xbv8VKUieu01861C+uCDD6h58+Zlf6FyQKPRkKurK7m7u5OHhwd99tlnFBMTw1oWFRYWUs2aNQkAhYeHizp2ixYthOtMw4YN9TpJ+vr6EgDatWuXWcaeMGECAaA1a9YQEdHdu3cJADk6OlJWVpbB58ydO7fiGwPHcRQbG6v3H09KStJ1RQJA3t7eJrzdpWf16tXk6OhImzdvFmU8Y7hw4QK5u7sT3wZVCm09iYhGjRpFKpWKxo8fz1qKwNGjRwmoSSpVJkVF5dKcOVozcHHRmoNKpY0iVCqi0FBtNMFXYImPf2EeZdkDUZTMzEy6fft2+b1gGcjLy6OwsDC6e/cuxcfHs5ajx19//cXEpPilqfyhu5fg77//pps3b5pt7NGjRxMAqlSpknAd5COYnTt3GnzOgwcP6NSpUxXbGADQ999/X+w/f/LkSeI4TvhleXl5GflWl41NmzYRAGrfvr0o472M7OxsWr9+Pc2bN0/vD3fq1KmspdGePXuoUqVKBICsra0ldZGZNauQZszIocjIbGFvw5w5WgOwsdGmlaZOJWrTxjypIxnLomhNNJVKRREREaKMPWzYMGHcIUOGEJH2yykAGjRo0EufW+GNoaQ85yeffCK8aa6uri99k8qLrKwsoV6TWBvoXsbmzZuL1Wtq1qwZa1lEpK0l1ahRIwJAixYtYi1HoKSUklKpNYc2bbRmoVTKpiBDVK1aNVKpVASAmjZtSmvXrhUtYzBw4EC9z/a+ffsoPj6eFAoFKZXKlxYXrPDGoFQq6enTp8X+4wUFBeTj4yO4uFjwObxJkyZRXl4e/fzzz6KNbYidO3eSUqnU+wMy9H6xICcnhxYtWkQ1a9ak7Oxs1nL0KMkgZDOQ0cXPz49CQkII0FYw1Z1jMDf+/v56n2t3d3dKT0+n3r17EwD66aefSnxuhTYGBwcHAkC//vqrwf98TEyMUI5CrBov9+7dE/5IRo4cKerEd0ns37+fbGxshD+gQ4cOsZakR2hoqCQirJIoz9LcMuVLVlYWJSYmMhs/MzOTiIhatmxZbGWSufHz89NLYVWvXp1mzZpFW7ZsIQD0+uuvl/hcY43BIvcxODs7A9D2cjZEnTp1hHIU5q6mCgDr1q3D1q1bUb16deTm5mL37t2Ij483+7j/xuDBg/Hnn3/Czs4OAJivPy9Kq1at8Npr5VGg1zzwG+CKHhWhxIWlc/v2baxbt47Z+JUqVQIA9OrVCwAQFBQk2th5eXl6e6OioqKwcOFCDB06FLa2tjh//jxiYmLKNIZFG8PRo0eRm5tr8DFDhw7FzJkzRTGGvn37Yv369UhOThbOxcfH82kvpvj7++Po0aNwcHDABb6gj4yMhXPz5k389NNPpe5pXF707t0bgLjGMHPmTOzZswdt2rRBXl4ezp49i1q1asHJyQmDBw8GUPYNdhZpDCqVCt7e3sjMzCxxtx+gbZbt5ORkdj2enp4IDAyEki+YA62rP3v2zOxjG0O3bt1w8uRJPHjwAAUFBazlyMiUmbCwMCQmJopePE8XIkK3bt1gY2ODkJAQPHnyRJRx33zzTXAcB39/fwDA8ePHhft0dzmX5YupRRoDoI0IgBfppPDw8GKPsbW1FaILc9OtW7diJTikkE7i6dChAw4ePIjHjx+zliIjU2bCwsIAAGvXrmUWmd+4cQMPHjxAly5dQEQv/ZJqDvr06QNA3xj69u0LFxcX3Lp1Czdv3iz1a1u8Mezfvx9r1qzBokWLGCsCpk+fjunTpwu3pWQMgDanX7duXdYyZGTKDG8MwcHBuHTpEhMNDx8+xBdffMEknQQAXbp0gb29PW7duiV84bOxsRE6Wpaqc9s/WKQxPHr0CLt374ZKpUJycjI++OADg5UFWbB27Vp069YNgPSMQUamIpCcnKw3n7d27VomOqKiohAYGChUTw4KChI1elGpVPDz8wNgOJ20Y8eOUl8XLdIYnJ2dsWLFCr2+C1IxBhsbG+zduxeenp6yMcjImAE+WuAJDAwUqr+KSVRUFIgI+/fvR5UqVRATE1Ni/2VzYWiewcfHB3Xq1MHjx49x9uzZUr2uRRqDg4MD5s2bp3dOKsYAANWqVcP+/fuRnp7OWoqMTLmj0WhKbIYlBkWNobCwED/++KPoOqKiogAAu3fvRocOHQCIn07ijSEoKEhoVKRQKErduY3HIo0BAJYuXYqmTZsKt8Xs3mQMrVq1wty5c1nLkJEpd/bv329SN7DyJiwsDG3atBH2EixfvhyRkZElLl03Fw8fPgSgvfY8f/4cAHDixAlRNTRp0gQeHh5ITU3FgQMHhPO6HS1L875YrDHY2tpi69atsLKyAiCtiIGnZs2arCXIyJQrRIT/+7//E74ts2Do0KG4fPmykNvv0aMHdu/eDVtbW9E0EBGio6OF25cvXwYA/PXXX1Cr1aLp0F22+tVXXwnnmzdvjlatWiE9Pb1UHS0t1hgA4LXXXsPChQsBSNMYZGQqGocOHUJISIjeRVFsBg0aBGtra9SpUwcAEBsbK7qGxMREvW/iGo0Gjo6OSE9PR3BwsKhaeGMIDg7Wm9csSzrJoo0BAD777DN4e3tLLpUkI1PR4KMFAEwjBh6WxlD0/9+gQQPBKMSeZ+jZsycA7e9n+fLlwvkxY8aA4zgcPHgQaWlpJr2mxRuDjY2NXkpJRkbGPBw/fhxXrlwBAKYRAw9vDGWtC1QaoqKi8Pbbb2PatGkAgIkTJ2LTpk0AxDcGFxcX4fq3fv16oeJC7dq14evri/z8fAQGBpr0mhZvDADQunVrfPzxx6xlyMhUWIgIS5cuFW5LIWLw9PQEwCZiGDhwIDZu3CgUgbx9+zYGDBgAjuNw6dIlZGZmiqYlNTVVSKXn5ubihx9+EO7j00mmbnarEMYAaLeCy8hURIgI27ZtQ0hICDMNp06d0qvOy6/hZwnLVBJfg61Zs2YAtMbg4uKCdu3aQa1W48yZM6JpuX//vt7ttWvXIjs7GwAQEBAAGxsbnDlzBo8ePTL6NSuMMcjIVESio6PRr18/rFy5Eq1bt2amQzdaAIDMzEw8ffqUkRotvDFEREQw08Avmb979y4KCwuZlMcoagxPnjwR0lrOzs4YMGAAiAg7duww+jVlY5CRkSCFhYVYu3YtWrRogWPHjmHOnDngOI6JlvPnzyM7O1sov8AvC2WdTqpVqxasrKzw/PlzZptJq1Spglq1aiEvLw9RUVHMjEGhUAh/Hy1btsTGjRuFSsrjxo0DYNrqJNkYXgGktpRXKuXIeRISEhASEsK8tj/PnTt38Prrr2POnDnIysqCq6urkCtmQceOHXHlyhV4e3sDAD799FOsWbOGeckXpVIJFxcXANpNd6zQTSe1aNEC9vb2uH37tmiVjAsLC3HmzBl4eHgAAKpWrYqrV68KKzX79+8PJycn3Lhxw+jXtGhjuH37NmsJAhqNBoWFhSbP/puTvLw8hIeH45dffmEtRSAzMxOLFy/Gnj17WEsR0Gg08PX1hYODA9q2bYspU6bg559/RlZWFhM9Xl5eQkllAJgxY4aom7eKYm1tDQC4desWAKBFixaYM2cOBg4cyEwTj0KhvYTp7voVG94YgoODsW7dOqGI5smTJ0UZ/4svvsDrr7+OVq1aAQCuXLkCKysrqFQqANoILyAgwLQXNab/p9QOW1tb+vrrr+mNN94wrkmqmTl+/Dg1btyYhg0bRn5+fqzlEBFRWloadezYkWrXrk2tWrUijUbDWhIREc2fP58AkFKppD/++IO1HCIiunz5MvF9xF1dXWnBggX08OFDpppSUlJo4cKF5ObmRgkJCUy18ISEhNDmzZspKSmJtRQiIlKr1eTk5EQAqH79+sx0/PTTTwSA/Pz8qFGjRnTs2DHavXs3PX36VFQdixcvFnpB//3333r3BQcH048//mh0z2fmF/nSHPx/fsCAAWV+M8tCbm4uffnllzR48GDhF1KtWjWmmoiIkpOTafXq1WRnZyfoOn/+PGtZlJ6eTgEBAYIma2trOnz4MGtZpFaracyYMfTrr79Sbm4uazl6BAcHs5YgWS5evCj8LQGgiIgIJjrOnDlDAKh69eoEgNnvbOfOncJ7sXTpUoOPMdYYLDqVxLpNpUqlQsuWLXHo0CHhXEpKClJSUhiqAlxdXWFvby+E2QD01jazwt7eHosWLcKPP/6ICRMmwMvLC8OGDRO98FhRFAoFfvvtN4wdO1YIv6VCu3btWEuQLEXTR7qfQzHhU0l8a8+y9lsuLY0aNRJ+1i3DXSqMcQ+pHfjHFaWSttm2bZveN5fTp0+zlkRERA8fPiQ/Pz/h23liYiJrScV48uQJnTp1igoLC1lLkbEwmjVrpve569WrFzMtrq6ugg43NzdSq9Wia8jIyBA0WFlZUVpaWrHHQI4YxGP8+PF6XaT4STrWeHl54eTJk/juu+9gbW2NDRs2sJZUjKpVq8LPz08vupGR+TcePHhQbO5PTukAABiaSURBVPHJmTNnkJGRwUSPbiXl+Pj4UjfIKQsODg5wd3cHoF2pdOrUqVK/lkV+Gvk67FJZXggAs2bNwueffw5AWqulFAoFZs6ciRs3buDOnTuilgSWkTEXN2/exPr16zFjxgwAwJIlS7BkyRJcv36diZ6iX2xK2yCnrBhKJ+Xn55tsmBZpDF5eXrC3t5dMxMDz+eefY+bMmZKJGHRp0KAB/ve//0luT4OMTGkYNmwYpk6dCqVSCQBwdHTExx9/DF9fXyZ6iu4C37t3L5Mud40bNxZ+5o3h0qVLJs+/WKQxqFQqrFq1SlIRA6BtmrF27Vq0bduWtRSDKBQKyU2uylg2T548EZrUsECbNgezXeEAkJaWpleHyMvLC1ZWVjhy5IjoWviIwcbGBpGRkYiMjERQUBD27t1r0utYpDEAwPTp04U65FJCoVDg66+/Fv5gZWQqMnPmzEFSUhKz8aVgDI8fP9arQ9SpUyfExcWhfv36omvhjYEv8nf8+HEcP34chw8fNmnDpsUaA8dxWLZsGWsZBrG2tmb6hyojIwYHDx7E9u3bmX4J4ss+sFy80Lx5c4waNQoODg4AtFGUvb09WrZsKboWPpXEp9kPHjyI4OBg5OTkmBTBWKwxAC8moWVkZMQlPT0d06dPBwCmxlA0YmC1h4jjOKE/RHJyMhMNAFC3bl1YW1sLHdtOnTolvEempJMs2hhkZGTY8NFHHwlF4qRkDMuXL2dWDpxPHbEsR65UKgUdderUQU5OjnDfwYMHjX4d2RhkZGRM4uTJk3p7YqSQSuI4Drm5ufjll19w7do1Jlr4NA6rvRQ8/DxDkyZN9M6/EnMMMjIy4pOZmYmpU6fqnZNCxKBQKBAYGIinT58iODiYiZYWLVoAgNA9jRW8QdnY2JT6NWRjkJGRMZpFixYVa9AjBWPgOA7r1q0DAGbGwHfYKygoKPaeiNnqk48YivaD4PtTGwNTY+A4bgTHcbc4jtNwHNeepRYZGZmX8/DhQyQkJGD48OF656VgDAkJCTh37hwAMEslNWzYUNCku4Q3IyMD8+bNE00HbwxZWVno3LmzcH7JkiVGvwbriCEcwDAA4hcWkZGxUMLDwxESEiL6uPXq1cPu3btRr149AMDUqVPRs2dPScwxnD9/XjgXExPDZHWSbjMl3W5pe/fuxbVr15CamiqKDj6VlJiYiP79+wvnTdmJzdQYiOgOEd1jqUFGxlJIS0vDnDlz0L9/f6EJPQv41S2jR4/GwYMH0b49u2CfN6WLFy/qnWcRNXAcJ3S7Cw0NFc5v2bIFgLY0hRhUr14dlStXxvPnz/V+NxZjDKbAcdw0juOCOY4LZt3vQEZGTDQaDX755Rc0btwYa9euxdy5c5m1+nz48CHu3LkDR0dHvP7667C1tRUiCBbwxqC7LBNgN89gZ2cHQBvVAUBkZKRQabWoeZkLjuOEqEGlUgmT0DExMUa/htmNgeO4ExzHhRs4hpjyOkS0nojaE1H7atWqmUuujIykCA4ORpcuXTB58mQkJyejWrVqmDZtGjM9fDG2Pn36lGnVS3nBG0PXrl2Fcw0bNmRmDI6OjgCAu3fvAgC2bdsm3CeWMQAv5hkiIyPh5uYGQD+K+TfMbgxE1IuIWhg49pt7bBkZS+XJkyeYNm0aOnTooFek7oMPPmC6459PIw0cOJCZBl34OYaRI0cC0PYkCAsLY6bPxcUFgPaCrNFosHXrVuG+K1euiFYRmjeGiIgIeHh4AADCwsKMfr7FpJJkZF4V4uPjMXDgQGzYsEFvYrdKlSp49913menKzMzE6dOnwXEc+vXrx0yHLvz7w28qq1GjBlQqFaZMmcJED28Mz549w/79+/XSNzk5OSZ9ay8LfCrp3r17QqovIiLC6OcrzaLKSDiOewPAdwCqATjEcVwoEfVhqUnG/Dx9+lT4AEmBwMBAbNmyBS4uLqhatarwL/8zn0sXCzc3N1y6dAnDhw/Hvn37hPOzZ89G5cqVRdNRlBMnTiA/Px8dO3ZE9erVmenQhTeG58+fA9DvpMYCPpUEQNhXocvFixdN2k9QWnQjBn5lkiltCpgaAxHtA7DvXx9o+LmSq2D6/Plzph9cQwQFBaFXr16Sea/y8/Mxa9Ys+Pv7Y8KECazlANBuTLp06VKx5YRt27bFN998w2Sid9myZdi3bx9UKhWcnZ2RnZ2NWbNmia5DF6mlkYAXqSSpGANfYRXQ7iPYsWMHxowZg+rVq+Ott94Sbe6D31MRGRkprJQyBYtMJcXExEiqfWZKSgree+89oc2gFNBoNJg8eTImTZpkcvcmc/Ltt99ix44dmDhxIt555x3k5uayloS4uDg9U3B3d8fWrVtx9epV+Pn5MdE0fPhweHl5YdeuXXj//fcxc+ZMVKlShYkWnrFjx+Ldd9/F0KFDDd6/Z88ekRUBo0aNwhdffCFckGvUqCG6Bl14HYMGDcJ3330npHSqV6+Or7/+GqtXrxZNh7u7OwoKCoQSHR07djT+BYjI4g4AdODAAZICBQUF9PbbbxMAcnBwoPz8fNaSiIho//795OrqSgCoSZMmVFBQwFoSERGtWLGCAAhHu3btKCoqiqmm3NxcWrBgAVWqVImWLl1KWVlZTPXw5ObmEhFRXFwcJScnM1bzch4+fEienp7Mxl+wYAEBoKVLl+qd12g0dPjwYdF0zJkzhwDQypUriYjo5MmTBIC6du0qmgaeHj16EACaMGECAaAPP/yQAASTEddYi4wYVCpVsXotrFAqlVi5ciW6deuGzMxM/P3336wlAQB69OiBuXPnwsnJCXfv3sWmTZtYS0JhYSG8vLzwww8/YMmSJZg1axaaNGmCTz75BNHR0cx0qVQqtG3bFvfv38enn34Ke3t7Zlp04duw1q5dG1Jeoq3RaPDWW28V20sgJnwJiqIRw59//ok//vhDNB38HENmZiaAFyW4Wcyp8fMMfG8Gi5ljKC0NGzY0qYSsualSpQqOHTuGiRMnIigoSG9NNSscHBzwn//8B9OnT8fKlSuxfPlyvPnmm3qTY2JjZWWFgIAAZuO/DH65o4zp/Pe//8WZM2eE9fIsSExMBKA/x0BEWLJkCVxdXUXTwaeS+FVSz549AwAmaUDeGHhzqpA7n3VRqVSYPXs2axl62NraYseOHUza+b0MFxcXLFu2DBcuXNBrWC4jUx7cvXsXH3/8MQBt9MwKQxHD4cOHcf36dVGjUd4Y+IiBpTHw8xt8pYgKHzEAkEy4r4tCocCIESNYyzBIrVq1UKtWLdYyZCoQarUaEydOFBYQsDSGohEDHy0A2sUqGo1GlL7QRY1BCqkkvtVohY8YZGRk2LN8+XJcuXJFuM3KGDQajXDx4yOGY8eO4erVqwC0F0TdMtjmREoRA9//mddgSsQgG4OMjIzJhIaGFqvvz8oYUlNTUVhYCCcnJ9ja2upFCzxipZOkZAy6/Z8BOWKQkZExMxcuXMDy5cv1JntZGUPRNNKJEyeKrQ4UyxiktCoJeDHPAMgRg4yMjJl57733MGzYMCQmJsLe3h5//PEHsxVvuhPPfLRQ9Bu6KSWny4KUViUBL+YZANMiBoudfJaRkWELvz+gT58+GDJkCFq1asVEh27EkJWVhVWrVkGhUKBjx45o2LAhBgwYILoxSCGVBMjGICMjIzJ8gb833ngDgHaykwW6EYODgwM6deoklLtu1aoV1qxZw2yOQU4lycjIiA4x6reckpKCc+fOQalUMi+qZ2hz261btwAAzZs3ByCeaekaQ2FhIdLT0wEAzs7OooxfFN2IwZS6ZLIxyMhYIPn5+Vi8eLGwTFNs/vzzT2g0Gvj5+TEv7sdHDLrGwLfW5I1BLGxtbaFQKFBQUCBsLHN0dGQ2MV+9enVh7seUkiWyMcjIWBi3bt1Cp06dEBoayqyaaNE0Ekv4iEH3vSgaMYgFx3HChTguLg4AuzQSr8fLywsATCojJBuDjIyFoNFosHr1arRr1w4hISF45513mOjIyMhAUFAQAGDIkOKt2/keCWJRNGLIyMhAbGwsrK2thb4EYsKnkxISEgCwm3jm4fcyyKkkGZkKRkxMDHr27Il58+YhLy8Pnp6e8Pf3Z6Ll6NGjyMvLQ8eOHeHu7l7s/p9++klUPUUjhv9v795jq6zvOI6/v1Joq1hqJWIChTlKix2QQ23M6gXNqgtDN6lGxcuioiG6jbhmf0yDqZFEzYKutWwKS1goTOdM6soULYKCRJ0XJlgUtbRoWJ1c6my7Qm+n/e6P9jn2IPbe8/ud8n0lDZynz5N88rTnfPu7PL9fsFdLVlbWkDapGa6gMAS5XBeGYJzBHnAzZoxQVcrKypg3bx47duyIHF+2bBnjxo1zkqmvbqTdu3fz6KOPxixLOByO9OUH2426Gl8IBIUhGP9xvY1tUBg6OjoGfI1NVzXGU8eOHeO2226jvLw86nhCQgJLly51kqm9vT2yI+CJhaGjo4OlS5cOalrkcNXX16OqpKWlMWHCBMDd+EIgKAxBwXLdYsjOzga690MZKGsxGOOpM844g3Xr1lFUVBR1/JprrnG2t/Frr71GU1MT2dnZUVMhAVatWsWePXtiOoW2r6mqc+bMiVmO3oLCEGwX60thGAwrDMZ4rLGxkSeffBL45sPP1aAzfHc30r59+yIL18WyMJxsqqovLQbXD7cFUlJSBn2NFQZjPNXS0kJBQQH19fXk5+ezY8cOMjMzyc/Pd5Kns7OTTZs2AdGFobOzkzvvvDPSheSixRAMPDc0NPDFF1+QmJgYtbJoLAXTVYOH21y3GIBB70VhYwwm5lQVEXEdI+Khhx7i+eefj7zu/cGWlJTEypUrWbhwYUwzqSp3330377//PjNmzODZZ59l8uTJPPfcczHZcOZk3n77bQ4fPsz06dPJycmJHC8tLY1azdRliyFoLcyePdvZ4HzQYmhqagL8KAwJCQljf0mMWA5uxbugOeuT5cuXU1tb6zpGxE033cTBgwepqqqiqqqKvXv3snfvXs4880w2btwY86IAsHr1ajZs2EBycjIVFRWRfYtdLVQH33QjLV68OFLYa2trWbFihbNMJ7YYXI8vwLdXWHXdlQREBuYHKi4Lg08fKtD9QM+KFSsiKyn64qmnnqKgoGBQsxFG2/r169m4cSOhUIiysjJna/30Vl1dTUNDQ+R1cnIyxcXF7Ny5M2oRsljKyMhg0qRJrFu3jlAo5CTDiUKhEJdddhnXXXdd5NiuXbsoKSlh3rx5QPdfprH8mc6fP58lS5ZE7pHr8YUg0y233BK5Dz60GAa9FbKqxt3XzJkz1Sc1NTV63nnn6eOPP+46SsTBgwd12rRpCuhjjz3mOk5EaWmpApGvG2+8Ub/++munmY4fP64PPPCAArpgwQLdv3+/0zyB+vp61xEG5NixY5qUlKSAvvXWW3rhhRc6y5Kfn6+Abtq0yVmGQHp6ugJaW1vrOopmZGQE77ldOoDP2LhsMbhaqfC7zJw5kw8++CByU32Qnp7Om2++yX333UdJSQnV1dWuI6GqpKens3btWoqLi3n44YeZNWsWGzZsGNTDNyMtOTmZWbNmsXr1arZv305GRoazLL2dffbZriMMyPbt22ltbSUnJ4e8vDwqKyudZXH9cFtvvsxKgsF3JYkvH2SDkZubq7t27XIdI260tLRQU1PD3LlzXUfxVldXl7NB3Xh3zz33sGbNGoqKir6113IsffXVV0yePJnk5GSam5ud/jw7OjqYMGECIkI4HHb+u5WTk8Pu3bsB/qWquf2db++EU0BycrIVhX64fuPGK1XlxRdfBHC+L0MwvpCdne385xmMN6ampjrPApCYmDio890nNsbEraqqKurq6pgyZQoXXHCB0yw+DDwHfOpGglNkVpIxxg9Ba2HRokXO/zL2aXzB9V7PJ7IWgzEmZnzpRgI/nmEI+FYYrMVgjImJo0eP8s477zB+/HiuvPJK13GsK6kP1mIw5hTxzDPPOJ3m+/LLL6OqXH755ZH1gVw5cuQI9fX1TJw4kenTpzvNAtZiMMY4UFJSwpo1a5zsUBbwqRspGF/Izs72Yh0u3wqDtRiMGcNUlQcffJDCwkIuueQSZzna29vZsmULAFdddZWzHAGfxhfgm66keC0MtrqqMXGiq6uLwsJCSktLAViwYIGzLG+88QZNTU3Mnj3b2fLWvfk0vgDftBh8GWMYbFeSFQZj4kA4HOauu+6irKwM6H4g76KLLnKWJ9je04duJPC3MFiLwRgzKtra2liyZAkVFRWRY6FQaEg7c40Un8YXVNWrZxjAv64kazEYM4Y0NzdTUFDAtm3boo5feumljhJ1L1NeXV1Namqq01ZL4Msvv6ShoYFJkyYxdepU13EA/7qSbPDZmDGksbGRwsJCrr/++qjjLscXgm6khQsXOp0VFejdjeTDjCTwryvJpqsaM4ZMnTqViy++mNdffx0gMhPJ5Ywkn7qRwL/xBfCvK8laDMaMMStXruTIkSPk5eWxbds2brjhBs455xwnWRobG9m5cyennXaaky1PT8a38YWWlhba2tpISEiIbPPpmhUGY8aQTz75hNLSUkSE0tJSEhMTIzOTXNi6dSvhcJi8vDxvNhLy7RmG3t1IvnRtWVeSMWOEqlJYWEg4HOaOO+4gN7d7f5WkpCRnmXzrRlJV9u3bB/jTYvCtGwmsxWDMiAmHwxw6dMjZdq2bN2+msrKSlJQUHnnkEScZeuvs7OSll14C/CkMdXV1NDU1kZaWxpQpU1zHAfybkQRxNl1VRFYBPwXagVrgDlVtcJnJnFo6OztZu3YtBw4c4NChQxw+fDjyb3t7O+vXr2fx4sUxz9XW1kZhYSEARUVFXnzovffeexw9epQZM2Z489d57/EFX7ptfJuRBPH3gNtW4H5VDYvI74D7gd/2d1FXV9eoBxsMVaWxsZHU1FTXUaKoqjdvlt4qKyu9GbgcN24cc+fO5d577yUcDkeOZ2ZmUlFRwfnnn+8k1xNPPEFNTQ1ZWVksX77cSYYT9e5G8uX3yrfxBbCupGFT1VdUNXg3vg1MG8h1+/fvH71QQ3DzzTeTlZVFa2ur6yhRysvLKS8vdx0jyquvvsqtt97K7bffTnNzs+s4AHz++edRReHqq6/m3XffdVYUAFpbWxk/fjzFxcWD7gYYLaeffjrnnnuuF4vmBSZOnMicOXMIhUKuo0SkpKSQm5tLZmam6ygRaWlpzJ8/f8Dni6v+0xOJyAvA31T1L9/x/WXAsp6Xc4APY5XtFDAZqHcdYoywezmy7H6OrCxV7XfzjFEvDCKyDTj3JN9aoaqbes5ZAeQC1+oAAonILlXNHdmkpy67nyPH7uXIsvs5sgZ6P0d9jEFVr+jr+yJyG3A1kD+QomCMMWZ0uZ6VtJDuwebLVPW4yyzGGGO6uX6O4Q/AmcBWEdkjImsGeN2fRjHTqcju58ixezmy7H6OrAHdT28Gn40xxvjBdYvBGGOMZ6wwGGOMiRK3hUFEVonIJyJSJSJ/FxG/HjuOIyJyvYh8JCJdImJTA4dIRBaKyKciUiMi97nOE89E5M8ickRE7HmlYRKRdBHZLiIf97zP7+3vmrgtDHQvpzFHVecB1XQvp2GG5kPgWmCn6yDxSkTGAX8EfgJkAzeJSLbbVHFtPeDHuinxLwz8RlXPB34I/LK/3824LQxDXU7DfJuqfqyqn7rOEecuBGpU9YCqtgPPAtc4zhS3VHUn8F/XOcYCVf1SVd/v+f//gI+BPjfHjtvCcIKlwMuuQ5hT2lTg371e19HPm8+YWBOR7wHzgXf6Os/16qp9GsRyGmHg6VhmizcDuZdmWE623KjNBTfeEJGJQDnwa1Vt6utcrwuDLacxcvq7l2bY6oD0Xq+nAf9xlMWYKCIynu6i8LSqPt/f+XHbldRrOY2f2XIaxgPvAbNE5DwRmQAsAf7hOJMxSPfmGeuAj1X19wO5Jm4LA0NfTsOcQEQKRKQOyAM2i8gW15niTc9EiF8BW+ge3HtOVT9ymyp+ichfgX8CWSJSJyJ3us4Uxy4Gfg78qOezco+ILOrrAlsSwxhjTJR4bjEYY4wZBVYYjDHGRLHCYIwxJooVBmOMMVGsMBhjjIlihcEYY0wUKwzGGGOiWGEwZgSIyDgReaJnvfu9IvJ915mMGSorDMaMjPuBA6r6A6AU+IXjPMYMmdeL6BkTD0TkDKBAVS/oOfQZcJXDSMYMixUGY4bvCiBdRPb0vE4DtjnMY8ywWFeSMcMXAopUNaSqIeAVYE8/1xjjLSsMxgzfWcBxABFJAH4MvOA0kTHDYIXBmOGrpnuTdYBCYLOqfuYwjzHDYstuGzNMInIW3XuOT6Z7D4FlqtriNpUxQ2eFwRhjTBTrSjLGGBPFCoMxxpgoVhiMMcZEscJgjDEmihUGY4wxUawwGGOMiWKFwRhjTJT/A0iLFPI1rMsCAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:05<00:00, 2.55it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXdYFGfXxu9ZehEQUKSIgAWwoliSGE0sMRg/NdYYNSGx17xYk5gQa6yxiyVRo9HXgjWWWKPGFgsqqCCgYKNY6XVh53x/7LsrK8UF2X1m9fld11zsDrM8N7O7c885TzkCEYHD4XA4HBUy1gI4HA6HIy24MXA4HA5HA24MHA6Hw9GAGwOHw+FwNODGwOFwOBwNuDFwOBwORwPmxiAIQk1BEE4KgnBLEIRIQRD+w1oTh8PhvM0IrOcxCILgDMCZiK4KglAFwBUAnxJRFFNhHA6H85bCPGIgomQiuvq/x5kAbgFwZauKw+Fw3l6MWQsoiiAIHgCaArhYwu+GARgGAMbGxv5NmjTRq7ayePDgAURRhJubG4yNpXFKk5KSIJfL4eTkBAsLC9ZyAAAJCQmQy+VwdnaWhKbCwkLcvn0bRARvb28YGRkx1ZORkYEnT54gPT0dMpkMjRs3ZqZJoVAgIyMD6enpSE9PR2FhIQDA19cXlpaWTDQVFBQgIyNDvak01apVC46Ojkw0iaKIrKwspKenIyMjA3l5eQCAatWqwd3dnYkmAMjNzVW/d1lZWQAAS0tL5OTkPCOiaq/8A0QkiQ2ANZRppJ6vOtbIyIikhJOTEwGghIQE1lLUNG3alADQ+fPnWUshIqL8/HxycHAgABQWFsZaDiUmJlL9+vUJAHl6elJ8fDwTHampqbR48WKqU6cOASAAZGpqSgMHDtTr50kURbpx4wbNmzeP2rZtS0ZGRmo9AMjNzY2GDx9O0dHRetOUk5NDR44coQkTJlCjRo009ACgGjVq0JdffkmnT5/WmyZRFCkyMpIWLVpEnTp1InNzcw1NVlZW1LVrV9qyZYveNBERpaen065du2jIkCHk6uqqocnIyIjef/99mjNnDgEII22ux9ocpOsNgAmAIwDGa3O81IyhSpUqBIBSUlJYS1Fjb29PACgxMZG1FCIi2r17NwGgBg0akCiKTLXEx8eTl5cXASBfX1+dX4Dlcjnt3btXY19ERAQNGzaMLC0tNS6+s2bNokePHlVq+8+fPy/xBiE7O5v2799PI0eOJHd392IXkzZt2tCcOXPo+vXrennPFAoFhYeH0/z586ljx45kZmamocnc3Jw+/vhjWrhwod40ERGlpKTQjh07aMiQIeTm5lbMoPz8/Ojbb7+lEydOUH5+vl40qYx8/vz59OGHH5KxsbGGJicnJ/rqq69o+/btGtclgzEGAAKAPwAs0fY1xsbGlXV+XxtRFEkmkxEAvX0oXkVGRob6zlOhULCWQ0REn376KQGg+fPn673tZ8+ekVwuJyKiyMhIcnFxIQDk7+9PT58+1Xnb7dq1o8DAQJLL5RQaGkpt27bV+BK3a9eOdu3aRQUFBZXatiiKtGPHDqpevTpt376diIji4uJo+fLlFBAQUOzC6+joSF988QVt27at0m9yUlNTadSoUZSZmamxPykpiTZu3EgDBgxQR94vX3QnT55Mx48fp9zc3ErTI4oiPXnypMTfFRYW0oULF2j69On07rvvqr/fRc9T//79aePGjZScnFxpml5FZmYm7d27l4YNG0Y1a9bU0CSTyei9996jmTNn0pUrV0r93huSMbz/v3/uOoDw/22flPUaExOT1zzFlUdeXp76Dov1nbCKGzduEACqU6cOaylERPT06VMyMTEhmUzGJIIZOXIknTx5ksLCwtTprDZt2lBaWppO242MjNSITFSGpEo5jBw5km7evKmTtpOSkqhHjx7q9vr27Us+Pj7FLrz+/v4UHBxMFy5coMLCwkrXIYoibd26lZycnKhevXqUnZ1Nhw8fpvHjx1PDhg2L6XF2dqbAwED673//W+mRk4q4uDj66KOPNKK4xMREWr9+PX322WfqaPvlVMzMmTPp8uXLOrnZun//Pi1atEhjnyiKFBUVRb/88gt16NCBTExMNHRVq1aNvvjiC9q6dSs9e/ZMq3YMxhgqspmammp1EvTB8+fPCQDZ2NiwlqLmwIEDBIA6dOjAWgoRES1btowA0Mcff6z3tiMiIkgmk9FHH31ENjY2BIACAgIoOztbp+0eOHBAnWIsutWrV4+WLl2qM1MSRZHWrVtHtra2xdoGQFWqVKFevXrR+vXrKSkpSScaVNy5c4c6deqkYYYvRykWFhYUEBBAixYtops3b+r05koul9PcuXPJwsKCANDvv/9OEydOLLH/olatWjRs2DDatWuXTm8gFAoFLV++nKytrWnixImUlZVF+/bto5EjR1KtWrU0NAmCQK1ataLp06fTpUuXKmRQ3Bj0xMOHD9UdYVIhJCSEANCgQYNYSyEiIn9/fwKg9w45URSpXbt2Gl+uPn366DTlJ4oizZs3jwRBKHax6dSpk07uylXExcVRhw4dSjQEGxsbOnLkiF7Snfn5+TR79uxiHbOqrWnTpvTtt99WenqoLC5evEiNGzcuUY/KoDp37kxLliyhW7du6SX6j4yMpHfffVfDjExNTTV0OTg4UP/+/Wnz5s2lpr7KwxttDGZmZq99giqL6OhoAkBeXl6spaiZPHkyAaDp06ezlkI3b95UX5hycnL02vauXbuKXQD69u1Lhw4d0skXPzc3l7744otSLz7m5ub0/fffV3rbhYWFtGjRIo2O7JK2gQMH6rzP6cyZM9SgQYNSNQwbNkyn7b9MRkYGjR07tkSjrlatGo0fP56OHj2qN4MiUhrn9OnTi5mAamvevDn99NNPOknvaWsM0hh0X04EQWAtQU1OTg4AwMrKirGSF9y7dw8A4OHhwUxDdnY2rKys8McffwAA+vTpo9e5C3l5eZgwYUKx/c+fP4eVlVWlf4YyMjIwYcIEPHnyBIMHD4arqyvc3Nw0ftrb2+vsszt48GB8/fXXEEWxzK2wsBCmpqY60RAeHo6tW7eiVatW8PPzg1wuR35+vsbPq1ev4uDBg+jSpYtONBRl3759GD16NBISEkr8fXp6Orp164YPPvhA51pUXLhwAUOGDEFkZGSJv9+9ezd69OihNz2lYZDGICVUxsBq0k9J3L9/H4By4g8rBg4ciMWLF2Pz5s0AgMDAQL22v2jRIrVBAkCHDh0wdepUtGnTRift2djY4LffftPJ334VRkZGsLGxYdJ2Ufz8/BASEsJaBgAgMzMTZmZmWLlyJQoKCkrdYmNj0aZNG8hkul0EgogQGhqKJUuWwMzMDE2aNIFCoSi2TZs2Dc2aNWP63QUksFZSRbC0tCTVBZk1R48exccff4z27dvj77//Zi0HAODs7IxHjx7h7t27zKIGLy8vpKenIyUlBZ6enggPD0dKSope9CQmJsLb2xvZ2dk6NwQOx5AQBOEKETV/1XHM10qqCFJMJUklYsjLy8OjR48gk8ng6spuyam0tDSkpKQAAO7evQtbW1v8888/emn7+++/xzvvvIPTp0/j+PHj3BQ4nHJikKkkKRlDdnY2AOn0MTx8+BAA4ObmBhMTEyYaRFFEenq6xr6vv/5aL+mkzMxMDB8+HK1bt9Z5WxzOm4pBRgxSQmoRgyqvzjJHmZWVBVEU1c8bNmyIFStW6KXtKlWqcFPgcF4TgzQGKUUMUhuVJIWO57S0NPVjKysr7NixQzLGyeFwXg03htdElUqSyoVPasawZs0a+Pj4MNPC4XDKj0Eag5SQSsSgMiiVMbCcw6AyhiFDhmDAgAHMdHA4nIrBO59fE6lEDDNnzoSDgwPi4+MBAO7u7jh37hzq1auHatVeXZejMklNTUXjxo2xbNkyvbbL4XAqB24Mr4lUIoY6depg6NCh6uf9+/eHg4MDbt26pXctCoUCO3bskESVNg6HU364MbwmUokYGjZsqPH8+fPnmDFjhs5ndJZE9+7dmZfJ5HA4FYf3MbwmUhmuWr9+fY3ndnZ2+PLLL5lo4abA4Rg2BmkMUooYpJJKsrGx0RiJNGzYMFhbWzNUxOFwDBVuDK+JVFJJwIt0kpGREUaPHs1YDYfDMVS4MbwmUokYgBfG0KtXL7i7uzNWYxgUFhYiNzeXtQwNcnJyEBYWprf2tFlIMykpCTt27NDqWH2RnJyM3bt34+nTp6ylqMnKysLx48eZDPooDYVCgStXruDff//V+jUGaQxS+iKrIoatW7cWWx9I36iMISgoCCEhIViwYEGpa9GzYP78+Zg6dSoeP37MWgoA5YKDffr0Qa9evSCXy/XatiiK+PXXXzX2RUdHIygoCC4uLujcuTPy8/N1ruP27dsYNWpUsf1PnjxBaGgoRowYAW9vb7i6uqJv3764c+eOTrVERESU+LvCwkKEh4dj5cqVGDhwILy8vODi4oJevXrpbFVjbUzw6dOn2LNnD8aPH48WLVrAzs4OH330EdavX68TTdogiiJu3LiBpUuX4tNPP4WjoyOaN2+OH374Qfs/ok01H6ltgiBUTjmj1yA4OJiuXLlCNWvWVFdeWrBgAeXl5THTdPXqVWrVqhUREfn6+hIAunz5MjM9RcnJyVEXWT9//jwTDaIo0u3bt4mIKD09XV3209bWlm7evKk3HWlpafR///d/5O/vT3K5nHbs2FGsBGmLFi0oLi5OZxqysrJoypQpZGpqSv369aNnz57Rrl27aMyYMSVWYLO0tKSPP/6Yrl27VulaUlJSaNy4cWRiYkJRUVFERJSamkqHDh2i4OBg6tChA1lbWxfTZGVlRe3ataP9+/dXqh5RFGnnzp303XffFdsfHx9PGzdupKFDh5KPj08xTTKZjJo1a0ZLly6tVE1EVOp3WRRFio6OplWrVlGfPn2oWrVqxXS5u7vTiBEj3uzSnjKZrMInt7IIDg5WF+hWnfx27dox1ZSTk0OhoaGUn59PxsbGBICysrKYalKxbt06AkDNmjXTSz3dkti7dy8FBgbSkydP1HWonZycKDw8XG8aYmJi1BeUatWqkbOzs0bd4UGDBunUzEVRpN27d5O7u7tGPeiXS1+am5tT+/btaebMmXT27Fmd1IqWy+W0bNky9Q2DkZERDRkypNTSoB4eHtS/f39asWIFXb16lQoKCipdU0REhNqklyxZQtevX6eQkBDq168fubq6lliu9YMPPqAff/yRDh8+TOnp6ZWuKT4+nrp27Up9+vRR77t79y6tW7eOBg4cSC4uLsV0OTs7U//+/Wnt2rUUFxen/s5xY9AxJ0+eLPZmrF27lrUsEkVRXWfZw8ODtRwiUmry8/MjAPT7778z0ZCbm0uenp7k6OiovjB7eHioIwh98Ndff5GtrW2xz423tzctXryYUlJSdNp+bGwsBQQElHjRNTExoTZt2tBPP/1EJ0+e1GkNZFEU6cCBAyXecRfV884779D48eNp586dlJiYqDM9RERPnz6lkSNHkkwm09Dwsi47Ozvq0qULzZ07l86dO6fTDEFubi5Nnz6dzM3NCQB16dKFBg0aRB4eHsV0OTo6Uu/evWnlypV069atUm++3mhjMDIyqvDJrixyc3PJzMxM4815/vw5a1lERBQaGqr+IEmBM2fOEABycHDQa9H1osycOVPjvWrQoAElJCTopW1RFGnevHklFqT38fGhtLQ0nbafnZ1NP/zwQ6nF5wHQpk2bdKpBxfXr16ljx46l6ujYsSOdPXtWb58TuVxOS5cuJTs7uxL1uLq6Ur9+/SgkJISuX79OCoVCL7r++usvql27dqnnydbWlrp160aLFy+miIgIrXVpawx85nMFMTc3R+vWrXHixAkAyjoA9vb2jFUpURUaf3nSGytUtRiGDh0Kc3Nzvbf/4MEDzJ49W2Nfbm4uNmzYgJEjR+r0fcvJycGQIUOwdevWYr+TyWRIS0vDuHHjsGbNGp0UViIinDp1Cra2tvj++++RnZ1d4rZmzRq8//77Ol18MSYmBqtXr4a9vT06duyI1NRUpKSkICUlRT1w48yZMzAxMdHL5+TYsWMICgpCVFRUib+3tLTEkSNH0KBBA51rUXH//n0EBQVh7969Jf5+2rRp6NKlC5o2barTiaTcGF6Ddu3aqY2BZRnNl1F90PX5gX6Ze/fuITY2Fg0bNsSuXbsgk8kwcuRIJlomTpxYbCRb1apV0bBhQ9jZ2emsXblcjgULFsDGxgbTpk2Ds7MzXFxc1D+rVasGY2PdfgUFQcAnn3yCTz75RKftaIO3tzdCQkJK/J1CoUBaWhpSU1P18v3Oz8+HpaUlFixYgPT0dI0tIyND/XjhwoVYvXo1TE1NdaqHiPD7779jypQpZQ6/vXHjBoKDg3W/1I02YYXUNhMTEy0DMt1y7tw5dWgnlbQNEVH9+vUJAF26dImZhlOnTpGNjQ19/vnnBIB69uzJRMfff/+tEYK3atWKDh48yKwDnMN5FaIoUl5eHj1//pwePnxIMTExdPXqVTp79iwdOXKEnj17VuG/DZ5K0j0tWrSAmZkZ8vPz9b60dWnI5XLExsYCAHx9fZnpePjwITIyMtQpFCsrK8yYMQOBgYF6KyJUUFCAb775BgDQpk0bBAcHo2PHjpL5/HA4JSEIAszMzGBmZsYsPW2QE9wEQcD69evVaRxWmJiYqC9yVatWZapFxZ07d1BYWAgPDw+mayW9PLFu06ZNePz4sV4ry61cuRJOTk44deoUTp8+jY8++oibAoejBQZpDPn5+Rg6dGixpaZZ4OnpCUA6xiCVjueXjaFDhw5YsmSJ3tonInTs2BF///03PvjgA721y+G8CRikMQBA69atUb16ddYyULNmTQDSMQYpdDwDylSSijp16iA0NFQno25KQxAE5ueAwzFUDNYYevTowVoCAKiH2fGhqpqoIgZbW1vs379fMueHw+G8GoM1hk8//ZS1BADK+sYA+4hBNcRNKhFDQkICZDIZQkND4ePjw1QLh8MpHwZpDMbGxurcPmukYgwDBw7EH3/8oR6R5OPjg4iICOX0dj2Tn5+PJ0+eYPHixejUqZPe2+dwOK+HQRqDmZkZawlqpGIM9vb2CAwMREFBAYyMjODr64uFCxcyGYWTmJiIoUOHYuzYsXpvm8PhvD4GaQwWFhasJaiRijEUXcpAoVAgKSmpfOuvVyI2NjZYsWIFHxrK4RgoBjnBTdfT07VFFEWkpaUBYG8ML6fW+vXrB29vbyZaHB0dmbTL4XAqB4OMGHS+ToiWpKeng4hgbW2t16GYJfHy4mesogUOh2P4SOMKW06kkqKQShoJ0IwYevfuzXxUEofDMVy4MbwGUjIGd3d39Xn58ccfGavhcDiGjEH2MbBOJYmiCJlMJiljMDMzg4uLC5o3b44mTZqwlsPhcAwYg4wYWBvDrVu3MHjwYERHRwNQGkNERAQOHjzIVJenpyeCg4OZauBUHFEUsX37dtYy1MTExGDy5MkQRZG1FGRkZGDlypXYsGEDaykAlCP//vzzT4SFhbGWoqawsBAPHjyonD+mzdrcUttq165d4fXIKwOFQqFRu1dVk/X48eNMdW3bto1p+4bEmTNnSC6XExFJojbD8+fP6ZNPPqF27dqRKIo6r3FcFteuXaM+ffqQIAg0aNAgIlLWRD59+rTeSlsW1TJs2DCysrIiABQZGUmiKFJaWhrdunWLTp48SY8fP9abnidPntDs2bPJ3d2dzMzMKDU1Vf27/Px8unfvHp07d06vtcQzMzNp8eLF5O7uTkePHi32+5ycHLp58yZdv379za757OLi8lonsjJ4uah6tWrVKDs7m6mmohe4nTt30sGDBykjI4OhIk02btxIW7ZsoYKCAqY65HI5+fr60smTJ+m7776jUaNGMTWHS5cuUa1atQgAeXp6Ur169ahWrVp6vwifO3eOunTpovG5rlmzJjk4OKif37t3T+c6cnJyaMOGDdSqVSsNLTKZjDw9PcnCwkJjf2hoqE71iKJI//77Lw0cOFCjbrajoyP93//9HzVt2pSqV6+uoenbb7/VqSYiouTkZPr+++/V9arNzMxo8+bN9PPPP9PXX39Nbdu2JVdXV7Wmjz766M02BiMjo8o8vxVixowZxQp0v05lpcqmbt26BIAuX77MWgoREeXm5pKTkxMBKPGuRp8sWbKEAJCLiwsBICMjI7p69aredYiiSCEhIWRiYlLss1S9enWKi4vTi4Zjx47Rhx9+WGrheQBkZWVF/v7+FBERoTMt0dHRNG7cOKpatWqZWlRRuqenJ7333nt08OBBnejJycmhdevWUbNmzV6pBwAJgkBOTk7UrFkzWrhwoU40ERFFRUXR4MGDNUyqrM3IyIg8PT0pMDDwzTYGKZT2fLlkpImJiSRSEkREKSkpBIBMTU0pPz+ftRwiIvrtt98IADVq1IjpeXry5IlGGhAA7dy5U+86MjMzqV+/fiV+kTt27KhOc+mSjIwMCgoKKna3W3Szt7enmJgYnb9noihSVFQUbdq0iYKCgqhNmzZkbW1dTM/SpUspLS1N53oKCwtp7dq19Pnnn5Ovry/JZLISjeC3336jf//9lx48eKDz9+zMmTPUtWvXMk2gXbt2NH78eAoJCaHDhw/T7du3NXS90cZgZmZWKSf6dcjMzCQjIyP1G+Lh4cFakpqjR48SAGrZsiVTHXl5eRQdHU0KhYK8vb0JAG3cuJGpphEjRhT7Mjk5OdHy5cv1Zlg3b94kHx+fMu/wpk6dqlcDzcjIoPDwcNq1axfNnz+fhg8fTh07diRPT0/65ptv9KajKAqFgqKjo+m///0vTZgwgT788ENq2rQpk5RtdnY2XbhwgVavXk3Dhw+nVq1akYWFhboPRh+kp6fTpUuX6I8//qApU6ZQz549qX79+hoR58CBA8v8GwZlDADWA3gC4KY2x1tYWFTkvFY6RUPM9957j7UcNbNmzSIANGbMGKY6bt26Rd7e3rRp0yYCQK6urkwjmPDw8GJ3fh4eHrR27Vq93KETET179oymTp1KP//8M61atYq2b99Ox44doytXrtDdu3cpPT1dMpGnCn2dGw02b6YC11qkgEAFbrWINm8mIqVZMNFTAgUFBRQVFUWFhYXMdcTGxtK+ffto/vz5lJSUVOqxhmYMbQE009YYrK2tK3oOK5UxY8ao83y9e/dmLUdNt27dCAD98ccfTHXs379fHXIDoBkzZtDTp08pMzNT71pEUdTIo3t6etK6deskc5HhFGHzZiJLS+XlSbVZWqrNgVNxtDUGScxjIKLTAFK0PV4mk+HXX39Ffn6+DlW9mtatW6vrTru4uDDVooKIcOnSJQBAixYtmGqJi4sDAJX546effkKrVq2Qk5Ojdy27d+/GqVOn4OnpiXXr1iEmJgaDBg1ivsbV20RyMhAQADx69IoDf/gBePkzkpOj3M/RC5IwBm0QBGGYIAhhgiCEZWRkYPv27czrMrz33nvqNYqkYgyJiYl49OgRbGxsUK9ePaZaVMagwsHBAYcOHdJ7re7c3FysXLmSGwJj5s8HLl1S/iyT0iZpVdbkLc4rMRhjIKJfiag5ETUHgD59+rCWBHd3dxgbK1cVcXZ2ZqxGSdFogfUM8Tt37qgfm5ubY9++fUzMSi6X4/Dhw9wQdIC2UUByMrBxI/D338qfZR1f6OJe8n7XkvdzKh+DMYaX6dmzJ2sJAIDk5GQA0okYpJJGAl5EDIIgYPPmzXjvvfeY6LC1teWGoCO0jQLmzwcCA4GmTYEvvyz7+K2Nfobc2FJjn9zYEtsa/lwJijnaYJDGYGZmpvd0RGkkJSUBYG8MGzZsQGZmJi5fvgwAaNmyJVM9CoUCd+/eBQAsWrQIvXr1YqqHU/loGwWojps8Wfl88uSyj1+TOQBfFf6Ke6gFEQLuoRa+KvwVqzMH6OYf4RRDEsYgCMJWAP8C8BYEIUEQhMFlHW9paVnWr/UGEUnGGM6fP49WrVqpIwZLS0usXLmSWQf9w4cPUVBQgKCgIAQFBTHRwKkY2qaHtI0CVMepsq3OzmUff/YssIUGwIPuQUYiPOgettAAnD1b8f+JU060Gbokta1mzZqVMnTrdUlLSyMAZGFhwXzs+ZQpU4pNlBo9ejQzPcePH6eePXsyH+PNKT9BQURVqxKNG1f6MUlJymNUQ+aTkojs7YmSk4sf27q15shT1da6tW70c0oHhjRctbxIpeZz0WiBdfGgl1Nr1tbW+OmnnxipUY5A2rx5M4yMjJhp4JQfbdND5YkCzp4tyRbAIwAJY5DGIJWLjVTSSEBxY5g8eTLTfhg/Pz9YWFgwa59TMq9KE2mbHrp8GViyBBCEF9uSJcqOaI7hw43hNZCqMdSoUQPjx49nqIYjVcoaRVSeTmIeBbzZGKQxsB6fr0JKxlCtWjX142nTpsHKyoqhGo4UeVWaqLydxJw3F2lcYcsJ64iB/rfEg5SMQRUxeHt7Y/DgMgd1cd5SXpUm4ukhjgpj1gIqAmtjCAkJQa1atdTG4OzsjKSkJBgZGcHJyYmJJkdHRwDA3Llz1bOxOW8fycnA118DGzYANWpo7t+4EYiMVD6fPBlo2FD5U3UcTwNxVBhkxMA6leTo6Ihu3bph3759AIA5c+agUaNGTNM3xsbG6NatG7p3785MA4c9pfUh8DQRpzwYpDGwplmzZgCUa/AAQGRkJAYMGABra2uWsrB8+XLmw2Y57CirD4GniTjlQVDlyw2J5s2bU1hYGLP2RVGEra0tsrKy1PuioqLg6+vLTBOHM26c8ufixcrHggAsWsRW05tKdHQ0QkND4erqCldXV7i5ucHV1RV2dnZMbs6ICGvXrsWZM2fg7OwMFxcXjZ/Ozs6wtLSEIAhX6H8LkZYFT0ZXAJlMhiZNmuDcuXMAgA8//JCbAkdvlNSPoE0fwuuSnp4OIoKdnV3l/EEtUSgU+OWXX3D8+HFYW1sX26pXr45hw4bpte/Rx8cHdevWxaBBg5CXl6feb2FhATc3N9SsWRPLli1DgwYN9KJHEAQMGTIEz549ww8//ICSbvjL9b5pMz1aapu/v3/lzA9/DcaOHateeiI0NJS1HE4FyMzMpBs8oSTFAAAgAElEQVQ3brCWoYEoirRp0yb666+/Sj2mpCUrgoKU28vHlbWsRWkkJCTQ9u3badasWRQYGEjvvfceVatWjVxcXOjZs2fl/4OVgCiKFBISQmZmZhrLvshkMjp69CgTTUREly5dIhcXl2LL0cydO5eZpv3791OVKlWKaQoMDDSs0p7l3Ro1alSZ57FCrF+/ngBQjRo16Pz583T//n1SKBSsZam5cOECxcfHM1/DiUh5oSEiOnXqFIWHhzNW84LZs2dT3759adOmTaylEBFRbGwsdejQgQBQt27dSjxGtUbR1auaaxNV5npEcrmcNm3aRA0aNNC4sJibm1NkZORr/IevT0REBPn6+mromj9/PlNNiYmJ1KJFCw1Npb1/+iIqKorq1q2rocnd3f3NNgZjY+PKPIcVIjw8nABQcHAwWVlZEQBmd1MlUb9+fQJA//77L2sp1L17dzp16pT6QlPW3bC+SE1NJTs7O/UiiE+ePGGmJS8vj6ZPn65xN1yvXj3Ky8srdmzRyKCiEYG2KBQK2rdvH7377rsEgD7++GMm9bpfJisri4YOHUoAqG/fvvTgwQPWkignJ4f69+9PAKhnz56S+N6lpqZSQEAAAaAPPviANm/erLUxGGTns7m5OZ05c4ZpMZqCggLY2dnh/Pnz8PPzQ5UqVZCeni6JUUFpaWmoWrUqTE1NkZ6eDnNzc6Z6GjZsiPj4eOTm5sLJyQl3795FQUEBbGxsmGmaOnUqZsyYoX7eqVMn7NixQ++aiAh79+5FREQE8vPz1VtBQQFGjJiOKVOc1X0JyclAgwbKfgRnZ+Xzhg2VzyurH6E0jWfOnMHly5cxYcIE3TVUTnbs2IGnT59i1KhRrKUAUJ6nefPmwcTERDLnSaFQYMqUKcjIyMCqVau07nxmfvdfkQ0AHTx4sJJ8teLMnj2bLl68SACocePGrOWoOXToEAGgd955h7UUIiKysbFR3wkLgkAAaOHChcz0PH36lKytrQkAOTg40IoVK0gulzPTUxov9yVUZj/Cm4KU0rcq0tPTWUsoxp07d4iI3uxUkiAIkvgi5+Xl0bZt2wgAde/enbUcNcHBwQSAxo8fz1qKumZF0W3w4MFM+z4mTZpEpqamNHHiREpNTWWmoyxK6kvgdQ04r4u2xmCQw1XNzMwkUcPXzMwM8fHxAABPT0/Gal5w/vx5AGBWY7koDx8+1Hj+wQcfYOXKlcxSbo8ePcKTJ09w69YteHl5MdGgDSWta8SXrODoC4Oc+SyllUNVdY2lYAx//vknCgsLcfHiRQDAu+++y1gR8ODBA/Xj2rVrY9euXUwLLTk4OGDDhg2SNoXy1kjmcCobgzQGKRWAkZIxjB07FgMGDEBWVhY8PDxgYWGBf//9l6kmVcRga2uLAwcOwMHBgakeKUSaJVG0gA5f14jDGoM0Bil9uaVkDPb29ggNDQUAJCYmwsHBAdevX2eq6eHDhzAyMkJoaCh8fHyYapEyRRe/4+sacVhjkH0MUllWWqFQqFMlUjCGqlWrqh8XFBSgQYMGzGszPHjwAEuXLkWnTp2Y6pAyRRe/69hR98NPOZxXYZARg1SMITExEQUFBahevbok+j3s7e01ni9atIj5uerWrRtGjx7NVIPU0bbOMoejL7gxvAZSSiMBmsbQuXNnSdyl9+7dm7UEyVG0P4F3NHOkiDSusOWEtTGQci6FZI3ByMgIv/zyC2M1nNIo2p9AVHpHM18ym8MKgzQG1hXc9u7di8zMTA1jEEUR6enpGnl+faNqe/jw4ahfvz4zHZzSebk/oXbtF53NRWndmo0+zpvH8ePH0bFjx3K9xiCNgTUuLi5455131P0KJ06cgIeHB/bt28fUGOzt7WFra4tp06Yx08Apm5f7EwSBjzbi6JbffvsNFhYWaF2Ouw2D7GNgjaooT3Z2NgDg4sWLqFu3Lvz8/FjKgr29PX788UdUq1aNqQ5OyfD+hDcf1UoIUiIxMbHU4j2lwY2hAtjY2MDNzU1j3/jx4xmpeUGTJk0wduxY1jI4JZCcDLz7LtC7N5+49iYTHByMJ0+esJahQWJiIv755x8cP35c69dwY6ggRXP4Pj4+6Ny5M0M1SurWrQszMzPWMjglMH8+kJgI/PYbn7hWWZTnDlhf3L17V1KpXCJCUlISAODHH3/U+nXcGCpIUWMYN24c8w5xjnRRpZAuXQLs7ZXPi66PyhfHqxjbt29nLaEYKSkpWLNmDSJVxbcZ8/z5c8jlcgDApXLcgfCrWQVRGYOjoyO++OILxmo4UoZPYNMNa9euxbFjx1jL0CAlJQWiKGLSpEmspQBQppEqgsEag6rjlxUqYxg1apSkFvXjSIfkZKBdO+D33w2/w1mKaRtRFDF06FBkZWWxlgJAeY5SUlIAAIcOHcKRI0cYK3rLjCEyMrLC/3Bl4evrCzMzM8mUFeRIj/nzgX//Bby8DL/Dec2aNVAoFKxlaEBEuH//Pr7//nvWUgAAmZmZGudowoQJKCwsZKjoLTMGY2Nj1KtXj6kGe3t7TJo0CU5OTkx1cKSJql/Bxwe4ds3wO5yvX7+OMWPGSDJyWLFiBc6cOcNahjpaUBEZGYn169czUqMkMTERvXv3RsuWLcv1OoM0BkdHR9YSAABTpkxhLYEjQYoOTQ0PB4KCgHHjDLvDuUGDBli9enW5RrbomqImNXjwYOTm5jJUU9wYbGxsEBwcjIyMDEaKgH79+iE0NLTc1RwN0hhYzi4uiqpvITMzU3J3UqmpqZIK/WNiYpCXl4ecnBzWUjRITExEampqpf7NqVOBBw+U0QFQ/n6FvXv3YuTIkczTEEVp0KABTExMEB8fX+wCyBIfHx84Oztj8+bNeP78OVMtKSkpcHd3x8cffwwTExOsWLECly9fZtof6uPjA0EQyj/5VpvC0FLbTExMXr8qdiVSvXp1MjMzo6SkJNZS1LRv355MTU3pxIkTrKUQEdH3339P/v7+ZGJiQlu2bKFLly6xlkRERMuXLycLC4tK05OURGRmRtS/P5G9PVFysnJ/UBDRuHHa/Q1RFOn06dOVoqeySElJodjYWFIoFKylqLl48SKlpqaSXC5nLYWIiCIjI+nx48f09OlTysnJYS1Hg6ysLEpPTycAYaTFNdYg10qS0pyBwsJCPH36FETEvGwloMy3BgYG4s6dO5DL5XB1dQXwYkVYVtjY2ODKlSsAgK+//hpRUVHMtBTl5MmTCAwMRLNmzV77b6lSSLa2wJYtyn2qTmdA+4XxBEFAmzZtXltPZVK1alXJROoqyps31zVSXriyvPVipHOFLQdGRkasJagpagosi9yrOHfuHPz8/NS1lrdt24Y+ffpAFEWmumxsbNSPJ02aBC8vL4ZqlIiiiA8//BArV66slM+UKoX06afKfoSkJM0JbYbWr8B5ezFIY2Bdj6Eoj/6XOK4hkVqM3t7eiI+PV/d5TJ06FR9++CFzM61SpQoAwM3NDd999x1TLSoEQcDYsWMrJZJKTgb++AP4/HNg505lf4KhDk3lcKRzhS0HrC9yRVEZg3PRnAFDXh7G6+DggK+//pqRmheoIoYFCxZIogwqgEpNrU2dqvz5OikkDkcq8IjhNZFixFCUsWPHwtLSkpGaF9jY2KBNmzb47LPPWEupdFTRgoWFclgqTyFxpIgqi6ANBmkMUogYDh8+jHXr1qlXLqxRowYyMzMRFxfHVFfRiMHCwgKjR49mqOYFdnZ2WLZsGdMOcF0xaRIglwOhocphqYLAU0gc6XHhwgWtj5XOrXc5kELE4Onpic6dO6vnMuzbtw+rVq3CuXPnmOqqUqUKXFxckJSUhMGDB0tmMqCfn98baQoAsHevMjLo1En5XJVG4ikkjiiKkhlFuWHDBq2PlYbiciKFiKFu3bqoUqWKerZlbGwsGjVqhCZNmjBWpkwnyWQySRQPUvGmmsKxY0B2NrB1qzJ9FB7+Io3EU0hvNxEREbh8+TJrGQCA3NxcbNu2TevjJWEMgiAECIIQIwjCHUEQXjlkRQoRg0wmQ9OmTTX2jRgxgpEaTby9vdG3b194enqylvLG06+f8ufJk0BKCuDnp/w5cCBbXRz2rFmzRj13hzV79+4t19IcrzQGQRC2CoLwrSAInQVBqPRiwoIgGAEIAdAZQH0AnwuCUOZMESlEDADg7++vfmxnZ4e+ffsyVPMCb29vyawH/yYTHq40AQD49VfN3/39t/71cKRDVlYWNm/ejLCwMNZSAJQvjQRoFzGsBpADoBeAY4Ig7BEEoUr5pZVKSwB3iCieiOQAtgHoXtYLjI2NkZCQwHzdnebNm6sfBwYGSqYuQ//+/StlJi+nbF5Vn+m33/SjgyM9tm7diszMTElEDAkJCThx4gRq1qyp9Wu0MQZ3AP8AGEFEfgB2ApheMYkl4grgYZHnCf/bp4EgCMMEQQgTBCEsLi4OH330EfMLcdGIYfjw4QyVaFK9enXWEt54kpOBmzfLPmbkSP1o4QA5OTmSWciSiLBq1SoAyqW3Wa/6mpmZiZiYGIwsxwdSG2OoB2AWgGhBEK4B6ASgpyAIHSoptVRSr2Sxd5iIfiWi5kTUPD8/HwMHDmTeoanqgP7ggw/g6+vLVAtHv0yd+mL11NJQKHjUoC/Wr1+vHjrOmrCwMFy7dg0AoFAocP36daZ6fH194eXlVa5VcbUxhmVE1I2I6gBoD2AzAEsAAwD8VSGlmiQAKBrjuAF45TsshTrLqg5oqXQ6c/THn38qh6iWhInJi8c8atA9hYWFWLhwIWJiYlhLAQCsXr1a47lU+hnKs7y8NsN7jgqCUBXALQAxAHwAbCWi/1RMXjEuA6grCIIngEQA/QD0L+sFVapUgbu7eyU1/3p07twZPXr0YC2Do2fKKnVRUKDdcZzKYefOnbh37x5iYmLQvn17plrS0tKwdetWjX1S6GcAKtkYiKjp/0YO+QDwBnAcwOEKqyv+9wsFQRgD4AgAIwDriSiyrNdIZdIWAAQFBcHMzIy1DI6eycvT7jiJpL3fWIgI8/83xVwKEcPmzZuhUChgaWmpHhxjiMag1TwGIlIQUSQR7SaiA0RUqaWliOgvIqpHRLWJ6OdXHW9nZ1eZzb8W5ubmrCVwGKDNZNY3debz0aNHWUtQ8/fff6vz+VIwhjp16iApKQkeHh4AgB07dsDFxYV5BzRQvPRoWbCfKVYBpDLFnPP2wrCML1PS0tIwevRo3L59m7UUAMrVelVIwRgCAgIAvFhcs02bNujVqxfzeiiADiIGDofDAYAZM2YgLi5OEhe68PBwjejl3r17yNM2x6dD8vPzkZKSAplMBkdHRwiCIIlJudwYOBxOpXPr1i0sX74cRMS0wL2KotECoOxvuHPnDiM1L3j8+DEA5XwiKRgCABQUFCAzM1Pr47kxcDgSpbCwEAcPHmQtA4DyohsUFITCQmX3YnkuMrrg3r17uHLlijp1Y21tDUAa6SSp1WgBlCnA8sCNgcORIDk5OejZsyfu37/PWgoA5bLyRdM25VmQTRc4OTnh1q1bamPo378//vrrL+aGBUjTGMqTRgK4MVQaRARRFBEfH6++q2INEYGI8ODBA9ZS1BCROtSWCgqFAsnJyaxlaDBv3jzs37+f+bh8FY8fP0afPn0gCAKqV6/O3BgsLCwgCII6dVSnTh107twZgYGBTHUB0jSG8oxIAvDi4mFIm5GREWVmZhJrUlJSSBRFmjRpEjk4ONCMGTPIxcWFRFFkqispKYkuX75Mbm5u1LlzZ1qwYAFTPSru3LlDnTp1Il9fX9ZSNLh8+TJ17dqVYmJiWEtRk5ubS7t372b+WSpKbm4uXbx4ke7fv0+3b99mLYeIiLKysigiIoISExNZS1GTnZ1N0dHRFB8fz1qKmry8PNq2bRsBCCMtrrHML/IV2QDQ+fPnqbCwkFJSUirz/JWLzZs3k5ubGzk7OxOU6ztRjRo1mOlRceDAAZLJZGpNv/zyC2tJRESUkJBAHh4eBIAeP37MWg6HoxcKCwtZSyAiokGDBmltDAabSjpy5AgCAgKYjqf+/PPP4ezsrJGGsLe3Z6ZHRZcuXdC//4tVRVgvNqjC1dUVx44dg5OTEyIjy5zczuG8EYiiiF9fLtbBgMzMTGzfvl3r4w3WGKZPn47jx4/D1bXYCt16QyaTYdGiRRr7pGAMALBkyRL18ttSMQZAmQs+evSoZFbC5HB0yeHDh7Fr1y7WMhAaGlquPg+DNQZAeWF2cnJiquH9999H79691c+lYgwODg4ICQkBIC1jAIDGjRvjs88+Yy2Dw9E5CxcuRFRUFGsZaN++PWJjY7U+3qCNwcnJSRL1n+fOnQtTU1MA0jEGAOjduzd69eolOWMApFG3m8PRJeHh4Thx4gSSk5PLPVy0svH09CzXUkIGbQws00hFqV27Nr755hsA0jIGAFixYgUcHBxYy+Bw3joWL16sfnzr1i2GSsoPN4ZK4ocffoCDg4PkjKFGjRr4/PPPWcvgcN4qkpKSNOoySCGdVB4M0hiqVq0KQFrGYGdnh+nTp0vOGABIZr0WDkfXJCYmspYAQBmpFxSp2CQFY8jPz9f6WIM0BhcXF8hkMkkZAwAMHz4c77zzDmsZHM5by7hx4zQuyCzIzs4uVt5TCsbw/PlzrY81SGMwNzdHYGCg5IzB2NgYTZs2ZS2Dw3krOXv2LHbs2FHuBeMqmw0bNkAmk2n07UnBGJ49e6b1sQZpDADw008/wdPTk7UMDocjAURRxPjx4wFUYF2gSqZt27ZITk5GzZo1AQDbt2+Hr68v8/WlymMMBjtm0MPDA7Vq1WItg8PhSIAtW7bg8uXLANgbQ6NGjQAAd+/eBaA0ij59+jBfXPOtiBgA6U3c4nA4+icnJwfff/+9+jnrOQMqDenp6bCwsICTkxMEQYCJiQlTTW+NMXA4HHYUFBTg0qVLrGVg0aJFSEhIUD9nHTEAL6IFT09PydzAcmPgcDg6hYgwduxYxMXFMdWRlJSEuXPnauyTmjFIBW4MHA5Hp6xYsQJr1qyBu7s7Ux3BwcHF6k9LIZXEjYHD4bxVHD58GEFBQQCgHnnDgtzcXLRp0waHDh0CoJxk6uXlxSOGUiiabnsV3Bg4HAOClIWqmBEVFYXPPvsMoihCJpPBxcWFmRYLCwt89dVXePLkCQCgTZs2uHTpEho3bsxMk4r4+HgA0jKG8qT9uDFwOAbAnTt3MHXqVKbG8OzZM3Tt2lU9Ht/FxUUSq+SeP38eAPDee+/BwcEBgwcPZqxImhHD06dPtT6WGwOHI2FSU1Mxfvx41K9fH02aNCnX0smViVwuR8+ePdV3wgCY9y+o+PfffwEojUEKiKKIe/fuAVAagyiKbAUBuH79ermWCjFYY2A97b0kWE9g4bw5yOVyLF26FLVr18bixYvRqFEj9OjRg4kWIsKIESNw5swZjf0s+xdUZGRk4MaNGzA2Nkbz5s1ZywEAPHr0CPn5+ahatSosLS2xZcsW1pKwYcOGch1vsMbwySef4Pr166xlaDBy5Ejmw/deZtasWZLojFORl5eHNWvWIDc3l7UUNadPn8bixYsREhKCtWvXYtOmTQgNDUVMTAwTPeHh4WjYsCGCgoLUI2xmzZrFbDx8Xl4eRo0ahT179mjsl0LEcPHiRRARmjZtCktLS9ZyALxII3l5eeHPP//EgQMHGCsq/0rUBmkMKSkpSExMxLvvvoudO3eylgMAOHnyJG7cuIGWLVvi5MmTrOUAAG7cuIHDhw/Dz8+v2N0eK5KTk7FgwQJ4eHhgzpw5koj8bG1tMXnyZIwZMwZDhw7FiBEjcP/+fXh5eTHR4+fnp173B1CmSAICAphoAZSdvM2bN8fRo0cBAEOHDsXnn38uiYihaP+CVCjav7By5Upcu3aNsSKgXbt25XsBERncBoCKbj/++CMpFApiRX5+Pjk5Oan1GBsb08qVK5npUREQEKDWJJPJaNq0aVRYWMhU06xZszTeOxsbG/r2228pOTmZmaYrV66Qo6MjAaAuXbrQ3bt3mWlR8fz5cxo5ciQ5OjrSyZMnWcshIqKnT5/SnDlzKDIyknJzc+nWrVusJVFCQgL997//pbCwMNZS1CQlJdGePXvojz/+UH/OMzIymGpKTU2lHTt2EIAw0uYaq81BUttMTU3pZXPo1q0bpaenV+a51JqcnBxq27ZtMU2jRo0iuVzORBMR0cSJE4tpatu2LT148ICZpkuXLpFMJiMAVLNmTWrfvj0NHz6cVqxYQTk5Ocx0TZo0iXbu3EmiKDLTUBI7d+5kLYFTQcaOHav+3p05c4a1HEpOTtbaGARiPC66IgiCUKLo+vXr488//0SdOnX0qmf9+vWYMGFCiWmRdu3aYceOHXqvu5yUlITg4GBkZGQgKytLYzM1NcXSpUvRsWNHvWoCgIiICBgZGaF27dqwsLDQe/uloVAoeKU7TqWRlZUFV1dX9dDepUuXquvCs+L27duoV6/eFSJ6ZS+9QRpD48aNac2aNUhOTkZSUpLGz7y8PCxcuBD+/v5615WdnY3ExEQkJiYiISFB/dPCwgJTp06FtbW13jVxOBz98+uvv2L48OHq51999RV+//13hoqAq1evwt/fXytjYD87pQKYmpri3XffZS2jGFZWVqhXrx7q1avHWgqH89aSlpYGOzs7Zu0TEVatWqWx7+rVq4zUvCAzM1PrYw1yVBKHw+GURFpaWrHVVvXNhQsXEB4eDhsbG/W+qKgo5OfnM1TFjYHD4bylzJ07F7du3WKqQRRFxMXFoWvXrgCAOXPmoE+fPrh58yZTXeUxBoNMJXE4HM7LPHz4EEuXLoWfnx9THa1btwagHAACAE2bNsV3330HuVzOUhaPGDgcztvHTz/9hLy8vHItFqdLVMagWoHW1NSUpRxuDBwO5+3ixo0b2LhxIwCol+FmzcvGwBpuDBwO563iu+++Uy9JnpmZiby8PKZ6MjMzkZmZCVNTU9jb2zPVooIbA4fD0RvJycnIyspi1v7Jkyfx119/aexjnU5KTk4GoIwWWC1++DLlWUyTGwOHw6kwWVlZ6N27N7OVTUVRxOTJk4vtZ51OUqWRnJ2dmeooSmxsrNbHcmPgcDgVorCwEH379kVKSgqzAkI3btxAQEAARo0aBUB5IRYEQTLGIJX+BeDFqq/awI2Bw+GUGyLCqFGjcOjQIdSuXZuZjiZNmmDmzJnq/oVvvvkG+/fvZz40VGrGkJOTg8ePH2t9PNN5DIIg9AEwDYAvgJZEFMZSD4fD0Y45c+bgt99+AwC9L1pZEpcuXQIAtGzZEu3bt2daGxuQnjEcOnSoXCVGWUcMNwH0BHCasQ4Ox6AoKChgdvHbvHkzfvjhB/VzlhEDoKwwFxERAQDqxTNZd/gW7XyWAjt27CjX8UyNgYhuERGb+okcjgFSUFCA33//Hd9++y2Ti9+JEycwaNAgjX2sjSEiIgKFhYXw8fGBra0tUy0qVBHDw4cPGSsBcnNzy11elHXEoDWCIAwTBCFMEIQw1kPROBx9ozIEHx8fDB8+XN3Zqk9u3ryJHj16oKCgQGM/61RS0TSSVFAZw6+//sp8TsWNGzcwe/ZsmJiYaP0anRuDIAjHBUG4WcLWvTx/h4h+JaLmRNS8WrVqupLL4UiKgoICrF+/Ht7e3hg0aBDi4+Mxbtw4ZhfjQ4cOoVWrVurnMpkMHh4eTLSokJoxEJHaGB48eICwMLZdpy1btsTo0aOLGXpZ6LzzmYj0ViYsLCwMmZmZ8PHxQY0aNZjnGfPy8mBqaspsKB+nYoiiiIyMDKSmpiIlJUW9AUDv3r31UumtoKAAmzZtwqxZszSGGTo5OWnk9/VJw4YNERsbi0uXLsHExAQLFizAkiVLmK8BdPnyZQBAixYtmOpQkZGRgZycHBgZGUGhUOD8+fN4//33mWoq7wTEN2p1VScnJ3Ts2BHp6emwsbGBj49Psa127dp6+yCnp6fjnXfeQc2aNeHn54emTZvCz88PDRo0YPJlOnv2LGbMmAF/f380a9YM/v7+8PT0ZGKgGRkZ+Oyzz2BtbQ0vLy/Url1bvdWsWVOvZTazsrLw5Zdf4ubNm0hJSUFqamqxERwtWrTAjh079KIrOzsbX3zxBfbs2VPsd3PmzNFY51/fLFq0CESEgQMH4j//+Q/zolRpaWmIiYmBiYkJmjRpwlSLClW0oPoMnTt3jqUcAOVbDgMAXlkUWpcbgB4AEgDkA3gM4Ig2r/P391cXuM7NzaWoqCjat28fLV68mPz9/dUFuEvaunbtSrdv365gOW3tUSgUlJycTBMnTiymwcTEhJo0aUJfffUVLVmyhK5cuaJzPSq6d++uocXOzo7at29PkyZNom3btlFsbCwpFAq9aNm7d2+J75GJiQnVrVuXAgICaMOGDSSKos61xMXFkb29fYl6xowZQ3l5eTrX8DKjRo3S0NG8eXO9vTcl8fjxYzIzMyMAFBkZyUxHUY4dO0YAqEWLFqylqDl+/LjG++bo6KiXz3BZREVFqfSEkTbXZm0Oktrm6OhIH3zwAbm5uZEgCGUaAQAyNjamL7/8kq5fv16Z51qDb7/9lnr27EmtWrUiNzc3MjY2fqWu+vXrU0hICGVkZOhE06pVq6h///7Uvn178vX1papVq5apx9ramkaMGEExMTE60UNEtGvXLurevTvVq1ePjIyMStXStm1bOnLkiF6+UHv27KFatWqVeD62bdum8/ZLIiQkRK3D3NycAND58+eZaFERHBxMAKhLly5MdRRl9uzZBIBGjx7NWoqaP/74o9hnSZffKW24ePHim28MRU+4TCYjT09P6tixIw0fPpyGDBmi/l2VKlVo4sSJ9PDhw8o8xyVSt27dYh+GqlWrkq+vr8Y+IyMj6tOnD506dUrnF71+/fq90pwAUJMmTWj16tU6M6ii/PLLL8VMu+jzgIAAOnPmjM51FOXUqVMEgGrWrEkymYwAUIMGDQc5dNkAABkxSURBVOjWrVt61VGUO3fukKurK61evZqGDh1KAwYMYKZFRUREBA0YMID++ecf1lLUXLx4kX788Uc6duwYaylqDhw4UOw79vvvvzPV9PDhQ2rVqtWbbQy1atWiQ4cOUWxsLOXn52ucgClTppCrqystWLCA0tLSXvuEasvWrVtpy5YtdOrUKbp9+zZlZ2cTEdHRo0cJANWoUYOmTp1KiYmJetN07NgxWr9+PR06dIiuXbtGjx49opUrVxIAMjMzoy+//JLOnz+v1zA3OjqatmzZQteuXaOsrCzy8vIiQRCoV69eFBYWpjcdRRFFkU6cOEHZ2dkEgAYOHEhZWVlMtBQlMzOTiJSpCX3c3LwJ5OTk0IULF5hqUEVWRbchQ4Yw1URENGjQoDfbGIr2MbzMqVOnipkFS1asWEHbtm2TjKaBAwfSwoUL6dmzZ6yl0M2bN+mLL76QTL46ISGB1qxZwzwfzKk4y5cvp8WLFzNrXxRFCg4OposXL5KJiQkBoDVr1lCHDh2YaVIxYMAArY1BIGVqxqBo3rw5sR4bbKgQEfNhvCqkpIVj+OTn56NOnTro2bMnli5dylRLdnY2rK2tYWpqiry8PGRnZ8PKyorp571Pnz7YuXPnFSJq/qpj36jhqpxXI6ULsZS0cAyfDRs2ICEhAffu3WMtBampqQCAqlWrQhAEWFtbM1akNE5t4TOvOByOwVNQUIA5c+YAKF/dAV1R1BikQnmW5uDGwOFwDJ5Nmzbh/v37AIB79+6BdYpcNVNeSsbAIwYOh/PWUFhYiJ9//ln9PDMzs1z1jXWBKmKwt7dnqqMoGRkZWh/LjYHD4bw25V2LpzLZunUr4uPjNfaxTidJMZVUnlWpuTFwOJzXQi6XY8KECUzaVigUmDVrVrG1x1h3QEvRGFSatIGPSuJwOBWGiDB69Ghmd+iPHz/GypUr8ezZM/Tr1w+tWrWCra0tjxhe4unTp8jJydH6eB4xcDicCrNs2TKsXbsWbm5uTNp3cXFBhw4dcPv2bQBA69atcejQIXTp0oWJHhVSM4b9+/eX63huDBwOp0IcPnwY48ePBwBmxqAiMjISAFC/fn3IZDLUr1+fqR6pjUrau3dvuY7nxsDhcMpNdHQ0PvvsM3XNgZo1azLVozKGBg0aMNWhQkqjkrKysnD06NFyvYYbA4dj4Dx//lyv7aWkpKBr164awx9ZRgyFhYWIiYkBAPj6+jLTURSVMcjlcsZKlJFdeeYwANwYOByD5cyZM+jUqROio6P11mZBQQH69OmDO3fuaOxnaQxxcXGQy+Vwc3ODra0tMx1FURmDyrBYcuPGDaxevbpcr+HGwOEYEESEEydO4MMPP0Tbtm3h5OSE1q1b6639gwcPws3NDT4+Phr7WaaSoqKiAEgnjQS8MIbw8HDGSoBp06YhMDCwXK95q4zhyZMnSEpKQlpamiRCPA5HW4gIhw8fxvvvv48OHTrgn3/+gbW1NebPn69XHZ9++inWrl2rTiO1b98eFhYWTDtZi3Y8SwEiUnc+nz9/nvnyHIIglDuV9FbNY3j06BHef/99dWFsY2NjWFpawsrKCpaWlrC0tESNGjUwe/ZsNG/+ypVpX5u4uDgsXrwYtra2sLGxga2trcb28j5dQkTIy8uDhYWFTtsxVFRf9uTkZCQnJyMpKQnJycmoX78+unXrptN2Dxw4gJkzZ+Ly5csav/vpp5/g7Oyss7ZLY8+ePUhKSoK3tzeOHDmCKVOmMF0pV2oRQ1ZWFhQKBQAgMTER8fHxqF27NlNN3BjKwMbGBr169cKGDRsAKDutMjIy1Hc/n332GRYuXAhXV1e96KlduzYsLS0xe/bsUo9p1KgRli5dinbt2ulcz9ixY/Hf//4X9vb2qFq1qsZP1ePq1aujf//+Ol1GeO/evdizZw+srKzUpq16XHTz8fGBl5eXTjQ8ePAAEydOREJCApKSkvDo0aNiX66goCBMnDhRJ+2ruHjxIhYuXFjMFLy9vfGf//xHp22XxvLlywEAY8aMgbGxMebNm8dEhwqpRQyPHz/WeH7ixAmDMwbm1dgqspVVwa0oCQkJtGnTJho0aBB5eHiUWvPYx8eHjh8/rtXfrAySk5MpNDSUxo4dS40bNy5Rk4ODA61atYoKCgr0okkURbp58yZVq1at1PPUuXNnvVRbk8vl1LFjx1J1mJub04wZMyg3N1enOvbt26euwlV0MzU11WsN35s3b5KTk5OGhkOHDumt/aJcu3ZNXU9dHzXCX0VBQQGZmpoSAL2W8i2LZcuWabxXn3/+OWtJFBsbq9Lz9pX2fPLkCYWGhtKIESOoXr16xb7Qtra21K1bN3JxcSEAZGlpSXPnztVp2U1RFCk2NpbWrVtHX331FdWuXbvUCx4AMjIyom+++YaeP3+uM01Eytq4p0+fpnnz5lH37t3LNIT69evT4cOHdapHZUzLly+nHj16kL29fYlaunXrRvHx8TrVkpGRQatWrSrRtJ2dnfVaU/jChQvqc6G6uenWrZve2n+ZwYMHEwAaM2YMMw1FiYmJIQDk5ubGWoqal29qnJycmJeLvXHjxttjDCkpKbR371765ptvqFGjRsW+xFZWVhQQEEDz5s2jy5cvU2FhISkUCqpatSr17t2bHjx4UGknXkVhYSFdvXqVli5dSr1796YaNWoU02VpaUkdOnSgqVOn0vHjx9UfpI8++khnd+QJCQkUGhpKQUFB1LJlyxLvhKtVq0bNmzdXP3d0dKSVK1fqJGoRRZGio6Np1apV1LdvX6pevXqZhunl5UUHDhyodB1FuXHjBo0aNYqqVKmibtfOzk79uFWrVpSYmKhTDUU5evQoWVlZEQDq0qULpaamkqOjI8XFxelNQ1GePXtG5ubmBICio6OZaHiZ3bt3EwDq1KkTESnPGUuys7PV56joFhUVxVRXWFjYm28MTk5O5O/vT4IgaJx8MzMzateuHc2cOZPOnj1bYiTw/PnzSr/7LSgooJ9//pkCAgLIxsamxLRQ9+7d6ZdffqGLFy+SXC5Xv1ahUFCrVq3ozz//rPS7ig0bNlC/fv3I3d29mCZBEKhRo0Y0fPhw2rhxI92+fZtEUaRly5aRqakpTZo0iVJTUytVD9H/t3f/QVVV7R7Av0sEAn+BgVqA9suoN8hfmZU511F+iDSYmaNIV0pLnWLyYo1Z6HWccRqMMm3KxBFH8VVLLSp5USOtTLhiWvKKgmIqCIYVaiqFEnzvHwf2e3YcEOWcs87R5zNzRg6c3Xpmt89+9lpr7/WQOTk5TEhIMHptf7+ymjhxItPT03nkyBHeeuutThk2+vrrrzls2DBTLI8++ijXrl3LsrIyAuCzzz7r8KEra59++qmRvCdNmmQcM7t373ZaDH+3aNEi00nYFSxcuJAAmJyczLNnz7Jfv35a49mzZw8nTpxoHEcJCQmcO3cuV61apTWuvLy8Gz8xNO30jh07cujQoZw7dy537tzp1C+utYaGBgYHBxsHQ58+ffjMM88wPT2dhw4dYn19fYvb1tXVsba21iFxPfnkk0ZMXbp0YWRkJOfPn8/t27e3OB67Zs0aHjt2zCHxkOSCBQtMCXPcuHF8//33efjwYVNiLC0tdcqwEUlmZWUZPczp06fzwIEDxt+OHj3KpUuXOn0oID8/n76+vkxKSmr1+HGmzz77jIMHD+YXX3yhOxTD5s2bOX78eH7yySdMS0ujUoo1NTVaY9qxYwcHDBhAAHzllVdIWkYSdCopKaG3t/eNnRiCgoK4bds2Xrx40Z77rl0yMjK4bt06hwxPXa/s7GwuW7aMhYWF2g/MJgcPHuSSJUtYWFjY6gnPulflaHV1dVyxYgV///13p7XZFkePHtU+Nm2LK8ZUV1dn9Iz37dunOxzOmzePADhv3jzdoRj8/f3bnBjc8nbVXr16ITo6WncYJlOmTNEdQjO6lx62JSwsDGFhYVf9nKenpxOisejYsSNeeOEFp7XXVn379tUdgk06n1loSVZWFsrLywEARUVFGDRokNZ4mmofdOrUSWsc1v766682f/amevJZCHFjWrJkifFzUVGRxkgsmhKDr6+v5kj+o+mhu7aQxCCEcGt79+5Ffn6+8d4VEkNNTQ0A6TEIIW5ytNwY4nRLly41vXeFxOCKPQZJDEIIp8rJybmmYvP2UllZiY0bN5rmPSoqKnD+/Hmnx2KtqcfgKomBpFFUqS0kMQgh2uXUqVOYPHkyunbt6vS2jx8/ji1btiApKQkAMHnyZAwcONBYP0kXV5t8vpb5BUASgxCiHerq6jBx4kRcvnwZHTs6/ybHYcOGYdSoUaisrAQAREdHY8+ePdoXrXO1HoMkBiGE06SkpCA/Px9+fn5a4zh58iQAoE+fPvD09ESvXr20xuNqPYZrmV8AJDEIIa5TdnY20tLSAEB7YigrKwNgSQyuQHoMQoibTllZGSZPnmy815kYampqUF1dDU9PTy2Fi2yRHoMQwiWUlJQ4pZ0rV65gwoQJpruQdJb2bOothISEwMPDQ1sc1lytxyCJQYibTF5eHqKiovDVV185pb3XX38dBQUFpt/p7DFYzy+4ApIu9xyDDCUJcZNoSgiPP/44Tp8+jRkzZji8zcuXLyMiIgLZ2dkAYFyh60wMrja/UFtbC8Cy3pcz1/xqzbX2GNxyET1HycrKwvLly+Hh4dHi65ZbbkFycrJTCo//9ttvKCgoMA6w1l4hISEuubiZsL+8vDwsWLAAubm5xu+WLFnilNtFvb29ERMTg4ULFwIAxo0bhyFDhmh9oKwpMdxxxx3aYrDmisthXGuPQRKDlTFjxmDTpk3YsGGDzb8PHDgQGRkZTkkKANC9e3esXbsWH3/8cYufufPOO7F8+XL07t3bobGQRGpqKkpKSuDt7Q0vLy+b//r4+CA+Pl7rmLMzkMSFCxdQWVmJiooK07/9+vXDjBkz7J6obSUEwHLcRkRE2LWt1pBEZmYmACAxMRGjR482niPQwdV6DK42jARce49Be22F63m1VPP5ejQ0NPDIkSN89913GRUV1VTMwvTy8fFhWlqaQ0pctqS+vp779u3j/Pnzm1WqQ2Nt6NmzZzu1KElFRQVDQkJaLL85YMAA7t2716ExlJSUMCgoiL6+vuzcuTO7du1KPz8/du/enQEBAezRowfvvfdehxSTOX/+PJ9++mmGhoayc+fONvfBq6++6pDaF9XV1Zw1a1azUrFeXl4sLS21e3utyc/PNyruOfM70ZJHHnmEALhz507doZAkDx8+TADs27ev7lAMxcXFN34Ft/Ymhj/++IM5OTlMSkriXXfd1ezL7eXlZfw8YsQIh1Y0s1ZVVcXMzEwmJCQwMDCwxRPw4MGDTVXGHKm+vp4//vgj33rrLUZERNhMnJ06deLixYudcpJoaGhgenp6i/smNjaWp06dclj7xcXFDAgIsHnMrF692mHtkuS5c+c4dOhQU7uzZ892aJu2TJ8+nQA4a9Ysp7dty2233UYA2mph/11TfWXdZUatFRUVSWKwpbS0lO+99x5jYmKaFev29/fnhAkTuGbNGlZVVTE8PJx+fn7MyMhwaLWqy5cv85tvvuGcOXOMUoDWr9tvv51TpkxhfHw8AbBz585cunSpw6uxVVZWcvXq1UxISGCPHj1aPAkD4JgxY1hWVubQeC5cuMCsrCw+//zzNmtFA2BAQADXr1/vsP9fly5dYnp6OsPDw23Wqs7Pz3dIu03OnDnD/v37EwCDgoIYGBjInj17Or3q3J9//kk/Pz8CYGFhoVPbtqW2tpYA2KFDB5s13nX49ttvjbrhruLAgQOSGEjLAbxt2zbOnDmTffv2tTnskZKSwt27d5uudGtraxkfH8+ff/65bXv8Gv30009ctmwZx4wZ02w4wtvbm5GRkXz77bd58OBB4yT34osvMi4uzmFlQ2tqarh161bOmjWLYWFhNhNUYmIi161bx++//54AGBwczKysLIfEQ9IY3ouIiKCnp2ezE/F9991nvJ80aRJ/+eUXh8RRWlrK5ORkduvWzWgvMDDQuLgYMGCAw8u5njp1iqGhoQTAu+++mydOnOC0adO0FJjfuHGjS10Nl5aWGsejq9i6dSsBMCIiQncohv3799+8ieH48eP84IMPGBsbSx8fH9PJpFu3bhw/fjxXrVrF06dPt7gD7X3FefHiRW7ZsoVJSUk2E1RoaChnzpzJnJycFucLrJOEPdTX1/OHH35gamoqR44caRo6a5pTiYmJ4eLFi1lUVGRq+/PPP2dycjIvXLhgt3hISyLfvn07X375Zd5zzz2meJRSHDJkCBcsWMB9+/axvr6eU6dOZXBwMLOzs+0aB2kp3J6dnc1Ro0aZ4hgyZAjXrl3L2tpaBgQEcPz48bx06ZLd27dWWlrKPn36EADDwsKMY7e4uLjVmtmOEhsbSwBcvHix09u2JTc3lwA4dOhQ3aEYNm/eTACMi4vTHYqhoKDAfRIDgDQAJQD+DSALgF9btmtKDLW1tczNzWVycrLpCrLp1a9fP86ZM4e7du1yWnH5hoYGFhYWctGiRRwxYkSzk27Xrl05duxYpqen8+TJk06JifzP8NCkSZNszl8MHDiQr732Gnfs2MHa2toW/zv2nEcoLy9neno64+Li6Ovra4rHz8+PEyZMYGZmJs+cOdNs2xUrVth9GKW6upppaWmmeSdvb28mJiaaJtUbGhr45ptvOnSYkbRcEDRNNj/88MOsrq52aHtXU1VVRQ8PD3p4eLCqqkprLE1Wrlxp9BpdRWZmJgEwPj5edyiGvLw8t0oMUQA6Nv68CMCitmzXu3dvxsXFsVOnTqaTSZcuXfjUU09x5cqVrKiosPe+bdGVK1e4YcMGJiYmGhNh1le7Dz30EFNSUvjdd985LUGRNJLmAw880CwRBAUF8bnnnuP69esdNgxjy/79+zlnzhw++OCDzWIKDw83Erkz73YpKiri1KlTTXNPvXv3ZmpqKn/99VenxWGtoKCA3bt3JwAOHz7c7j206/HOO+8QsEzwu4p58+YRAN944w3doRg+/PBDAuDUqVN1h2LYtWvXNSUGrc8xkPzS6u0eAE+3Zbvy8nKUl5cDAMLCwjB69GjExMTgscceg5eXlwMibV2HDh3w0ksv4ezZswCAnj17Ijo6GtHR0YiMjERgYKDTYwKA1NRU7NixA4Dlnurhw4cjMjISUVFRuP/++7U8EPfRRx8ZK3L6+vpi5MiRiI2NRUxMjMOfxWjJ3r17kZGRAQCIiIhAUlISnnjiCa3r7pw4cQLnzp1DbGwsNm3aBB8fH22xNOnQoQMCAwORmJioOxSDv78/wsPDERoaqjsUg7+/PwYNGqS9JoQ1X19fDBo0CPv372/T5xUtV+vaKaW2APiY5D9b+Ps0ANMa34YB0F/Y9cYRAOA33UHcIGRf2pfsT/sKJdnlah9yeGJQSn0FwFbVjBSSnzd+JgXAQwCeYhsCUkrtI/mQfSO9ecn+tB/Zl/Yl+9O+2ro/HT6URLLVZ/WVUokAngAwsi1JQQghhGNpnWNQSo0C8BqA/yL5h85YhBBCWOhedvt9AF0A5CqlDiillrdxuxUOjOlmJPvTfmRf2pfsT/tq0/50mclnIYQQrkF3j0EIIYSLkcQghBDCxG0Tg1IqTSlVopT6t1IqSymlr7agm1NKjVdKHVJKNSil5NbA66SUGqWUOqKUOqaUmqM7HnemlFqllPpFKSXPK7WTUipEKfW1Uqq48Xs+82rbuG1iAJALIIzkgwCOAnhdczzurAjAUwB26Q7EXSmlPAB8ACAGwD8AxCul/qE3Kre2GsAo3UHcIP4C8ArJ+wE8AuClqx2bbpsYSH5Jsqle3R4AwTrjcWcki0ke0R2Hm3sYwDGSx0leAfARgDGaY3JbJHcBOKs7jhsByZ9J/tD480UAxQCCWtvGbRPD30wBsFV3EOKmFgTglNX7ClzlyyeEsyml7gAwAEBBa5/T+oDb1VzDchp/AVjnzNjcTVv2pWgXWysSyr3gwmUopToD+ATA/5C80NpnXToxyHIa9nO1fSnarQJAiNX7YACnNcUihIlSyhOWpLCO5KdX+7zbDiVZLacRJ8tpCBfwPYC+Sqk7lVJeACYC+EJzTEJAWdbXzwBQTHJxW7Zx28SA619OQ/yNUmqsUqoCwKMA/qWU2q47JnfTeCNEEoDtsEzubSR5SG9U7ksptQHA/wEIVUpVKKWm6o7JjQ0F8N8ARjSeKw8opUa3toEsiSGEEMLEnXsMQgghHEASgxBCCBNJDEIIIUwkMQghhDCRxCCEEMJEEoMQQggTSQxCCCFMJDEIYQdKKQ+l1NLG9e4PKqXu0h2TENdLEoMQ9vE6gOMkHwDwHoAXNccjxHVz6UX0hHAHSqlOAMaSHNT4qxMAYjWGJES7SGIQov0iAIQopQ40vu8O4CuN8QjRLjKUJET79QfwvyT7k+wP4EsAB66yjRAuSxKDEO3nD+APAFBKdQQQBWCL1oiEaAdJDEK031FYiqwDQDKAf5E8oTEeIdpFlt0Wop2UUv6w1BwPgKWGwDSSf+qNSojrJ4lBCCGEiQwlCSGEMJHEIIQQwkQSgxBCCBNJDEIIIUwkMQghhDCRxCCEEMJEEoMQQgiT/wdJLJldB85gFgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 299/299 [02:07<00:00, 2.49it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "outfolder = './out/altgd5'\n",
+ "if not path.exists(outfolder):\n",
+ " os.makedirs(outfolder)\n",
+ " \n",
+ "for gan, outfile, hs_g, hs_d, nsteps in plot_configs:\n",
+ " trajectory = trajectory_altgd(gan, theta0, psi0, hs_g=hs_g, hs_d=hs_d, nsteps=nsteps, dsteps=5)\n",
+ " plot_vector(gan, theta_s, psi_s, path.join(outfolder, outfile), trajectory)\n",
+ " simulate_trajectories(gan, theta_s, psi_s, trajectory, path.join(outfolder, 'animations', outfile))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvgAAAHzCAYAAABVDWm9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xd8VFX6x/HPSW9AgkCoIYjSQUAQZFcI9raKKChWbOiqKLvuugVXsbu/1bW7KrqWXcQuKisoILGjIIKANGmh95ZKkjm/P27KTDIzmUkmk/Z9v155MXNue+aS3Hnuuc8911hrERERERGRxiGirgMQEREREZHQUYIvIiIiItKIKMEXEREREWlElOCLiIiIiDQiSvBFRERERBoRJfgiIiIiIo2IEnwRERERkUZECb6IiIiISCOiBF9EREREpBGJqusAGrpWrVrZ9PT0ug6jQcvJySExMbGuw2hStM/DT/s8/LTPw0/7PPy0z8Ovrvb5Dz/8sMda2zqQeZXg11B6ejqLFi2q6zAatMzMTDIyMuo6jCZF+zz8tM/DT/s8/LTPw0/7PPzqap8bYzYFOq9KdEREREREGhEl+CIiIiIijYgSfBERERGRRkQJvoiIiIhII6IEX0RERESkEVGCLyIiIiLSiCjBFxERERFpRJTgi4iIiIg0IkrwRUREREQaESX4IiIiIiKNiBJ8EREREZFGRAm+iIiIiEgjogRfRERERKQRUYIvIiIiItKIRNV1ACIiIiIiYVWYD6s/hpTO0OF4//NaC9sWw88fOu+jR9Z+fDWkBF9EREREGratP8BPb8MZD0BEpPd5rIWti2HJNFj+DrhccPtK7/O6XLD5O1j5Iaz8CA5uZtqyi5j83bNkbYshLQ0eeAAuu6z2PlJNKMEXERERkfqlMB92r4L2/X3PU3QEfv4AvnsOti6CQdd4T+4PbYef3oAlr8OeNeXt3c6Cg1uhTQ/nfXERbPrK6alfNROyd5bNOm3ZRUz46ClyC2MB2LQJJkxwptXHJF8JvoiIiIjUDwXZsOjf8O3TcMrd3hP8wzvhh5ed+dyScGKSYNdKaNOzpATnf05Sv+4zsK7K61kzC4oLYOhNzonCqv9B3j6vYU2edze5hQkebbm5MHmyEnwRERERaYr2rIXY5tAs1fv0vAPw/VRY8Azk7QcTCd3OcEplIkrGhNmyCL57Hla8D67Cyuv45kmIjIYjubD0dcg/WHVc+QehRUfnpODQNtj0NRTlV5ot62BHr4tnZVW9ibqgBF9EREREasfhHZD5ECx7B/64rvL0nD2w4FknuS845DbBwmN94JrZsHs1fP+8U2dfldx9cOZD0Os8p4Y+6zvnX28988md4bynnOS+TU848WYozIOsb+GXeU7P/66fAUhrsYVNB9MqrSKtclO9oARfRERERIJjLRjje3r+Ifj6CSd5L8yFLiM8px/aBt88BT+84kyvtH4XFOU5yXl0PHQYBFHxsHOZ7575ozPgzIchOg46D3N+SmPduw42LyhP+veshgObnJr81N7l64iOh64nOz/g1O+v+4wH9s9mwr8u9yjTSUhwbrStj5Tgi4iIiEjgtv4AK2bA6fdVnlZU4NTGf/EPyN1b3r75e3iiH1zzKXzzBPz4Xyg+4n87x54BaUOh3XHlbdbCoa2wcwXsXA47ljuv966F9Zmwbh70OMdzPcZAq2OcnwGXO225+5ySn0Nb/MfQvB0MuIzLBgCDXUz+8xGytkWTlmY0io6IiIiINHC5+2DePfDDq/Cr2zynuVyw/F347D6nZ7yiojzIzoP9G6HrKdCyK+zf4LzftwEOZFWuq9+71pnPnTFOzXyLjk6NfqnCPKeUJ3dPYJ8loSV0Oz2weUtcdnkEl10eQ2ZmJhkZGUEtG25K8EVERETEN5cLfvwPzJ1SXst+JBvWfOokyevmw9y7YftS/+s5frwzJGWztl62UeyU7bgn/fs3OqPgDJlQdYzR8f6H1GxilOCLiIiINGUbvgATAem/rjxt2xL43+3OOPPuFr5YXhqz9A3nZtmIaO+j25TatQriW3qfFhEJyZ2cny7Dq/9ZBFCCLyIiItI0FWQ7vfILp8KETM9pefvhs/th4UuA9b78tiVwxQxn9Blw6uPzDzjJfs5u5yd7l9v7Xc4Ql8ddXHufSQAl+CIiIiJNz8av4YObnDIYcEa9ObQdklJh6XSYc1cV9ewGLn3TGbGmrMlAfIrz0+rY2oxeqqAEX0RERKQx8TeE5ZFcmHcvfPccHj3zr50HI/7kjFu/br7TFp3gfQhLZyPw7nVw3VxI6RzK6CUElOCLiIiINBY5e+CTyTD6+crTshbAjJtgn5cHToHzYKfr5nq2Wes82bUwz0n2C/PgSE75+0CeFithpwRfREREpDHY9A28cw0ktvZsL8xz6um/fQaf9fQxSXDW3yu3G+OMUBMdD/i4QVbqnYi6DkBEREREasDlch4s9co5cHg7RMbAl49CcSFsXgjPnQTfPo3P5B6cYS/nTnFOBqTBUw++iIiISEPlKoL/job188vbti5yfuJbwu5V0PVkOPY0ZyhMY0r+jQAT6fY6AiIiYPtPkDak7j6PhIQSfBEREZH6qrjQGW/e20OcNnzpPL3VPbl3t20xnPdU7cYn9ZJKdERERETqo9x98J8LYMPnnu2uYsj8uzPyja8HSyWnwWn31n6MUi8pwRcRERGpb3avhqknw8YvIa6FM7wlOA+O+s8FkPkgWJfv5Q9kOfPl7gtPvFKvqERHREREpD75ZS68fTUUHHLef/UYfPusM8rNB7c4w1OmdIG45s7oNz3OhdjmzvuK/+buhQSNftPUKMEXERERqQ+sdR5A9clfPXvnS582W1QAv1vu+RCrzEzIuC6cUUoDoARfREREJFxy90FsM4iM9mwvOgIf/wEWv+p9uTa9nB55X0+oFXGjGnwRERGRcDi0HV4+2xkZx13pzbS+knuAg1udHnyRACjBFxEREalte9fBv0+H3Ss9e+F3rYKpI2HTV/6XL8qDj/8IW3+o3TilUVCJjoiIiEht2rHc6aHP2eW8n3UHtOoOrbrBO9dAcQGkpEPzjtC8PbToAM1Lf9pDi46QcJTKcyRgSvBFREREakvWApg2FgoOlrctfs1J2MdNh1t/hMRWSt4lpJTgi4iIiNSGtXPhzcud8hpvTCQktQ5vTNIkqAZfREREpLpy9npvX/4uTL/Yd3LffiAc1bX24pImTQm+iIiISHWseB8+/3vl9kX/hneuBVeR72V/mQPPD4ftS2svPmmylOCLiIiIBGv1LHj3Osg/UN5mLXz5KMz8HWA954+Kh3bHQb9L4NQpMO4NuPJDSO0bxqDrJ5fLxWOPPUaPHj2Ii4ujU6dO3H777eTk5NR1aA2WavBFREREgrHuM3jrSqeHfs9aeP1iGDkZfnoTFr7kJPKte0KbHtC65Ce5M0SoX9Wb3/3udzz55JNccMEF3H777axcuZInn3ySH3/8kblz5xKh/RY0JfgiIiIigdr4NUy/FIqPOO+3LXb+LTgM5z0Np92nRD4IK1as4KmnnmL06NG8++67Ze1dunTh1ltv5Y033uDSSy+twwgbJv0GioiIiARiyyJ4faz3G2f3rIWoWCX3QZo+fTrWWiZNmuTRfv3115OQkMB///tfr8tNmTKFxMREJk6c6HX6xIkTiY6OZuXKlSGPuSHQb6GIiIhIVbYvhf+OhiPZ3qf3vsAZz16CsnDhQiIiIjjhhBM82uPi4ujfvz8LFy70utzpp5/OkCFDePrpp1mzZo3HtBUrVvDcc89x880307Nnz1qLvT5Tgi8iIiICcGgbFHsZ+WbXSnhtFOQfrDyt1PfPwwsjYftPtRdfI7Rt2zZatWpFbGxspWkdOnRgz549HDlypNK0YcOGcd999wGwdKnnSESTJk0iOTmZKVOm1ErMDYESfBEREZGCbOdm2eydnu17foFXz4O8fd6XS2oLvc6H0x+A3zwBrbvXfqyNSG5urtfkHpxe/NJ5vOnVqxcAq1atKmt7//33mTt3Lvfffz/JycnViql3797MnDnT5/Tx48f7nR6o9PR0ZsyYUeP1eNNgb7I1xkQAtwE3AOnAbuAt4C5rbVDjKhljEoAVJet5xlp7S0iDFRERkfrLVQzvXQ87fnJ68Zu3B2Ng/yZ47TzI2eXMZyKhbR/oNKTk5wRo0cmZV6olISGBXbt2eZ2Wn59fNo83KSkptG7duizBLygo4A9/+AP9+/fn+uuvr3ZMK1asKHudnp7O448/zqhRo8raXnnlFTIyMqq9/nBosAk+8BhwK/A+8CjQs+T9AGPMqdZaVxDruhdQ4ZyIiEhTNOcuWP2x8/qHl+HjP8CFLzpJf2ofGHSNk9B3GAgxiXUbayPTvn17fv75ZwoKCir15G/dupVWrVoRExPjc/lu3bqVJfiPPvoo69ev5/PPPw96aE1rLS6Xi8jIyOA/RD3UIEt0jDG9gYnAe9ba0dbaqdba3wO/B0YClwSxroHAJODuWglWRERE6q9FL8O3T5e/XzINti+Bb56C6+fDZW/B8D9Al5OU3NeCwYMH43K5+P777z3a8/PzWbJkCYMGDfK7fPfu3Vm9ejVbt27lwQcfZOzYsQwfPtxjnkOHDnHLLbeQlpZG8+bNGTx4MJs3byY9PZ0HH3yQoUOHkpiYyOLFzpCnpaUzY8aMISsri3HjxpGUlMT48eMBuOSSSzxKa3ytH+Cf//wn3bp1IykpiS5duvDII4/UdJcFpEEm+MA4wACPV2ifCuQClweyEmNMZMkys4H3QhmgiIiI1HPr5sP/bvc+betiKCoIbzxN0MUXX4wxhscf90zppk6dSm5uLpdddpnf5bt3705OTg5XXHEFLpeLf/zjH5Xmueqqq1i3bh0LFizgwIEDvPDCC8THxwPw8ssv8/LLL5OdnU2/fv08lnv77bdJS0tj+vTpZGdn88orr3iNwd/609LSmDNnDocPH2batGnce++9zJo1K9DdU20NtURnMOACPE73rLX5xpglJdMD8TugB3BhaMMTERGRem3XKnjrKrDF3qf3PFe19WHQt29fbr75Zp5++mlGjx7N2WefXfYk2xEjRlT5kKvu3Z2bmufPn8+UKVNIS0vzmL5z505mzJhBVlYW7du3B2DAgAFl092H0vR1s68/Va3/oosuKns9bNgwRo8ezfz58znrrLOC3lYwGmqC3x7YY631dmq9FRhmjImx1lYeV6mEMaYLcA9wr7V2ozEmPdCNG2MmABMAUlNTyczMDCJ0qSg7O1v7MMy0z8NP+zz8tM/Dr8Hsc1cR7FkD6b/3Pc924L2XILlzvS7NaTD73I9Ro0ZRXFzMzJkzmTlzJi1atGDUqFFcc801fPHFF36XPXjQGbo0NTWVoUOHVtoXK1euJDo6mnXr1rFu3TqPafn5+Rw+fLjSMvn5+Sxfvpzk5GSP16WstWVt/tYPMG/ePN5880127NiBy+XiyJEjnHLKKWRmZnpdd6g01AQ/AfB13SzfbR6fCT7wL2AD8M9gN26tfQF4AWDQoEG2vt9JXd9lZmbW+7vRGxvt8/DTPg8/7fPwq1f73FrY+wu0OtazvTAfXv0NbPne+3IA7frDsadDt19D+wEQUX9vvKxX+7wGTjnlFJ599tmglytNqidOnMgZZ5xRaXrPnj256aab6Nq1K506dfKYFhcXR9++fSvtv7i4OPr06UNGRgYJCQllr0sZY8ra/K1/8+bNnHrqqcyaNYuRI0cSFRVVVsefkZHhsZ1Qa6g1+LmAr+socW7zeGWMuRw4HbjRWlsY4thERESkri1+zfPmWXCS/g9uqpzcxzZ3xrI//xm4fTXc8DmcPBk6DqrXyb3AkiVLABg4cKDX6ampqZx//vnceOONbN++HZfLxZIlS9i7d29A609NTWXt2rV+p/taf3Z2NtZaWrduTWRkJPPmzeP9998P/kNWQ0NN8LcBrYwx3pL8DjjlO15770uW+SfwMbDDGHOMMeYYoHPJLC1K2kJ/vURERERq386fYdYdsLNkPPPSp9NmPgTL33Vet+4BwybCVTPhjvUw9jUYcDk0a1s3MUu1lCb47nXvFb366qt06tSJwYMHk5yczA033EBeXl5A6588eTLPPvssycnJXHvttUGtv2fPntx1112ceuqppKSkMHXqVMaMGRP8h6yGhlqisxCnB/4E4MvSRmNMHNAf8FewFQ+0Bs4p+ano8pKfPwLhGctIREREQuNIDrw9HoryYddKmPl7OLwD+l0M25bA2Y845TcpnatcldR/P/74I6mpqbRt6/vErEWLFjz33HOV2jdu3Oh1fvf2c889l3PPPddj+htvvOFRVuNr/QB33303d9/tfSR2X9sPhYaa4L8J/BVn/Pov3dqvx6m9n1baYIzpCkRba0ufY5wDeDt9ag08izNk5kvAT6EPW0RERGrV//4Ae1Y7r49kw6KXnNedf+WMaS+NysyZM+s6hHqpQSb41tplxphngFuMMe/hlNuUPsn2c+B1t9nn4ZTfmJJlC4F3Kq7TbRSdddbaStNFRESknlvyOix93fu0jV/AiTdp6EtpEhpkgl9iErARZ7jKc4A9wFPAXdZaVx3GJSIiIuG2e7Xvh1aZSDg6w3lwVXSc93lEGpEGm+Bba4uBR0t+/M2XHuD6NlLSyy8iIiINSGGeU3df6GMAPVsMs/8MXz8JZ/0dep0X1vBEwq3BJvgiIiIiAMz6E+z62ff06EQnqe83FrqMCF9cInVECb6IiIjUf4e2Q/N2lduXvQOLX63cbiLg6JFw3CXQ45x6/TRakVBTgi8iIiL1W2E+TBsD18+DKLdH4OxdBx/d5jlv235OUt/nQo1pL02WEnwRERGp3774P9i5DLb+AGknOiPhFObD21c5Q2E27wB9xziJfZuedR2tSJ1Tgi8iIiL1147l8PUTzuvVH8NXj8PxV8GWhdD2ODj9AUg/CSIi6jZOkXpECb6IiIjUT65i+HAiuIqc99885fy78Uu4/D3ofGLdxSZSj+l0V0REROqn756HbYsrtxfmwrdPhz8ekQZCCb6IiIjUP/s3wWf3eZ8WnQAn3hzeeEQaECX4IiIiUr9YCzN/5/vBVYW58PJZMPVk+OktZ34RKaMEX0REROqXn96CdfP8zxOTBB1PgI6DnVF1RKSMbrIVERGR+iNnD8z+s+/pzTvCkBtg4JUQnxy+uEQaECX4IiIiUn988lfI21e5vf1AGHYL9DwPIqPDH5dIA6IEX0RERMJr3WfQsiukdPZsXzsXfnrTrcFAz3PhxFug0xCV4ogESAm+iIiIhI/LBXPuhr4Xwa9uK28vyHZurAWIToSBVzilOC2Prps4RRowJfgiIiISPivegx0/QUQkDLvVeWhVl+Ew/wGwxXDavTDwKtXXi9SAEnwREREJj6Ij8Nn9zuttP8K718Lyd2Hknc5oOKfdq/p6kRDQMJkiIiISHotfhf0byt8vf9f5d/79cGirknuREFGCLyIiIrWvIBs+/z/v00wEJKWGNx6RRkwJvoiIiNS+Bf+CnF3ep8UkwbYlsPl75yZcEakRJfgiIiJSu3L2wjdP+p5ecAgWPAMvnQb/HQ35B8MXm0gjpJtsRUREpHZ99U8nifcnqS2M/Av0vxwilZ6I1IT+gkRERKT2HNgM37/ge3pMM/j1bTD0JohJDF9cIo2YEnwRERGpPZkPQfGRyu0R0TD4Whj+R0hsFf64RBoxJfgiIiJSO3athKXTK7f3uQhOvhNadgl/TCJNgBJ8ERERqb7s3c4TaJu1rTxt3r1g3UbF6TICTrsH2g8IX3wiTZASfBEREam+xa84T6g9ebJne9YCWP2x8zq1L5w2BbqeAsaEO0KRJkcJvoiIiFRPcSEs/DcUF8BJtwMWiosgIhLmToEWnZxSnL5jIUIjc4uEixJ8ERERqZ5VM+HwNuf1srfgADDtIhh2K/Q4FwZfB9FxdRqiSFOk02kRERGpnu/chr+c9WfI2wfr58OsP0K3M5Xci9QRJfgiIiISvB3LIOub8veFOeWv9/4CXz4S/phEBFCCLyIiItXh7+FV8Skw4k/hi0VEPKgGX0RERIKTuw9+etv39Lz98GR/OOoYSBsKfS6ErieHLz6RJk49+CIiIhKcH/8DRXlVz7f3F4iMgQ6Daj8mESmjHnwREREJnKsYFr5Y9Xwt0uD8p+DojNqOSEQqUIIvIiIigVszGw5k+Z9n8HVw6hSIbRaOiESkAiX4IiIiEjh/N9dGxsBVH0GX4eGLR0QqUYIvIiIigdm9GtZnep92wgSI76HkXqQe0E22IiIiEhhvvfcp6TD+f3D2P8AorRCpD9SDLyIiIlXLPwhLprs1GBhyI5zyN4hJrLOwRKQynWqLiIiIY8X7cCTH+7Qlr5c/rbbl0XD1x3DWw0ruReohJfgiIiLiWPgSfP1k5XaXq6Q8x8DQm+HGr6HzsLCHJyKBUYIvIiIiztNpN30DXz8BB7c6bRu/Bmth3WdOff01n8CZD0JMQt3GKiJ+qQZfREREYO0csMXOE2rn3QO9L4Dpl8Cxp0PfMXDjVxAdX9dRikgAlOCLiIgIrP64/PVPb8LaT53Xaz+FrO/AVQTHjQNj6iY+EQmYSnRERESauqIC+GWuZ1ve/vLXBQedJ9gquRdpEJTgi4iINHUbv4Qj2b6nR8bCSbc7N9uKSL2nEh0REZGmbtXH/qcXF8DzwyEyBlp0hOQ0yPgrpA0JT3wiEhT14IuIiDRl1sLqWYHNW3wEDmRBr/OV3IvUY+rBFxERacq2L4HD2wKbNz4Fxv4HupxUuzGJSI0owRcREWnKAu29b90Txk2Hll1qNx4RqTEl+CIiIk1ZVfX3AN3OhNFTIa557ccjIjWmBF9ERKSpOpAFO5f5n+dXk+CUuyAiMjwxiUiNKcEXERFpqlbP9j0tMgbOewqOuyR88YhISCjBFxERaapW/897e2IbuOR16DQ4vPGISEgowRcREWmK8g/Cxq8qt7c7zknuW3QMf0wiEhJK8EVERJqitXPAVeTZ1msUjPoXxCTUTUwiEhJK8EVERJqiisNjZvwVRtwBxtRNPCISMkrwRUREmpriQqcHHyA6AS54znk6rYg0CkrwRUREmppNX0PBQWje0Xl4Vbt+dR2RiISQEnwREZGmwNry8ptVH0PHE+CSaZDUpm7jEpGQi6jrAERERCSE8g5A1oLK7Z/eCe/dALvXQHwKjJ+p5F6kkVKCLyIi0pjsXg1vXw05e8rbDu+EhS/CT2/AMyfA3rWwd13dxSgitUoJvoiISGOyexUc3gbvXgeuYqft26egKL9kBgvL34UXT4H8Q3UWpojUHiX4IiIijcnuVc6/6+fDF/9wevIXvlR5voFXQVzz8MYmImGhm2xFREQak9IEHyDzYacevzDXc57IWPjVbeGNS0TCpsH24BtjIowxvzPGrDLG5BtjNhtjHjXGJAawbDdjzL3GmAXGmN3GmMPGmCXGmMmBLC8iIlJv7V7t9sY6PfkVDbwCmrcLW0giEl4NuQf/MeBW4H3gUaBnyfsBxphTrbUuP8teA9wMfAhMAwqBkcD9wFhjzFBrbV5tBi8iIhJy+Qfh0NYqZjLQezTs2wDW5QyfaV2Q2AoSWoYlTBGpXQ0ywTfG9AYmAu9Zay90a98APAlcArzuZxXvAA9Zaw+6tT1njFkLTAauBZ4OeeAiIiK1afeaAGay8MrZnk2te8DVs2olJBEJv4ZaojMOMMDjFdqnArnA5f4WttYuqpDcl3qz5N8+NY5QREQk3Nzr7wPVIg2ueF+99yKNSENN8AcDLuB790ZrbT6wpGR6dXQs+Xdn9UMTERGpI8Em+Imt4coZ0Lx97cQjInXCWGvrOoagGWOWAW2stalepr0FjAFirbVHglhnJPAVMAjoY61d7WfeCcAEgNTU1OPfeOONID+BuMvOziYpKamuw2hStM/DT/s8/JrkPt+3DgoOBzaviYSjjoHo+JBtvknu8zqmfR5+dbXPR44c+YO1dlAg8zbIGnwgASjwMS3fbZ6AE3yccp+hwF/9JfcA1toXgBcABg0aZDMyMoLYjFSUmZmJ9mF4aZ+Hn/Z5+DXJff7YLXBwc9XzRcU5ZTmdh4V0801yn9cx7fPwawj7vKGW6OQCsT6mxbnNExBjzH3ALcAL1tqHahibiIhI+BUcDiy5N5Ew5tWQJ/ciUn801AR/G9DKGOMtye8A7Am0PMcYMwW4E3gZuDFkEYqIiIRTQCPoABc8B93PrN1YRKRONdQEfyFO7Ce4Nxpj4oD+wKJAVmKMuRu4G3gNuM42xBsSREREILAbbM/6P+g3tvZjEZE61VAT/DcBC0yq0H49Tu39tNIGY0xXY0yPiiswxtwFTAH+A1xdxYOxRERE6reqEvwRf4YhN4QnFhGpUw3yJltr7TJjzDPALcaY94CPKX+S7ed4PuRqHtAZZ9x8AIwxNwP3AFnAXOBSY4zbIuy01s6p1Q8hIiISSv4S/BMmQMafwxeLiNSpBpngl5gEbMQZrvIcYA/wFHBXAL3xpePkpwGvepn+OaAEX0REGg5fCX7fsXDm38GzI0tEGrEGm+Bba4uBR0t+/M2X7qVtPDC+NuISEREJuyM5cCCrcvuxZ8CoZyGioVbkikh16C9eRESkodvt5fEtaSfCmFcgMjrs4YhI3VKCLyIi0tBVTPBT+8K4NyAmoW7iEZE6pQRfRESkoXOvv0/pApe/C/HJdRePiNQpJfgiIiINXWkPfrN2cOUMaJZat/GISJ1Sgi8iItLQ7V4Jcclw+XuQkl7X0YhIHQs4wTfGXGmMSfczPd0Yc2UoghIREZEAHcmFnL1w2TuQ2quuoxGReiCYHvyXgWF+pg8pmUdERERq27r5sGsV7FsPF78GnQZXvYyINAnBjINf1RMyooGqHjAlIiIiNWUtvD0e8g9AdAKk9oZV/4OT74T4lLqOTkTqWLA1+NZbozEmGedpsttrHJGIiIj4dyDLSe4BCnNhy0L44VWITqzbuESkXvCb4Btj7jbGFBtjinGS+/+Wvnf/AfYCY4E3whCziIhI07bjp8ptqb0gKib8sYhIvVNVic4S4DWc8pwrgS+B9RXmsUA2sACYHuoARURarANxAAAgAElEQVREpILtSyu3te0X/jhEpF7ym+Bbaz8APgAwxnQG7rfWzgtHYCIiIuLDdi89+O2OC38cIlIvBVSDb4xJAjYCLWs1GhEREamatx58JfgiUiKgBN9amw1cDDSv3XBERETEr8M7IXuHZ5uJcEbSEREhuFF0fgbSaykOERERCYS3G2yPOhZiNIKOiDiCSfD/D/itMaZbbQUjIiIiVVB5johUIZgHXfUANgPLjDEzgbVAboV5rLX2vlAFJyIiIhV4TfA1go6IlAsmwZ/i9voCH/NYQAm+iIhIbfFWoqMefBFxE0yC36XWohAREZGq5R2A/Rsrt7ftG/ZQRKT+CjjBt9Zuqs1AREREpAo7llVuS+4M8Snhj0VE6q1gbrIVERGRuqT6exEJQDAlOhhjooBRwBAghconCNZae22IYhMRERF3qr8XkQAEnOAbY1oC84E+gMG5odaUTLZubUrwRUREaoO3Hvy2SvBFxFMwJTr34wyVeR3QFSehPwPoCUwHFgJHhTpAERERAY7kwp41ldvVgy8iFQST4J8DvGatfRk4VNJWbK1dba29HMgDHgp1gCIiIgLsXAHW5dmW1BaapdZNPCJSbwWT4LfF6aUHKCr5N85t+gzgvFAEJSIiIhXs0A22IhKYYBL8fUBiyevDQCHQyW16Ic6NtyIiIhJqXkfQUXmOiFQWTIK/BugFYK11AT8C440xscaYBOBKYH3oQxQRERG2exlBp6168EWksmAS/E+Bi4wxsSXv/4kzXOY+YBcwCHgstOGJiIgIxYWw6+fK7erBFxEvghkH/0HgEWttAYC19i1jTBFwOVAMvGOtfbMWYhQREWnadq+C4iOebXHJkJxWN/GISL0WcIJvrbVAQYW294D3Qh2UiIiIuPH1BFtjKreLSJMXTImOB2NMvDEmPpTBiIiIiBeqvxeRIASV4Btj2hhjnjXGbAOygWxjzPaSNg3EKyIiUhu89uD3D38cItIgBFyiY4zpAnwFtANWAwtwnmbbA7gRON8Yc5K1ViPpiIiIhIrLBTuWVW7XGPgi4kMwN9k+ChwFjLbWznCfYIy5AJgOPAKMDl14IiIiTdy+dVCY49kWnQBHHVM38YhIvRdMic4pwDMVk3sAa+37wL9K5hEREZFQ8Vaek9oHIiLDH4uINAjBJPgWWOtn+pqSeURERCRU9ARbEQlSMAn+58BIP9MzgMyaBCMiIiIV7PAygo7q70XEj2AS/EnAEGPMo8aYNqWNJSPrlD7VdlKoA5TgrFmzhrvuuouhQ4fSunVrmjVrRv/+/XnggQfIycmpegUiIlJ/WKsefAmIvv/FXTA32c4D4nGS+EnGmAM4JTkpJdP3AJ8Zz4duWGtt11AEKoH597//zTPPPMN5553HZZddRnR0NPPnz+fOO+/krbfeYsGCBcTH6/EFIiINwsEtkLffsy0iGlr3rJt4pN7S97+4CybBz0I19vXeRRddxF/+8hdatGhR1nbjjTdy7LHH8sADD/DSSy9xyy231GGEIiISMG+99216QlRM+GORek3f/+Iu4BIda22GtXZksD+1GbxUNmjQII8/7lIXX3wxAMuXL/e63JQpU0hMTGTixIlep0+cOJHo6GhWrlwZumBFRMS/Wqy/13G/cdH3v7gL6km20nBt2bIFgNRU7w8cPv300xkyZAhPP/00a9as8Zi2YsUKnnvuOW6++WZ69tRlYRGRsKnFJ9jquN806Pu/aVKC3wQUFxdz7733EhUVxaWXXup1nmHDhnHfffcBsHSp5xfKpEmTSE5OZsqUKbUdqoiIuNvupQe/bWh68HXcb/z0/d90KcFvAiZNmsSCBQu499576d69u8/5evXqBcCqVavK2t5//33mzp3L/fffT3JycrW237t3b2bOnOlz+vjx4/1OD1R6ejozZlR6DpuISP2Xsxc2fu3Zlr0bDm+rMKOBtn1CttnaOO5XdcwPdJ5A6LjvX33//tfvQe1Rgt/I/e1vf+Ppp59mwoQJ/OUvf/E7b0pKCq1bty77Ay8oKOAPf/gD/fv35/rrr692DCtWrODcc88FvP8RvvLKK2XTRUSapJgEePU38PUTztCYADu8lOe0OhZiEkO22do47rsf88H7cb/iPBJ6DeH7X78HtSeYUXSkgZkyZQr3338/V199Nc8991xAy3Tr1q3sD/zRRx9l/fr1fP7550REBHcuaK3F5XIRGalHqYuIVCk6HmKbwZy7YPP3cP4zYRv/PpTH/eLi4pDHJ8HT97+oB7+Ruueee7jnnnu48sorefHFF6nwfAKfunfvzurVq9m6dSsPPvggY8eOZfjw4R7zHDp0iFtuuYW0tDSaN2/O4MGD2bx5M+np6Tz44IMMHTqUxMREFi9eDJSftY8ZM4asrCzGjRtHUlIS48ePB+CSSy7xOKv3tX6Af/7zn3Tr1o2kpCS6dOnCI488EoK9JSJSDzRr5/y7aia8MAJWfVx5ntL6+8J8WPcZfDLZ+3xBqOq47++YXPG4v3btWo+eWl/Hffd5dMwPrYb0/V+xV1+/C6ETcA++MaaTtXZzbQYjoXHvvfcyZcoUrrjiCl5++eWgzr67d+9OTk4OV1xxBS6Xi3/84x+V5rnqqqvIz89nwYIFtG3blqVLl5Y9POPll1/mww8/pHv37hQWFnos9/bbb5Oens7jjz/OqFGjfMbgb/1paWnMmTOHtLQ0vv32W84880x69+7NWWedFfBnFBGpl5qlwu6SoQj3b3R+Ktr1M/z3Itj4FRTlOScFJ99Zo81Wddz3d0wGz+P+3LlzPZYN5LivY37o6PtfSgVTorPRGPMp8CLwgbW2qJZikhp45plnuPvuu0lLS+PUU0/l9ddf95iemprKaaed5nP50ptw5s+fz5QpU0hLS/OYvnPnTmbMmEFWVhbt27cHYMCAAWXT3YfSio2NDTr+qtZ/0UUXlb0eNmwYo0ePZv78+foDF5GGr7QH35+l0z3fj7jDKe+pAX/H/aqOyeB53I+JCe4BXDrmh46+/8VdMAn+88AlwOnAXmPMa8BL1lo9+aAeWbhwIQBZWVlcddVVlaaPGDEioD/wtLQ07rjjjkrTN23aRGxsLJ06dfK6fOfOnasTdsDrnz59Oo888ggbNmzA5XKRl5fnc+gvEZEGpVnb4OZP6QIDrqjxZv0d96s6JkPNjvs65oeOvv/FXTBPsr0JaAdcCSwHfgcsN8Z8Y4y52hiTUEsxShBeeeUVrLU+fzIzM/0uHx0dDcCECRM8LsGW6ty5MwUFBWU1cRVVVetX1eVCf+vfvHkzV1xxBQ8//DC7du3iwIEDjBs3Dls64oSISEMWSA++u5GTITK6xpv1d9yv6pgPNTvu65gfOvr+F3dB3WRrrS2w1k6z1p4MHAM8BHTEKdvZYYx5wRhzQi3EKWGyZMkSAAYOHOh1empqKueffz433ngj27dvx+VysWTJEvbu3RvQ+lNTU1m7dq3f6b7Wn52djbWW1q1bExkZybx583j//feD/5AiIvVRMD34bXpDnwtDsll/x/2aHvNL1+HruK9jfv2h7//Gpdqj6FhrN1hr7wR6ANOAJOA64FtjzI/GmDEhilHCqPQPvGKNpbtXX32VTp06MXjwYJKTk7nhhhvIy8sLaP2TJ0/m2WefJTk5mWuvvTao9ffs2ZO77rqLU089lZSUFKZOncqYMfo1E5FGIimIBP/kOyHI4Qt9qeq4X5NjPlR93Ncxv37Q93/jYqp7ecMY0w+4FrgMaAlsAl4CjgA3AOnAPdbae0MSaT01aNAgu2jRoroOI2TOPfdcFi1axI4dO8K2zczMTDIyMsK2PdE+rwva5+HX4Pb5/k3wRL+q5+swCK6bCwEOf1iVUB73G9w+bwRCtc/r4vu/oaqr33NjzA/W2kGBzBvUg66MMc2BS3ES+4FAMfARMBX4xJacLRhjHgVeB24GGnWC39iE4pHRIiJSDYGW6JxyV8iSe9BxXxz6PWhcAr6+VzJqznbgWZwe+zuBTtbaC621s63bpQBrbTHwAdA6xPGKiIg0TlGxEN/S/zxdRsDRI8ITj4g0WMH04F8MfAi8YK2dE8D83wBXVysqERGRpqhZO8jb53v6KXeFLxYRabACSvCNMZHAScAv1lo/R55y1tqNwMZqRyYiItLUNEuFXSu8T+t+DnQMqPxWRJq4QEt0onF65K+pxVhERESaNp9j4Rs4eXJYQxGRhiugBN9amw/sAXJrNxwREZEmzNeNtn3HQGrv8MYiIg1WMIPofgycW1uBiIiINHneevAjomDkX8Ifi4g0WMEk+HcA7Ywxrxpj+hpj4morKBERacKO5DSNbXrjrQd/4JXQ8ugar9paS26hLsSLNAXBjKKzC7DAccDlAKbyOLzWWhvU2PoiIhJCLlfInnDq4UAWrPnE6U0eVAsDpO35BdbMgtWznVKUs/8v9NtwZy1sX+p8pjWzoN/FMPS3tbvNQFR8mm1UHAz/Y0hWbYzhT1/+iWJXMRmdMhjecThtE4N4eq6INBjBJOOv4ST4IiINi7U1fzCQtZCzG5La1DyeogLY+BUktoZ2ATy5tCr5h2DdPCc5jk+Gs/5e83W6XLD1Byf5XfMJ7FwOGPjtNzVfN0BxEWR9C2tmOz97f3HaI6Jh9POh2UZFhXmw4QtYXfKZDm9z2pNS4fjxtbPNYFXswT/hemjePmSrv6bPNVw560q+3PolAD1b9mR4x+FkdMqg11G9iDC1cHIoImEXcIJvrR1fi3FUizEmArgNuAFIB3YDbwF3WWurvN5a0+UlQDVJrlzFEBFZvWWLCpwHx1RH/iGIa169ZfP2O71u0fHBL+sqhr3roHW36m07/xDsWQsdj6/m8gdh3Xzoflb19l1xEWz+Dg5sgv6XVi+GgsOw7jPIWgCn3gNRMdWMY4GTyOXsgQueq14shflOIl6a5I6cDP3HVW9driJY8roT07rPwETCpJ+qty6AfRvKk+ONX4OrEDBw8/fVX2dBNqyf75worP3EOaFx13sUpPaq/vrz9sMv85x98Msc5/etooFXQouO1d9GRYd3OPto9WxYnwlFeZXn+dWk6v291oak1PLXMc3gV78L6eoHtBnAie1O5Nvt3wKwct9KVu5byfM/PU+r+FaM6DiC4R2HM7TdUBKiE6q1jY/WfcQxycfQo2UPb1f6RSQMGno5zWPArcD7wKNAz5L3A4wxp1prXbW8fMPg/qV97KnQ+4LAlrMWti9xltuxDMa8EniylXcAfpnrfLG27h7cJebSS/VrPoETJkCv8wJbzuWC7T86y62e5SRj3c8MbtnVs51t9x0Lv7o1iJjXlvcKFhyECV8Evmz+ISfhWzMb1n4Kw24NLsHfv7Ek7tlOMnruY8El+HvXlZcpbPoGeo1yErlAlf1ff+IkbXn7YcyrgS8PsH9TeQwbv4LiIzDiz8El96XJ45rZsHYO5B9w2i99O7gTzOxdJbHMdk52CkvO9Vse7YxkEihrYdfK8rKTxHPgi7vLp4/4k9PbHihXMWxZWPJ7Nht2r6o8T9+Lgj85LC29WT0LNn7p7HuvDAy/I7h1g2fpTda3YIt9zxsRDSf9PvhtuCsrvZkNe1rCo+f7nz8ptXZKjqorKgYSWkHuHhh2CyQeFfJN/Lb/b8sSfHd78vbw7tp3eXftu8RGxnJC2xOqVcpzpPgIY2eOpU1CG0Z0HEFGpwxOaHsCcVGB3bp3pPgI0RHROjkQqYFqJfjGmCQgGS836Vprs2oaVIAx9AYmAu9Zay90a98APAlcArxeW8vXlWnTYPJkyMqCtDR44AG47DIvMx7YXN67t+EL50u7WXs451H/GziSCxs+d77s134Kh7c77Wc/UnWytXddefKR9a3TYxkVD2c8WPUH2/Bl5Uv1rXtAjyoGbjqSA+s/Lz8hyN7ptLfrD93OCGDZzPLPWrpsQisYfK3/ZYsLS8oLShKjfevKp415peoa6LKkfJZb7yuQcBQMvs7/sqWJXmmv5O6V5dOSO8Nxl1QRe5Hz2T/9W0kStMZtooERASRxe9eVbH9W+f91qTa9oGcVJ2WuYqf8o/T3ZdfPntNjWwRWD+3+O7fpm8rJY/uBcOxp/tdhrVN+Uro/t/6A12rE4XdAZBWHzNLSm9Lf5QNuh8Pu55S/jm0e2OdzL71Z+6n/J5wGmoB7Lb0JQI9z4KiuUHTE/7GguNC5+lLx7zkQ3c5wymj2rPVsj0mC5r7Gh8dZZv3nJdt0K73pfk/V2+xzIRzcEniMtWjaO0lMfqAVWVvW0i55G39MdXH+gA0h305ybDI9W/Zk5b6VPucpKC7gy61flpXy9GjZoyxZr6qU57yu5zF12VS2Zm/l7TVv8/aat4mPimdIuyFkdHROGFontPa5fE5hDlfPvppBbQcxvONwhrQbQmyk7yuK6w+up018G5JikgL49I1XwPmBNAlBJfjGmEuAO3F6un2pZj1F0MYBBni8QvtU4GGcG4H9Jeg1XT7spk2DCRMgt2QQhE2bnPcAl41zwbbF5cmOty/tQdeUJJIVelEObSv/YlyfCUX5ntMTjoJuZzqJoXuCU1oGUZoY7a3wpQzQZ7T3D+N+qb6oP2TeWXmeAVc481XswTq41fPkpWK8AMeN814vfXCL22f9HIoLKi/b+wJn2ZjEyjGvneskRr/M9V5e0KwdtOzqnCjFuF3e9uh9/cQzKXfX7SzYvwHa9vVsr9jLn7vX+/LHnu5cbekwsMLyB52YV892etnTJsHqJysv3+44Zx817wCxbl+WpaU3pT2x3v6vS3Ua4iSlFRPr0tKbNZ84P7l7fK+jXT/ns3Y/C+JaVIhjQfnveVXJY0o6fPe8c8IWGV3eXrH05uBm/+sxkbBnNSz+Dwy8wnNazh7n/6S09OZItv91AcQlwyeT4ZhTnATTndfSmwBExcIHNzknD1e85zmtqtKbQKyaCfe3gdQ+8NuvPacFUnoT6DZWzazc3msUjK1wVSiQ0ptALHjW+alj05ZdxPUfPUVeofN7uu1AR34/KY9Hl0whedjHdRwdrNq3ilX7VgVUyvPt9m85PvV4tmZvLWvLK8ojc3MmmZszAeh9VG9GdBpBRseMSqU8KXEpjEwbyYvLXuTN1W8SHxXP0HZDy64mtIpv5bG9vXl7ufDDCxmUOqhsnk7NOnnMs3DHQv63/n9kdMpgSLshxEd5lmTN2jCLPkf1oVNzz+V25OwgMTqRZjHNAPhiyxc8sfgJAE5OO5mb+9/Ml1u+5PHFTioxouMIJg6YyKT5k9iSvYVIE8kTI5/g6SVPs2rfKgyGyUMn88jCR8gvzic5NpkBbQYwf/N8AIa2G8qC7QsASG+ezsZDGwFIik4iuzCbIyVX2GIiY8gpzCExOpEzis/gd5MWsuy5iRQXON/vHvmBkvwmyVgb2H2zxphRwHvAGuAz4EacBDgKGAUsA2ZaawPoMqk5Y8wnwKlAgrW2oMK0r4Fu1lqfXQQ1Xb7UoEGD7KJFi6rzEYKWnu780VbUufVeNv5xSGBf2n0ugtFTYcfS8h7k7UsDC+Cm75zHqHsrg/CnTW+46Rufl+ozu99Dxuq7vS973Dg4/1nP0psdAdYt978cznsKtv1YkjDNcpLfQLTtBzd+6VZ6M9vplfRXXuDuunnQqpuT6K75xH9SXlHzjvD7Fb57+avSsivcurhy6Y1bL7vffQ5w0wLnZKW0zCrQ/+tSia3hj784Pdhln+ErP+UfPty8EJJa1zx5/Os256qFt9KbYKSfBFd95Fl6s2UhgYw/4HWfD5vo3GdQVelNMOJbwp82BFF6E6TSBD+Y0pua6jXKuTJWWnqzepZTPliFKn/P65H0x5ex6WBapfboo7bR/dEqrkbWoYqlPKsWruKOrXeQF8QJV8VSnh92/sBD3z/EpkNevvCAPkf1cU4OOmXQPaU7M36ZwcPfP0xuUfkQoF1bdC2bp1+rfizbs4wJcyaQV5RHbGQsQ9sNZUSnEQzvMJzUxFTu+OIOZm2YxdEtjmZExxGM6DSC41ofx7I9y7jmk2s4PvV4Tmp/Eq+vep1tOc4VoigTxZvnvsntn99elohHmkhuOu4mnlryVFksx7c5nh92/VD2vm1iW3bk7Ch7H2EicJVUBLu/DtRvk37LpBtGUbi38s3YnTvDxo1BrU4CkJmZSUZGRti3a4z5wVo7KKB5g0jwvwJSgOOBJJxhM0+11n5mjOkDfA1caa39oHphB8cYswxoY61N9TLtLWAMEGut9fqtVpPljTETgAkAqampx7/xxhs1+iyBOvnkEVhbuSbRGMtn054IbCVxyc4NoLl7PMsqApGc7iwXSA+lu6g4SGzl1DZ7STKyY9uTVLDN+7LxKRAZ4yTHwcZbk2Wj4p0rBz5irlJymtOrWXA4+GUjop1yhMM7vV9hqEpkrHPlInuXz+X97nNwSn1y9wb/f10qIsq5CpC90/sVlkClpDs95NWNo2w9XZxYajoGeEySc/N19u7AT7hKeN3nia0AA7n7Qpcgm0jnJtWa7ntfqvh7rhVxLZy/ySCPW1X+ntcjJ196GxYvNefG8szb/wp/QNUQGxVLK9OK7UXbg05SwRnGs1lMMxKiEjwSYF+iIqJIiUshvyifw0e8H2sjTSQt4lqAhX35lUvc4qLiaB3fmi2Ht2DdTtQjTATJsclEmAj25Pm+2pgSl8L+/P0ebTGRMWU97eHQOrI1Y0dfBL7yg88+D1ssTUV2djZJSeEvCRs5cmTACX4wJTr9gPuttfnGmNLrcZEA1trlxpgXgL8AYUnwgQTAV/aT7zaPr7+yai9vrX0BeAGcHvxwncWlpXnvwU9rm0dG7Mqqa3RbdnVunjzlLqcOt6qSnlLRCc6yZ7zm3GiYu8/p0V0zy+lZLTjke9lm7aDD8XD2NKfWefdqt57P78G6fPeyJadB79Fw2j3lNdull+R3rfC9TXB6wfte5Lmsr3rvihKOcmq3x7xTEvOq8mU3f4/f3trIGOfEYsRb0L6/7xs/fYlOdJLai0uGIqyqxrzS9mOh1bEw9msn9r2/eL0C4b9n08BN30KbnsH9X7sr7cEH2Le+vBe/wpWEKt280LlpNGev03u/uiQOH1/mPv11m1NydWi7U6JS3bKO9JPgwpnOvt2xrLw3edviKhf12YN/+v3Blx75U9qDD86+L+3F3/R18Ce63qT2gTFf+/x7rhW9RsEFr5Yct34s3+ZO/1fkGlIPflqL0d578Ftu51/Z9TPBj4qI4oS2J5T1eHdI6kBmZiYPbH0g4B58b+U+q/et5qufvmLOpjmV5u/ZsmdZaU/Po3oSYSJYvmc5135ybVkPfnrz9LKYBrQZQFREFNuzt3P+B+dT5CrihHYnkNExgxEdR9Auybm3475v72PB9gVl6x6QOoDoiGiW7FrCrMWzyOjkzP/w9w/z9TanRK1lXEs+Ou0j/vTFn/hq61eAc3/D30/8OzfOubHshOHSHpfy1pq3KCr5+xvcdjALdyws+0zNoptxuNA5piVGJ5JTcnUxykRRZJ1lDMbjBMTdb5N+S3TL7V578NPSTJ30NDd2ddWDH4xgevBzgFuttS8ZY+KBHGCstfadkunXAY9ba8NySlOXPfjuwlmiU7EGHyAhAV54oaTGrqpRNobeBGc+5H3lpZfz3W/KLRUVB7f95JTnVFR0BLK+KU/g9m/0nN79HBjn41aGkqQtc30+GSvvrJy0nfw3GP4H78uWjboy23v5wRkPwYk3VbHsLOfm3oo9scdfDb+peGtGacx73BLezyrHHN/SGfowtlnlZQNJ4gZeBed5qY0Hz5GJfJ0s/Pr3cKqPhCZ3X9nymUUDyFjl5b6H9gPh+s+8jzpT+n9dmjDu93HzX8Zf4Fe3eR92MP+g2wnPp84JkDfdz4bfPFlyFaZCP0RVv3PuTrzF+f9seXTlG5+P5Dq/66V1+KU3lHtjIuGSac6VDW/DRB7e6XbiMN/rlQKPZLNNL+d3+6hjvY+Dv+eX8jr8QE7swDkRH3ars99/Pany9PyDzj0CAd2w60WLNOeku2U6nP9M5ek5e531rpldvZMwcK4wehue9tjTvQ8QUHpPzerS45Znn01ACX5i63oxROa0RWcz4a0p5BaWxxIRk0/vGx+n/fDMkG9vf/5+j5KWQKXEpnBSx5PI6JTBsPbDSIz2vFcpMzOTXw3/FU/88ASv/ux9NK1Axt6/PfN2Pt30KbGRsQxpN8RJ2DuOIDWx8vfQh+s+ZMYvM8rmSW+RXmmeFXtXsCN7Bye2P9Hr8J9bDm+hQ1KHSiP3uKzLI76NBzfy3i/OPS6DUwdzUseTyDqUxTtr3wFgUKpzY/Cbq95ka85WIk0kN/S7gTmb5rD2wFoMhvG9xzN91fSyGvzuKd35bsd3APRr1Y+f9jhlqO0T25eVA8VHxZNXlEehqxCXy0VsVCwH8w/SIq4FqdtT+eCHRGY8fA6F+eX3GnnkBxJSja1EZzXwprX2rpL3O4BXrLV/Lnn/D5wSHS9ZYOg1xRp8CPIu+X0b3IYe/NoZT/62pd4fhe7O2w15Q2+GM6sYDcdaZ0SWst7u75wevRu+cG7e9CEzM5OMXw9zehhLe0QPbHKSu9t+qno8+oLDTk116c2zuXucoe9uW1r1F3fpjZ+lnzV3r1Mic+tiJ5nxp+gIbPqqPNEsHTHllLsDG+rPWxIXEQUTF0NKZ//L+rrpNSbJ2WdVDK2XmTmfjM6R5bHvW18+8dK3odvp/rfv8X/9iXPiUtp7G98SJi3zvEnX12fY8n35OvasLp9mIpzx3FsdW3Uc/nqRk9rCbUuq/j1wH1rRV3338Dvg5Mn+1wMlD1NyGxXqkHOjoWeyWTJefSBDWgZzA+tl71Q9ahA4nQGbvy+PMZC6/3bHwYTPAxtytOhI5b/nQBw9Eq6cEdi8FRVkO1dl1syCNZ9Czq7AEvzB18M5j1RvmyFWenzflOUiuuUOHnk4hluva1X1gkEqchVx/mOzkyMAACAASURBVIzzyToc2KB3xyQfU9aD3bdVXyL9PJskMzOTfkP7cea7Z5b14sdExDgj6AQ45Oau3F38a+m/GN5hOEPbD610Q6y3zxMV0dBH/a6+0mRTo+iET2NL8F8Gultrh5W8fwG4AngIZ7jMO4CPrLUXVyvqIBlj7gcmA8OttV+6tccBe4EvrLVn1dbypcKd4Fdb6XB78SlwdEbgy5WW8qzPdHoHgxmXvLSswlUEAy73OVulPxT3pC21T2AJS1m8xbB1sbNsp6FVJ6qVli0p5UlKhaE3Br6seynPloVw4Uueo+hUxT2Ja9EBTrs38GXBc9jKtBOrTEQ99nnFUp7iQrj20+DGjq9YynPS7+HXQT6gp+JNwX0uhNEvBLcOb6U8Z/49uP9L8F7KE9vcOWlMaBn4etxKeTJ3J5Ox3O15EH3HwIUvBhdXVVeBOhzv3OAd7PjhgZbyjHvDGdkoGKV/G6U97VWV8lzzCaQNDW4bFZWU8mT+uIaMLc/4L+WJjIFblzh/d/XEia+fSHZhNmd3OZu/Dw/BU4kr+HDdh0z+yvcxorT0prSXvUNS4PsmMzOTH5v9yIfrPgzJQ7Okag2hXKSxaWwJ/mDgAuA+a22eMaY1MAenNh9gBXC2tbaK8eZCwxjTF1gKvF9hHPuJOOPYX2Gt/W9JW1cg2lq7qjrL+9NgEvx6TAenClyuqsfR96cwH6L9P1DG7z7P3edcCajOE2TB6b3dvcp76Umg8g44iXX3s2sWR9Y3sG2JUzJU3YfmuJfytDvOGW62GjIzM8k4vmf5icOGL5xyqOo+tRi8XwUKtBffF3+lPMH04vtSVsrjo8ytJr34FZT9npc9F+QTr6U89akXP7cwlyGvDwGcuuu3f/M23Vt2D9n6ffXeV1V6E6jMzEw69e9ElxZd/I6VL6Gj79DwawgJfsDXtKy1C4GFbu93A/2NMf2AYmBlOJ/8aq1dZox5BrjFGPMe8DHlT6L9HM8x7OcBnaF8iIIglxcJn5ok91Blcl+lYHqovYmKqVlyD84TXoN5mq6vOI7OCO6KlTf/396dx0dV3f8ff32yQhIgrAECISyyiqIsAhYBFXcUd3EDW3HDHfVrf3xV7GaraC1YF7Bq/dpiccOqtSplsbWoCKIICAKyyr6HEJbk/P64kzhJJiGTzJKZvJ+Px31M5pxzbz73GMknZ849JyXN2xG5qrsiV6ZBFpx4rXccPlD99eKLNesEzW71djwt/hRo+3c1S/DrNfL2guhxYfmpPMXTmIIdxfeX3hR6jfSOQFN5Vs/2Hgiv6Si+v8y20G+MdwSYysPCP3ufOjUs/5BipG078ONyxw7HU4ueYvKpkys5Izj/+P4fJcl9MFNvgtExs2NIriMi1VfjSWvOuSouSh4WdwJr8JasPBfYDkwGHqziHxs1PV9EpHqS64f24c76jb2Vo0IpIRHaDfCOYQ97U3l2V23edpUkpUDHod5x1m9/nMqzanZoE3x/qRnQ7Tzv8F+VZ8U/q/3pTChtzd9a6v2c9XP4attXHN+84ueYqso5x+Jti7m/3/0MbjOYNg3a1PiaIlI7VSvB9y2T2RTKL9rrnAvhv/6Vc84VAo/7jsra5dbkfBERwVuNqEmH8FzbzFuatUVlG6WHWEICtOntHbXEtvzyGxZOXjiZ588M8nmNAMy8XVRFJP5VeS6AmSWY2f1mthHYhzfy/X2AQ0RERKrBf4pOsc82f8anmz6NQjQiEquCGcH/LXAP3sO0b+CtNCMiIiIhEmgEH2DSwkmcdM5J5dZpFxEJJJgE/2rgn865c8IVjIiISF229cDWgOWLty9m9vrZnJpzaoQjEpFYFMxyHY2Bt8MViIiISF1X0Qg+wOQvJ1NYVIVdjUWkzgsmwV8MtApXICIiInVdoDn4xVbuXsk/vv9HBKMRkVgVTIL/MHCTmbUNVzAiIiJ1WWUj+ABPL3qaw4WHIxSNiMSqYObg9wbWAkvN7C28FXPKflbonHO/DFVwIiIidcX+w/vJP5JfaZsNeRt4a+VbXNblsghFJSKxKJgEf4Lf11dX0MYBSvBFRESCVHaTq4o8+9WznN/xfOol1XDXahGJW8Ek+O3DFoWIiEgdd7TpOSXtDmzj1W9fZfSxo8MbkIjErCon+M65teEMREREpC6raInMQJ7/5nku6XwJGSkZYYxIRGJVMA/ZioiISJhsz99e5bZ7Du7h5aUvhzEaEYllFY7gm9mDeHPqf+2cK/K9Pxo9ZCsiIlINwYzgA/x5yZ8Z2XUkjes1DlNEIhKrKpuiMwEvwf8dcIjSD9lWRA/ZioiIVENV5+AXyz+Sz58W/4l7+t4TpohEJFZVluC3B3DOHfJ/LyIiIqFXlVV0xvUeR3JiMv/94b/M3zyfad9O4+ruV9MyvWUEIhSRWFFhgl/2oVo9ZCsiIhI+/rvYntvhXIqKinh/zful2uQdzuPWY2/lqm5XcajwEAu3LmTz/s1K8EWkFD1kKyIiEmXOObYf2E5yQjIP9H+AR37yCCdknVCu3bc7vy35OiUxhf6t+tOrRa9IhioiMaDKy2RW4SFbBxwA1gFznHPBPS0kIiJSR+UdzqNxamOeGPIEPZr1AKBbk27l2i3bsSzSoYlIDAp2J1vn+9rK1JUtP2xmE51z42sQm4iISJ2QYAlMHz6dRqmNSso6N+6MYbiSX7HeSjvbD2ynWf1m0QhTRGJEMFN0jgUWAvOAy4FevuMK4FPgC6A/cKnv6/vN7MaQRisiIhKH0pPTSyX3AGnJabRvVH59C/9pOiIigQST4I8BCoDBzrnXnHNf+47pwGDgMHCFc+4N3/vFgBJ8ERGRaurapGu5MiX4InI0wST4VwDTnXOFZSucc0eA6cDIMu+7hCJIERGRuqh70+7lypbuWBqFSEQklgST4DfyHVWt3w5+EwdFREQkKBrBF5HqCCbB/wq4xczala0ws1zgFmCRX3EXYFNNghMREanLAiX46/etZ9+hfVGIRkRiRTCr6NwPfAAsM7MZwApfeRfgArw/FkYCmFkqcBXwbuhCFRERqVsapTYiOyObjXkbS5V/u/Nb+rbsG6WoRKS2q3KC75yba2anA0/gzcf39wVwj3PuY1/bg76R/sMhi1RERKQO6takW7kEf9mOZUrwRaRCwYzg45z7D9DPzFoA7fHWvV8daFMr59zB0IQoIiJSd3Vt0pWZ62aWKtM8fBGpTFAJfjFfQq+dakVERMKsW9MAO9ru1I62IlKxaiX4ZpYBZBLgIV3n3LqaBiUiIiKebk3KJ/ir96zmwJED1E+qH4WIRKS2C2YVHczsCjP7BtgDrAW+D3CIiIhIiDRPa06z+s1KlRW5Ir7b9V2UIhKR2q7KCb6ZjQD+ijfq/xze/PtpwGt4D9MuBH4RhhhFRETqNK2HLyLBCGYE/x5gGdALeNBX9oJz7gqgD9CZ0uvgi4iISAgEmqajHW1FpCLBJPjHAX92zhUARb6yRADn3DfAFODnoQ1PREREAj1oqxF8EalIMAl+IrDD9/UB32sjv/rlwLGhCEpERER+FGgEf8WuFRwu0nYzIlJeMAn+BqAdgHPuAN4ymX386rsA+0MXmoiIiABkZ2TTIKVBqbLDRYdZvXt1lCISkdosmAT/v8Dpfu//DtxhZg+a2QRgLDAndKGJiIgIgJkFHMXXevgiEkgwCf7TwBwzK150dzzetJwJeA/drsJ7EFdERERCTCvpiEhVVXmjK+fcfGC+3/ttQC8zOw4oBJY554oqOl9ERESqL+COtjs0gi8i5VVrJ1t/zrmvQxGIiIiIVCzQFJ1vd35LkSsiwYLat1JE4ly1EnwzSwOa4m12VYpzbl1NgxIREZHSchvmUi+xHgWFBSVl+UfyWbd3HbmNcqMXmIjUOsHsZJtoZv/PzDYC+4A1wPcBDhEREQmxxIREOjfpXK5c8/BFpKxgRvCfAG4DFgKvAbvCEpGIiIgE1K1JN77eVnpm7NKdSzmr/VlRikhEaqNgEvyrgDedc5eEKxgRERGpWMB5+Ds0gi8ipQXzVE4y8GG4AhEREZHKBVxJZ+cynHNRiEZEaqtgN7rqHq5AREREpHKdMjuRZKU/fN99cDeb92+OUkQiUhsFk+DfB1xpZheEKxgRERGpWEpiCp0adypXrh1tRcRfMBtdLTazMcAbZvYD3oo5heWbudNCGaCIiIj8qGuTruVWzlm2cxmn5pwapYhEpLapcoJvZucA0/FG/RsCOeEKSkRERALr1qQbM5hRqkwP2oqIv2BW0fktsB640Dm3OEzxiIiISCUCPWi7dOfSKEQiIrVVMHPwjwEmKbkXERGJni6Nu2BlNpLfmr+VHQd2RCkiEaltgknw1wL1whWIiIiIHF1achrtGrYrV64dbUWkWDAJ/iTgejPLCFcwIiIicnQVrYcvIgLBzcHPA3YDy8zsRQKvooNz7uUQxSYiIiIBdGvSjfe/f79U2bIdSvBFxBNMgv+S39f/W0EbByjBFxERCaNAI/iaoiMixYJJ8IeGLQoRERGpsm5Nyif46/atY9+hfTRIaRCFiESkNglmo6u54QxEREREqqZRaiNap7fG4ejcuDM9mvage9PupCSmRDs0EakFghnBFxERkVrirQveIi05jbV71/LOqncY3HZwtEMSkVqiwgTfzK71ffl/zjnn975SeshWREQk/NKS0wDIzsjmxW9eJDM1k6u7Xx3lqESkNqhsBP8lvIdmXwUO+b23ik/RQ7YiIiKRlJSQRG6jXH43/3c0Sm3E8I7Dox2SiERZZQn+UADn3CH/9yIiIlK7dGzUkRW7VvDAJw/QIKUBQ9oOiXZIIhJFFSb4ZR+q1UO2IiIitVPHzI4AFLpC7pl7D8+e/ix9WvaJclQiEi3B7GQrIiIitVBxgg9wsPAgt826TRtfidRhSvBFRERiXIfMDqXe5x3O46aZN7Fmz5roBCQiUaUEX0REJMblNMghKaH0rNudBTu54aMb2Lx/c5SiEpFoUYIvIiIS45ISkshtmFuufNP+Tdz40Y3sKtgV+aBEJGqU4IuIiMQB/3n4/lbvWc0tM29h/+H9EY5IRKIlphN8M7vWzL40swNmtsXMnjez5lU8N9vMfm5mc81sk5ntN7MlZvaYmTUNd+wiIiKhVFGCD/DNjm+4Y/YdHCo8VGEbEYkfMZvgm9ldwJ+BPcAdwHPAFcAcM0uvwiWGAxOAHcBjwJ3Af32vX5pZyzCELSIiEhYdG1Wc4AN8tukz/ufj/+FI0ZEIRSQi0RKTCb6ZNQN+BcwHTnPOTXHOPQiMBLrjJfxH82+gnXPuIufcE865qc65McDNQFvgnjCFLyIiEnKVjeAXm7luJr/89Jc45yIQkYhES0wm+MAIIA2Y7JwrLC50zr0DrAauPtoFnHNLnHOBlhb4m+/12FAEKiIiEgk5DXJIsso2qPe8+d2b/H7B7yMQkYhES6wm+H19r/MC1H0KdDWzjGpeu43vdUs1zxcREYm45MRk2jVsV6W2Ly55kT8t/lOYIxKRaLFY/JjOzN4BzgPSnHMHytQ9CtwLdHHOrajGtacDl+JN/ZlVQZsbgBsAsrKyer/66qvBfhvxk5eXR0ZGdf8ek+pQn0ee+jzy6mKfb8jbwN6De6vcvlVGKxqnNg7Z96+LfR5t6vPIi1afDx06dIFzrk9V2h79s7wwMrNMvIdaq2qSc24n3vQcgIMB2hT4XtMC1B0tnnF4yf2UipJ7AOfcFGAKQJ8+fdyQIUOC/VbiZ86cOagPI0t9Hnnq88iri33+x0V/5Nmvnq1y+4T9CUwcPJFh7YaF5PvXxT6PNvV55MVCn0c1wQcygYeCaP8KsBPI971PBQ6UaVPP95pPEMzserzVdN4Dbg3mXBERkdqgKg/a+ityRfzPx/9DxmkZDGg9IExRiUikRXUOvnNujXPOgjhW+k79wfeaHeCy2YDza3NUZvZTvBH5D4GLnXOHa3JfIiIi0XC0pTIBDKN9o/bkNswlp0EOWWlZPDr/UdbuXRuBCEUkEqI9gl9d8/HmwA8AVpapOwlY7pzLq8qFzOw6YCowExjhnAs07UdERKTWa9ewHYmWSOGPC8yV43A8PPBhTmhxQgQjE5FIitVVdN7Gm5pzq5klFhea2XCgI/AX/8ZmlmNmXc0suUz5aOB5YDZwgXOuABERkRiVkphCTsOco7Z77qvnIhCNiERLTCb4zrltwANAP2Cmmd1gZg8D04BvgSfLnPIysAy/KT1mdj7wJ2Av3tr3F5vZ1X7HiAjcioiISEj5T9NpmNKQm46/qVybT374hMXbFkcyLBGJoJhM8AGcc48D1wFNgEl4O9BOBwZXcXrOiXj3n4k3//7/yhxl/0gQERGp9Tpkdij5+pFBj3BDzxtond66XLvnvtYovki8itkEH8A595Jz7njnXD3nXAvn3E+dc1sDtBvie0h3jV/ZhKM80JsbyXsREREJheIR/DE9x3BKm1NITkzmZz1/Vq7dqt2ryDtUpcfVRCTGxHSCLyIiIqV1zOxI35Z9uaXXLSVlIzqNoEVaC8B7EPeB/g/wzoXvkJGiDZJE4lGsrqIjIiIiAeQ2yuXRUx4lKeHHX/EpiSnc2+deilwRZ+aeyQOfPEC/lv3IbZQbvUBFJGw0gi8iIhJHUhNTaVa/Wbnys9qfxTkdziExIZF2Ddtx5T+u5L8//DcKEYpIuCnBFxERqWOG5gxl36F93DLzFv6y7C8456IdkoiEkBJ8ERGROuaYzGPIzsim0BXy289/y8PzHuZwoTZxF4kXSvBFRETqGDNjaNuhJe/f+O4Nxnw0hl0Fu6IYlYiEihJ8ERGROmhI2yGl3i/YsoCR741kxa4V0QlIREJGCb6IiEgddGLWiTRIaVCqbGPeRq75xzXMXjc7SlGJSCgowRcREamDkhOSGZQ9qFx5/pF87ph9B88vfl4P34rEKCX4IiIidZT/PHx/DscfFv6Bn//n5xwsPBjhqESkppTgi4iI1FEnZ59cakOsst5b/R7X/fM6tuVvi2BUIlJTSvBFRETqqAYpDeib1bfSNou3L+aK965gyfYlEYpKRGpKCb6IiEgdNjQn8DQdf1vztzLqn6P45/f/jEBEIlJTSvBFRETqsCFthlSp3cHCg9z78b1M/nIyRa4ovEGJSI0owRcREanDWmW0oluTblVuP+XrKdw9527yD+eHMSoRqYmKn6wRERGROmFI2yEs27mswvpES6RDZgey07NpndGa1hmtWb9vPV2adIlglCJSVUrwRURE6rihbYfyzFfPVFjvcPxi4C84ttmxEYxKRKpLU3RERETquK5NupKVllVhfZEr4tef/lobX4nECCX4IiIidZyZMaTtkJL39ZPq071p95L3vbN68+gpj2JmUYhORIKlBF9EREQ4te2pJV9f3/N6fjfod2SmZnJ/v/s5p/057D+yP4rRiUgwNAdfRERE6NOyD+nJ6TRMaci13a+lXlI9Prj4A9KS01i5ayWXvnspY3qOYUzPMSQnJkc7XBGphEbwRUREhJTEFH6S/RPu7n039ZLqAZCWnAZAp8ad6N2iN8989QxXvHcFy3ZUvOKOiESfEnwREREBYEzPMZyZe2bAupFdRwKwYtcKRr43kslfTuZQ4aFIhiciVaQEX0RERADo0qRLhQ/SDm47mFbprQAodIVM+XoKl797OUu2L4lkiCJSBUrwRURE5KiSEpK4vMvlpcpW7l7JVf+4ikkLJ2k0X6QWUYIvIiIiVXLxMReTmphaqqzQFTJ18VQue+cyCo4URCkyEfGnBF9ERESqJLNeJue0Pydg3ao9q1i9ZzW/X/B7DhYejHBkIuJPCb6IiIhU2ZXdrqy0/oVvXuCydy7j621fRygiESlLCb6IiIhUWdcmXTmxxYmVtlm9ZzXXvH8NT3zxhKbtiESBEnwREREJyshuI4/apsgV8eKSF7n0nUtZtHVRBKISkWLayVZERESCclrOabSo34KtB7YGrE+whJKR/hNanEB2RnaEIxSp25Tgi4iISFCSE5K5tMul/HHRHwPWpyWl8chPHqFDZocIRyYioCk6IiIiUg2XdL6E5ITkgHV5h/OYunhqhCMSkWJK8EVERCRozeo348zcM0ved8rshOHtgntW7lk8PPDhaIUmUucpwRcREZFqubLrj0tm3tf3PlpltOLu3ndz03E3cfus21m6Y2kUoxOpu5Tgi4iISLX0bN6Tns160imzE/1b9SczNZPrjr2Ojo07kpWexeXvXs59H9/Hhn0boh2qSJ2iBF9ERESqbWTXkVzT/RrMrFT5zcffTGpiKu9//z7DZwznd5//jl0Fu6IUpUjdogRfREREqu3M3DM5t8O55cpbprcsmcJzpOgIryx7hXPePIepX0/lwJEDkQ5TpE5Rgi8iIiLVlpKYQmpiasC6n/X8GQ2SG5S8zzucx6QvJ3Hum+fy+orXOVJ0JFJhitQpSvBFREQkLBqlNuKnPX9arnzbgW08PO9hLv77xcxaNwvnXBSiE4lfSvBFREQkbK7qdhXN6zcPWLd6z2rumH0Ho/45ikVbF0U4MpH4pQRfREREwqZ+Un1uOv6mStt8ufVLrnn/Gu6cfSer96yOUGQi8UsJvoiIiITVhcdcSLuG7Y7a7ostX/DK0lfYd2hfBKISiV9J0Q5ARERE4ltyQjK3nXAb98y9J2B9w5SGPHrKo/Rr1Y/khOQIRycSfzSCLyIiImE3rN0wujftHrBu76G9fLzhYyX3IiGiBF9ERETCLsESuPPEOwPWpSenc3b7syMckUj8UoIvIiIiETGg9QD6t+oPQFJCEr88+Zdkpmby+ODH+WDNB3y789soRygSH5Tgi4iISMTc2dsbxT+59cmM6DSCf178T07OPpnOjTtz6TuXcv0H1zN3/VyKXFGUIxWJXXrIVkRERCKmR9MenJl7JoPbDAa86TkAIzqN4L3V7/HZ5s/4bPNn5DbM5Zru1zC843DqJ9WPZsgiMUcj+CIiIhJRt59wO0PaDilVZmY8NOAhUhNTAVizdw2//PSXDHt9GJMWTmJb/rYoRCoSm5Tgi4iISETlNMyhQUqDcuVtG7ZlbK+xpcr2HNzD1MVTOeONMxj/n/Es37k8UmGKxCwl+CIiIlJrXNP9Gro16Vau/EjREf6+6u9c8s4lXP/B9Xy84WPN0xepgBJ8ERERqTWSEpKYMHACiZZYYZvPNn/G2H+N5YIZF/DWd2/hnItghCK1nxJ8ERERqVW6N+3Otd2vrbRN8/rNObv92ZycfTJmFqHIRGKDVtERERGRWufmXjfz0dqP2JC3oVxd/aT6PHP6M3Rp0iUKkYnUfhrBFxERkVqnflJ9Hhr4UMC6A0cO8NSipyIckUjsUIIvIiIitVL/Vv0Z0WlEyfvilXfaNWzH5Z0vp7CoMFqhidRqmqIjIiIitdY9fe7h4w0fs7NgJ7f2uhWAQdmDWLh1IWe8fgbndDiH8zqcp+k6In6U4IuIiEit1Si1ET/v93Pu/fhe+rXsR6fGnQBvzfzPN3/OS0te4qUlL9G5cWeGdxjOOR3OoUVaiyhHLRJdmqIjIiIitdqZuWdyYacL6ZjZsVT5+JPG075RewBW7FrB4wse5/TXTmfMh2P4+6q/k384PxrhikSdEnwRERGp1cyMBwY8UG45zLTkNCYOnkhqYmpJmcPx6aZPGf+f8QyZPoT7/30/n2z8hCNFRyIdtkjUKMEXERGRWi85ITlgeefGnfl5v58HrDtw5ADvrX6Pm2bexLDXh/Ho/EdZvnN5OMMUqRWU4IuIiEhMu+iYizi7/dmVttlZsJNdBbtKjfaLxCs9ZCsiIiIxzcx4aMBDLNm+hHX71pWrT7REpgybQr9W/aIQnUjkaQRfREREYl56cjoTB08MOJWn0BUy8YuJOOeiEJlI5MV0gm9m15rZl2Z2wMy2mNnzZta8mtdKMLN5ZubM7N1QxyoiIiLh1a1pN+7re1+58gRL4OruV3Oo6FAUohKJvJidomNmdwFPAHOBO4A2wN3AADPr55zbH+QlbwF6hjZKERERiaTLu1zO55s/56O1H9GsfjMe6P8AG/M20q1JN8564yx6NO3BKW1OYVD2IFpltIp2uCJhEZMJvpk1A34FzAdOc84V+srnA3/HS/h/E8T12vjaPwg8HvKARUREJCLMjIcHPszSHUvJaZDDqTmnltT96uRfMfZfY5m7YS4AnTI7MajNIAZlD6JXi14VrtQjEmtidYrOCCANmFyc3AM4594BVgNXB3m9p3zn/SFkEYqIiEhUNEhpwMTBE+netHup8pOzT+b+fveXvF+5eyUvfvMiP/3gpwx+dTDj5oxjxsoZbD+wPdIhi4RUTI7gA319r/MC1H0KjDSzDOdc3tEuZGaXAOcDA51zhWU30RAREZHYc2yzY8vtfAtwRdcrWLt3La8se6VU+b7D+/hw7Yd8uPZDAHo07cGgNoM4o90ZHNP4mIjELBIqFotPlJvZO8B5QJpz7kCZukeBe4EuzrkVR7lOI2AZ8LZz7mZfmQPec86dV8l5NwA3AGRlZfV+9dVXa3I7dV5eXh4ZGRnRDqNOUZ9Hnvo88tTnkRdLfb5u3zryDlU+Dti4XmNapLUg0RIjFFXwYqnP40W0+nzo0KELnHN9qtI2qiP4ZpYJ3BnEKZOcczvxpucAHAzQpsD3mhagrqxH8aYpBd4CrwLOuSnAFIA+ffq4IUOGBHO6lDFnzhzUh5GlPo889Xnkqc8jL5b6fP/h/Yx6fxTLdwXe2faRQY9wXocKx/pqjVjq83gRC30e7Sk6mcBDQbR/BdgJ5PvepwIHyrSp53vNpxJm9hNgDHCNc253EDGIiIhIjEtPTuep057iyveuZNuBbeXqH5v/GMPaDdPOtxKTovqQrXNujXPOgjhW+k79wfeaHeCy2YDza1ORPwJfAZ+ZWafiw1eX5nvfrMY3KSIiIrVSy/SWTD5tMvWT6peru7LrlazYdf/kuQAAH/1JREFUuYLDhYejEJlIzcTqKjrzfa8DAtSdBCyvwgO27YBewHdlDoChvq8n1DhSERERqbV6NO3BI4MewfAW2Rh/0njG9BzD6GNH8/zi5xkwbQCj3h/FEwueYNa6Wew4sCPKEcefoqIifv/739O1a1fq1atH27ZtGTduHPv3B7ulkRSL9hSd6nobmATcamZ/9VsHfzjQEXjAv7GZ5eDNyV/lnCv+U/xaICXAtV8DFgC/BVYGqBcREZE4clrOadzd+24eX/A4vVr0omuTrgA8Nvgxbp99O59s/ISFWxeWtM9pkEOvFr04vvnxHN/8eDpldiIxofY+iFvb3XXXXUyaNIkLL7yQcePGsWzZMiZNmsSXX37JzJkzSUiI1fHo6InJBN85t83MHgAmAjPNbBre1JxxwLfAk2VOeRkYDLQH1viu8fdA1/Ytk7nZOfd6WIIXERGRWmdUj1Gs2buGrLSskrKUxBSeHPIkY/81ls83f15Svm7fOtbtW8ffV3mpRHpyOsc1O45eLXoxrN0wLasZhCVLljB58mQuuugi3njjjZLy9u3bc/vtt/Pqq69y5ZVXRjHC2BSzfxI55x4HrgOa4I3m3wxMBwZXZf17ERERkWJmxvj+48lMzSxVXi+pHpNPnUyv5r0qPHf/4f3M2zSPvYf20qZBm3CHGlemTZuGc4477yy9qOKYMWNIS0vjlVdeCXjehAkTSE9P57bbbgtYf9ttt5GcnMyyZctCHnMsiNkEH8A595Jz7njnXD3nXAvn3E+dc1sDtBvie0h3TRWuaZWtgS8iIiLxKTkhmUAbXqYlp/H06U+X2xnX3629buX+fvcHfGBXKjZ//nwSEhLo169fqfJ69erRq1cv5s+fH/C8M844g5NOOomnnnqKFStKb3u0ZMkSnn32WcaOHUu3bt3CFnttFtMJvoiIiEgkNEhpwHOnP1fh9JtnvnqGzfs3Rziq2PfDDz/QrFkzUlPLL0eanZ3N9u3bOXToULm6gQMH8stf/hKAr776qlTdnXfeSWZmJhMmTAhLzLFACb6IiIhIFWTWy2TKsCnkNswtVzei0wj+s/E/zN88XyvtBCE/Pz9gcg/eKH5xm0C6d/c+Ufn2229Lyt566y1mzpzJr371KzIzMwOedzQ9evTg3XffrbB+9OjRldZXVW5uLjNmzKjxdQKJyYdsRURERKKhWf1mPH/G84z+52g25G1gSNshDGw9kLNyz+Kb7d9wy8xbKCgsoHFqYzpmdiw5OmV2okOjDjSt3zTat1CrpKWlsXVrudnVABQUFJS0CaRx48Y0b968JME/ePAg99xzD7169WLMmDHVjmnJkiUlX+fm5vLkk08yYsSIkrKXXnpJO9mKiIiIxJOs9CyeP/N5Rr0/ikYpjRjZdSQAg9oM4rlhz3Hrv25l18FdfLHlC77Y8kWpc8sm/gNaDSC3UW4U7qJ2aN26NUuXLuXgwYPlRvI3btxIs2bNSEkJtKq5p3PnziUJ/uOPP87q1auZO3du0EtrOucoKioiMTE+ljvVFB0RERGRIGVnZPOnM/9ULjk/MetEXjzrRZrWCzxSX5z4/23531i4ZSHN05pHINraq2/fvhQVFfH555+XKi8oKGDRokX06dOn0vO7dOnC8uXL2bhxI7/5zW+47LLLOOWUU0q12bt3L7feeis5OTk0bNiQvn37sn79enJzc/nNb35D//79SU9PZ+FCb6+D4qkzl156KevWrWPkyJFkZGQwevRoAK644opSU2squj7AE088QefOncnIyKB9+/ZMnDixpl1WJUrwRURERKqhXcN2/PTYn5Yr79KkCy+f/TLZGdkVnnt+x/N59JRHSU9OD2eItd7ll1+OmfHkk6W3MJo6dSr5+flcddVVlZ7fpUsX9u/fzzXXXENRURGPPfZYuTajRo1i1apVfPrpp+zevZspU6ZQv7632tGLL77Iiy++SF5eHscdd1yp81577TVycnKYNm0aeXl5vPTSSwFjqOz6OTk5fPTRR+zbt4+//OUv/OIXv+D999+vavdUm6boiIiIiFRTggUeK81pmMOfz/ozN350I6v2rCpX//dVf+eCjhfQr1W/AGfXHT179mTs2LE89dRTXHTRRZxzzjklO9kOHjz4qJtcdenSBYDZs2czYcIEcnJyStVv2bKFGTNmsG7dOlq3bg3ACSecUFLvv5RmRQ/7VuZo17/kkktKvh44cCAXXXQRs2fP5uyzzw76ewVDI/giIiIiYZCVnsVLZ71Ez2Y9y9Udk3kMG/M28vbKt/ls02es2bOGA0cORCHK6HvyySeZOHEiS5YsYezYsbz66qvcdtttvPvuu0edS1+c4Ofk5HDfffeVq1+7di2pqam0bds24Pnt2rWrUexHu/60adPo3bs3TZo0ITMzk2nTprFt27Yafc+q0Ai+iIiISJhk1svk+TOe5/bZt/PZps8AmDh4Ig1TGtIxsyN3zLqDb3Z8U9K+UWojWqa1JCs968fX9JZkpWWRleZ9XS+pXrRuJywSExMZN24c48aNC/rc5ORkAG644YaSaTH+2rVrx8GDB1m/fn3AJDzQxmb+jvYHRmXXX79+Pddccw3vv/8+Q4cOJSkpidGjR+OcO9pt1ZhG8EVERETCKC05jadPe5rTc04HYHCbwQxoPYAWaS148awXOTv3x+kaew7uYfmu5Xy84WOmr5jO5C8nM/4/47n+w+u58aMbWb9vfbRuo1ZatGgRACeeeGLA+qysLC644AJuuukmNm3aRFFREYsWLWLHjqrtVZCVlcV3331XaX1F18/Ly8M5R/PmzUlMTORf//oXb731VvA3WQ1K8EVERETCLCUxhccGP8aFnS6kyBWVlNdLqsfvTvkdt/a6tdLzuzftzl/O/UuFO+nWVcUJvv+897L+/Oc/07ZtW/r27UtmZiY33ngjBw5UbTrU+PHjefrpp8nMzORnP/tZUNfv1q0bDz74IKeffjqNGzdm6tSpXHrppcHfZDVoio6IiIhIBCQlJPHwwIdxlJ6iYWbcePyNdMjswPj/jA84F3/lrpXM+2EewzsOj1S4MeHLL78kKyuLli1bVtimUaNGPPvss+XK16xZE7C9f/l5553HeeedV6r+1VdfLbXRVUXXB3jooYd46KGHjvp9Qk0JvoiIiEiEmBlG4Hnfw9oNo01GG26bdRtb8reUqjtUdIikhCTm/TCPBikNaJDSgIzkjHJ/LNQ17777brRDqJWU4IuIiIjUEt2admPaudO4c/adfL39awBObXsqTes3pX+r/oz/z3j+vfHfJe1vzriZe/7vHjJSMkqS/oyUDBokNyAjJYOLj7mYXi16Ret2JEo0B19ERESkFmme1pwXznqBczucC8CA1gN4cMCDNK7XmKdOe4q7e99NoiWWtD9UdIidBTtZu3ctS3Ys4bNNnzFz3UwykjM4vvnx0boNiSKN4IuIiIjUMqmJqTzyk0folNmJvMN5JeUJlsB1x17HCS1O4N6P763w/OyMbEZ0GnHUZSAlPmkEX0RERKQWMjOu73k9l3W5rFxdrxa9eO2812iQ0iDguRvzNvL2qrfDHaLUUhrBFxEREanFGqY0DFieWS+Ttg3ack+He3hywZMccUcAMAyHo3eL3lz/4fVsyttEgiWUHGZGAgnlyhItkbG9xnJSq5MieXsSBkrwRURERGLYqB6j6NWiF/fOvZdN+zcxoPUA7jzxTro26Ur/1v154osnmL5i+lGvc/PxNyu5jxOaoiMiIiIS445vfjyvDX+NIW2HsHn/Zro17YaZkZ6czgMDHuC5Yc/RMr3iteLTktJoWq9pBCOWcNIIvoiIiEgcaJTaiElDJ/Hmd2+WqxvYeiBvnv8mj3/xOG9890a5+vwj+Xy88WMGtRlEwZECDhQe4MDhAxQUFnjvj5T52vc6sPVABrUZFInbkyAowRcRERGJE2bGxZ0vDljXIKUBEwZO4LSc05gwbwJb87eW1DVObczgNoN5Z9U7TF08lYOFB4/6vU5scSJ39b4rZLFL6GiKjoiIiEgdMqjNIN664C0u6HhBSdmbF7zJiE4juPH4G5lxwQyGtB1S6TUM4/yO5we1DKdzrkp/OEjNaQRfREREpI5pmNKQX/3kVwxrN4wJ8ybw/Z7v6duyLwBtGrRh8qmTmbt+Lo98/ggb8zaWO9/hePyLxxneYTg7Du5gZ8FOdhTsYOeBnT9+XbCTnQf8vi7YyUMDHirZwEvCRwm+iIiISB01uO1gZrSYwfYD2wPWndTqJP70zZ94YfELHCo6VKq+d1Zvpq+YzrNfP8ueg3uO+r2u7nZ1UMm9c478I/mkJ6dX+RzxKMEXERERqcMapTaiUWqjgHX1kuoxttdYhncYzm8+/w2fbPwEgPv73c/QtkNpndGa8zudzwuLX+CVZa9UOgVnwZYFfL/ne9o3al9SdrjoMJv3b2bDvg2s37eeDXkb2LDvx+P2E2/niq5XhPaG6wAl+CIiIiJSqZyGOTxz2jPMWjeL383/Hat3r+aqblcB3nSfO3vfyciuI3n6q6eZsXIGRa6o3DWW7VzGil0reHnpyyUJ/eb9myl0hQG/55A2Q7i8y+WVxuWcY9P+TazYtYIVu1aQlpTG1d2vrvkNxzgl+CIiIiJyVGbGae1OY0DrAcxeP7tcfVZ6Fg8PfJhru1/LkwufZM76OSV1bRu0pUfTHgxrN4yUhBSmfD0l4Nx+fyt3r2TuhrklD/zmH85n5e6VJcn88p3L+W7Xd+w7vA+A5IRkXj//9UqvWfwHwaKti1i0bRFJCUnc1/e+o957YVEhy3Yu45vt39CSivcTqC2U4IuIiIhIlaUlp1U6l75jZkcmnzqZhVsW8vsFv2fRtkVkJGfw2ODHABiaM5QhbYcwb9M8pnw9hQVbFgS8zoa8DWzL38Z9H9/H0h1LWbd3HQ5X4fft2awn+w/tL1V2uOgwy3cuZ9HWRXy59UsWbVtUsjxogiUw/byKd/jdvH8z836Yx39/+C+fbvqUNbMHkv/O/7JrcwY5OfDrX8NVV1V4elQpwRcRERGRkDsx60RePvtlZq2fxeSFk9lVsIvG9RoD3qcBA1sPZGDrgSzYsoCpX0/lkx8+KTk3JSGFn2T/hEFtBjG47WBeW/Ea05dPZ2fBzgq/38KtC5mxcga7Du7ykvmti/hm+zcUFBYEbJ+VlsVX276iS5MuABQcKWDBlgV88sMnzPthHit3ryxpu/u/5/DDSxMoOlQfgLVr4YYbvLramOQrwRcRERGRsDAzTss5jcFtBnOo8FDANr2zetN7WG+WbF/ClK+nMGv9LA4VHeLuPnfTMt2bDjO211jG9BzDB2s+YNq301i8fXHAa2U3yKbIFbFmzxoWbVvEkaIjFca2af8m3ln1DkWuiFnrZrFgy4JyKwUV2/LGHSXJfbH8fBg/Xgm+iIiIiNRBSQlJJCVUnnb2aNaDP5z6B77b9R1TF09lzvo5jOoxqqQ+JTGF4R2HM7zjcL7e9jV//favfLDmg5Ik/uGBD3NGuzPISMlgSNsh7CrYxT++/wdvr3ybZTuXlft+9ZPq0zytOed3PJ+m9ZuSmZrJ3A1zyT+SX67t4R2B592vWxdML0SOEnwRERERqTWOaXwMj57yKPmHyyfaxY5rfhzHNT+Oe/rcw2vLX2P6iunMXj+bi465qKRN43qNuarbVVzV7SqW71zO26ve5r3V75VM8zmp5Uk8MeQJAIa1G8awdsM4WHiQeT/M46O1HzFn/Rz2HtoLQHLTzRze0bpcHDk5obzz0FGCLyIiIiK1Tlpy2lHbNKvfjJt73cz1Pa9n1vpZFBYVkpiQWK5dlyZduK/JfdzV+y4+2fgJb698m39v/Dcb8zaSnZFd0i41MZUhbYcwpO0QDhcdZv6m+Xy07iOmjXyeFVPuxflN00lL8x60rY2U4IuIiIhITEtOTObM3DOP3i4huSSB31Wwi/2H91fadmD2QAZmD+R/TyrkN93WMOnXLdmxKY2cHKvVq+gkRDsAEREREZFIa1yvMW0atKlS28SERB64pSPbNqYza9Zc1qypvck9KMEXEREREYkrSvBFREREROKIEnwRERERkTiiBF9EREREJI4owRcRERERiSNK8EVERERE4ogSfBERERGROKIEX0REREQkjijBFxERERGJI0rwRURERETiiBJ8EREREZE4ogRfRERERCSOKMEXEREREYkjSvBFREREROKIEnwRERERkThizrloxxDTzGwbsDbaccS4ZsD2aAdRx6jPI099Hnnq88hTn0ee+jzyotXn7ZxzzavSUAm+RJ2ZfeGc6xPtOOoS9Xnkqc8jT30eeerzyFOfR14s9Lmm6IiIiIiIxBEl+CIiIiIicUQJvtQGU6IdQB2kPo889Xnkqc8jT30eeerzyKv1fa45+CIiIiIicUQj+CIiIiIicUQJvoiIiIhIHFGCLyIiIiISR5TgS0SZ2Y1m9hcz+9bMCs0sqIdAzKyxmd1hZh+a2XozO2Bmy81sipm1DVfcsaymfe53nXPM7L9mtt/MdprZa2bWPtTxxgszu9bMvvT9jG4xs+fNrEoblPjOTzazW8xsgZnt9h0LfT//KeGMPVbVtM9910gzswfNbInvOjvNbJ6ZXRiuuGNZKPrc71oJvr52ZvZuqGONFzXpczPLNrOfm9lcM9vk+/d8iZk9ZmZNwx17beX72bvL93uywJdfPG5m6ZE4Pxz0kK1ElJmtAZoCXwLtgTbOOQvi/LOAd4F/AbPwdpI7FrgROAQMdM4tDXHYMa2mfe67xkXA68BXwFSgEXAnUAj0cc79EMqYY52Z3QU8AcwF/gq0Ae7G2/W6n3NufxWu8RfgSuANvJ/3RGA4cAYw3Tl3eXiij00h6vPGeH19DPAi3s97OtANWO6cezI80cemUPR5mevdCvwWr8/fc86dF9qIY19N+9zMbgL+ALwH/AfYB/QDRgObfNfYHK74aysz+wNwO/AW8D7e//O3Af8GTnfOFYXz/LBwzunQEbEDyAUSfF+/6/0IBn1+xwDlpwMOeD3a91jbjhD0eTKwEe8XSIZfeS+8BH9KtO+xNh14W5jvBz4HEv3Kh/t+Rv9fFa7R2tf2rTLlhvcLowhoHO17rS1HKPrc1/7/gL1A92jfU20/QtXnfue18fX93b7z3432Pda2I0T/tvQAWgYov953jYnRvs8o9GsP37+pb5Qpv83XJ1eG8/xwHZqiIxHlnFvjavCXrO/8VQHKZwI78UbzxU9N+xwYjJdwPu+cy/O77iJgDnC5mSXXLMq4MgJIAyY75wqLC51z7wCrgaurcI0GvtdSn4w477fGJrxfJgUhiTY+1LjPzSwX7xOTqc65pWaWaGYZ4Qk3LoTi59zfU77z/hCyCONPjfvcObfEBR6h/5vvtS7+Dh2JN3hS9hO6qUA+R+/Xmp4fFkrwJS6YWSO8pGhLtGOJQ319r/MC1H0KNAQ6Ry6cWu9o/dW1ConjKt/xUzO73sxyzayjmd0NXAQ84pw7ELqQY14o+vwsvN+JS83s//B+Me8zsw2+aRFSWij6HAAzuwQ4H7jJP3GVckLW5wG08b3Wxd+hffEGTT73L3TOFQCL+LHfw3V+WCjBl3jxv3hTSf4c7UDiUGvf68YAdcVl2RGKJRYcrb/Mr01AzrkjeAnPN3ijQN8DK/HmJ9/mnHsgZNHGhxr3OdDF9/oI0Bu4CW/k7XvgCTN7OARxxpNQ9Hnx4Mwk4Dnn3KehCy8uhaTPK1D8810Xf4e2BrY75w4GqNsINDvKwgY1PT8skiL9DSX2mVkm3gOWVTXJObczjPFcAowDPsB7MC7uRLnP03yvgf7xKijTJm7UoM9D1V8HgO+A+XgPlKcBo4CnzGy/c+7lIGKLCVHu8+JpUSnAIOfcDl9M04GlwH1m9qRzblcQ8dV6teDn/FG8wcafBxFDTKsFfV42nnHApXjPU80K9vw4kEbgPoXS/XooTOeHhRJ8qY5M4KEg2r+CNz8+5MzsHOAvwALgMt8c5XgUzT7P972mBqirV6ZNPKlun/v3V9lpNFXqLzNriZfYP++cu9+v/BW8lS+eMrN34i3ZJIp97nfeu8XJPYBz7rCZ/RV4EOiPt0JGPInmz/lPgDHANc653UHEEOui+XNeipldDzyGt6rOrcGcG0fygRYV1FWlX2t6flgowZegOefW4H0UGFW+JTPfBJYAZzjn9kY5pLCJcp8XP+iZDSwrU1c8NSfQR8YxrQZ97t9fK8vUZeOtqnC0ZUVvwFva9LUyMRWZ2RvAAOBEvCUd40aU+3yD7zXQA4ibfK+NqxFbrRblPv8j3lKkn5lZpzJ1ab6y3c657dWIr9aKcp+XMLOfAlOAD4GLnXOHqxFTPPgB6G5mqQGm2WTjTb+pbPS9pueHhebgS0wyszPx1pv9Fm+N2XgbyaxN5vteBwSo64+3tN2KyIVT61XWXyfhraeeF6DOX/EfTokB6pLKvEpo+rz4Abk2AeqKy7ZWI7Z4FYo+b4e33O53ZQ6Aob6vJ9Q40vgRij4HwMyuw3u+ZyYwooL543XFfLx8uJ9/oZnVw/v5/CLM54eFEnyptcyslZl1NbO0MuVnADPwksrTwjm/v66poM/n4o1gXu+/QoOZHQ8MAV6rwyM/gbyN9/H5rWZWkqCb2XCgI96UMvzKc3x97r/UaPFmbaPLtE3GW8rxCN7GZeIJRZ9/jLfXw3Azy/Zrmw5cC+wm8OoldVUo+vxavLnfZQ/wpl1eCjwftjuIPaHoc8xsNF6/zgYu8K32Upf9De/Tj7LPRYzBmztf0q++1cy6Vvf8SNJOthJRvn+Ijve9vRpv5YriFUF2O+ee8mv7Et5DhUOdc3N8ZX3wNvox4H68nWxLcc69EqbwY1JN+9xXfineP2LFO9k2BO7C+0ett3Mu7qbo1ITvobWJePsETMMbkR8HrAf6+o+ymdkcvL0G2vs+usfMGuItr9YeeAfvAfI0vP9+xwGPOefui8zdxIaa9rmv/Gy8/v4BeBrvobjr8NYG/5lz7oUI3ErMCEWfV3Bdh3ayDSgE/7acj/fp917gPsrP5c9zzs0I603UQmY2Ge8ZhLeAf+DtRHs78AlwavFeMr6d4du5MrvBV/X8iIrG7lo66u4BvISXFAY61lTQdohf2ehKzncEuUtrXThq2ud+defhrbWcD+wCXifArsI6SvprNN4fRAV4UzteAFoEaDfH1+e5Zcpb4G3+8z1eolm8g+UYfIMzOkLb5766wXirFu3z/ax/AgyP9r3V1iMUfR6grXayDVOf4015qux36Jpo31+U+jQR7w+l5Xgr4mwEnsBv93ZfuzWB8oyqnh/JQyP4IiIiIiJxRHPwRURERETiiBJ8EREREZE4ogRfRERERCSOKMEXEREREYkjSvBFREREROKIEnwRERERkTiiBF9EREREJI4owRcRkZAzswlm5swsN9qxiIjUNUrwRUSkTjKzEWY2IdpxiIiEmhJ8ERGpq0YAD0U7CBGRUFOCLyJSx5hZopmlRTuOaDGzBtGOQUQknJTgi4jEMTMb7ZsLf7qZPWBmq4AC4DK/Nn3M7C0z225mB81suZmNN7OkMtfqZ2YvmdkKM8s3s31m9omZXVjDGOeY2Roz62Bmb5vZHjPb64upQ5m2Cb7YPjazzWZ2yMzWmdkzZta0TNtc371PMLPLzWyBmR0AJpvZHGCUr53zO0bX5F5ERGqDpKM3ERGRODARSAamAnuB5QBmdg7wFrASeBzYCQwAfgH0Ai71u8aFQFdgOrAWaIqXJL9pZlc55/5ag/jSgdnA58DPgWOAW4D+ZnaCc26zr10KcC/wBvA2sB/oC/wM+ImZ9XbOHSpz7RHA7cAzwLO++9+JN8g1CLjGr+1/a3APIiK1gjnnoh2DiIiEiW9E+kVgBXCCcy7fr64esMZXd6pz7ohf3V3AE8BQ59wcX1m6c25/meunAV8Chc657n7lE/Dmt7d3zq05SoxzgMHAH5xzd/qVXwi8CTznnLvJV2ZAPefcgTLX+BnwPHC5c266rywX+B44AhznnFtW5pyXgFHOOassPhGRWKMpOiIidcMz/sm9zzAgC+8PgEwza1Z8AP/wtTmjuLF/cm9mab4pMWnALKCbmTWsYYy/9X/jnHsL75OGEX5lrji59z1LkOmLd5avyUkBrvte2eReRCSeaYqOiEjdsCJAWTff6wuVnJdV/IWZtQB+BVwAtAjQNhNv+kt17PabhuNvGTDC/9MDM7sMGAecgDftyF/jANcIdO8iInFLCb6ISN1QdvQeoHhqyr3AogrO+wFKpsZ8iPdHwSRgPrAHKASuA66kZp8KVzRftNT0GTO7CPgb3lz9O4D1eA8NJwL/rCCGQPcuIhK3lOCLiNRd3/le9zvnZh6l7XHA8cAvnHOl1o43s+tDEEtjM2sZYBS/K7DVb3rQNXgJ/dAyzxN0rcb31ENoIhKXNAdfRKTu+gDYCtxvZk3KVppZfb814wuLi8u0ORZvdZ1QuL/MtS8EugAz/IoL8RLzBL92BvxvNb5fnu/8cvcuIhLLNIIvIlJHOef2m9m1eAn0cjN7AW+5zEy8kfOL8JL3OXhz4ZcA9/lWzlkOdAZuBL4BTqxhONuBi8yste/7FS+TuQWY4NfudeBiYJaZvYw3B38E3sO+wfoUuBV42szeAw4Dnznnvq/mPYiI1ApK8EVE6jDn3Adm1hdv9PxqoDmwC1iFt0zm1752hWZ2Lt56+qPw1q3/xvf18dQ8wd8PnAr8Hm81HcObUz/OObfJL95XfZ8q3OWLZRfwji/+HUF+z2l4D+pegbfefwLe8wRK8EUkpmkdfBERiSrfOvi5zrncKIciIhIXNAdfRERERCSOKMEXEREREYkjSvBFREREROKI5uCLiIiIiMQRjeCLiIiIiMQRJfgiIiIiInFECb6IiIiISBxRgi8iIiIiEkeU4IuIiIiIxJH/DzRsqL9/FaCdAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "matplotlib.rcParams.update({'font.size': 18})\n",
+ "f0 = 1/2\n",
+ "reg_0 = np.linspace(0, 2*f0, 20)\n",
+ "reg_1 = np.linspace(2*f0, 3*f0, 20)\n",
+ "\n",
+ "real1_0 = -reg_0/2\n",
+ "imag1_0 = np.sqrt(f0**2 - reg_0**2/4)\n",
+ "real2_0 = real1_0\n",
+ "imag2_0 = -imag1_0\n",
+ "\n",
+ "real1_1 = -reg_1/2 - np.sqrt(reg_1**2/4 - f0**2)\n",
+ "imag1_1 = np.zeros_like(real1_1)\n",
+ "real2_1 = -reg_1/2 + np.sqrt(reg_1**2/4 - f0**2)\n",
+ "imag2_1 = np.zeros_like(real2_1)\n",
+ "\n",
+ "real1 = np.concatenate([real1_0, real1_1], axis=0)\n",
+ "real2 = np.concatenate([real2_0, real2_1], axis=0)\n",
+ "imag1 = np.concatenate([imag1_0, imag1_1], axis=0)\n",
+ "imag2 = np.concatenate([imag2_0, imag2_1], axis=0)\n",
+ "\n",
+ "fig, ax = plt.subplots()\n",
+ "arrow_plot(real1, imag1, 'C1')\n",
+ "arrow_plot(real2, imag2, 'C2')\n",
+ "plt.plot(real1[0], imag1[0], 'bo')\n",
+ "plt.plot(real2[0], imag2[0], 'bo')\n",
+ "\n",
+ "plt.plot([-.5], [-0], 'bo')\n",
+ "plt.plot(real1[-1], imag1[-1], 'bo')\n",
+ "plt.plot(real2[-1], imag2[-1], 'bo')\n",
+ "\n",
+ "plt.grid(True)\n",
+ "\n",
+ "plt.xlabel('real part')\n",
+ "plt.ylabel('imaginary part')\n",
+ "plt.text(-0.1, .4, '$0\\,\\gamma_{\\mathrm{critical}}$')\n",
+ "plt.text(-0.1, -.44, '$0\\,\\gamma_{\\mathrm{critical}}$')\n",
+ "\n",
+ "plt.text(-0.45, .05, '$\\gamma_{\\mathrm{critical}}$')\n",
+ "plt.text(-1.3, .05, '$2\\,\\gamma_{\\mathrm{critical}}$')\n",
+ "plt.text(-0.2, .05, '$2\\,\\gamma_{\\mathrm{critical}}$')\n",
+ "fig.set_size_inches(12, 8)\n",
+ "plt.savefig('eigval_gradpen.png', bbox_inches='tight')\n",
+ "plt.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/submodules/GAN_stability/notebooks/create_video.sh b/submodules/GAN_stability/notebooks/create_video.sh
new file mode 100644
index 0000000..ad6ddc8
--- /dev/null
+++ b/submodules/GAN_stability/notebooks/create_video.sh
@@ -0,0 +1,30 @@
+EXEC=ffmpeg
+declare -a FOLDERS=(
+ "simgd"
+ "altgd1"
+ "altgd5"
+)
+declare -a SUBFOLDERS=(
+ "gan"
+ "gan_consensus"
+ "gan_gradpen"
+ "gan_gradpen_critical"
+ "gan_instnoise"
+ "nsgan"
+ "nsgan_gradpen"
+ "wgan"
+ "wgan_gp"
+)
+OPTIONS="-y"
+
+cd ./out
+for FOLDER in ${FOLDERS[@]}; do
+ for SUBFOLDER in ${SUBFOLDERS[@]}; do
+ INPUT="$FOLDER/animations/$SUBFOLDER/%06d.png"
+ OUTPUT="$FOLDER/animations/$SUBFOLDER.mp4"
+ $EXEC -framerate 30 -i $INPUT $OPTIONS $OUTPUT
+ echo $FOLDER
+ echo $SUBFOLDER
+ done
+
+done
diff --git a/submodules/GAN_stability/notebooks/diracgan/__init__.py b/submodules/GAN_stability/notebooks/diracgan/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/submodules/GAN_stability/notebooks/diracgan/gans.py b/submodules/GAN_stability/notebooks/diracgan/gans.py
new file mode 100644
index 0000000..a2f1df4
--- /dev/null
+++ b/submodules/GAN_stability/notebooks/diracgan/gans.py
@@ -0,0 +1,158 @@
+import numpy as np
+from diracgan.util import sigmoid, clip
+
+
+class VectorField(object):
+ def __call__(self, theta, psi):
+ theta_isfloat = isinstance(theta, float)
+ psi_isfloat = isinstance(psi, float)
+ if theta_isfloat:
+ theta = np.array([theta])
+ if psi_isfloat:
+ psi = np.array([psi])
+
+ v1, v2 = self._get_vector(theta, psi)
+
+ if theta_isfloat:
+ v1 = v1[0]
+ if psi_isfloat:
+ v2 = v2[0]
+
+ return v1, v2
+
+ def postprocess(self, theta, psi):
+ theta_isfloat = isinstance(theta, float)
+ psi_isfloat = isinstance(psi, float)
+ if theta_isfloat:
+ theta = np.array([theta])
+ if psi_isfloat:
+ psi = np.array([psi])
+ theta, psi = self._postprocess(theta, psi)
+ if theta_isfloat:
+ theta = theta[0]
+ if psi_isfloat:
+ psi = psi[0]
+
+ return theta, psi
+
+ def step_sizes(self, h):
+ return h, h
+
+ def _get_vector(self, theta, psi):
+ raise NotImplemented
+
+ def _postprocess(self, theta, psi):
+ return theta, psi
+
+
+# GANs
+def fp(x):
+ return sigmoid(-x)
+
+
+def fp2(x):
+ return -sigmoid(-x) * sigmoid(x)
+
+
+class GAN(VectorField):
+ def _get_vector(self, theta, psi):
+ v1 = -psi * fp(psi*theta)
+ v2 = theta * fp(psi*theta)
+ return v1, v2
+
+
+class NSGAN(VectorField):
+ def _get_vector(self, theta, psi):
+ v1 = -psi * fp(-psi*theta)
+ v2 = theta * fp(psi*theta)
+ return v1, v2
+
+
+class WGAN(VectorField):
+ def __init__(self, clip=0.3):
+ super().__init__()
+ self.clip = clip
+
+ def _get_vector(self, theta, psi):
+ v1 = -psi
+ v2 = theta
+
+ return v1, v2
+
+ def _postprocess(self, theta, psi):
+ psi = clip(psi, self.clip)
+ return theta, psi
+
+
+class WGAN_GP(VectorField):
+ def __init__(self, reg=1., target=0.3):
+ super().__init__()
+ self.reg = reg
+ self.target = target
+
+ def _get_vector(self, theta, psi):
+ v1 = -psi
+ v2 = theta - self.reg * (np.abs(psi) - self.target) * np.sign(psi)
+ return v1, v2
+
+
+class GAN_InstNoise(VectorField):
+ def __init__(self, std=1):
+ self.std = std
+
+ def _get_vector(self, theta, psi):
+ theta_eps = (
+ theta + self.std*np.random.randn(*([1000] + list(theta.shape)))
+ )
+ x_eps = (
+ self.std * np.random.randn(*([1000] + list(theta.shape)))
+ )
+ v1 = -psi * fp(psi*theta_eps)
+ v2 = theta_eps * fp(psi*theta_eps) - x_eps * fp(-x_eps * psi)
+ v1 = v1.mean(axis=0)
+ v2 = v2.mean(axis=0)
+ return v1, v2
+
+
+class GAN_GradPenalty(VectorField):
+ def __init__(self, reg=0.3):
+ self.reg = reg
+
+ def _get_vector(self, theta, psi):
+ v1 = -psi * fp(psi*theta)
+ v2 = +theta * fp(psi*theta) - self.reg * psi
+ return v1, v2
+
+
+class NSGAN_GradPenalty(VectorField):
+ def __init__(self, reg=0.3):
+ self.reg = reg
+
+ def _get_vector(self, theta, psi):
+ v1 = -psi * fp(-psi*theta)
+ v2 = theta * fp(psi*theta) - self.reg * psi
+ return v1, v2
+
+
+class GAN_Consensus(VectorField):
+ def __init__(self, reg=0.3):
+ self.reg = reg
+
+ def _get_vector(self, theta, psi):
+ v1 = -psi * fp(psi*theta)
+ v2 = +theta * fp(psi*theta)
+
+ # L 0.5*(psi**2 + theta**2)*f(psi*theta)**2
+ v1reg = (
+ theta * fp(psi*theta)**2
+ + 0.5*psi * (psi**2 + theta**2) * fp(psi*theta)*fp2(psi*theta)
+ )
+ v2reg = (
+ psi * fp(psi*theta)**2
+ + 0.5*theta * (psi**2 + theta**2) * fp(psi*theta)*fp2(psi*theta)
+ )
+ v1 -= self.reg * v1reg
+ v2 -= self.reg * v2reg
+
+ return v1, v2
+
diff --git a/submodules/GAN_stability/notebooks/diracgan/plotting.py b/submodules/GAN_stability/notebooks/diracgan/plotting.py
new file mode 100644
index 0000000..5b5ea94
--- /dev/null
+++ b/submodules/GAN_stability/notebooks/diracgan/plotting.py
@@ -0,0 +1,68 @@
+import numpy as np
+from matplotlib import pyplot as plt
+import matplotlib.patches as patches
+import os
+from diracgan.gans import WGAN
+from diracgan.subplots import vector_field_plot
+from tqdm import tqdm
+
+
+def plot_vector(vecfn, theta, psi, outfile, trajectory=None, marker='b^'):
+ fig, ax = plt.subplots(1, 1)
+ theta, psi = np.meshgrid(theta, psi)
+ v1, v2 = vecfn(theta, psi)
+ if isinstance(vecfn, WGAN):
+ clip_y = vecfn.clip
+ else:
+ clip_y = None
+ vector_field_plot(theta, psi, v1, v2, trajectory, clip_y=clip_y, marker=marker)
+ plt.savefig(outfile, bbox_inches='tight')
+ plt.show()
+
+
+def simulate_trajectories(vecfn, theta, psi, trajectory, outfolder, maxframes=300):
+ if not os.path.exists(outfolder):
+ os.makedirs(outfolder)
+ theta, psi = np.meshgrid(theta, psi)
+
+ N = min(len(trajectory[0]), maxframes)
+
+ v1, v2 = vecfn(theta, psi)
+ if isinstance(vecfn, WGAN):
+ clip_y = vecfn.clip
+ else:
+ clip_y = None
+
+ for i in tqdm(range(1, N)):
+ fig, (ax1, ax2) = plt.subplots(1, 2,
+ subplot_kw=dict(adjustable='box', aspect=0.7))
+
+ plt.sca(ax1)
+ trajectory_i = [trajectory[0][:i], trajectory[1][:i]]
+ vector_field_plot(theta, psi, v1, v2, trajectory_i, clip_y=clip_y, marker='b-')
+ plt.plot(trajectory_i[0][-1], trajectory_i[1][-1], 'bo')
+
+ plt.sca(ax2)
+ ax2.set_axisbelow(True)
+ plt.grid()
+
+ x = np.linspace(np.min(theta), np.max(theta))
+ y = x*trajectory[1][i]
+ plt.plot(x, y, 'C1')
+
+ ax2.add_patch(patches.Rectangle(
+ (-0.05, 0), .1, 2.5, facecolor='C2'
+ ))
+
+ ax2.add_patch(patches.Rectangle(
+ (trajectory[0][i]-0.05, 0), .1, 2.5, facecolor='C0'
+ ))
+
+ plt.xlim(np.min(theta), np.max(theta))
+ plt.ylim(-1, 3.)
+ plt.xlabel(r'$\theta$')
+ plt.xticks(np.linspace(np.min(theta), np.max(theta), 5))
+ ax2.set_yticklabels([])
+
+ plt.savefig(os.path.join(outfolder, '%06d.png' % i), dpi=200, bbox_inches='tight')
+ plt.close()
diff --git a/submodules/GAN_stability/notebooks/diracgan/simulate.py b/submodules/GAN_stability/notebooks/diracgan/simulate.py
new file mode 100644
index 0000000..0582922
--- /dev/null
+++ b/submodules/GAN_stability/notebooks/diracgan/simulate.py
@@ -0,0 +1,52 @@
+
+
+# Simulate
+def trajectory_simgd(vec_fn, theta0, psi0,
+ nsteps=50, hs_g=0.1, hs_d=0.1):
+ theta, psi = vec_fn.postprocess(theta0, psi0)
+ thetas, psis = [theta], [psi]
+
+ if isinstance(hs_g, float):
+ hs_g = [hs_g] * nsteps
+ if isinstance(hs_d, float):
+ hs_d = [hs_d] * nsteps
+ assert(len(hs_g) == nsteps)
+ assert(len(hs_d) == nsteps)
+
+ for h_g, h_d in zip(hs_g, hs_d):
+ v1, v2 = vec_fn(theta, psi)
+ theta += h_g * v1
+ psi += h_d * v2
+ theta, psi = vec_fn.postprocess(theta, psi)
+ thetas.append(theta)
+ psis.append(psi)
+
+ return thetas, psis
+
+
+def trajectory_altgd(vec_fn, theta0, psi0,
+ nsteps=50, hs_g=0.1, hs_d=0.1, gsteps=1, dsteps=1):
+ theta, psi = vec_fn.postprocess(theta0, psi0)
+ thetas, psis = [theta], [psi]
+
+ if isinstance(hs_g, float):
+ hs_g = [hs_g] * nsteps
+ if isinstance(hs_d, float):
+ hs_d = [hs_d] * nsteps
+ assert(len(hs_g) == nsteps)
+ assert(len(hs_d) == nsteps)
+
+ for h_g, h_d in zip(hs_g, hs_d):
+ for it in range(gsteps):
+ v1, v2 = vec_fn(theta, psi)
+ theta += h_g * v1
+ theta, psi = vec_fn.postprocess(theta, psi)
+
+ for it in range(dsteps):
+ v1, v2 = vec_fn(theta, psi)
+ psi += h_d * v2
+ theta, psi = vec_fn.postprocess(theta, psi)
+ thetas.append(theta)
+ psis.append(psi)
+
+ return thetas, psis
diff --git a/submodules/GAN_stability/notebooks/diracgan/subplots.py b/submodules/GAN_stability/notebooks/diracgan/subplots.py
new file mode 100644
index 0000000..788ec79
--- /dev/null
+++ b/submodules/GAN_stability/notebooks/diracgan/subplots.py
@@ -0,0 +1,28 @@
+import numpy as np
+from matplotlib import pyplot as plt
+
+
+def arrow_plot(x, y, color='C1'):
+ plt.quiver(x[:-1], y[:-1], x[1:]-x[:-1], y[1:]-y[:-1],
+ color=color, scale_units='xy', angles='xy', scale=1)
+
+
+def vector_field_plot(theta, psi, v1, v2, trajectory=None, clip_y=None, marker='b^'):
+ plt.quiver(theta, psi, v1, v2)
+ if clip_y is not None:
+ plt.axhspan(np.min(psi), -clip_y, facecolor='0.2', alpha=0.5)
+ plt.plot([np.min(theta), np.max(theta)], [-clip_y, -clip_y], 'k-')
+ plt.axhspan(clip_y, np.max(psi), facecolor='0.2', alpha=0.5)
+ plt.plot([np.min(theta), np.max(theta)], [clip_y, clip_y], 'k-')
+
+ if trajectory is not None:
+ psis, thetas = trajectory
+ plt.plot(psis, thetas, marker, markerfacecolor='None')
+ plt.plot(psis[0], thetas[0], 'ro')
+
+ plt.xlim(np.min(theta), np.max(theta))
+ plt.ylim(np.min(psi), np.max(psi))
+ plt.xlabel(r'$\theta$')
+ plt.ylabel(r'$\psi$')
+ plt.xticks(np.linspace(np.min(theta), np.max(theta), 5))
+ plt.yticks(np.linspace(np.min(psi), np.max(psi), 5))
diff --git a/submodules/GAN_stability/notebooks/diracgan/util.py b/submodules/GAN_stability/notebooks/diracgan/util.py
new file mode 100644
index 0000000..75ed5ea
--- /dev/null
+++ b/submodules/GAN_stability/notebooks/diracgan/util.py
@@ -0,0 +1,10 @@
+import numpy as np
+
+def sigmoid(x):
+ m = np.minimum(0, x)
+ return np.exp(m)/(np.exp(m) + np.exp(-x + m))
+
+
+def clip(x, clipval=0.3):
+ x = np.clip(x, -clipval, clipval)
+ return x
diff --git a/submodules/GAN_stability/results/celebA-HQ.jpg b/submodules/GAN_stability/results/celebA-HQ.jpg
new file mode 100644
index 0000000..591fda4
Binary files /dev/null and b/submodules/GAN_stability/results/celebA-HQ.jpg differ
diff --git a/submodules/GAN_stability/results/imagenet_00.jpg b/submodules/GAN_stability/results/imagenet_00.jpg
new file mode 100644
index 0000000..6b333fe
Binary files /dev/null and b/submodules/GAN_stability/results/imagenet_00.jpg differ
diff --git a/submodules/GAN_stability/results/imagenet_01.jpg b/submodules/GAN_stability/results/imagenet_01.jpg
new file mode 100644
index 0000000..b32ab34
Binary files /dev/null and b/submodules/GAN_stability/results/imagenet_01.jpg differ
diff --git a/submodules/GAN_stability/results/imagenet_02.jpg b/submodules/GAN_stability/results/imagenet_02.jpg
new file mode 100644
index 0000000..63ac337
Binary files /dev/null and b/submodules/GAN_stability/results/imagenet_02.jpg differ
diff --git a/submodules/GAN_stability/results/imagenet_03.jpg b/submodules/GAN_stability/results/imagenet_03.jpg
new file mode 100644
index 0000000..f54362c
Binary files /dev/null and b/submodules/GAN_stability/results/imagenet_03.jpg differ
diff --git a/submodules/GAN_stability/results/imagenet_04.jpg b/submodules/GAN_stability/results/imagenet_04.jpg
new file mode 100644
index 0000000..f170b40
Binary files /dev/null and b/submodules/GAN_stability/results/imagenet_04.jpg differ
diff --git a/submodules/GAN_stability/test.py b/submodules/GAN_stability/test.py
new file mode 100644
index 0000000..889f4b3
--- /dev/null
+++ b/submodules/GAN_stability/test.py
@@ -0,0 +1,110 @@
+import argparse
+import os
+from os import path
+import copy
+from tqdm import tqdm
+import torch
+from torch import nn
+from gan_training import utils
+from gan_training.checkpoints import CheckpointIO
+from gan_training.distributions import get_ydist, get_zdist
+from gan_training.eval import Evaluator
+from gan_training.config import (
+ load_config, build_models
+)
+
+# Arguments
+parser = argparse.ArgumentParser(
+ description='Test a trained GAN and create visualizations.'
+)
+parser.add_argument('config', type=str, help='Path to config file.')
+parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
+
+args = parser.parse_args()
+
+config = load_config(args.config, 'configs/default.yaml')
+is_cuda = (torch.cuda.is_available() and not args.no_cuda)
+
+# Shorthands
+nlabels = config['data']['nlabels']
+out_dir = config['training']['out_dir']
+batch_size = config['test']['batch_size']
+sample_size = config['test']['sample_size']
+sample_nrow = config['test']['sample_nrow']
+checkpoint_dir = path.join(out_dir, 'chkpts')
+img_dir = path.join(out_dir, 'test', 'img')
+img_all_dir = path.join(out_dir, 'test', 'img_all')
+
+# Creat missing directories
+if not path.exists(img_dir):
+ os.makedirs(img_dir)
+if not path.exists(img_all_dir):
+ os.makedirs(img_all_dir)
+
+# Logger
+checkpoint_io = CheckpointIO(
+ checkpoint_dir=checkpoint_dir
+)
+
+# Get model file
+model_file = config['test']['model_file']
+
+# Models
+device = torch.device("cuda:0" if is_cuda else "cpu")
+
+generator, discriminator = build_models(config)
+print(generator)
+print(discriminator)
+
+# Put models on gpu if needed
+generator = generator.to(device)
+discriminator = discriminator.to(device)
+
+# Use multiple GPUs if possible
+generator = nn.DataParallel(generator)
+discriminator = nn.DataParallel(discriminator)
+
+# Register modules to checkpoint
+checkpoint_io.register_modules(
+ generator=generator,
+ discriminator=discriminator,
+)
+
+# Test generator
+if config['test']['use_model_average']:
+ generator_test = copy.deepcopy(generator)
+ checkpoint_io.register_modules(generator_test=generator_test)
+else:
+ generator_test = generator
+
+# Distributions
+ydist = get_ydist(nlabels, device=device)
+zdist = get_zdist(config['z_dist']['type'], config['z_dist']['dim'],
+ device=device)
+
+# Evaluator
+evaluator = Evaluator(generator_test, zdist, ydist,
+ batch_size=batch_size, device=device)
+
+# Load checkpoint if existant
+load_dict = checkpoint_io.load(model_file)
+it = load_dict.get('it', -1)
+epoch_idx = load_dict.get('epoch_idx', -1)
+
+# Inception score
+if config['test']['compute_inception']:
+ print('Computing inception score...')
+ inception_mean, inception_std = evaluator.compute_inception_score()
+ print('Inception score: %.4f +- %.4f' % (inception_mean, inception_std))
+
+# Samples
+print('Creating samples...')
+ztest = zdist.sample((sample_size,))
+x = evaluator.create_samples(ztest)
+utils.save_images(x, path.join(img_all_dir, '%08d.png' % it),
+ nrow=sample_nrow)
+if config['test']['conditional_samples']:
+ for y_inst in tqdm(range(nlabels)):
+ x = evaluator.create_samples(ztest, y_inst)
+ utils.save_images(x, path.join(img_dir, '%04d.png' % y_inst),
+ nrow=sample_nrow)
diff --git a/submodules/GAN_stability/train.py b/submodules/GAN_stability/train.py
new file mode 100644
index 0000000..2d853b9
--- /dev/null
+++ b/submodules/GAN_stability/train.py
@@ -0,0 +1,235 @@
+import argparse
+import os
+from os import path
+import time
+import copy
+import torch
+from torch import nn
+from gan_training import utils
+from gan_training.train import Trainer, update_average
+from gan_training.logger import Logger
+from gan_training.checkpoints import CheckpointIO
+from gan_training.inputs import get_dataset
+from gan_training.distributions import get_ydist, get_zdist
+from gan_training.eval import Evaluator
+from gan_training.config import (
+ load_config, build_models, build_optimizers, build_lr_scheduler,
+)
+
+# Arguments
+parser = argparse.ArgumentParser(
+ description='Train a GAN with different regularization strategies.'
+)
+parser.add_argument('config', type=str, help='Path to config file.')
+parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
+
+args = parser.parse_args()
+
+config = load_config(args.config, 'configs/default.yaml')
+is_cuda = (torch.cuda.is_available() and not args.no_cuda)
+
+# Short hands
+batch_size = config['training']['batch_size']
+d_steps = config['training']['d_steps']
+restart_every = config['training']['restart_every']
+inception_every = config['training']['inception_every']
+save_every = config['training']['save_every']
+backup_every = config['training']['backup_every']
+sample_nlabels = config['training']['sample_nlabels']
+
+out_dir = config['training']['out_dir']
+checkpoint_dir = path.join(out_dir, 'chkpts')
+
+# Create missing directories
+if not path.exists(out_dir):
+ os.makedirs(out_dir)
+if not path.exists(checkpoint_dir):
+ os.makedirs(checkpoint_dir)
+
+# Logger
+checkpoint_io = CheckpointIO(
+ checkpoint_dir=checkpoint_dir
+)
+
+device = torch.device("cuda:0" if is_cuda else "cpu")
+
+
+# Dataset
+train_dataset, nlabels = get_dataset(
+ name=config['data']['type'],
+ data_dir=config['data']['train_dir'],
+ size=config['data']['img_size'],
+ lsun_categories=config['data']['lsun_categories_train']
+)
+train_loader = torch.utils.data.DataLoader(
+ train_dataset,
+ batch_size=batch_size,
+ num_workers=config['training']['nworkers'],
+ shuffle=True, pin_memory=True, sampler=None, drop_last=True
+)
+
+# Number of labels
+nlabels = min(nlabels, config['data']['nlabels'])
+sample_nlabels = min(nlabels, sample_nlabels)
+
+# Create models
+generator, discriminator = build_models(config)
+print(generator)
+print(discriminator)
+
+# Put models on gpu if needed
+generator = generator.to(device)
+discriminator = discriminator.to(device)
+
+g_optimizer, d_optimizer = build_optimizers(
+ generator, discriminator, config
+)
+
+# Use multiple GPUs if possible
+generator = nn.DataParallel(generator)
+discriminator = nn.DataParallel(discriminator)
+
+# Register modules to checkpoint
+checkpoint_io.register_modules(
+ generator=generator,
+ discriminator=discriminator,
+ g_optimizer=g_optimizer,
+ d_optimizer=d_optimizer,
+)
+
+# Get model file
+model_file = config['training']['model_file']
+
+# Logger
+logger = Logger(
+ log_dir=path.join(out_dir, 'logs'),
+ img_dir=path.join(out_dir, 'imgs'),
+ monitoring=config['training']['monitoring'],
+ monitoring_dir=path.join(out_dir, 'monitoring')
+)
+
+# Distributions
+ydist = get_ydist(nlabels, device=device)
+zdist = get_zdist(config['z_dist']['type'], config['z_dist']['dim'],
+ device=device)
+
+# Save for tests
+ntest = batch_size
+x_real, ytest = utils.get_nsamples(train_loader, ntest)
+ytest.clamp_(None, nlabels-1)
+ztest = zdist.sample((ntest,))
+utils.save_images(x_real, path.join(out_dir, 'real.png'))
+
+# Test generator
+if config['training']['take_model_average']:
+ generator_test = copy.deepcopy(generator)
+ checkpoint_io.register_modules(generator_test=generator_test)
+else:
+ generator_test = generator
+
+# Evaluator
+evaluator = Evaluator(generator_test, zdist, ydist,
+ batch_size=batch_size, device=device)
+
+# Train
+tstart = t0 = time.time()
+
+# Load checkpoint if it exists
+try:
+ load_dict = checkpoint_io.load(model_file)
+except FileNotFoundError:
+ it = epoch_idx = -1
+else:
+ it = load_dict.get('it', -1)
+ epoch_idx = load_dict.get('epoch_idx', -1)
+ logger.load_stats('stats.p')
+
+# Reinitialize model average if needed
+if (config['training']['take_model_average']
+ and config['training']['model_average_reinit']):
+ update_average(generator_test, generator, 0.)
+
+# Learning rate anneling
+g_scheduler = build_lr_scheduler(g_optimizer, config, last_epoch=it)
+d_scheduler = build_lr_scheduler(d_optimizer, config, last_epoch=it)
+
+# Trainer
+trainer = Trainer(
+ generator, discriminator, g_optimizer, d_optimizer,
+ gan_type=config['training']['gan_type'],
+ reg_type=config['training']['reg_type'],
+ reg_param=config['training']['reg_param']
+)
+
+# Training loop
+print('Start training...')
+while True:
+ epoch_idx += 1
+ print('Start epoch %d...' % epoch_idx)
+
+ for x_real, y in train_loader:
+ it += 1
+ g_scheduler.step()
+ d_scheduler.step()
+
+ d_lr = d_optimizer.param_groups[0]['lr']
+ g_lr = g_optimizer.param_groups[0]['lr']
+ logger.add('learning_rates', 'discriminator', d_lr, it=it)
+ logger.add('learning_rates', 'generator', g_lr, it=it)
+
+ x_real, y = x_real.to(device), y.to(device)
+ y.clamp_(None, nlabels-1)
+
+ # Discriminator updates
+ z = zdist.sample((batch_size,))
+ dloss, reg = trainer.discriminator_trainstep(x_real, y, z)
+ logger.add('losses', 'discriminator', dloss, it=it)
+ logger.add('losses', 'regularizer', reg, it=it)
+
+ # Generators updates
+ if ((it + 1) % d_steps) == 0:
+ z = zdist.sample((batch_size,))
+ gloss = trainer.generator_trainstep(y, z)
+ logger.add('losses', 'generator', gloss, it=it)
+
+ if config['training']['take_model_average']:
+ update_average(generator_test, generator,
+ beta=config['training']['model_average_beta'])
+
+ # Print stats
+ g_loss_last = logger.get_last('losses', 'generator')
+ d_loss_last = logger.get_last('losses', 'discriminator')
+ d_reg_last = logger.get_last('losses', 'regularizer')
+ print('[epoch %0d, it %4d] g_loss = %.4f, d_loss = %.4f, reg=%.4f'
+ % (epoch_idx, it, g_loss_last, d_loss_last, d_reg_last))
+
+ # (i) Sample if necessary
+ if (it % config['training']['sample_every']) == 0:
+ print('Creating samples...')
+ x = evaluator.create_samples(ztest, ytest)
+ logger.add_imgs(x, 'all', it)
+ for y_inst in range(sample_nlabels):
+ x = evaluator.create_samples(ztest, y_inst)
+ logger.add_imgs(x, '%04d' % y_inst, it)
+
+ # (ii) Compute inception if necessary
+ if inception_every > 0 and ((it + 1) % inception_every) == 0:
+ inception_mean, inception_std = evaluator.compute_inception_score()
+ logger.add('inception_score', 'mean', inception_mean, it=it)
+ logger.add('inception_score', 'stddev', inception_std, it=it)
+
+ # (iii) Backup if necessary
+ if ((it + 1) % backup_every) == 0:
+ print('Saving backup...')
+ checkpoint_io.save('model_%08d.pt' % it, it=it)
+ logger.save_stats('stats_%08d.p' % it)
+
+ # (iv) Save checkpoint if necessary
+ if time.time() - t0 > save_every:
+ print('Saving checkpoint...')
+ checkpoint_io.save(model_file, it=it)
+ logger.save_stats('stats.p')
+ t0 = time.time()
+
+ if (restart_every > 0 and t0 - tstart > restart_every):
+ exit(3)
diff --git a/submodules/nerf_pytorch/.gitignore b/submodules/nerf_pytorch/.gitignore
new file mode 100644
index 0000000..be8a80c
--- /dev/null
+++ b/submodules/nerf_pytorch/.gitignore
@@ -0,0 +1,9 @@
+**/.ipynb_checkpoints
+**/__pycache__
+*.png
+*.mp4
+*.npy
+*.npz
+*.dae
+data/*
+logs/*
\ No newline at end of file
diff --git a/submodules/nerf_pytorch/.gitmodules b/submodules/nerf_pytorch/.gitmodules
new file mode 100644
index 0000000..e69de29
diff --git a/submodules/nerf_pytorch/LICENSE b/submodules/nerf_pytorch/LICENSE
new file mode 100644
index 0000000..560252e
--- /dev/null
+++ b/submodules/nerf_pytorch/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2020 bmild
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/submodules/nerf_pytorch/README.md b/submodules/nerf_pytorch/README.md
new file mode 100644
index 0000000..724924d
--- /dev/null
+++ b/submodules/nerf_pytorch/README.md
@@ -0,0 +1,164 @@
+# NeRF-pytorch
+
+
+[NeRF](http://www.matthewtancik.com/nerf) (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are some videos generated by this repository (pre-trained models are provided below):
+
+
+
+
+This project is a faithful PyTorch implementation of [NeRF](http://www.matthewtancik.com/nerf) that **reproduces** the results while running **1.3 times faster**. The code is based on authors' Tensorflow implementation [here](https://github.com/bmild/nerf), and has been tested to match it numerically.
+
+## Installation
+
+```
+git clone https://github.com/yenchenlin/nerf-pytorch.git
+cd nerf-pytorch
+pip install -r requirements.txt
+cd torchsearchsorted
+pip install .
+cd ../
+```
+
+
+ Dependencies (click to expand)
+
+ ## Dependencies
+ - PyTorch 1.4
+ - matplotlib
+ - numpy
+ - imageio
+ - imageio-ffmpeg
+ - configargparse
+
+The LLFF data loader requires ImageMagick.
+
+You will also need the [LLFF code](http://github.com/fyusion/llff) (and COLMAP) set up to compute poses if you want to run on your own real data.
+
+
+
+## How To Run?
+
+### Quick Start
+
+Download data for two example datasets: `lego` and `fern`
+```
+bash download_example_data.sh
+```
+
+To train a low-res `lego` NeRF:
+```
+python run_nerf.py --config configs/config_lego.txt
+```
+After training for 100k iterations (~4 hours on a single 2080 Ti), you can find the following video at `logs/lego_test/lego_test_spiral_100000_rgb.mp4`.
+
+
+
+---
+
+To train a low-res `fern` NeRF:
+```
+python run_nerf.py --config configs/config_fern.txt
+```
+After training for 200k iterations (~8 hours on a single 2080 Ti), you can find the following video at `logs/fern_test/fern_test_spiral_200000_rgb.mp4` and `logs/fern_test/fern_test_spiral_200000_disp.mp4`
+
+
+
+---
+
+### More Datasets
+To play with other scenes presented in the paper, download the data [here](https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1). Place the downloaded dataset according to the following directory structure:
+```
+├── configs
+│  ├── ...
+│ Â
+├── data
+│  ├── nerf_llff_data
+│  │  └── fern
+│  │ └── flower # downloaded llff dataset
+│  │ └── horns # downloaded llff dataset
+| | └── ...
+| ├── nerf_synthetic
+| | └── lego
+| | └── ship # downloaded synthetic dataset
+| | └── ...
+```
+
+---
+
+To train NeRF on different datasets:
+
+```
+python run_nerf.py --config configs/config_{DATASET}.txt
+```
+
+replace `{DATASET}` with `trex` | `horns` | `flower` | `fortress` | `lego` | etc.
+
+---
+
+To test NeRF trained on different datasets:
+
+```
+python run_nerf.py --config configs/config_{DATASET}.txt --render_only
+```
+
+replace `{DATASET}` with `trex` | `horns` | `flower` | `fortress` | `lego` | etc.
+
+
+### Pre-trained Models
+
+You can download the pre-trained models [here](https://drive.google.com/drive/folders/1jIr8dkvefrQmv737fFm2isiT6tqpbTbv?usp=sharing). Place the downloaded directory in `./logs` in order to test it later. See the following directory structure for an example:
+
+```
+├── logs
+│  ├── fern_test
+│  ├── flower_test # downloaded logs
+│ ├── trex_test # downloaded logs
+```
+
+### Reproducibility
+
+Tests that ensure the results of all functions and training loop match the official implentation are contained in a different branch `reproduce`. One can check it out and run the tests:
+```
+git checkout reproduce
+py.test
+```
+
+## Method
+
+[NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis](http://tancik.com/nerf)
+ [Ben Mildenhall](https://people.eecs.berkeley.edu/~bmild/)\*1,
+ [Pratul P. Srinivasan](https://people.eecs.berkeley.edu/~pratul/)\*1,
+ [Matthew Tancik](http://tancik.com/)\*1,
+ [Jonathan T. Barron](http://jonbarron.info/)2,
+ [Ravi Ramamoorthi](http://cseweb.ucsd.edu/~ravir/)3,
+ [Ren Ng](https://www2.eecs.berkeley.edu/Faculty/Homepages/yirenng.html)1
+ 1UC Berkeley, 2Google Research, 3UC San Diego
+ \*denotes equal contribution
+
+
+
+> A neural radiance field is a simple fully connected network (weights are ~5MB) trained to reproduce input views of a single scene using a rendering loss. The network directly maps from spatial location and viewing direction (5D input) to color and opacity (4D output), acting as the "volume" so we can use volume rendering to differentiably render new views
+
+
+## Citation
+Kudos to the authors for their amazing results:
+```
+@misc{mildenhall2020nerf,
+ title={NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis},
+ author={Ben Mildenhall and Pratul P. Srinivasan and Matthew Tancik and Jonathan T. Barron and Ravi Ramamoorthi and Ren Ng},
+ year={2020},
+ eprint={2003.08934},
+ archivePrefix={arXiv},
+ primaryClass={cs.CV}
+}
+```
+
+However, if you find this implementation or pre-trained models helpful, please consider to cite:
+```
+@misc{lin2020nerfpytorch,
+ title={NeRF-pytorch},
+ author={Yen-Chen, Lin},
+ howpublished={\url{https://github.com/yenchenlin/nerf-pytorch/}},
+ year={2020}
+}
+```
diff --git a/submodules/nerf_pytorch/configs/config_fern.txt b/submodules/nerf_pytorch/configs/config_fern.txt
new file mode 100644
index 0000000..a044d2b
--- /dev/null
+++ b/submodules/nerf_pytorch/configs/config_fern.txt
@@ -0,0 +1,15 @@
+expname = fern_test
+basedir = ./logs
+datadir = ./data/nerf_llff_data/fern
+dataset_type = llff
+
+factor = 8
+llffhold = 8
+
+N_rand = 1024
+N_samples = 64
+N_importance = 64
+
+use_viewdirs = True
+raw_noise_std = 1e0
+
diff --git a/submodules/nerf_pytorch/configs/config_flower.txt b/submodules/nerf_pytorch/configs/config_flower.txt
new file mode 100644
index 0000000..43db6a8
--- /dev/null
+++ b/submodules/nerf_pytorch/configs/config_flower.txt
@@ -0,0 +1,15 @@
+expname = flower_test
+basedir = ./logs
+datadir = ./data/nerf_llff_data/flower
+dataset_type = llff
+
+factor = 8
+llffhold = 8
+
+N_rand = 1024
+N_samples = 64
+N_importance = 64
+
+use_viewdirs = True
+raw_noise_std = 1e0
+
diff --git a/submodules/nerf_pytorch/configs/config_fortress.txt b/submodules/nerf_pytorch/configs/config_fortress.txt
new file mode 100644
index 0000000..1cf415e
--- /dev/null
+++ b/submodules/nerf_pytorch/configs/config_fortress.txt
@@ -0,0 +1,15 @@
+expname = fortress_test
+basedir = ./logs
+datadir = ./data/nerf_llff_data/fortress
+dataset_type = llff
+
+factor = 8
+llffhold = 8
+
+N_rand = 1024
+N_samples = 64
+N_importance = 64
+
+use_viewdirs = True
+raw_noise_std = 1e0
+
diff --git a/submodules/nerf_pytorch/configs/config_horns.txt b/submodules/nerf_pytorch/configs/config_horns.txt
new file mode 100644
index 0000000..3f7d64b
--- /dev/null
+++ b/submodules/nerf_pytorch/configs/config_horns.txt
@@ -0,0 +1,15 @@
+expname = horns_test
+basedir = ./logs
+datadir = ./data/nerf_llff_data/horns
+dataset_type = llff
+
+factor = 8
+llffhold = 8
+
+N_rand = 1024
+N_samples = 64
+N_importance = 64
+
+use_viewdirs = True
+raw_noise_std = 1e0
+
diff --git a/submodules/nerf_pytorch/configs/config_lego.txt b/submodules/nerf_pytorch/configs/config_lego.txt
new file mode 100644
index 0000000..20e0f42
--- /dev/null
+++ b/submodules/nerf_pytorch/configs/config_lego.txt
@@ -0,0 +1,15 @@
+expname = lego_test
+basedir = ./logs
+datadir = ./data/nerf_synthetic/lego
+dataset_type = blender
+
+half_res = True
+
+N_samples = 64
+N_importance = 64
+
+use_viewdirs = True
+
+white_bkgd = True
+
+N_rand = 1024
\ No newline at end of file
diff --git a/submodules/nerf_pytorch/configs/config_trex.txt b/submodules/nerf_pytorch/configs/config_trex.txt
new file mode 100644
index 0000000..cb5c717
--- /dev/null
+++ b/submodules/nerf_pytorch/configs/config_trex.txt
@@ -0,0 +1,15 @@
+expname = trex_test
+basedir = ./logs
+datadir = ./data/nerf_llff_data/trex
+dataset_type = llff
+
+factor = 8
+llffhold = 8
+
+N_rand = 1024
+N_samples = 64
+N_importance = 64
+
+use_viewdirs = True
+raw_noise_std = 1e0
+
diff --git a/submodules/nerf_pytorch/download_example_data.sh b/submodules/nerf_pytorch/download_example_data.sh
new file mode 100644
index 0000000..2487811
--- /dev/null
+++ b/submodules/nerf_pytorch/download_example_data.sh
@@ -0,0 +1,6 @@
+wget https://people.eecs.berkeley.edu/~bmild/nerf/tiny_nerf_data.npz
+mkdir -p data
+cd data
+wget https://people.eecs.berkeley.edu/~bmild/nerf/nerf_example_data.zip
+unzip nerf_example_data.zip
+cd ..
diff --git a/submodules/nerf_pytorch/imgs/pipeline.jpg b/submodules/nerf_pytorch/imgs/pipeline.jpg
new file mode 100644
index 0000000..ab8bb73
Binary files /dev/null and b/submodules/nerf_pytorch/imgs/pipeline.jpg differ
diff --git a/submodules/nerf_pytorch/load_blender.py b/submodules/nerf_pytorch/load_blender.py
new file mode 100644
index 0000000..1caa8e5
--- /dev/null
+++ b/submodules/nerf_pytorch/load_blender.py
@@ -0,0 +1,91 @@
+import os
+import torch
+import numpy as np
+import imageio
+import json
+import torch.nn.functional as F
+import cv2
+
+
+trans_t = lambda t : torch.Tensor([
+ [1,0,0,0],
+ [0,1,0,0],
+ [0,0,1,t],
+ [0,0,0,1]]).float()
+
+rot_phi = lambda phi : torch.Tensor([
+ [1,0,0,0],
+ [0,np.cos(phi),-np.sin(phi),0],
+ [0,np.sin(phi), np.cos(phi),0],
+ [0,0,0,1]]).float()
+
+rot_theta = lambda th : torch.Tensor([
+ [np.cos(th),0,-np.sin(th),0],
+ [0,1,0,0],
+ [np.sin(th),0, np.cos(th),0],
+ [0,0,0,1]]).float()
+
+
+def pose_spherical(theta, phi, radius):
+ c2w = trans_t(radius)
+ c2w = rot_phi(phi/180.*np.pi) @ c2w
+ c2w = rot_theta(theta/180.*np.pi) @ c2w
+ c2w = torch.Tensor(np.array([[-1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]])) @ c2w
+ return c2w
+
+
+def load_blender_data(basedir, half_res=False, testskip=1):
+ splits = ['train', 'val', 'test']
+ metas = {}
+ for s in splits:
+ with open(os.path.join(basedir, 'transforms_{}.json'.format(s)), 'r') as fp:
+ metas[s] = json.load(fp)
+
+ all_imgs = []
+ all_poses = []
+ counts = [0]
+ for s in splits:
+ meta = metas[s]
+ imgs = []
+ poses = []
+ if s=='train' or testskip==0:
+ skip = 1
+ else:
+ skip = testskip
+
+ for frame in meta['frames'][::skip]:
+ fname = os.path.join(basedir, frame['file_path'] + '.png')
+ imgs.append(imageio.imread(fname))
+ poses.append(np.array(frame['transform_matrix']))
+ imgs = (np.array(imgs) / 255.).astype(np.float32) # keep all 4 channels (RGBA)
+ poses = np.array(poses).astype(np.float32)
+ counts.append(counts[-1] + imgs.shape[0])
+ all_imgs.append(imgs)
+ all_poses.append(poses)
+
+ i_split = [np.arange(counts[i], counts[i+1]) for i in range(3)]
+
+ imgs = np.concatenate(all_imgs, 0)
+ poses = np.concatenate(all_poses, 0)
+
+ H, W = imgs[0].shape[:2]
+ camera_angle_x = float(meta['camera_angle_x'])
+ focal = .5 * W / np.tan(.5 * camera_angle_x)
+
+ render_poses = torch.stack([pose_spherical(angle, -30.0, 4.0) for angle in np.linspace(-180,180,40+1)[:-1]], 0)
+
+ if half_res:
+ H = H//2
+ W = W//2
+ focal = focal/2.
+
+ imgs_half_res = np.zeros((imgs.shape[0], H, W, 4))
+ for i, img in enumerate(imgs):
+ imgs_half_res[i] = cv2.resize(img, (H, W), interpolation=cv2.INTER_AREA)
+ imgs = imgs_half_res
+ # imgs = tf.image.resize_area(imgs, [400, 400]).numpy()
+
+
+ return imgs, poses, render_poses, [H, W, focal], i_split
+
+
diff --git a/submodules/nerf_pytorch/load_deepvoxels.py b/submodules/nerf_pytorch/load_deepvoxels.py
new file mode 100644
index 0000000..deb2a9c
--- /dev/null
+++ b/submodules/nerf_pytorch/load_deepvoxels.py
@@ -0,0 +1,110 @@
+import os
+import numpy as np
+import imageio
+
+
+def load_dv_data(scene='cube', basedir='/data/deepvoxels', testskip=8):
+
+
+ def parse_intrinsics(filepath, trgt_sidelength, invert_y=False):
+ # Get camera intrinsics
+ with open(filepath, 'r') as file:
+ f, cx, cy = list(map(float, file.readline().split()))[:3]
+ grid_barycenter = np.array(list(map(float, file.readline().split())))
+ near_plane = float(file.readline())
+ scale = float(file.readline())
+ height, width = map(float, file.readline().split())
+
+ try:
+ world2cam_poses = int(file.readline())
+ except ValueError:
+ world2cam_poses = None
+
+ if world2cam_poses is None:
+ world2cam_poses = False
+
+ world2cam_poses = bool(world2cam_poses)
+
+ print(cx,cy,f,height,width)
+
+ cx = cx / width * trgt_sidelength
+ cy = cy / height * trgt_sidelength
+ f = trgt_sidelength / height * f
+
+ fx = f
+ if invert_y:
+ fy = -f
+ else:
+ fy = f
+
+ # Build the intrinsic matrices
+ full_intrinsic = np.array([[fx, 0., cx, 0.],
+ [0., fy, cy, 0],
+ [0., 0, 1, 0],
+ [0, 0, 0, 1]])
+
+ return full_intrinsic, grid_barycenter, scale, near_plane, world2cam_poses
+
+
+ def load_pose(filename):
+ assert os.path.isfile(filename)
+ nums = open(filename).read().split()
+ return np.array([float(x) for x in nums]).reshape([4,4]).astype(np.float32)
+
+
+ H = 512
+ W = 512
+ deepvoxels_base = '{}/train/{}/'.format(basedir, scene)
+
+ full_intrinsic, grid_barycenter, scale, near_plane, world2cam_poses = parse_intrinsics(os.path.join(deepvoxels_base, 'intrinsics.txt'), H)
+ print(full_intrinsic, grid_barycenter, scale, near_plane, world2cam_poses)
+ focal = full_intrinsic[0,0]
+ print(H, W, focal)
+
+
+ def dir2poses(posedir):
+ poses = np.stack([load_pose(os.path.join(posedir, f)) for f in sorted(os.listdir(posedir)) if f.endswith('txt')], 0)
+ transf = np.array([
+ [1,0,0,0],
+ [0,-1,0,0],
+ [0,0,-1,0],
+ [0,0,0,1.],
+ ])
+ poses = poses @ transf
+ poses = poses[:,:3,:4].astype(np.float32)
+ return poses
+
+ posedir = os.path.join(deepvoxels_base, 'pose')
+ poses = dir2poses(posedir)
+ testposes = dir2poses('{}/test/{}/pose'.format(basedir, scene))
+ testposes = testposes[::testskip]
+ valposes = dir2poses('{}/validation/{}/pose'.format(basedir, scene))
+ valposes = valposes[::testskip]
+
+ imgfiles = [f for f in sorted(os.listdir(os.path.join(deepvoxels_base, 'rgb'))) if f.endswith('png')]
+ imgs = np.stack([imageio.imread(os.path.join(deepvoxels_base, 'rgb', f))/255. for f in imgfiles], 0).astype(np.float32)
+
+
+ testimgd = '{}/test/{}/rgb'.format(basedir, scene)
+ imgfiles = [f for f in sorted(os.listdir(testimgd)) if f.endswith('png')]
+ testimgs = np.stack([imageio.imread(os.path.join(testimgd, f))/255. for f in imgfiles[::testskip]], 0).astype(np.float32)
+
+ valimgd = '{}/validation/{}/rgb'.format(basedir, scene)
+ imgfiles = [f for f in sorted(os.listdir(valimgd)) if f.endswith('png')]
+ valimgs = np.stack([imageio.imread(os.path.join(valimgd, f))/255. for f in imgfiles[::testskip]], 0).astype(np.float32)
+
+ all_imgs = [imgs, valimgs, testimgs]
+ counts = [0] + [x.shape[0] for x in all_imgs]
+ counts = np.cumsum(counts)
+ i_split = [np.arange(counts[i], counts[i+1]) for i in range(3)]
+
+ imgs = np.concatenate(all_imgs, 0)
+ poses = np.concatenate([poses, valposes, testposes], 0)
+
+ render_poses = testposes
+
+ print(poses.shape, imgs.shape)
+
+ return imgs, poses, render_poses, [H,W,focal], i_split
+
+
diff --git a/submodules/nerf_pytorch/load_llff.py b/submodules/nerf_pytorch/load_llff.py
new file mode 100644
index 0000000..98b7916
--- /dev/null
+++ b/submodules/nerf_pytorch/load_llff.py
@@ -0,0 +1,319 @@
+import numpy as np
+import os, imageio
+
+
+########## Slightly modified version of LLFF data loading code
+########## see https://github.com/Fyusion/LLFF for original
+
+def _minify(basedir, factors=[], resolutions=[]):
+ needtoload = False
+ for r in factors:
+ imgdir = os.path.join(basedir, 'images_{}'.format(r))
+ if not os.path.exists(imgdir):
+ needtoload = True
+ for r in resolutions:
+ imgdir = os.path.join(basedir, 'images_{}x{}'.format(r[1], r[0]))
+ if not os.path.exists(imgdir):
+ needtoload = True
+ if not needtoload:
+ return
+
+ from shutil import copy
+ from subprocess import check_output
+
+ imgdir = os.path.join(basedir, 'images')
+ imgs = [os.path.join(imgdir, f) for f in sorted(os.listdir(imgdir))]
+ imgs = [f for f in imgs if any([f.endswith(ex) for ex in ['JPG', 'jpg', 'png', 'jpeg', 'PNG']])]
+ imgdir_orig = imgdir
+
+ wd = os.getcwd()
+
+ for r in factors + resolutions:
+ if isinstance(r, int):
+ name = 'images_{}'.format(r)
+ resizearg = '{}%'.format(100./r)
+ else:
+ name = 'images_{}x{}'.format(r[1], r[0])
+ resizearg = '{}x{}'.format(r[1], r[0])
+ imgdir = os.path.join(basedir, name)
+ if os.path.exists(imgdir):
+ continue
+
+ print('Minifying', r, basedir)
+
+ os.makedirs(imgdir)
+ check_output('cp {}/* {}'.format(imgdir_orig, imgdir), shell=True)
+
+ ext = imgs[0].split('.')[-1]
+ args = ' '.join(['mogrify', '-resize', resizearg, '-format', 'png', '*.{}'.format(ext)])
+ print(args)
+ os.chdir(imgdir)
+ check_output(args, shell=True)
+ os.chdir(wd)
+
+ if ext != 'png':
+ check_output('rm {}/*.{}'.format(imgdir, ext), shell=True)
+ print('Removed duplicates')
+ print('Done')
+
+
+
+
+def _load_data(basedir, factor=None, width=None, height=None, load_imgs=True):
+
+ poses_arr = np.load(os.path.join(basedir, 'poses_bounds.npy'))
+ poses = poses_arr[:, :-2].reshape([-1, 3, 5]).transpose([1,2,0])
+ bds = poses_arr[:, -2:].transpose([1,0])
+
+ img0 = [os.path.join(basedir, 'images', f) for f in sorted(os.listdir(os.path.join(basedir, 'images'))) \
+ if f.endswith('JPG') or f.endswith('jpg') or f.endswith('png')][0]
+ sh = imageio.imread(img0).shape
+
+ sfx = ''
+
+ if factor is not None:
+ sfx = '_{}'.format(factor)
+ _minify(basedir, factors=[factor])
+ factor = factor
+ elif height is not None:
+ factor = sh[0] / float(height)
+ width = int(sh[1] / factor)
+ _minify(basedir, resolutions=[[height, width]])
+ sfx = '_{}x{}'.format(width, height)
+ elif width is not None:
+ factor = sh[1] / float(width)
+ height = int(sh[0] / factor)
+ _minify(basedir, resolutions=[[height, width]])
+ sfx = '_{}x{}'.format(width, height)
+ else:
+ factor = 1
+
+ imgdir = os.path.join(basedir, 'images' + sfx)
+ if not os.path.exists(imgdir):
+ print( imgdir, 'does not exist, returning' )
+ return
+
+ imgfiles = [os.path.join(imgdir, f) for f in sorted(os.listdir(imgdir)) if f.endswith('JPG') or f.endswith('jpg') or f.endswith('png')]
+ if poses.shape[-1] != len(imgfiles):
+ print( 'Mismatch between imgs {} and poses {} !!!!'.format(len(imgfiles), poses.shape[-1]) )
+ return
+
+ sh = imageio.imread(imgfiles[0]).shape
+ poses[:2, 4, :] = np.array(sh[:2]).reshape([2, 1])
+ poses[2, 4, :] = poses[2, 4, :] * 1./factor
+
+ if not load_imgs:
+ return poses, bds
+
+ def imread(f):
+ if f.endswith('png'):
+ return imageio.imread(f, ignoregamma=True)
+ else:
+ return imageio.imread(f)
+
+ imgs = imgs = [imread(f)[...,:3]/255. for f in imgfiles]
+ imgs = np.stack(imgs, -1)
+
+ print('Loaded image data', imgs.shape, poses[:,-1,0])
+ return poses, bds, imgs
+
+
+
+
+
+
+def normalize(x):
+ return x / np.linalg.norm(x)
+
+def viewmatrix(z, up, pos):
+ vec2 = normalize(z)
+ vec1_avg = up
+ vec0 = normalize(np.cross(vec1_avg, vec2))
+ vec1 = normalize(np.cross(vec2, vec0))
+ m = np.stack([vec0, vec1, vec2, pos], 1)
+ return m
+
+def ptstocam(pts, c2w):
+ tt = np.matmul(c2w[:3,:3].T, (pts-c2w[:3,3])[...,np.newaxis])[...,0]
+ return tt
+
+def poses_avg(poses):
+
+ hwf = poses[0, :3, -1:]
+
+ center = poses[:, :3, 3].mean(0)
+ vec2 = normalize(poses[:, :3, 2].sum(0))
+ up = poses[:, :3, 1].sum(0)
+ c2w = np.concatenate([viewmatrix(vec2, up, center), hwf], 1)
+
+ return c2w
+
+
+
+def render_path_spiral(c2w, up, rads, focal, zdelta, zrate, rots, N):
+ render_poses = []
+ rads = np.array(list(rads) + [1.])
+ hwf = c2w[:,4:5]
+
+ for theta in np.linspace(0., 2. * np.pi * rots, N+1)[:-1]:
+ c = np.dot(c2w[:3,:4], np.array([np.cos(theta), -np.sin(theta), -np.sin(theta*zrate), 1.]) * rads)
+ z = normalize(c - np.dot(c2w[:3,:4], np.array([0,0,-focal, 1.])))
+ render_poses.append(np.concatenate([viewmatrix(z, up, c), hwf], 1))
+ return render_poses
+
+
+
+def recenter_poses(poses):
+
+ poses_ = poses+0
+ bottom = np.reshape([0,0,0,1.], [1,4])
+ c2w = poses_avg(poses)
+ c2w = np.concatenate([c2w[:3,:4], bottom], -2)
+ bottom = np.tile(np.reshape(bottom, [1,1,4]), [poses.shape[0],1,1])
+ poses = np.concatenate([poses[:,:3,:4], bottom], -2)
+
+ poses = np.linalg.inv(c2w) @ poses
+ poses_[:,:3,:4] = poses[:,:3,:4]
+ poses = poses_
+ return poses
+
+
+#####################
+
+
+def spherify_poses(poses, bds):
+
+ p34_to_44 = lambda p : np.concatenate([p, np.tile(np.reshape(np.eye(4)[-1,:], [1,1,4]), [p.shape[0], 1,1])], 1)
+
+ rays_d = poses[:,:3,2:3]
+ rays_o = poses[:,:3,3:4]
+
+ def min_line_dist(rays_o, rays_d):
+ A_i = np.eye(3) - rays_d * np.transpose(rays_d, [0,2,1])
+ b_i = -A_i @ rays_o
+ pt_mindist = np.squeeze(-np.linalg.inv((np.transpose(A_i, [0,2,1]) @ A_i).mean(0)) @ (b_i).mean(0))
+ return pt_mindist
+
+ pt_mindist = min_line_dist(rays_o, rays_d)
+
+ center = pt_mindist
+ up = (poses[:,:3,3] - center).mean(0)
+
+ vec0 = normalize(up)
+ vec1 = normalize(np.cross([.1,.2,.3], vec0))
+ vec2 = normalize(np.cross(vec0, vec1))
+ pos = center
+ c2w = np.stack([vec1, vec2, vec0, pos], 1)
+
+ poses_reset = np.linalg.inv(p34_to_44(c2w[None])) @ p34_to_44(poses[:,:3,:4])
+
+ rad = np.sqrt(np.mean(np.sum(np.square(poses_reset[:,:3,3]), -1)))
+
+ sc = 1./rad
+ poses_reset[:,:3,3] *= sc
+ bds *= sc
+ rad *= sc
+
+ centroid = np.mean(poses_reset[:,:3,3], 0)
+ zh = centroid[2]
+ radcircle = np.sqrt(rad**2-zh**2)
+ new_poses = []
+
+ for th in np.linspace(0.,2.*np.pi, 120):
+
+ camorigin = np.array([radcircle * np.cos(th), radcircle * np.sin(th), zh])
+ up = np.array([0,0,-1.])
+
+ vec2 = normalize(camorigin)
+ vec0 = normalize(np.cross(vec2, up))
+ vec1 = normalize(np.cross(vec2, vec0))
+ pos = camorigin
+ p = np.stack([vec0, vec1, vec2, pos], 1)
+
+ new_poses.append(p)
+
+ new_poses = np.stack(new_poses, 0)
+
+ new_poses = np.concatenate([new_poses, np.broadcast_to(poses[0,:3,-1:], new_poses[:,:3,-1:].shape)], -1)
+ poses_reset = np.concatenate([poses_reset[:,:3,:4], np.broadcast_to(poses[0,:3,-1:], poses_reset[:,:3,-1:].shape)], -1)
+
+ return poses_reset, new_poses, bds
+
+
+def load_llff_data(basedir, factor=8, recenter=True, bd_factor=.75, spherify=False, path_zflat=False):
+
+
+ poses, bds, imgs = _load_data(basedir, factor=factor) # factor=8 downsamples original imgs by 8x
+ print('Loaded', basedir, bds.min(), bds.max())
+
+ # Correct rotation matrix ordering and move variable dim to axis 0
+ poses = np.concatenate([poses[:, 1:2, :], -poses[:, 0:1, :], poses[:, 2:, :]], 1)
+ poses = np.moveaxis(poses, -1, 0).astype(np.float32)
+ imgs = np.moveaxis(imgs, -1, 0).astype(np.float32)
+ images = imgs
+ bds = np.moveaxis(bds, -1, 0).astype(np.float32)
+
+ # Rescale if bd_factor is provided
+ sc = 1. if bd_factor is None else 1./(bds.min() * bd_factor)
+ poses[:,:3,3] *= sc
+ bds *= sc
+
+ if recenter:
+ poses = recenter_poses(poses)
+
+ if spherify:
+ poses, render_poses, bds = spherify_poses(poses, bds)
+
+ else:
+
+ c2w = poses_avg(poses)
+ print('recentered', c2w.shape)
+ print(c2w[:3,:4])
+
+ ## Get spiral
+ # Get average pose
+ up = normalize(poses[:, :3, 1].sum(0))
+
+ # Find a reasonable "focus depth" for this dataset
+ close_depth, inf_depth = bds.min()*.9, bds.max()*5.
+ dt = .75
+ mean_dz = 1./(((1.-dt)/close_depth + dt/inf_depth))
+ focal = mean_dz
+
+ # Get radii for spiral path
+ shrink_factor = .8
+ zdelta = close_depth * .2
+ tt = poses[:,:3,3] # ptstocam(poses[:3,3,:].T, c2w).T
+ rads = np.percentile(np.abs(tt), 90, 0)
+ c2w_path = c2w
+ N_views = 120
+ N_rots = 2
+ if path_zflat:
+# zloc = np.percentile(tt, 10, 0)[2]
+ zloc = -close_depth * .1
+ c2w_path[:3,3] = c2w_path[:3,3] + zloc * c2w_path[:3,2]
+ rads[2] = 0.
+ N_rots = 1
+ N_views/=2
+
+ # Generate poses for spiral path
+ render_poses = render_path_spiral(c2w_path, up, rads, focal, zdelta, zrate=.5, rots=N_rots, N=N_views)
+
+
+ render_poses = np.array(render_poses).astype(np.float32)
+
+ c2w = poses_avg(poses)
+ print('Data:')
+ print(poses.shape, images.shape, bds.shape)
+
+ dists = np.sum(np.square(c2w[:3,3] - poses[:,:3,3]), -1)
+ i_test = np.argmin(dists)
+ print('HOLDOUT view is', i_test)
+
+ images = images.astype(np.float32)
+ poses = poses.astype(np.float32)
+
+ return images, poses, bds, render_poses, i_test
+
+
+
diff --git a/submodules/nerf_pytorch/requirements.txt b/submodules/nerf_pytorch/requirements.txt
new file mode 100644
index 0000000..3b1b913
--- /dev/null
+++ b/submodules/nerf_pytorch/requirements.txt
@@ -0,0 +1,9 @@
+torch>=1.4.0
+torchvision>=0.2.1
+imageio
+imageio-ffmpeg
+matplotlib
+configargparse
+tensorboard==1.14.0
+tqdm
+opencv-python
diff --git a/submodules/nerf_pytorch/run_nerf.py b/submodules/nerf_pytorch/run_nerf.py
new file mode 100644
index 0000000..e74d5c5
--- /dev/null
+++ b/submodules/nerf_pytorch/run_nerf.py
@@ -0,0 +1,736 @@
+import os, sys
+import numpy as np
+import imageio
+import json
+import random
+import time
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.utils.tensorboard import SummaryWriter
+from tqdm import tqdm
+
+import matplotlib.pyplot as plt
+
+from nerf_pytorch.run_nerf_helpers import *
+
+from nerf_pytorch.load_llff import load_llff_data
+from nerf_pytorch.load_deepvoxels import load_dv_data
+from nerf_pytorch.load_blender import load_blender_data
+
+
+device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+np.random.seed(0)
+DEBUG = False
+
+
+def batchify(fn, chunk):
+ if chunk is None:
+ return fn
+ def ret(inputs):
+ return torch.cat([fn(inputs[i:i+chunk]) for i in range(0, inputs.shape[0], chunk)], 0)
+ return ret
+
+
+def run_network(inputs, viewdirs, fn, embed_fn, embeddirs_fn, netchunk=1024*64):
+
+ inputs_flat = torch.reshape(inputs, [-1, inputs.shape[-1]])
+ embedded = embed_fn(inputs_flat)
+
+ if viewdirs is not None:
+ input_dirs = viewdirs[:,None].expand(inputs.shape)
+ input_dirs_flat = torch.reshape(input_dirs, [-1, input_dirs.shape[-1]])
+ embedded_dirs = embeddirs_fn(input_dirs_flat)
+ embedded = torch.cat([embedded, embedded_dirs], -1)
+
+ outputs_flat = batchify(fn, netchunk)(embedded)
+ outputs = torch.reshape(outputs_flat, list(inputs.shape[:-1]) + [outputs_flat.shape[-1]])
+ return outputs
+
+
+def batchify_rays(rays_flat, chunk=1024*32, **kwargs):
+
+ all_ret = {}
+ for i in range(0, rays_flat.shape[0], chunk):
+ ret = render_rays(rays_flat[i:i+chunk], **kwargs)
+ for k in ret:
+ if k not in all_ret:
+ all_ret[k] = []
+ all_ret[k].append(ret[k])
+
+ all_ret = {k : torch.cat(all_ret[k], 0) for k in all_ret}
+ return all_ret
+
+
+def render(H, W, focal, chunk=1024*32, rays=None, c2w=None, ndc=True,
+ near=0., far=1.,
+ use_viewdirs=False, c2w_staticcam=None,
+ **kwargs):
+
+ if c2w is not None:
+ # special case to render full image
+ rays_o, rays_d = get_rays(H, W, focal, c2w)
+ else:
+ # use provided ray batch
+ rays_o, rays_d = rays
+
+ if use_viewdirs:
+ # provide ray directions as input
+ viewdirs = rays_d
+ if c2w_staticcam is not None:
+ # special case to visualize effect of viewdirs
+ rays_o, rays_d = get_rays(H, W, focal, c2w_staticcam)
+ viewdirs = viewdirs / torch.norm(viewdirs, dim=-1, keepdim=True)
+ viewdirs = torch.reshape(viewdirs, [-1,3]).float()
+
+ sh = rays_d.shape # [..., 3]
+ if ndc:
+ # for forward facing scenes
+ rays_o, rays_d = ndc_rays(H, W, focal, 1., rays_o, rays_d)
+
+ # Create ray batch
+ rays_o = torch.reshape(rays_o, [-1,3]).float()
+ rays_d = torch.reshape(rays_d, [-1,3]).float()
+
+ near, far = near * torch.ones_like(rays_d[...,:1]), far * torch.ones_like(rays_d[...,:1])
+ rays = torch.cat([rays_o, rays_d, near, far], -1)
+ if use_viewdirs:
+ rays = torch.cat([rays, viewdirs], -1)
+
+ # Render and reshape
+ all_ret = batchify_rays(rays, chunk, **kwargs)
+ for k in all_ret:
+ k_sh = list(sh[:-1]) + list(all_ret[k].shape[1:])
+ all_ret[k] = torch.reshape(all_ret[k], k_sh)
+
+ k_extract = ['rgb_map', 'disp_map', 'acc_map']
+ ret_list = [all_ret[k] for k in k_extract]
+ ret_dict = {k : all_ret[k] for k in all_ret if k not in k_extract}
+ return ret_list + [ret_dict]
+
+
+def render_path(render_poses, hwf, chunk, render_kwargs, gt_imgs=None, savedir=None, render_factor=0):
+
+ H, W, focal = hwf
+
+ if render_factor!=0:
+ # Render downsampled for speed
+ H = H//render_factor
+ W = W//render_factor
+ focal = focal/render_factor
+
+ rgbs = []
+ disps = []
+
+ t = time.time()
+ for i, c2w in enumerate(tqdm(render_poses)):
+ print(i, time.time() - t)
+ t = time.time()
+ rgb, disp, acc, _ = render(H, W, focal, chunk=chunk, c2w=c2w[:3,:4], **render_kwargs)
+ rgbs.append(rgb.cpu().numpy())
+ disps.append(disp.cpu().numpy())
+ if i==0:
+ print(rgb.shape, disp.shape)
+
+ """
+ if gt_imgs is not None and render_factor==0:
+ p = -10. * np.log10(np.mean(np.square(rgb.cpu().numpy() - gt_imgs[i])))
+ print(p)
+ """
+
+ if savedir is not None:
+ rgb8 = to8b(rgbs[-1])
+ filename = os.path.join(savedir, '{:03d}.png'.format(i))
+ imageio.imwrite(filename, rgb8)
+
+
+ rgbs = np.stack(rgbs, 0)
+ disps = np.stack(disps, 0)
+
+ return rgbs, disps
+
+
+def create_nerf(args):
+ embed_fn, input_ch = get_embedder(args.multires, args.i_embed)
+
+ input_ch_views = 0
+ embeddirs_fn = None
+ if args.use_viewdirs:
+ embeddirs_fn, input_ch_views = get_embedder(args.multires_views, args.i_embed)
+ output_ch = 5 if args.N_importance > 0 else 4
+ skips = [4]
+ model = NeRF(D=args.netdepth, W=args.netwidth,
+ input_ch=input_ch, output_ch=output_ch, skips=skips,
+ input_ch_views=input_ch_views, use_viewdirs=args.use_viewdirs).to(device)
+ grad_vars = list(model.parameters())
+
+ model_fine = None
+ if args.N_importance > 0:
+ model_fine = NeRF(D=args.netdepth_fine, W=args.netwidth_fine,
+ input_ch=input_ch, output_ch=output_ch, skips=skips,
+ input_ch_views=input_ch_views, use_viewdirs=args.use_viewdirs).to(device)
+ grad_vars += list(model_fine.parameters())
+
+ network_query_fn = lambda inputs, viewdirs, network_fn : run_network(inputs, viewdirs, network_fn,
+ embed_fn=embed_fn,
+ embeddirs_fn=embeddirs_fn,
+ netchunk=args.netchunk)
+
+ # Create optimizer
+ optimizer = torch.optim.Adam(params=grad_vars, lr=args.lrate, betas=(0.9, 0.999))
+
+ start = 0
+ basedir = args.basedir
+ expname = args.expname
+
+ ##########################
+
+ # Load checkpoints
+ if args.ft_path is not None and args.ft_path!='None':
+ ckpts = [args.ft_path]
+ else:
+ ckpts = [os.path.join(basedir, expname, f) for f in sorted(os.listdir(os.path.join(basedir, expname))) if 'tar' in f]
+
+ print('Found ckpts', ckpts)
+ if len(ckpts) > 0 and not args.no_reload:
+ ckpt_path = ckpts[-1]
+ print('Reloading from', ckpt_path)
+ ckpt = torch.load(ckpt_path)
+
+ start = ckpt['global_step'] + 1
+ optimizer.load_state_dict(ckpt['optimizer_state_dict'])
+
+ # Load model
+ model.load_state_dict(ckpt['network_fn_state_dict'])
+ if model_fine is not None:
+ model_fine.load_state_dict(ckpt['network_fine_state_dict'])
+
+ ##########################
+
+ render_kwargs_train = {
+ 'network_query_fn' : network_query_fn,
+ 'perturb' : args.perturb,
+ 'N_importance' : args.N_importance,
+ 'network_fine' : model_fine,
+ 'N_samples' : args.N_samples,
+ 'network_fn' : model,
+ 'use_viewdirs' : args.use_viewdirs,
+ 'white_bkgd' : args.white_bkgd,
+ 'raw_noise_std' : args.raw_noise_std,
+ }
+
+ # NDC only good for LLFF-style forward facing data
+ if args.dataset_type != 'llff' or args.no_ndc:
+ print('Not ndc!')
+ render_kwargs_train['ndc'] = False
+ render_kwargs_train['lindisp'] = args.lindisp
+
+ render_kwargs_test = {k : render_kwargs_train[k] for k in render_kwargs_train}
+ render_kwargs_test['perturb'] = False
+ render_kwargs_test['raw_noise_std'] = 0.
+
+ return render_kwargs_train, render_kwargs_test, start, grad_vars, optimizer
+
+
+def raw2outputs(raw, z_vals, rays_d, raw_noise_std=0, white_bkgd=False, pytest=False):
+ """ A helper function for `render_rays`.
+ """
+ raw2alpha = lambda raw, dists, act_fn=F.relu: 1.-torch.exp(-act_fn(raw)*dists)
+
+ dists = z_vals[...,1:] - z_vals[...,:-1]
+ dists = torch.cat([dists, torch.Tensor([1e10]).expand(dists[...,:1].shape)], -1) # [N_rays, N_samples]
+
+ dists = dists * torch.norm(rays_d[...,None,:], dim=-1)
+
+ rgb = torch.sigmoid(raw[...,:3]) # [N_rays, N_samples, 3]
+ noise = 0.
+ if raw_noise_std > 0.:
+ noise = torch.randn(raw[...,3].shape) * raw_noise_std
+
+ # Overwrite randomly sampled data if pytest
+ if pytest:
+ np.random.seed(0)
+ noise = np.random.rand(*list(raw[...,3].shape)) * raw_noise_std
+ noise = torch.Tensor(noise)
+
+ alpha = raw2alpha(raw[...,3] + noise, dists) # [N_rays, N_samples]
+ # weights = alpha * tf.math.cumprod(1.-alpha + 1e-10, -1, exclusive=True)
+ weights = alpha * torch.cumprod(torch.cat([torch.ones((alpha.shape[0], 1)), 1.-alpha + 1e-10], -1), -1)[:, :-1]
+ rgb_map = torch.sum(weights[...,None] * rgb, -2) # [N_rays, 3]
+
+ depth_map = torch.sum(weights * z_vals, -1)
+ disp_map = 1./torch.max(1e-10 * torch.ones_like(depth_map), depth_map / torch.sum(weights, -1))
+ acc_map = torch.sum(weights, -1)
+
+ if white_bkgd:
+ rgb_map = rgb_map + (1.-acc_map[...,None])
+
+ return rgb_map, disp_map, acc_map, weights, depth_map
+
+
+def render_rays(ray_batch,
+ network_fn,
+ network_query_fn,
+ N_samples,
+ retraw=False,
+ lindisp=False,
+ perturb=0.,
+ N_importance=0,
+ network_fine=None,
+ white_bkgd=False,
+ raw_noise_std=0.,
+ verbose=False,
+ pytest=False):
+ N_rays = ray_batch.shape[0]
+ rays_o, rays_d = ray_batch[:,0:3], ray_batch[:,3:6] # [N_rays, 3] each
+ viewdirs = ray_batch[:,-3:] if ray_batch.shape[-1] > 8 else None
+ bounds = torch.reshape(ray_batch[...,6:8], [-1,1,2])
+ near, far = bounds[...,0], bounds[...,1] # [-1,1]
+
+ t_vals = torch.linspace(0., 1., steps=N_samples)
+ if not lindisp:
+ z_vals = near * (1.-t_vals) + far * (t_vals)
+ else:
+ z_vals = 1./(1./near * (1.-t_vals) + 1./far * (t_vals))
+
+ z_vals = z_vals.expand([N_rays, N_samples])
+
+ if perturb > 0.:
+ # get intervals between samples
+ mids = .5 * (z_vals[...,1:] + z_vals[...,:-1])
+ upper = torch.cat([mids, z_vals[...,-1:]], -1)
+ lower = torch.cat([z_vals[...,:1], mids], -1)
+ # stratified samples in those intervals
+ t_rand = torch.rand(z_vals.shape)
+
+ # Pytest, overwrite u with numpy's fixed random numbers
+ if pytest:
+ np.random.seed(0)
+ t_rand = np.random.rand(*list(z_vals.shape))
+ t_rand = torch.Tensor(t_rand)
+
+ z_vals = lower + (upper - lower) * t_rand
+
+ pts = rays_o[...,None,:] + rays_d[...,None,:] * z_vals[...,:,None] # [N_rays, N_samples, 3]
+
+
+# raw = run_network(pts)
+ raw = network_query_fn(pts, viewdirs, network_fn)
+ rgb_map, disp_map, acc_map, weights, depth_map = raw2outputs(raw, z_vals, rays_d, raw_noise_std, white_bkgd, pytest=pytest)
+
+ if N_importance > 0:
+
+ rgb_map_0, disp_map_0, acc_map_0 = rgb_map, disp_map, acc_map
+
+ z_vals_mid = .5 * (z_vals[...,1:] + z_vals[...,:-1])
+ z_samples = sample_pdf(z_vals_mid, weights[...,1:-1], N_importance, det=(perturb==0.), pytest=pytest)
+ z_samples = z_samples.detach()
+
+ z_vals, _ = torch.sort(torch.cat([z_vals, z_samples], -1), -1)
+ pts = rays_o[...,None,:] + rays_d[...,None,:] * z_vals[...,:,None] # [N_rays, N_samples + N_importance, 3]
+
+ run_fn = network_fn if network_fine is None else network_fine
+# raw = run_network(pts, fn=run_fn)
+ raw = network_query_fn(pts, viewdirs, run_fn)
+
+ rgb_map, disp_map, acc_map, weights, depth_map = raw2outputs(raw, z_vals, rays_d, raw_noise_std, white_bkgd, pytest=pytest)
+
+ ret = {'rgb_map' : rgb_map, 'disp_map' : disp_map, 'acc_map' : acc_map}
+ if retraw:
+ ret['raw'] = raw
+ if N_importance > 0:
+ ret['rgb0'] = rgb_map_0
+ ret['disp0'] = disp_map_0
+ ret['acc0'] = acc_map_0
+ ret['z_std'] = torch.std(z_samples, dim=-1, unbiased=False) # [N_rays]
+
+ for k in ret:
+ if (torch.isnan(ret[k]).any() or torch.isinf(ret[k]).any()) and DEBUG:
+ print(f"! [Numerical Error] {k} contains nan or inf.")
+
+ return ret
+
+
+def config_parser():
+
+ import configargparse
+ parser = configargparse.ArgumentParser()
+ parser.add_argument('--config', is_config_file=True, help='config file path')
+ parser.add_argument("--expname", type=str, help='experiment name')
+ parser.add_argument("--basedir", type=str, default='./logs/', help='where to store ckpts and logs')
+ parser.add_argument("--datadir", type=str, default='./data/llff/fern', help='input data directory')
+
+ # training options
+ parser.add_argument("--netdepth", type=int, default=8, help='layers in network')
+ parser.add_argument("--netwidth", type=int, default=256, help='channels per layer')
+ parser.add_argument("--netdepth_fine", type=int, default=8, help='layers in fine network')
+ parser.add_argument("--netwidth_fine", type=int, default=256, help='channels per layer in fine network')
+ parser.add_argument("--N_samples", type=int, default=32*32*4, help='batch size (number of random rays per gradient step)')
+ parser.add_argument("--lrate", type=float, default=5e-4, help='learning rate')
+ parser.add_argument("--lrate_decay", type=int, default=250, help='exponential learning rate decay (in 1000 steps)')
+ parser.add_argument("--chunk", type=int, default=1024*32, help='number of rays processed in parallel, decrease if running out of memory')
+ parser.add_argument("--netchunk", type=int, default=1024*64, help='number of pts sent through network in parallel, decrease if running out of memory')
+ parser.add_argument("--no_batching", action='store_true', help='only take random rays from 1 image at a time')
+ parser.add_argument("--no_reload", action='store_true', help='do not reload weights from saved ckpt')
+ parser.add_argument("--ft_path", type=str, default=None, help='specific weights npy file to reload for coarse network')
+
+ # rendering options
+ parser.add_argument("--N_samples", type=int, default=64, help='number of coarse samples per ray')
+ parser.add_argument("--N_importance", type=int, default=0, help='number of additional fine samples per ray')
+ parser.add_argument("--perturb", type=float, default=1., help='set to 0. for no jitter, 1. for jitter')
+ parser.add_argument("--use_viewdirs", action='store_true', help='use full 5D input instead of 3D')
+ parser.add_argument("--i_embed", type=int, default=0, help='set 0 for default positional encoding, -1 for none')
+ parser.add_argument("--multires", type=int, default=10, help='log2 of max freq for positional encoding (3D location)')
+ parser.add_argument("--multires_views", type=int, default=4, help='log2 of max freq for positional encoding (2D direction)')
+ parser.add_argument("--raw_noise_std", type=float, default=0., help='std dev of noise added to regularize sigma_a output, 1e0 recommended')
+
+ parser.add_argument("--render_only", action='store_true', help='do not optimize, reload weights and render out render_poses path')
+ parser.add_argument("--render_test", action='store_true', help='render the test set instead of render_poses path')
+ parser.add_argument("--render_factor", type=int, default=0, help='downsampling factor to speed up rendering, set 4 or 8 for fast preview')
+
+ # dataset options
+ parser.add_argument("--dataset_type", type=str, default='llff', help='options: llff / blender / deepvoxels')
+ parser.add_argument("--testskip", type=int, default=8, help='will load 1/N images from test/val sets, useful for large datasets like deepvoxels')
+
+ ## deepvoxels flags
+ parser.add_argument("--shape", type=str, default='greek', help='options : armchair / cube / greek / vase')
+
+ ## blender flags
+ parser.add_argument("--white_bkgd", action='store_true', help='set to render synthetic data on a white bkgd (always use for dvoxels)')
+ parser.add_argument("--half_res", action='store_true', help='load blender synthetic data at 400x400 instead of 800x800')
+
+ ## llff flags
+ parser.add_argument("--factor", type=int, default=8, help='downsample factor for LLFF images')
+ parser.add_argument("--no_ndc", action='store_true', help='do not use normalized device coordinates (set for non-forward facing scenes)')
+ parser.add_argument("--lindisp", action='store_true', help='sampling linearly in disparity rather than depth')
+ parser.add_argument("--spherify", action='store_true', help='set for spherical 360 scenes')
+ parser.add_argument("--llffhold", type=int, default=8, help='will take every 1/N images as LLFF test set, paper uses 8')
+
+ # logging/saving options
+ parser.add_argument("--i_print", type=int, default=100, help='frequency of console printout and metric loggin')
+ parser.add_argument("--i_img", type=int, default=500, help='frequency of tensorboard image logging')
+ parser.add_argument("--i_weights", type=int, default=10000, help='frequency of weight ckpt saving')
+ parser.add_argument("--i_testset", type=int, default=50000, help='frequency of testset saving')
+ parser.add_argument("--i_video", type=int, default=50000, help='frequency of render_poses video saving')
+
+ return parser
+
+
+
+def train():
+
+ parser = config_parser()
+ args = parser.parse_args()
+
+
+ # Load data
+
+ if args.dataset_type == 'llff':
+ images, poses, bds, render_poses, i_test = load_llff_data(args.datadir, args.factor,
+ recenter=True, bd_factor=.75,
+ spherify=args.spherify)
+ hwf = poses[0,:3,-1]
+ poses = poses[:,:3,:4]
+ print('Loaded llff', images.shape, render_poses.shape, hwf, args.datadir)
+ if not isinstance(i_test, list):
+ i_test = [i_test]
+
+ if args.llffhold > 0:
+ print('Auto LLFF holdout,', args.llffhold)
+ i_test = np.arange(images.shape[0])[::args.llffhold]
+
+ i_val = i_test
+ i_train = np.array([i for i in np.arange(int(images.shape[0])) if
+ (i not in i_test and i not in i_val)])
+
+ print('DEFINING BOUNDS')
+ if args.no_ndc:
+ near = torch.min(bds) * .9
+ far = torch.max(bds) * 1.
+ else:
+ near = 0.
+ far = 1.
+ print('NEAR FAR', near, far)
+
+
+ elif args.dataset_type == 'blender':
+ images, poses, render_poses, hwf, i_split = load_blender_data(args.datadir, args.half_res, args.testskip)
+ print('Loaded blender', images.shape, render_poses.shape, hwf, args.datadir)
+ i_train, i_val, i_test = i_split
+
+ near = 2.
+ far = 6.
+
+ if args.white_bkgd:
+ images = images[...,:3]*images[...,-1:] + (1.-images[...,-1:])
+ else:
+ images = images[...,:3]
+
+
+ elif args.dataset_type == 'deepvoxels':
+
+ images, poses, render_poses, hwf, i_split = load_dv_data(scene=args.shape,
+ basedir=args.datadir,
+ testskip=args.testskip)
+
+ print('Loaded deepvoxels', images.shape, render_poses.shape, hwf, args.datadir)
+ i_train, i_val, i_test = i_split
+
+ hemi_R = np.mean(np.linalg.norm(poses[:,:3,-1], axis=-1))
+ near = hemi_R-1.
+ far = hemi_R+1.
+
+
+ else:
+ print('Unknown dataset type', args.dataset_type, 'exiting')
+ return
+
+ # Cast intrinsics to right types
+ H, W, focal = hwf
+ H, W = int(H), int(W)
+ hwf = [H, W, focal]
+
+ if args.render_test:
+ render_poses = np.array(poses[i_test])
+
+
+ # Create log dir and copy the config file
+ basedir = args.basedir
+ expname = args.expname
+ os.makedirs(os.path.join(basedir, expname), exist_ok=True)
+ f = os.path.join(basedir, expname, 'args.txt')
+ with open(f, 'w') as file:
+ for arg in sorted(vars(args)):
+ attr = getattr(args, arg)
+ file.write('{} = {}\n'.format(arg, attr))
+ if args.config is not None:
+ f = os.path.join(basedir, expname, 'config.txt')
+ with open(f, 'w') as file:
+ file.write(open(args.config, 'r').read())
+
+
+ # Create nerf model
+ render_kwargs_train, render_kwargs_test, start, grad_vars, optimizer = create_nerf(args)
+ global_step = start
+
+ bds_dict = {
+ 'near' : near,
+ 'far' : far,
+ }
+ render_kwargs_train.update(bds_dict)
+ render_kwargs_test.update(bds_dict)
+
+ # Move testing data to GPU
+ render_poses = torch.Tensor(render_poses).to(device)
+
+ # Short circuit if only rendering out from trained model
+ if args.render_only:
+ print('RENDER ONLY')
+ with torch.no_grad():
+ if args.render_test:
+ # render_test switches to test poses
+ images = images[i_test]
+ else:
+ # Default is smoother render_poses path
+ images = None
+
+ testsavedir = os.path.join(basedir, expname, 'renderonly_{}_{:06d}'.format('test' if args.render_test else 'path', start))
+ os.makedirs(testsavedir, exist_ok=True)
+ print('test poses shape', render_poses.shape)
+
+ rgbs, _ = render_path(render_poses, hwf, args.chunk, render_kwargs_test, gt_imgs=images, savedir=testsavedir, render_factor=args.render_factor)
+ print('Done rendering', testsavedir)
+ imageio.mimwrite(os.path.join(testsavedir, 'video.mp4'), to8b(rgbs), fps=30, quality=8)
+
+ return
+
+ # Prepare raybatch tensor if batching random rays
+ N_rand = args.N_samples
+ use_batching = not args.no_batching
+ if use_batching:
+ # For random ray batching
+ print('get rays')
+ rays = np.stack([get_rays_np(H, W, focal, p) for p in poses[:,:3,:4]], 0) # [N, ro+rd, H, W, 3]
+ print('done, concats')
+ rays_rgb = np.concatenate([rays, images[:,None]], 1) # [N, ro+rd+rgb, H, W, 3]
+ rays_rgb = np.transpose(rays_rgb, [0,2,3,1,4]) # [N, H, W, ro+rd+rgb, 3]
+ rays_rgb = np.stack([rays_rgb[i] for i in i_train], 0) # train images only
+ rays_rgb = np.reshape(rays_rgb, [-1,3,3]) # [(N-1)*H*W, ro+rd+rgb, 3]
+ rays_rgb = rays_rgb.astype(np.float32)
+ print('shuffle rays')
+ np.random.shuffle(rays_rgb)
+
+ print('done')
+ i_batch = 0
+
+ # Move training data to GPU
+ images = torch.Tensor(images).to(device)
+ poses = torch.Tensor(poses).to(device)
+ if use_batching:
+ rays_rgb = torch.Tensor(rays_rgb).to(device)
+
+
+ N_iters = 1000000
+ print('Begin')
+ print('TRAIN views are', i_train)
+ print('TEST views are', i_test)
+ print('VAL views are', i_val)
+
+ # Summary writers
+ # writer = SummaryWriter(os.path.join(basedir, 'summaries', expname))
+
+ for i in range(start, N_iters):
+ time0 = time.time()
+
+ # Sample random ray batch
+ if use_batching:
+ # Random over all images
+ batch = rays_rgb[i_batch:i_batch+N_rand] # [B, 2+1, 3*?]
+ batch = torch.transpose(batch, 0, 1)
+ batch_rays, target_s = batch[:2], batch[2]
+
+ i_batch += N_rand
+ if i_batch >= rays_rgb.shape[0]:
+ print("Shuffle data after an epoch!")
+ rand_idx = torch.randperm(rays_rgb.shape[0])
+ rays_rgb = rays_rgb[rand_idx]
+ i_batch = 0
+
+ else:
+ # Random from one image
+ img_i = np.random.choice(i_train)
+ target = images[img_i]
+ pose = poses[img_i, :3,:4]
+
+ if N_rand is not None:
+ rays_o, rays_d = get_rays(H, W, focal, torch.Tensor(pose)) # (H, W, 3), (H, W, 3)
+ coords = torch.stack(torch.meshgrid(torch.linspace(0, H-1, H), torch.linspace(0, W-1, W)), -1) # (H, W, 2)
+ coords = torch.reshape(coords, [-1,2]) # (H * W, 2)
+ select_inds = np.random.choice(coords.shape[0], size=[N_rand], replace=False) # (N_samples,)
+ select_coords = coords[select_inds].long() # (N_samples, 2)
+ rays_o = rays_o[select_coords[:, 0], select_coords[:, 1]] # (N_samples, 3)
+ rays_d = rays_d[select_coords[:, 0], select_coords[:, 1]] # (N_samples, 3)
+ batch_rays = torch.stack([rays_o, rays_d], 0)
+ target_s = target[select_coords[:, 0], select_coords[:, 1]] # (N_samples, 3)
+
+ ##### Core optimization loop #####
+ rgb, disp, acc, extras = render(H, W, focal, chunk=args.chunk, rays=batch_rays,
+ verbose=i < 10, retraw=True,
+ **render_kwargs_train)
+
+ optimizer.zero_grad()
+ img_loss = img2mse(rgb, target_s)
+ trans = extras['raw'][...,-1]
+ loss = img_loss
+ psnr = mse2psnr(img_loss)
+
+ if 'rgb0' in extras:
+ img_loss0 = img2mse(extras['rgb0'], target_s)
+ loss = loss + img_loss0
+ psnr0 = mse2psnr(img_loss0)
+
+ loss.backward()
+
+ # NOTE: same as tf till here - 04/03/2020
+
+ optimizer.step()
+
+ # NOTE: IMPORTANT!
+ ### update learning rate ###
+ decay_rate = 0.1
+ decay_steps = args.lrate_decay * 1000
+ new_lrate = args.lrate * (decay_rate ** (global_step / decay_steps))
+ for param_group in optimizer.param_groups:
+ param_group['lr'] = new_lrate
+ ################################
+
+ dt = time.time()-time0
+ print(f"Step: {global_step}, Loss: {loss}, Time: {dt}")
+ ##### end #####
+
+ # Rest is logging
+ if i%args.i_weights==0:
+ path = os.path.join(basedir, expname, '{:06d}.tar'.format(i))
+ torch.save({
+ 'global_step': global_step,
+ 'network_fn_state_dict': render_kwargs_train['network_fn'].state_dict(),
+ 'network_fine_state_dict': render_kwargs_train['network_fine'].state_dict(),
+ 'optimizer_state_dict': optimizer.state_dict(),
+ }, path)
+ print('Saved checkpoints at', path)
+
+ if i%args.i_video==0 and i > 0:
+ # Turn on testing mode
+ with torch.no_grad():
+ rgbs, disps = render_path(render_poses, hwf, args.chunk, render_kwargs_test)
+ print('Done, saving', rgbs.shape, disps.shape)
+ moviebase = os.path.join(basedir, expname, '{}_spiral_{:06d}_'.format(expname, i))
+ imageio.mimwrite(moviebase + 'rgb.mp4', to8b(rgbs), fps=30, quality=8)
+ imageio.mimwrite(moviebase + 'disp.mp4', to8b(disps / np.max(disps)), fps=30, quality=8)
+
+ # if args.use_viewdirs:
+ # render_kwargs_test['c2w_staticcam'] = render_poses[0][:3,:4]
+ # with torch.no_grad():
+ # rgbs_still, _ = render_path(render_poses, hwf, args.chunk, render_kwargs_test)
+ # render_kwargs_test['c2w_staticcam'] = None
+ # imageio.mimwrite(moviebase + 'rgb_still.mp4', to8b(rgbs_still), fps=30, quality=8)
+
+ if i%args.i_testset==0 and i > 0:
+ testsavedir = os.path.join(basedir, expname, 'testset_{:06d}'.format(i))
+ os.makedirs(testsavedir, exist_ok=True)
+ print('test poses shape', poses[i_test].shape)
+ with torch.no_grad():
+ render_path(torch.Tensor(poses[i_test]).to(device), hwf, args.chunk, render_kwargs_test, gt_imgs=images[i_test], savedir=testsavedir)
+ print('Saved test set')
+
+
+ """
+ if i%args.i_print==0 or i < 10:
+
+ print(expname, i, psnr.numpy(), loss.numpy(), global_step.numpy())
+ print('iter time {:.05f}'.format(dt))
+ with tf.contrib.summary.record_summaries_every_n_global_steps(args.i_print):
+ tf.contrib.summary.scalar('loss', loss)
+ tf.contrib.summary.scalar('psnr', psnr)
+ tf.contrib.summary.histogram('tran', trans)
+ if args.N_importance > 0:
+ tf.contrib.summary.scalar('psnr0', psnr0)
+
+
+ if i%args.i_img==0:
+
+ # Log a rendered validation view to Tensorboard
+ img_i=np.random.choice(i_val)
+ target = images[img_i]
+ pose = poses[img_i, :3,:4]
+ with torch.no_grad():
+ rgb, disp, acc, extras = render(H, W, focal, chunk=args.chunk, c2w=pose,
+ **render_kwargs_test)
+
+ psnr = mse2psnr(img2mse(rgb, target))
+
+ with tf.contrib.summary.record_summaries_every_n_global_steps(args.i_img):
+
+ tf.contrib.summary.image('rgb', to8b(rgb)[tf.newaxis])
+ tf.contrib.summary.image('disp', disp[tf.newaxis,...,tf.newaxis])
+ tf.contrib.summary.image('acc', acc[tf.newaxis,...,tf.newaxis])
+
+ tf.contrib.summary.scalar('psnr_holdout', psnr)
+ tf.contrib.summary.image('rgb_holdout', target[tf.newaxis])
+
+
+ if args.N_importance > 0:
+
+ with tf.contrib.summary.record_summaries_every_n_global_steps(args.i_img):
+ tf.contrib.summary.image('rgb0', to8b(extras['rgb0'])[tf.newaxis])
+ tf.contrib.summary.image('disp0', extras['disp0'][tf.newaxis,...,tf.newaxis])
+ tf.contrib.summary.image('z_std', extras['z_std'][tf.newaxis,...,tf.newaxis])
+ """
+
+ global_step += 1
+
+
+if __name__=='__main__':
+ torch.set_default_tensor_type('torch.cuda.FloatTensor')
+
+ train()
diff --git a/submodules/nerf_pytorch/run_nerf_helpers.py b/submodules/nerf_pytorch/run_nerf_helpers.py
new file mode 100644
index 0000000..3c68271
--- /dev/null
+++ b/submodules/nerf_pytorch/run_nerf_helpers.py
@@ -0,0 +1,242 @@
+import torch
+torch.autograd.set_detect_anomaly(True)
+import torch.nn as nn
+import torch.nn.functional as F
+import numpy as np
+
+# TODO: remove this dependency
+from torchsearchsorted import searchsorted
+
+
+# Misc
+img2mse = lambda x, y : torch.mean((x - y) ** 2)
+mse2psnr = lambda x : -10. * torch.log(x) / torch.log(torch.Tensor([10.]))
+to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)
+
+
+# Positional encoding (section 5.1)
+class Embedder:
+ def __init__(self, **kwargs):
+ self.kwargs = kwargs
+ self.create_embedding_fn()
+
+ def create_embedding_fn(self):
+ embed_fns = []
+ d = self.kwargs['input_dims']
+ out_dim = 0
+ if self.kwargs['include_input']:
+ embed_fns.append(lambda x : x)
+ out_dim += d
+
+ max_freq = self.kwargs['max_freq_log2']
+ N_freqs = self.kwargs['num_freqs']
+
+ if self.kwargs['log_sampling']:
+ freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs)
+ else:
+ freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)
+
+ for freq in freq_bands:
+ for p_fn in self.kwargs['periodic_fns']:
+ embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x * freq))
+ out_dim += d
+
+ self.embed_fns = embed_fns
+ self.out_dim = out_dim
+
+ def embed(self, inputs):
+ return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
+
+
+def get_embedder(multires, i=0):
+ if i == -1:
+ return nn.Identity(), 3
+
+ embed_kwargs = {
+ 'include_input' : True,
+ 'input_dims' : 3,
+ 'max_freq_log2' : multires-1,
+ 'num_freqs' : multires,
+ 'log_sampling' : True,
+ 'periodic_fns' : [torch.sin, torch.cos],
+ }
+
+ embedder_obj = Embedder(**embed_kwargs)
+ embed = lambda x, eo=embedder_obj : eo.embed(x)
+ return embed, embedder_obj.out_dim
+
+
+# Model
+class NeRF(nn.Module):
+ def __init__(self, D=8, W=256, input_ch=3, input_ch_views=3, output_ch=4, skips=[4], use_viewdirs=False):
+ """
+ """
+ super(NeRF, self).__init__()
+ self.D = D
+ self.W = W
+ self.input_ch = input_ch
+ self.input_ch_views = input_ch_views
+ self.skips = skips
+ self.use_viewdirs = use_viewdirs
+
+ self.pts_linears = nn.ModuleList(
+ [nn.Linear(input_ch, W)] + [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + input_ch, W) for i in range(D-1)])
+
+ ### Implementation according to the official code release (https://github.com/bmild/nerf/blob/master/run_nerf_helpers.py#L104-L105)
+ self.views_linears = nn.ModuleList([nn.Linear(input_ch_views + W, W//2)])
+
+ ### Implementation according to the paper
+ # self.views_linears = nn.ModuleList(
+ # [nn.Linear(input_ch_views + W, W//2)] + [nn.Linear(W//2, W//2) for i in range(D//2)])
+
+ if use_viewdirs:
+ self.feature_linear = nn.Linear(W, W)
+ self.alpha_linear = nn.Linear(W, 1)
+ self.rgb_linear = nn.Linear(W//2, 3)
+ else:
+ self.output_linear = nn.Linear(W, output_ch)
+
+ def forward(self, x):
+ input_pts, input_views = torch.split(x, [self.input_ch, self.input_ch_views], dim=-1)
+ h = input_pts
+ for i, l in enumerate(self.pts_linears):
+ h = self.pts_linears[i](h)
+ h = F.relu(h)
+ if i in self.skips:
+ h = torch.cat([input_pts, h], -1)
+
+ if self.use_viewdirs:
+ alpha = self.alpha_linear(h)
+ feature = self.feature_linear(h)
+ h = torch.cat([feature, input_views], -1)
+
+ for i, l in enumerate(self.views_linears):
+ h = self.views_linears[i](h)
+ h = F.relu(h)
+
+ rgb = self.rgb_linear(h)
+ outputs = torch.cat([rgb, alpha], -1)
+ else:
+ outputs = self.output_linear(h)
+
+ return outputs
+
+ def load_weights_from_keras(self, weights):
+ assert self.use_viewdirs, "Not implemented if use_viewdirs=False"
+
+ # Load pts_linears
+ for i in range(self.D):
+ idx_pts_linears = 2 * i
+ self.pts_linears[i].weight.data = torch.from_numpy(np.transpose(weights[idx_pts_linears]))
+ self.pts_linears[i].bias.data = torch.from_numpy(np.transpose(weights[idx_pts_linears+1]))
+
+ # Load feature_linear
+ idx_feature_linear = 2 * self.D
+ self.feature_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_feature_linear]))
+ self.feature_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_feature_linear+1]))
+
+ # Load views_linears
+ idx_views_linears = 2 * self.D + 2
+ self.views_linears[0].weight.data = torch.from_numpy(np.transpose(weights[idx_views_linears]))
+ self.views_linears[0].bias.data = torch.from_numpy(np.transpose(weights[idx_views_linears+1]))
+
+ # Load rgb_linear
+ idx_rbg_linear = 2 * self.D + 4
+ self.rgb_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear]))
+ self.rgb_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear+1]))
+
+ # Load alpha_linear
+ idx_alpha_linear = 2 * self.D + 6
+ self.alpha_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear]))
+ self.alpha_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear+1]))
+
+
+
+# Ray helpers
+def get_rays(H, W, focal, c2w):
+ i, j = torch.meshgrid(torch.linspace(0, W-1, W), torch.linspace(0, H-1, H)) # pytorch's meshgrid has indexing='ij'
+ i = i.t()
+ j = j.t()
+ dirs = torch.stack([(i-W*.5)/focal, -(j-H*.5)/focal, -torch.ones_like(i)], -1)
+ # Rotate ray directions from camera frame to the world frame
+ rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
+ # Translate camera frame's origin to the world frame. It is the origin of all rays.
+ rays_o = c2w[:3,-1].expand(rays_d.shape)
+ return rays_o, rays_d
+
+
+def get_rays_np(H, W, focal, c2w):
+ i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')
+ dirs = np.stack([(i-W*.5)/focal, -(j-H*.5)/focal, -np.ones_like(i)], -1)
+ # Rotate ray directions from camera frame to the world frame
+ rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
+ # Translate camera frame's origin to the world frame. It is the origin of all rays.
+ rays_o = np.broadcast_to(c2w[:3,-1], np.shape(rays_d))
+ return rays_o, rays_d
+
+
+def ndc_rays(H, W, focal, near, rays_o, rays_d):
+ # Shift ray origins to near plane
+ t = -(near + rays_o[...,2]) / rays_d[...,2]
+ rays_o = rays_o + t[...,None] * rays_d
+
+ # Projection
+ o0 = -1./(W/(2.*focal)) * rays_o[...,0] / rays_o[...,2]
+ o1 = -1./(H/(2.*focal)) * rays_o[...,1] / rays_o[...,2]
+ o2 = 1. + 2. * near / rays_o[...,2]
+
+ d0 = -1./(W/(2.*focal)) * (rays_d[...,0]/rays_d[...,2] - rays_o[...,0]/rays_o[...,2])
+ d1 = -1./(H/(2.*focal)) * (rays_d[...,1]/rays_d[...,2] - rays_o[...,1]/rays_o[...,2])
+ d2 = -2. * near / rays_o[...,2]
+
+ rays_o = torch.stack([o0,o1,o2], -1)
+ rays_d = torch.stack([d0,d1,d2], -1)
+
+ return rays_o, rays_d
+
+
+# Hierarchical sampling (section 5.2)
+def sample_pdf(bins, weights, N_samples, det=False, pytest=False):
+ # Get pdf
+ weights = weights + 1e-5 # prevent nans
+ pdf = weights / torch.sum(weights, -1, keepdim=True)
+ cdf = torch.cumsum(pdf, -1)
+ cdf = torch.cat([torch.zeros_like(cdf[...,:1]), cdf], -1) # (batch, len(bins))
+
+ # Take uniform samples
+ if det:
+ u = torch.linspace(0., 1., steps=N_samples)
+ u = u.expand(list(cdf.shape[:-1]) + [N_samples])
+ else:
+ u = torch.rand(list(cdf.shape[:-1]) + [N_samples])
+
+ # Pytest, overwrite u with numpy's fixed random numbers
+ if pytest:
+ np.random.seed(0)
+ new_shape = list(cdf.shape[:-1]) + [N_samples]
+ if det:
+ u = np.linspace(0., 1., N_samples)
+ u = np.broadcast_to(u, new_shape)
+ else:
+ u = np.random.rand(*new_shape)
+ u = torch.Tensor(u)
+
+ # Invert CDF
+ u = u.contiguous()
+ inds = searchsorted(cdf, u, side='right')
+ below = torch.max(torch.zeros_like(inds-1), inds-1)
+ above = torch.min((cdf.shape[-1]-1) * torch.ones_like(inds), inds)
+ inds_g = torch.stack([below, above], -1) # (batch, N_samples, 2)
+
+ # cdf_g = tf.gather(cdf, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
+ # bins_g = tf.gather(bins, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
+ matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
+ cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
+ bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
+
+ denom = (cdf_g[...,1]-cdf_g[...,0])
+ denom = torch.where(denom<1e-5, torch.ones_like(denom), denom)
+ t = (u-cdf_g[...,0])/denom
+ samples = bins_g[...,0] + t * (bins_g[...,1]-bins_g[...,0])
+
+ return samples
diff --git a/submodules/nerf_pytorch/run_nerf_helpers_mod.py b/submodules/nerf_pytorch/run_nerf_helpers_mod.py
new file mode 100644
index 0000000..85ca3b4
--- /dev/null
+++ b/submodules/nerf_pytorch/run_nerf_helpers_mod.py
@@ -0,0 +1,267 @@
+import torch
+torch.autograd.set_detect_anomaly(True)
+import torch.nn as nn
+import torch.nn.functional as F
+import numpy as np
+
+# TODO: remove this dependency
+from torchsearchsorted import searchsorted
+
+
+# Misc
+img2mse = lambda x, y : torch.mean((x - y) ** 2)
+mse2psnr = lambda x : -10. * torch.log(x) / torch.log(torch.Tensor([10.]))
+to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)
+
+
+# Positional encoding (section 5.1)
+class Embedder:
+ def __init__(self, **kwargs):
+ self.kwargs = kwargs
+ self.create_embedding_fn()
+
+ def create_embedding_fn(self):
+ embed_fns = []
+ d = self.kwargs['input_dims']
+ out_dim = 0
+ if self.kwargs['include_input']:
+ embed_fns.append(lambda x : x)
+ out_dim += d
+
+ max_freq = self.kwargs['max_freq_log2']
+ N_freqs = self.kwargs['num_freqs']
+
+ if self.kwargs['log_sampling']:
+ freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs)
+ else:
+ freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)
+
+ for freq in freq_bands:
+ for p_fn in self.kwargs['periodic_fns']:
+ embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x * freq))
+ out_dim += d
+
+ self.embed_fns = embed_fns
+ self.out_dim = out_dim
+
+ def embed(self, inputs):
+ return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
+
+
+def get_embedder(multires, i=0):
+ if i == -1:
+ return nn.Identity(), 3
+
+ embed_kwargs = {
+ 'include_input' : True,
+ 'input_dims' : 3,
+ 'max_freq_log2' : multires-1,
+ 'num_freqs' : multires,
+ 'log_sampling' : True,
+ 'periodic_fns' : [torch.sin, torch.cos],
+ }
+
+ embedder_obj = Embedder(**embed_kwargs)
+ embed = lambda x, eo=embedder_obj : eo.embed(x)
+ return embed, embedder_obj.out_dim
+
+
+# Model
+class NeRF(nn.Module):
+ def __init__(self, D=8, W=256, input_ch=3, input_ch_views=3, output_ch=4, skips=[4], use_viewdirs=False):
+ """
+ """
+ super(NeRF, self).__init__()
+ self.D = D
+ self.W = W
+ self.input_ch = input_ch
+ self.input_ch_views = input_ch_views
+ self.skips = skips
+ self.use_viewdirs = use_viewdirs
+
+ self.pts_linears = nn.ModuleList(
+ [nn.Linear(input_ch, W)] + [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + input_ch, W) for i in range(D-1)])
+
+ ### Implementation according to the official code release (https://github.com/bmild/nerf/blob/master/run_nerf_helpers.py#L104-L105)
+ self.views_linears = nn.ModuleList([nn.Linear(input_ch_views + W, W//2)])
+
+ ### Implementation according to the paper
+ # self.views_linears = nn.ModuleList(
+ # [nn.Linear(input_ch_views + W, W//2)] + [nn.Linear(W//2, W//2) for i in range(D//2)])
+
+ if use_viewdirs:
+ self.feature_linear = nn.Linear(W, W)
+ self.alpha_linear = nn.Linear(W, 1)
+ self.rgb_linear = nn.Linear(W//2, 3)
+ else:
+ self.output_linear = nn.Linear(W, output_ch)
+
+ def forward(self, x):
+ input_pts, input_views = torch.split(x, [self.input_ch, self.input_ch_views], dim=-1)
+ h = input_pts
+ for i, l in enumerate(self.pts_linears):
+ h = self.pts_linears[i](h)
+ h = F.relu(h)
+ if i in self.skips:
+ h = torch.cat([input_pts, h], -1)
+
+ if self.use_viewdirs:
+ alpha = self.alpha_linear(h)
+ feature = self.feature_linear(h)
+ h = torch.cat([feature, input_views], -1)
+
+ for i, l in enumerate(self.views_linears):
+ h = self.views_linears[i](h)
+ h = F.relu(h)
+
+ rgb = self.rgb_linear(h)
+ outputs = torch.cat([rgb, alpha], -1)
+ else:
+ outputs = self.output_linear(h)
+
+ return outputs
+
+ def load_weights_from_keras(self, weights):
+ assert self.use_viewdirs, "Not implemented if use_viewdirs=False"
+
+ # Load pts_linears
+ for i in range(self.D):
+ idx_pts_linears = 2 * i
+ self.pts_linears[i].weight.data = torch.from_numpy(np.transpose(weights[idx_pts_linears]))
+ self.pts_linears[i].bias.data = torch.from_numpy(np.transpose(weights[idx_pts_linears+1]))
+
+ # Load feature_linear
+ idx_feature_linear = 2 * self.D
+ self.feature_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_feature_linear]))
+ self.feature_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_feature_linear+1]))
+
+ # Load views_linears
+ idx_views_linears = 2 * self.D + 2
+ self.views_linears[0].weight.data = torch.from_numpy(np.transpose(weights[idx_views_linears]))
+ self.views_linears[0].bias.data = torch.from_numpy(np.transpose(weights[idx_views_linears+1]))
+
+ # Load rgb_linear
+ idx_rbg_linear = 2 * self.D + 4
+ self.rgb_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear]))
+ self.rgb_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear+1]))
+
+ # Load alpha_linear
+ idx_alpha_linear = 2 * self.D + 6
+ self.alpha_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear]))
+ self.alpha_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear+1]))
+
+
+
+# Ray helpers
+def get_rays(H, W, focal, c2w):
+ i, j = torch.meshgrid(torch.linspace(0, W-1, W), torch.linspace(0, H-1, H)) # pytorch's meshgrid has indexing='ij'
+ i = i.t()
+ j = j.t()
+ dirs = torch.stack([(i-W*.5)/focal, -(j-H*.5)/focal, -torch.ones_like(i)], -1)
+ # Rotate ray directions from camera frame to the world frame
+ rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
+ # Translate camera frame's origin to the world frame. It is the origin of all rays.
+ rays_o = c2w[:3,-1].expand(rays_d.shape)
+ return rays_o, rays_d
+
+
+def get_rays_np(H, W, focal, c2w):
+ i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')
+ dirs = np.stack([(i-W*.5)/focal, -(j-H*.5)/focal, -np.ones_like(i)], -1)
+ # Rotate ray directions from camera frame to the world frame
+ rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
+ # Translate camera frame's origin to the world frame. It is the origin of all rays.
+ rays_o = np.broadcast_to(c2w[:3,-1], np.shape(rays_d))
+ return rays_o, rays_d
+
+
+def ndc_rays(H, W, focal, near, rays_o, rays_d):
+ # Shift ray origins to near plane
+ t = -(near + rays_o[...,2]) / rays_d[...,2]
+ rays_o = rays_o + t[...,None] * rays_d
+
+ # Projection
+ o0 = -1./(W/(2.*focal)) * rays_o[...,0] / rays_o[...,2]
+ o1 = -1./(H/(2.*focal)) * rays_o[...,1] / rays_o[...,2]
+ o2 = 1. + 2. * near / rays_o[...,2]
+
+ d0 = -1./(W/(2.*focal)) * (rays_d[...,0]/rays_d[...,2] - rays_o[...,0]/rays_o[...,2])
+ d1 = -1./(H/(2.*focal)) * (rays_d[...,1]/rays_d[...,2] - rays_o[...,1]/rays_o[...,2])
+ d2 = -2. * near / rays_o[...,2]
+
+ rays_o = torch.stack([o0,o1,o2], -1)
+ rays_d = torch.stack([d0,d1,d2], -1)
+
+ return rays_o, rays_d
+
+
+def get_rays_ortho(H, W, c2w, size_h, size_w):
+ """Similar structure to 'get_rays' in submodules/nerf_pytorch/run_nerf_helpers.py"""
+ # # Rotate ray directions from camera frame to the world frame
+ rays_d = -c2w[:3, 2].view(1, 1, 3).expand(W, H, -1) # direction to center in world coordinates
+
+ i, j = torch.meshgrid(torch.linspace(0, W - 1, W),
+ torch.linspace(0, H - 1, H)) # pytorch's meshgrid has indexing='ij'
+ i = i.t()
+ j = j.t()
+
+ # Translation from center for origins
+ rays_o = torch.stack([(i - W * .5), -(j - H * .5), torch.zeros_like(i)], -1)
+
+ # Normalize to [-size_h/2, -size_w/2]
+ rays_o = rays_o * torch.tensor([size_w / W, size_h / H, 1]).view(1, 1, 3)
+
+ # Rotate origins to the world frame
+ rays_o = torch.sum(rays_o[..., None, :] * c2w[:3, :3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
+
+ # Translate origins to the world frame
+ rays_o = rays_o + c2w[:3, -1].view(1, 1, 3)
+
+ return rays_o, rays_d
+
+
+# Hierarchical sampling (section 5.2)
+def sample_pdf(bins, weights, N_samples, det=False, pytest=False):
+ # Get pdf
+ weights = weights + 1e-5 # prevent nans
+ pdf = weights / torch.sum(weights, -1, keepdim=True)
+ cdf = torch.cumsum(pdf, -1)
+ cdf = torch.cat([torch.zeros_like(cdf[...,:1]), cdf], -1) # (batch, len(bins))
+
+ # Take uniform samples
+ if det:
+ u = torch.linspace(0., 1., steps=N_samples)
+ u = u.expand(list(cdf.shape[:-1]) + [N_samples])
+ else:
+ u = torch.rand(list(cdf.shape[:-1]) + [N_samples])
+
+ # Pytest, overwrite u with numpy's fixed random numbers
+ if pytest:
+ np.random.seed(0)
+ new_shape = list(cdf.shape[:-1]) + [N_samples]
+ if det:
+ u = np.linspace(0., 1., N_samples)
+ u = np.broadcast_to(u, new_shape)
+ else:
+ u = np.random.rand(*new_shape)
+ u = torch.Tensor(u)
+
+ # Invert CDF
+ u = u.contiguous()
+ inds = searchsorted(cdf, u, side='right')
+ below = torch.max(torch.zeros_like(inds-1), inds-1)
+ above = torch.min((cdf.shape[-1]-1) * torch.ones_like(inds), inds)
+ inds_g = torch.stack([below, above], -1) # (batch, N_samples, 2)
+
+ # cdf_g = tf.gather(cdf, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
+ # bins_g = tf.gather(bins, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
+ matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
+ cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
+ bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
+
+ denom = (cdf_g[...,1]-cdf_g[...,0])
+ denom = torch.where(denom<1e-5, torch.ones_like(denom), denom)
+ t = (u-cdf_g[...,0])/denom
+ samples = bins_g[...,0] + t * (bins_g[...,1]-bins_g[...,0])
+
+ return samples
diff --git a/submodules/nerf_pytorch/run_nerf_mod.py b/submodules/nerf_pytorch/run_nerf_mod.py
new file mode 100644
index 0000000..e4745f2
--- /dev/null
+++ b/submodules/nerf_pytorch/run_nerf_mod.py
@@ -0,0 +1,349 @@
+import os, sys
+import numpy as np
+import imageio
+import json
+import random
+import time
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+# from torch.utils.tensorboard import SummaryWriter
+from tqdm import tqdm
+
+import matplotlib.pyplot as plt
+
+from .run_nerf_helpers_mod import *
+
+device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+np.random.seed(0)
+DEBUG = False
+
+
+def batchify(fn, chunk):
+ if chunk is None:
+ return fn
+ def ret(inputs):
+ return torch.cat([fn(inputs[i:i+chunk]) for i in range(0, inputs.shape[0], chunk)], 0)
+ return ret
+
+
+def run_network(inputs, viewdirs, fn, embed_fn, embeddirs_fn, features=None, netchunk=1024*64,
+ feat_dim_appearance=0):
+ inputs_flat = torch.reshape(inputs, [-1, inputs.shape[-1]])
+ embedded = embed_fn(inputs_flat)
+ if features is not None:
+ # expand features to shape of flattened inputs
+ features = features.unsqueeze(1).expand(-1, inputs.shape[1], -1).flatten(0, 1)
+
+ # only split if viewdirs is not None
+ if viewdirs is not None and feat_dim_appearance > 0:
+ features_shape = features[:, :-feat_dim_appearance]
+ features_appearance = features[:, -feat_dim_appearance:]
+ else:
+ features_shape = features
+ features_appearance = None
+
+ embedded = torch.cat([embedded, features_shape], -1)
+
+ if viewdirs is not None:
+ input_dirs = viewdirs[:,None].expand(inputs.shape)
+ input_dirs_flat = torch.reshape(input_dirs, [-1, input_dirs.shape[-1]])
+ embedded_dirs = embeddirs_fn(input_dirs_flat)
+ embedded = torch.cat([embedded, embedded_dirs], -1)
+ if features_appearance is not None:
+ embedded = torch.cat([embedded, features_appearance], dim=-1)
+ else:
+ if features_appearance is not None:
+ embedded = torch.cat([embedded, features_appearance], dim=-1)
+
+ outputs_flat = batchify(fn, netchunk)(embedded)
+ outputs = torch.reshape(outputs_flat, list(inputs.shape[:-1]) + [outputs_flat.shape[-1]])
+ return outputs
+
+
+def batchify_rays(rays_flat, chunk=1024*32, **kwargs):
+
+ all_ret = {}
+ features = kwargs.get('features')
+ for i in range(0, rays_flat.shape[0], chunk):
+ if features is not None:
+ kwargs['features'] = features[i:i+chunk]
+ ret = render_rays(rays_flat[i:i+chunk], **kwargs)
+ for k in ret:
+ if k not in all_ret:
+ all_ret[k] = []
+ all_ret[k].append(ret[k])
+
+ all_ret = {k : torch.cat(all_ret[k], 0) for k in all_ret}
+ return all_ret
+
+
+def render(H, W, focal, chunk=1024*32, rays=None, c2w=None, ndc=True,
+ near=0., far=1.,
+ use_viewdirs=False, c2w_staticcam=None,
+ **kwargs):
+
+ if c2w is not None:
+ # special case to render full image
+ rays_o, rays_d = get_rays(H, W, focal, c2w)
+ else:
+ # use provided ray batch
+ rays_o, rays_d = rays
+
+ if use_viewdirs:
+ # provide ray directions as input
+ viewdirs = rays_d
+ if c2w_staticcam is not None:
+ # special case to visualize effect of viewdirs
+ rays_o, rays_d = get_rays(H, W, focal, c2w_staticcam)
+ viewdirs = viewdirs / torch.norm(viewdirs, dim=-1, keepdim=True)
+ viewdirs = torch.reshape(viewdirs, [-1,3]).float()
+
+ sh = rays_d.shape # [..., 3]
+ if ndc:
+ # for forward facing scenes
+ rays_o, rays_d = ndc_rays(H, W, focal, 1., rays_o, rays_d)
+
+ # Create ray batch
+ rays_o = torch.reshape(rays_o, [-1,3]).float()
+ rays_d = torch.reshape(rays_d, [-1,3]).float()
+
+ near, far = near * torch.ones_like(rays_d[...,:1]), far * torch.ones_like(rays_d[...,:1])
+ rays = torch.cat([rays_o, rays_d, near, far], -1)
+ if use_viewdirs:
+ rays = torch.cat([rays, viewdirs], -1)
+
+ # Expand features to shape of rays
+ if kwargs.get('features') is not None:
+ bs = kwargs['features'].shape[0]
+ N_rays = sh[0] // bs
+ kwargs['features'] = kwargs['features'].unsqueeze(1).expand(-1, N_rays, -1).flatten(0, 1)
+
+ # Render and reshape
+ all_ret = batchify_rays(rays, chunk, **kwargs)
+ for k in all_ret:
+ k_sh = list(sh[:-1]) + list(all_ret[k].shape[1:])
+ all_ret[k] = torch.reshape(all_ret[k], k_sh)
+
+ k_extract = ['rgb_map', 'disp_map', 'acc_map']
+ ret_list = [all_ret[k] for k in k_extract]
+ ret_dict = {k : all_ret[k] for k in all_ret if k not in k_extract}
+ return ret_list + [ret_dict]
+
+
+def render_path(render_poses, hwf, chunk, render_kwargs, features=None, gt_imgs=None, savedir=None, render_factor=0):
+
+ H, W, focal = hwf
+
+ if render_factor!=0:
+ # Render downsampled for speed
+ H = H//render_factor
+ W = W//render_factor
+ focal = focal/render_factor
+
+ rgbs = []
+ disps = []
+
+ t = time.time()
+ for i, c2w in enumerate(tqdm(render_poses)):
+ print(i, time.time() - t)
+ t = time.time()
+ feature = None if features is None else features[i]
+ rgb, disp, acc, _ = render(H, W, focal, features=feature, chunk=chunk, c2w=c2w[:3,:4], **render_kwargs)
+ rgbs.append(rgb.cpu().numpy())
+ disps.append(disp.cpu().numpy())
+ if i==0:
+ print(rgb.shape, disp.shape)
+
+ """
+ if gt_imgs is not None and render_factor==0:
+ p = -10. * np.log10(np.mean(np.square(rgb.cpu().numpy() - gt_imgs[i])))
+ print(p)
+ """
+
+ if savedir is not None:
+ rgb8 = to8b(rgbs[-1])
+ filename = os.path.join(savedir, '{:03d}.png'.format(i))
+ imageio.imwrite(filename, rgb8)
+
+
+ rgbs = np.stack(rgbs, 0)
+ disps = np.stack(disps, 0)
+
+ return rgbs, disps
+
+
+def create_nerf(args):
+ embed_fn, input_ch = get_embedder(args.multires, args.i_embed)
+
+ input_ch += args.feat_dim - args.feat_dim_appearance
+
+ input_ch_views = 0
+ embeddirs_fn = None
+ if args.use_viewdirs:
+ embeddirs_fn, input_ch_views = get_embedder(args.multires_views, args.i_embed)
+ input_ch_views += args.feat_dim_appearance
+
+ output_ch = 5 if args.N_importance > 0 else 4
+ skips = [4]
+ model = NeRF(D=args.netdepth, W=args.netwidth,
+ input_ch=input_ch, output_ch=output_ch, skips=skips,
+ input_ch_views=input_ch_views, use_viewdirs=(args.use_viewdirs or args.feat_dim_appearance > 0))
+ grad_vars = list(model.parameters())
+ named_params = list(model.named_parameters())
+
+ model_fine = None
+ if args.N_importance > 0:
+ model_fine = NeRF(D=args.netdepth_fine, W=args.netwidth_fine,
+ input_ch=input_ch, output_ch=output_ch, skips=skips,
+ input_ch_views=input_ch_views, use_viewdirs=args.use_viewdirs)
+ grad_vars += list(model_fine.parameters())
+ named_params = list(model_fine.named_parameters())
+
+ network_query_fn = lambda inputs, viewdirs, network_fn, features: run_network(inputs, viewdirs, network_fn,
+ features=features,
+ embed_fn=embed_fn,
+ embeddirs_fn=embeddirs_fn,
+ netchunk=args.netchunk,
+ feat_dim_appearance=args.
+ feat_dim_appearance)
+
+ render_kwargs_train = {
+ 'network_query_fn' : network_query_fn,
+ 'perturb' : args.perturb,
+ 'N_importance' : args.N_importance,
+ 'network_fine' : model_fine,
+ 'N_samples' : args.N_samples,
+ 'network_fn' : model,
+ 'use_viewdirs' : args.use_viewdirs,
+ 'white_bkgd' : args.white_bkgd,
+ 'raw_noise_std' : args.raw_noise_std,
+ 'ndc': False,
+ 'lindisp': False,
+ }
+
+ render_kwargs_test = {k : render_kwargs_train[k] for k in render_kwargs_train}
+ render_kwargs_test['perturb'] = False
+ render_kwargs_test['raw_noise_std'] = 0.
+
+ return render_kwargs_train, render_kwargs_test, grad_vars, named_params
+
+
+def raw2outputs(raw, z_vals, rays_d, raw_noise_std=0, white_bkgd=False, pytest=False):
+ """ A helper function for `render_rays`.
+ """
+ raw2alpha = lambda raw, dists, act_fn=F.relu: 1.-torch.exp(-act_fn(raw)*dists)
+
+ dists = z_vals[...,1:] - z_vals[...,:-1]
+ dists = torch.cat([dists, torch.Tensor([1e10]).expand(dists[...,:1].shape)], -1) # [N_rays, N_samples]
+
+ dists = dists * torch.norm(rays_d[...,None,:], dim=-1)
+
+ rgb = torch.sigmoid(raw[...,:3]) # [N_rays, N_samples, 3]
+ noise = 0.
+ if raw_noise_std > 0.:
+ noise = torch.randn(raw[...,3].shape) * raw_noise_std
+
+ # Overwrite randomly sampled data if pytest
+ if pytest:
+ np.random.seed(0)
+ noise = np.random.rand(*list(raw[...,3].shape)) * raw_noise_std
+ noise = torch.Tensor(noise)
+
+ alpha = raw2alpha(raw[...,3] + noise, dists) # [N_rays, N_samples]
+ # weights = alpha * tf.math.cumprod(1.-alpha + 1e-10, -1, exclusive=True)
+ weights = alpha * torch.cumprod(torch.cat([torch.ones((alpha.shape[0], 1)), 1.-alpha + 1e-10], -1), -1)[:, :-1]
+ rgb_map = torch.sum(weights[...,None] * rgb, -2) # [N_rays, 3]
+
+ depth_map = torch.sum(weights * z_vals, -1)
+ disp_map = 1./torch.max(1e-10 * torch.ones_like(depth_map), depth_map / (torch.sum(weights, -1)+1e-10)) # add eps to avoid division by zero
+ acc_map = torch.sum(weights, -1)
+
+ if white_bkgd:
+ rgb_map = rgb_map + (1.-acc_map[...,None])
+
+ return rgb_map, disp_map, acc_map, weights, depth_map
+
+
+def render_rays(ray_batch,
+ network_fn,
+ network_query_fn,
+ N_samples,
+ features=None,
+ retraw=False,
+ lindisp=False,
+ perturb=0.,
+ N_importance=0,
+ network_fine=None,
+ white_bkgd=False,
+ raw_noise_std=0.,
+ verbose=False,
+ pytest=False):
+ N_rays = ray_batch.shape[0]
+ rays_o, rays_d = ray_batch[:,0:3], ray_batch[:,3:6] # [N_rays, 3] each
+ viewdirs = ray_batch[:,-3:] if ray_batch.shape[-1] > 8 else None
+ bounds = torch.reshape(ray_batch[...,6:8], [-1,1,2])
+ near, far = bounds[...,0], bounds[...,1] # [-1,1]
+
+ t_vals = torch.linspace(0., 1., steps=N_samples)
+ if not lindisp:
+ z_vals = near * (1.-t_vals) + far * (t_vals)
+ else:
+ z_vals = 1./(1./near * (1.-t_vals) + 1./far * (t_vals))
+
+ z_vals = z_vals.expand([N_rays, N_samples])
+
+ if perturb > 0.:
+ # get intervals between samples
+ mids = .5 * (z_vals[...,1:] + z_vals[...,:-1])
+ upper = torch.cat([mids, z_vals[...,-1:]], -1)
+ lower = torch.cat([z_vals[...,:1], mids], -1)
+ # stratified samples in those intervals
+ t_rand = torch.rand(z_vals.shape)
+
+ # Pytest, overwrite u with numpy's fixed random numbers
+ if pytest:
+ np.random.seed(0)
+ t_rand = np.random.rand(*list(z_vals.shape))
+ t_rand = torch.Tensor(t_rand)
+
+ z_vals = lower + (upper - lower) * t_rand
+
+ pts = rays_o[...,None,:] + rays_d[...,None,:] * z_vals[...,:,None] # [N_rays, N_samples, 3]
+
+
+# raw = run_network(pts)
+ raw = network_query_fn(pts, viewdirs, network_fn, features)
+ rgb_map, disp_map, acc_map, weights, depth_map = raw2outputs(raw, z_vals, rays_d, raw_noise_std, white_bkgd, pytest=pytest)
+
+ if N_importance > 0:
+
+ rgb_map_0, disp_map_0, acc_map_0 = rgb_map, disp_map, acc_map
+
+ z_vals_mid = .5 * (z_vals[...,1:] + z_vals[...,:-1])
+ z_samples = sample_pdf(z_vals_mid, weights[...,1:-1], N_importance, det=(perturb==0.), pytest=pytest)
+ z_samples = z_samples.detach()
+
+ z_vals, _ = torch.sort(torch.cat([z_vals, z_samples], -1), -1)
+ pts = rays_o[...,None,:] + rays_d[...,None,:] * z_vals[...,:,None] # [N_rays, N_samples + N_importance, 3]
+
+ run_fn = network_fn if network_fine is None else network_fine
+# raw = run_network(pts, fn=run_fn)
+ raw = network_query_fn(pts, viewdirs, run_fn, features)
+
+ rgb_map, disp_map, acc_map, weights, depth_map = raw2outputs(raw, z_vals, rays_d, raw_noise_std, white_bkgd, pytest=pytest)
+
+ ret = {'rgb_map' : rgb_map, 'disp_map' : disp_map, 'acc_map' : acc_map}
+ if retraw:
+ ret['raw'] = raw
+ if N_importance > 0:
+ ret['rgb0'] = rgb_map_0
+ ret['disp0'] = disp_map_0
+ ret['acc0'] = acc_map_0
+ ret['z_std'] = torch.std(z_samples, dim=-1, unbiased=False) # [N_rays]
+
+ for k in ret:
+ if (torch.isnan(ret[k]).any() or torch.isinf(ret[k]).any()) and DEBUG:
+ print(f"! [Numerical Error] {k} contains nan or inf.")
+
+ return ret
diff --git a/submodules/nerf_pytorch/torchsearchsorted/.gitignore b/submodules/nerf_pytorch/torchsearchsorted/.gitignore
new file mode 100644
index 0000000..f461cd0
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/.gitignore
@@ -0,0 +1,158 @@
+# Prerequisites
+*.d
+
+# Object files
+*.o
+*.ko
+*.obj
+*.elf
+
+# Linker output
+*.ilk
+*.map
+*.exp
+
+# Precompiled Headers
+*.gch
+*.pch
+
+# Libraries
+*.lib
+*.a
+*.la
+*.lo
+
+# Shared objects (inc. Windows DLLs)
+*.dll
+*.so
+*.so.*
+*.dylib
+
+# Executables
+*.exe
+*.out
+*.app
+*.i*86
+*.x86_64
+*.hex
+
+# Debug files
+*.dSYM/
+*.su
+*.idb
+*.pdb
+
+# Kernel Module Compile Results
+*.mod*
+*.cmd
+.tmp_versions/
+modules.order
+Module.symvers
+Mkfile.old
+dkms.conf
+
+
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+*.egg-info/
+.installed.cfg
+*.egg
+MANIFEST
+
+# PyInstaller
+# Usually these files are written by a python script from a template
+# before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+.hypothesis/
+.pytest_cache/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+db.sqlite3
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# pyenv
+.python-version
+
+# celery beat schedule file
+celerybeat-schedule
+
+# SageMath parsed files
+*.sage.py
+
+# Environments
+.env
+.venv
+env/
+venv/
+ENV/
+env.bak/
+venv.bak/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
diff --git a/submodules/nerf_pytorch/torchsearchsorted/LICENSE b/submodules/nerf_pytorch/torchsearchsorted/LICENSE
new file mode 100644
index 0000000..da6e359
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/LICENSE
@@ -0,0 +1,29 @@
+BSD 3-Clause License
+
+Copyright (c) 2019, Inria (Antoine Liutkus)
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+1. Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+
+2. Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+3. Neither the name of the copyright holder nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/submodules/nerf_pytorch/torchsearchsorted/README.md b/submodules/nerf_pytorch/torchsearchsorted/README.md
new file mode 100644
index 0000000..b98ac17
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/README.md
@@ -0,0 +1,89 @@
+# Pytorch Custom CUDA kernel for searchsorted
+
+This repository is an implementation of the searchsorted function to work for pytorch CUDA Tensors. Initially derived from the great [C extension tutorial](https://github.com/chrischoy/pytorch-custom-cuda-tutorial), but totally changed since then because building C extensions is not available anymore on pytorch 1.0.
+
+
+> Warnings:
+> * only works with pytorch > v1.3 and CUDA >= v10.1
+> * **NOTE** When using `searchsorted()` for practical applications, tensors need to be contiguous in memory. This can be easily achieved by calling `tensor.contiguous()` on the input tensors. Failing to do so _will_ lead to inconsistent results across applications.
+
+## Description
+
+Implements a function `searchsorted(a, v, out, side)` that works just like the [numpy version](https://docs.scipy.org/doc/numpy/reference/generated/numpy.searchsorted.html#numpy.searchsorted) except that `a` and `v` are matrices.
+* `a` is of shape either `(1, ncols_a)` or `(nrows, ncols_a)`, and is contiguous in memory (do `a.contiguous()` to ensure this).
+* `v` is of shape either `(1, ncols_v)` or `(nrows, ncols_v)`, and is contiguous in memory (do `v.contiguous()` to ensure this).
+* `out` is either `None` or of shape `(nrows, ncols_v)`. If provided and of the right shape, the result is put there. This is to avoid costly memory allocations if the user already did it. If provided, `out` should be contiguous in memory too (do `out.contiguous()` to ensure this).
+* `side` is either "left" or "right". See the [numpy doc](https://docs.scipy.org/doc/numpy/reference/generated/numpy.searchsorted.html#numpy.searchsorted). Please not that the current implementation *does not correctly handle this parameter*. Help welcome to improve the speed of [this PR](https://github.com/aliutkus/torchsearchsorted/pull/7)
+
+the output is of size as `(nrows, ncols_v)`. If all input tensors are on GPU, a cuda version will be called. Otherwise, it will be on CPU.
+
+
+**Disclaimers**
+
+* This function has not been heavily tested. Use at your own risks
+* When `a` is not sorted, the results vary from numpy's version. But I decided not to care about this because the function should not be called in this case.
+* In some cases, the results vary from numpy's version. However, as far as I could see, this only happens when values are equal, which means we actually don't care about the order in which this value is added. I decided not to care about this also.
+* vectors have to be contiguous for torchsearchsorted to give consistant results. use `.contiguous()` on all tensor arguments before calling
+
+
+## Installation
+
+Just `pip install .`, in the root folder of this repo. This will compile
+and install the torchsearchsorted module.
+
+be careful that sometimes, `nvcc` needs versions of `gcc` and `g++` that are older than those found by default on the system. If so, just create symbolic links to the right versions in your cuda/bin folder (where `nvcc` is)
+
+For instance, on my machine, I had `gcc` and `g++` v9 installed, but `nvcc` required v8.
+So I had to do:
+
+> sudo apt-get install g++-8 gcc-8
+> sudo ln -s /usr/bin/gcc-8 /usr/local/cuda-10.1/bin/gcc
+> sudo ln -s /usr/bin/g++-8 /usr/local/cuda-10.1/bin/g++
+
+be careful that you need pytorch to be installed on your system. The code was tested on pytorch v1.3
+
+## Usage
+
+Just import the torchsearchsorted package after installation. I typically do:
+
+```
+from torchsearchsorted import searchsorted
+```
+
+
+## Testing
+
+Under the `examples` subfolder, you may:
+
+1. try `python test.py` with `torch` available.
+
+ ```
+Looking for 50000x1000 values in 50000x300 entries
+NUMPY: searchsorted in 4851.592ms
+CPU: searchsorted in 4805.432ms
+ difference between CPU and NUMPY: 0.000
+GPU: searchsorted in 1.055ms
+ difference between GPU and NUMPY: 0.000
+
+Looking for 50000x1000 values in 50000x300 entries
+NUMPY: searchsorted in 4333.964ms
+CPU: searchsorted in 4753.958ms
+ difference between CPU and NUMPY: 0.000
+GPU: searchsorted in 0.391ms
+ difference between GPU and NUMPY: 0.000
+ ```
+ The first run comprises the time of allocation, while the second one does not.
+
+2. You may also use the nice `benchmark.py` code written by [@baldassarreFe](https://github.com/baldassarreFe), that tests `searchsorted` on many runs:
+
+ ```
+Benchmark searchsorted:
+- a [5000 x 300]
+- v [5000 x 100]
+- reporting fastest time of 20 runs
+- each run executes searchsorted 100 times
+
+Numpy: 4.6302046799100935
+CPU: 5.041533078998327
+CUDA: 0.0007955809123814106
+ ```
diff --git a/submodules/nerf_pytorch/torchsearchsorted/examples/benchmark.py b/submodules/nerf_pytorch/torchsearchsorted/examples/benchmark.py
new file mode 100644
index 0000000..b267c4f
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/examples/benchmark.py
@@ -0,0 +1,71 @@
+import timeit
+
+import torch
+import numpy as np
+from torchsearchsorted import searchsorted, numpy_searchsorted
+
+B = 5_000
+A = 300
+V = 100
+
+repeats = 20
+number = 100
+
+print(
+ f'Benchmark searchsorted:',
+ f'- a [{B} x {A}]',
+ f'- v [{B} x {V}]',
+ f'- reporting fastest time of {repeats} runs',
+ f'- each run executes searchsorted {number} times',
+ sep='\n',
+ end='\n\n'
+)
+
+
+def get_arrays():
+ a = np.sort(np.random.randn(B, A), axis=1)
+ v = np.random.randn(B, V)
+ out = np.empty_like(v, dtype=np.long)
+ return a, v, out
+
+
+def get_tensors(device):
+ a = torch.sort(torch.randn(B, A, device=device), dim=1)[0]
+ v = torch.randn(B, V, device=device)
+ out = torch.empty(B, V, device=device, dtype=torch.long)
+ if torch.cuda.is_available():
+ torch.cuda.synchronize()
+ return a, v, out
+
+def searchsorted_synchronized(a,v,out=None,side='left'):
+ out = searchsorted(a,v,out,side)
+ torch.cuda.synchronize()
+ return out
+
+numpy = timeit.repeat(
+ stmt="numpy_searchsorted(a, v, side='left')",
+ setup="a, v, out = get_arrays()",
+ globals=globals(),
+ repeat=repeats,
+ number=number
+)
+print('Numpy: ', min(numpy), sep='\t')
+
+cpu = timeit.repeat(
+ stmt="searchsorted(a, v, out, side='left')",
+ setup="a, v, out = get_tensors(device='cpu')",
+ globals=globals(),
+ repeat=repeats,
+ number=number
+)
+print('CPU: ', min(cpu), sep='\t')
+
+if torch.cuda.is_available():
+ gpu = timeit.repeat(
+ stmt="searchsorted_synchronized(a, v, out, side='left')",
+ setup="a, v, out = get_tensors(device='cuda')",
+ globals=globals(),
+ repeat=repeats,
+ number=number
+ )
+ print('CUDA: ', min(gpu), sep='\t')
diff --git a/submodules/nerf_pytorch/torchsearchsorted/examples/test.py b/submodules/nerf_pytorch/torchsearchsorted/examples/test.py
new file mode 100644
index 0000000..baba996
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/examples/test.py
@@ -0,0 +1,66 @@
+import torch
+from torchsearchsorted import searchsorted, numpy_searchsorted
+import time
+
+if __name__ == '__main__':
+ # defining the number of tests
+ ntests = 2
+
+ # defining the problem dimensions
+ nrows_a = 50000
+ nrows_v = 50000
+ nsorted_values = 300
+ nvalues = 1000
+
+ # defines the variables. The first run will comprise allocation, the
+ # further ones will not
+ test_GPU = None
+ test_CPU = None
+
+ for ntest in range(ntests):
+ print("\nLooking for %dx%d values in %dx%d entries" % (nrows_v, nvalues,
+ nrows_a,
+ nsorted_values))
+
+ side = 'right'
+ # generate a matrix with sorted rows
+ a = torch.randn(nrows_a, nsorted_values, device='cpu')
+ a = torch.sort(a, dim=1)[0]
+ # generate a matrix of values to searchsort
+ v = torch.randn(nrows_v, nvalues, device='cpu')
+
+ # a = torch.tensor([[0., 1.]])
+ # v = torch.tensor([[1.]])
+
+ t0 = time.time()
+ test_NP = torch.tensor(numpy_searchsorted(a, v, side))
+ print('NUMPY: searchsorted in %0.3fms' % (1000*(time.time()-t0)))
+ t0 = time.time()
+ test_CPU = searchsorted(a, v, test_CPU, side)
+ print('CPU: searchsorted in %0.3fms' % (1000*(time.time()-t0)))
+ # compute the difference between both
+ error_CPU = torch.norm(test_NP.double()
+ - test_CPU.double()).numpy()
+ if error_CPU:
+ import ipdb; ipdb.set_trace()
+ print(' difference between CPU and NUMPY: %0.3f' % error_CPU)
+
+ if not torch.cuda.is_available():
+ print('CUDA is not available on this machine, cannot go further.')
+ continue
+ else:
+ # now do the CPU
+ a = a.to('cuda')
+ v = v.to('cuda')
+ torch.cuda.synchronize()
+ # launch searchsorted on those
+ t0 = time.time()
+ test_GPU = searchsorted(a, v, test_GPU, side)
+ torch.cuda.synchronize()
+ print('GPU: searchsorted in %0.3fms' % (1000*(time.time()-t0)))
+
+ # compute the difference between both
+ error_CUDA = torch.norm(test_NP.to('cuda').double()
+ - test_GPU.double()).cpu().numpy()
+
+ print(' difference between GPU and NUMPY: %0.3f' % error_CUDA)
diff --git a/submodules/nerf_pytorch/torchsearchsorted/setup.py b/submodules/nerf_pytorch/torchsearchsorted/setup.py
new file mode 100644
index 0000000..092bcd1
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/setup.py
@@ -0,0 +1,41 @@
+from setuptools import setup, find_packages
+from torch.utils.cpp_extension import BuildExtension, CUDA_HOME
+from torch.utils.cpp_extension import CppExtension, CUDAExtension
+
+# In any case, include the CPU version
+modules = [
+ CppExtension('torchsearchsorted.cpu',
+ ['src/cpu/searchsorted_cpu_wrapper.cpp']),
+]
+
+# If nvcc is available, add the CUDA extension
+if CUDA_HOME:
+ modules.append(
+ CUDAExtension('torchsearchsorted.cuda',
+ ['src/cuda/searchsorted_cuda_wrapper.cpp',
+ 'src/cuda/searchsorted_cuda_kernel.cu'])
+ )
+
+tests_require = [
+ 'pytest',
+]
+
+# Now proceed to setup
+setup(
+ name='torchsearchsorted',
+ version='1.1',
+ description='A searchsorted implementation for pytorch',
+ keywords='searchsorted',
+ author='Antoine Liutkus',
+ author_email='antoine.liutkus@inria.fr',
+ packages=find_packages(where='src'),
+ package_dir={"": "src"},
+ ext_modules=modules,
+ tests_require=tests_require,
+ extras_require={
+ 'test': tests_require,
+ },
+ cmdclass={
+ 'build_ext': BuildExtension
+ }
+)
diff --git a/submodules/nerf_pytorch/torchsearchsorted/src/cpu/searchsorted_cpu_wrapper.cpp b/submodules/nerf_pytorch/torchsearchsorted/src/cpu/searchsorted_cpu_wrapper.cpp
new file mode 100644
index 0000000..610200f
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/src/cpu/searchsorted_cpu_wrapper.cpp
@@ -0,0 +1,126 @@
+#include "searchsorted_cpu_wrapper.h"
+#include
+
+template
+int eval(scalar_t val, scalar_t *a, int64_t row, int64_t col, int64_t ncol, bool side_left)
+{
+ /* Evaluates whether a[row,col] < val <= a[row, col+1]*/
+
+ if (col == ncol - 1)
+ {
+ // special case: we are on the right border
+ if (a[row * ncol + col] <= val){
+ return 1;}
+ else {
+ return -1;}
+ }
+ bool is_lower;
+ bool is_next_higher;
+
+ if (side_left) {
+ // a[row, col] < v <= a[row, col+1]
+ is_lower = (a[row * ncol + col] < val);
+ is_next_higher = (a[row*ncol + col + 1] >= val);
+ } else {
+ // a[row, col] <= v < a[row, col+1]
+ is_lower = (a[row * ncol + col] <= val);
+ is_next_higher = (a[row * ncol + col + 1] > val);
+ }
+ if (is_lower && is_next_higher) {
+ // we found the right spot
+ return 0;
+ } else if (is_lower) {
+ // answer is on the right side
+ return 1;
+ } else {
+ // answer is on the left side
+ return -1;
+ }
+}
+
+template
+int64_t binary_search(scalar_t*a, int64_t row, scalar_t val, int64_t ncol, bool side_left)
+{
+ /* Look for the value `val` within row `row` of matrix `a`, which
+ has `ncol` columns.
+
+ the `a` matrix is assumed sorted in increasing order, row-wise
+
+ returns:
+ * -1 if `val` is smaller than the smallest value found within that row of `a`
+ * `ncol` - 1 if `val` is larger than the largest element of that row of `a`
+ * Otherwise, return the column index `res` such that:
+ - a[row, col] < val <= a[row, col+1]. (if side_left), or
+ - a[row, col] < val <= a[row, col+1] (if not side_left).
+ */
+
+ //start with left at 0 and right at number of columns of a
+ int64_t right = ncol;
+ int64_t left = 0;
+
+ while (right >= left) {
+ // take the midpoint of current left and right cursors
+ int64_t mid = left + (right-left)/2;
+
+ // check the relative position of val: are we good here ?
+ int rel_pos = eval(val, a, row, mid, ncol, side_left);
+ // we found the point
+ if(rel_pos == 0) {
+ return mid;
+ } else if (rel_pos > 0) {
+ if (mid==ncol-1){return ncol-1;}
+ // the answer is on the right side
+ left = mid;
+ } else {
+ if (mid==0){return -1;}
+ right = mid;
+ }
+ }
+ return -1;
+}
+
+void searchsorted_cpu_wrapper(
+ at::Tensor a,
+ at::Tensor v,
+ at::Tensor res,
+ bool side_left)
+{
+
+ // Get the dimensions
+ auto nrow_a = a.size(/*dim=*/0);
+ auto ncol_a = a.size(/*dim=*/1);
+ auto nrow_v = v.size(/*dim=*/0);
+ auto ncol_v = v.size(/*dim=*/1);
+
+ auto nrow_res = fmax(nrow_a, nrow_v);
+
+ //auto acc_v = v.accessor();
+ //auto acc_res = res.accessor();
+
+ AT_DISPATCH_ALL_TYPES(a.type(), "searchsorted cpu", [&] {
+
+ scalar_t* a_data = a.data_ptr();
+ scalar_t* v_data = v.data_ptr();
+ int64_t* res_data = res.data();
+
+ for (int64_t row = 0; row < nrow_res; row++)
+ {
+ for (int64_t col = 0; col < ncol_v; col++)
+ {
+ // get the value to look for
+ int64_t row_in_v = (nrow_v == 1) ? 0 : row;
+ int64_t row_in_a = (nrow_a == 1) ? 0 : row;
+
+ int64_t idx_in_v = row_in_v * ncol_v + col;
+ int64_t idx_in_res = row * ncol_v + col;
+
+ // apply binary search
+ res_data[idx_in_res] = (binary_search(a_data, row_in_a, v_data[idx_in_v], ncol_a, side_left) + 1);
+ }
+ }
+ });
+ }
+
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
+ m.def("searchsorted_cpu_wrapper", &searchsorted_cpu_wrapper, "searchsorted (CPU)");
+ }
diff --git a/submodules/nerf_pytorch/torchsearchsorted/src/cpu/searchsorted_cpu_wrapper.h b/submodules/nerf_pytorch/torchsearchsorted/src/cpu/searchsorted_cpu_wrapper.h
new file mode 100644
index 0000000..d674255
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/src/cpu/searchsorted_cpu_wrapper.h
@@ -0,0 +1,12 @@
+#ifndef _SEARCHSORTED_CPU
+#define _SEARCHSORTED_CPU
+
+#include
+
+void searchsorted_cpu_wrapper(
+ at::Tensor a,
+ at::Tensor v,
+ at::Tensor res,
+ bool side_left);
+
+#endif
\ No newline at end of file
diff --git a/submodules/nerf_pytorch/torchsearchsorted/src/cuda/searchsorted_cuda_kernel.cu b/submodules/nerf_pytorch/torchsearchsorted/src/cuda/searchsorted_cuda_kernel.cu
new file mode 100644
index 0000000..af6ed27
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/src/cuda/searchsorted_cuda_kernel.cu
@@ -0,0 +1,142 @@
+#include "searchsorted_cuda_kernel.h"
+
+template
+__device__
+int eval(scalar_t val, scalar_t *a, int64_t row, int64_t col, int64_t ncol, bool side_left)
+{
+ /* Evaluates whether a[row,col] < val <= a[row, col+1]*/
+
+ if (col == ncol - 1)
+ {
+ // special case: we are on the right border
+ if (a[row * ncol + col] <= val){
+ return 1;}
+ else {
+ return -1;}
+ }
+ bool is_lower;
+ bool is_next_higher;
+
+ if (side_left) {
+ // a[row, col] < v <= a[row, col+1]
+ is_lower = (a[row * ncol + col] < val);
+ is_next_higher = (a[row*ncol + col + 1] >= val);
+ } else {
+ // a[row, col] <= v < a[row, col+1]
+ is_lower = (a[row * ncol + col] <= val);
+ is_next_higher = (a[row * ncol + col + 1] > val);
+ }
+ if (is_lower && is_next_higher) {
+ // we found the right spot
+ return 0;
+ } else if (is_lower) {
+ // answer is on the right side
+ return 1;
+ } else {
+ // answer is on the left side
+ return -1;
+ }
+}
+
+template
+__device__
+int binary_search(scalar_t *a, int64_t row, scalar_t val, int64_t ncol, bool side_left)
+{
+ /* Look for the value `val` within row `row` of matrix `a`, which
+ has `ncol` columns.
+
+ the `a` matrix is assumed sorted in increasing order, row-wise
+
+ Returns
+ * -1 if `val` is smaller than the smallest value found within that row of `a`
+ * `ncol` - 1 if `val` is larger than the largest element of that row of `a`
+ * Otherwise, return the column index `res` such that:
+ - a[row, col] < val <= a[row, col+1]. (if side_left), or
+ - a[row, col] < val <= a[row, col+1] (if not side_left).
+ */
+
+ //start with left at 0 and right at number of columns of a
+ int64_t right = ncol;
+ int64_t left = 0;
+
+ while (right >= left) {
+ // take the midpoint of current left and right cursors
+ int64_t mid = left + (right-left)/2;
+
+ // check the relative position of val: are we good here ?
+ int rel_pos = eval(val, a, row, mid, ncol, side_left);
+ // we found the point
+ if(rel_pos == 0) {
+ return mid;
+ } else if (rel_pos > 0) {
+ if (mid==ncol-1){return ncol-1;}
+ // the answer is on the right side
+ left = mid;
+ } else {
+ if (mid==0){return -1;}
+ right = mid;
+ }
+ }
+ return -1;
+}
+
+template
+__global__
+void searchsorted_kernel(
+ int64_t *res,
+ scalar_t *a,
+ scalar_t *v,
+ int64_t nrow_res, int64_t nrow_a, int64_t nrow_v, int64_t ncol_a, int64_t ncol_v, bool side_left)
+{
+ // get current row and column
+ int64_t row = blockIdx.y*blockDim.y+threadIdx.y;
+ int64_t col = blockIdx.x*blockDim.x+threadIdx.x;
+
+ // check whether we are outside the bounds of what needs be computed.
+ if ((row >= nrow_res) || (col >= ncol_v)) {
+ return;}
+
+ // get the value to look for
+ int64_t row_in_v = (nrow_v==1) ? 0: row;
+ int64_t row_in_a = (nrow_a==1) ? 0: row;
+ int64_t idx_in_v = row_in_v*ncol_v+col;
+ int64_t idx_in_res = row*ncol_v+col;
+
+ // apply binary search
+ res[idx_in_res] = binary_search(a, row_in_a, v[idx_in_v], ncol_a, side_left)+1;
+}
+
+
+void searchsorted_cuda(
+ at::Tensor a,
+ at::Tensor v,
+ at::Tensor res,
+ bool side_left){
+
+ // Get the dimensions
+ auto nrow_a = a.size(/*dim=*/0);
+ auto nrow_v = v.size(/*dim=*/0);
+ auto ncol_a = a.size(/*dim=*/1);
+ auto ncol_v = v.size(/*dim=*/1);
+
+ auto nrow_res = fmax(double(nrow_a), double(nrow_v));
+
+ // prepare the kernel configuration
+ dim3 threads(ncol_v, nrow_res);
+ dim3 blocks(1, 1);
+ if (nrow_res*ncol_v > 1024){
+ threads.x = int(fmin(double(1024), double(ncol_v)));
+ threads.y = floor(1024/threads.x);
+ blocks.x = ceil(double(ncol_v)/double(threads.x));
+ blocks.y = ceil(double(nrow_res)/double(threads.y));
+ }
+
+ AT_DISPATCH_ALL_TYPES(a.type(), "searchsorted cuda", ([&] {
+ searchsorted_kernel<<>>(
+ res.data(),
+ a.data(),
+ v.data(),
+ nrow_res, nrow_a, nrow_v, ncol_a, ncol_v, side_left);
+ }));
+
+ }
diff --git a/submodules/nerf_pytorch/torchsearchsorted/src/cuda/searchsorted_cuda_kernel.h b/submodules/nerf_pytorch/torchsearchsorted/src/cuda/searchsorted_cuda_kernel.h
new file mode 100644
index 0000000..08ea049
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/src/cuda/searchsorted_cuda_kernel.h
@@ -0,0 +1,12 @@
+#ifndef _SEARCHSORTED_CUDA_KERNEL
+#define _SEARCHSORTED_CUDA_KERNEL
+
+#include
+
+void searchsorted_cuda(
+ at::Tensor a,
+ at::Tensor v,
+ at::Tensor res,
+ bool side_left);
+
+#endif
diff --git a/submodules/nerf_pytorch/torchsearchsorted/src/cuda/searchsorted_cuda_wrapper.cpp b/submodules/nerf_pytorch/torchsearchsorted/src/cuda/searchsorted_cuda_wrapper.cpp
new file mode 100644
index 0000000..c11372e
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/src/cuda/searchsorted_cuda_wrapper.cpp
@@ -0,0 +1,20 @@
+#include "searchsorted_cuda_wrapper.h"
+
+// C++ interface
+
+#define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor")
+#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
+#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
+
+void searchsorted_cuda_wrapper(at::Tensor a, at::Tensor v, at::Tensor res, bool side_left)
+{
+ CHECK_INPUT(a);
+ CHECK_INPUT(v);
+ CHECK_INPUT(res);
+
+ searchsorted_cuda(a, v, res, side_left);
+}
+
+PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
+ m.def("searchsorted_cuda_wrapper", &searchsorted_cuda_wrapper, "searchsorted (CUDA)");
+}
diff --git a/submodules/nerf_pytorch/torchsearchsorted/src/cuda/searchsorted_cuda_wrapper.h b/submodules/nerf_pytorch/torchsearchsorted/src/cuda/searchsorted_cuda_wrapper.h
new file mode 100644
index 0000000..9ecd429
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/src/cuda/searchsorted_cuda_wrapper.h
@@ -0,0 +1,13 @@
+#ifndef _SEARCHSORTED_CUDA_WRAPPER
+#define _SEARCHSORTED_CUDA_WRAPPER
+
+#include
+#include "searchsorted_cuda_kernel.h"
+
+void searchsorted_cuda_wrapper(
+ at::Tensor a,
+ at::Tensor v,
+ at::Tensor res,
+ bool side_left);
+
+#endif
diff --git a/submodules/nerf_pytorch/torchsearchsorted/src/torchsearchsorted/__init__.py b/submodules/nerf_pytorch/torchsearchsorted/src/torchsearchsorted/__init__.py
new file mode 100644
index 0000000..fc30292
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/src/torchsearchsorted/__init__.py
@@ -0,0 +1,2 @@
+from .searchsorted import searchsorted
+from .utils import numpy_searchsorted
diff --git a/submodules/nerf_pytorch/torchsearchsorted/src/torchsearchsorted/searchsorted.py b/submodules/nerf_pytorch/torchsearchsorted/src/torchsearchsorted/searchsorted.py
new file mode 100644
index 0000000..aaca900
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/src/torchsearchsorted/searchsorted.py
@@ -0,0 +1,53 @@
+from typing import Optional
+
+import torch
+
+# trying to import the CPU searchsorted
+SEARCHSORTED_CPU_AVAILABLE = True
+try:
+ from torchsearchsorted.cpu import searchsorted_cpu_wrapper
+except ImportError:
+ SEARCHSORTED_CPU_AVAILABLE = False
+
+# trying to import the CUDA searchsorted
+SEARCHSORTED_GPU_AVAILABLE = True
+try:
+ from torchsearchsorted.cuda import searchsorted_cuda_wrapper
+except ImportError:
+ SEARCHSORTED_GPU_AVAILABLE = False
+
+
+def searchsorted(a: torch.Tensor, v: torch.Tensor,
+ out: Optional[torch.LongTensor] = None,
+ side='left') -> torch.LongTensor:
+ assert len(a.shape) == 2, "input `a` must be 2-D."
+ assert len(v.shape) == 2, "input `v` mus(t be 2-D."
+ assert (a.shape[0] == v.shape[0]
+ or a.shape[0] == 1
+ or v.shape[0] == 1), ("`a` and `v` must have the same number of "
+ "rows or one of them must have only one ")
+ assert a.device == v.device, '`a` and `v` must be on the same device'
+
+ result_shape = (max(a.shape[0], v.shape[0]), v.shape[1])
+ if out is not None:
+ assert out.device == a.device, "`out` must be on the same device as `a`"
+ assert out.dtype == torch.long, "out.dtype must be torch.long"
+ assert out.shape == result_shape, ("If the output tensor is provided, "
+ "its shape must be correct.")
+ else:
+ out = torch.empty(result_shape, device=v.device, dtype=torch.long)
+
+ if a.is_cuda and not SEARCHSORTED_GPU_AVAILABLE:
+ raise Exception('torchsearchsorted on CUDA device is asked, but it seems '
+ 'that it is not available. Please install it')
+ if not a.is_cuda and not SEARCHSORTED_CPU_AVAILABLE:
+ raise Exception('torchsearchsorted on CPU is not available. '
+ 'Please install it.')
+
+ left_side = 1 if side=='left' else 0
+ if a.is_cuda:
+ searchsorted_cuda_wrapper(a, v, out, left_side)
+ else:
+ searchsorted_cpu_wrapper(a, v, out, left_side)
+
+ return out
diff --git a/submodules/nerf_pytorch/torchsearchsorted/src/torchsearchsorted/utils.py b/submodules/nerf_pytorch/torchsearchsorted/src/torchsearchsorted/utils.py
new file mode 100644
index 0000000..68b9939
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/src/torchsearchsorted/utils.py
@@ -0,0 +1,15 @@
+import numpy as np
+
+
+def numpy_searchsorted(a: np.ndarray, v: np.ndarray, side='left'):
+ """Numpy version of searchsorted that works batch-wise on pytorch tensors
+ """
+ nrows_a = a.shape[0]
+ (nrows_v, ncols_v) = v.shape
+ nrows_out = max(nrows_a, nrows_v)
+ out = np.empty((nrows_out, ncols_v), dtype=np.long)
+ def sel(data, row):
+ return data[0] if data.shape[0] == 1 else data[row]
+ for row in range(nrows_out):
+ out[row] = np.searchsorted(sel(a, row), sel(v, row), side=side)
+ return out
diff --git a/submodules/nerf_pytorch/torchsearchsorted/test/conftest.py b/submodules/nerf_pytorch/torchsearchsorted/test/conftest.py
new file mode 100644
index 0000000..5ec545f
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/test/conftest.py
@@ -0,0 +1,11 @@
+import pytest
+import torch
+
+devices = {'cpu': torch.device('cpu')}
+if torch.cuda.is_available():
+ devices['cuda'] = torch.device('cuda:0')
+
+
+@pytest.fixture(params=devices.values(), ids=devices.keys())
+def device(request):
+ return request.param
diff --git a/submodules/nerf_pytorch/torchsearchsorted/test/test_searchsorted.py b/submodules/nerf_pytorch/torchsearchsorted/test/test_searchsorted.py
new file mode 100644
index 0000000..27bfb49
--- /dev/null
+++ b/submodules/nerf_pytorch/torchsearchsorted/test/test_searchsorted.py
@@ -0,0 +1,44 @@
+import pytest
+
+import torch
+import numpy as np
+from torchsearchsorted import searchsorted, numpy_searchsorted
+from itertools import product, repeat
+
+
+def test_searchsorted_output_dtype(device):
+ B = 100
+ A = 50
+ V = 12
+
+ a = torch.sort(torch.rand(B, V, device=device), dim=1)[0]
+ v = torch.rand(B, A, device=device)
+
+ out = searchsorted(a, v)
+ out_np = numpy_searchsorted(a.cpu().numpy(), v.cpu().numpy())
+ assert out.dtype == torch.long
+ np.testing.assert_array_equal(out.cpu().numpy(), out_np)
+
+ out = torch.empty(v.shape, dtype=torch.long, device=device)
+ searchsorted(a, v, out)
+ assert out.dtype == torch.long
+ np.testing.assert_array_equal(out.cpu().numpy(), out_np)
+
+Ba_val = [1, 100, 200]
+Bv_val = [1, 100, 200]
+A_val = [1, 50, 500]
+V_val = [1, 12, 120]
+side_val = ['left', 'right']
+nrepeat = 100
+
+@pytest.mark.parametrize('Ba,Bv,A,V,side', product(Ba_val, Bv_val, A_val, V_val, side_val))
+def test_searchsorted_correct(Ba, Bv, A, V, side, device):
+ if Ba > 1 and Bv > 1 and Ba != Bv:
+ return
+ for test in range(nrepeat):
+ a = torch.sort(torch.rand(Ba, A, device=device), dim=1)[0]
+ v = torch.rand(Bv, V, device=device)
+ out_np = numpy_searchsorted(a.cpu().numpy(), v.cpu().numpy(),
+ side=side)
+ out = searchsorted(a, v, side=side).cpu().numpy()
+ np.testing.assert_array_equal(out, out_np)
diff --git a/train.py b/train.py
new file mode 100644
index 0000000..114d1aa
--- /dev/null
+++ b/train.py
@@ -0,0 +1,318 @@
+import argparse
+import os
+from os import path
+import time
+import copy
+import torch
+torch.set_default_tensor_type('torch.cuda.FloatTensor')
+
+from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
+import matplotlib
+matplotlib.use('Agg')
+
+import sys
+sys.path.append('submodules') # needed to make imports work in GAN_stability
+
+from graf.gan_training import Evaluator as Evaluator
+from graf.config import get_data, build_models, save_config, update_config, build_lr_scheduler
+from graf.utils import count_trainable_parameters, get_nsamples
+from graf.transforms import ImgToPatch
+
+from GAN_stability.gan_training import utils
+from GAN_stability.gan_training.train import Trainer
+from GAN_stability.gan_training.train import update_average
+from GAN_stability.gan_training.logger import Logger
+from GAN_stability.gan_training.checkpoints import CheckpointIO
+from GAN_stability.gan_training.distributions import get_ydist, get_zdist
+from GAN_stability.gan_training.config import (
+ load_config, build_optimizers,
+)
+
+
+if __name__ == '__main__':
+ # Arguments
+ parser = argparse.ArgumentParser(
+ description='Train a GAN with different regularization strategies.'
+ )
+ parser.add_argument('config', type=str, help='Path to config file.')
+
+ args, unknown = parser.parse_known_args()
+ config = load_config(args.config, 'configs/default.yaml')
+ config['data']['fov'] = float(config['data']['fov'])
+ config = update_config(config, unknown)
+
+ # Short hands
+ batch_size = config['training']['batch_size']
+ restart_every = config['training']['restart_every']
+ fid_every = config['training']['fid_every']
+ save_every = config['training']['save_every']
+ backup_every = config['training']['backup_every']
+ save_best = config['training']['save_best']
+ assert save_best=='fid' or save_best=='kid', 'Invalid save best metric!'
+
+ out_dir = os.path.join(config['training']['outdir'], config['expname'])
+ checkpoint_dir = path.join(out_dir, 'chkpts')
+
+ # Create missing directories
+ if not path.exists(out_dir):
+ os.makedirs(out_dir)
+ if not path.exists(checkpoint_dir):
+ os.makedirs(checkpoint_dir)
+
+ # Save config file
+ save_config(os.path.join(out_dir, 'config.yaml'), config)
+
+ # Logger
+ checkpoint_io = CheckpointIO(
+ checkpoint_dir=checkpoint_dir
+ )
+
+ device = torch.device("cuda:0")
+
+ # Dataset
+ train_dataset, hwfr, render_poses = get_data(config)
+ # in case of orthographic projection replace focal length by far-near
+ if config['data']['orthographic']:
+ hw_ortho = (config['data']['far']-config['data']['near'], config['data']['far']-config['data']['near'])
+ hwfr[2] = hw_ortho
+
+ config['data']['hwfr'] = hwfr # add for building generator
+ print(train_dataset, hwfr, render_poses.shape)
+
+ train_loader = torch.utils.data.DataLoader(
+ train_dataset,
+ batch_size=batch_size,
+ num_workers=config['training']['nworkers'],
+ shuffle=True, pin_memory=True, sampler=None, drop_last=True
+ )
+
+ val_dataset = train_dataset
+ val_loader = train_loader
+ hwfr_val = hwfr
+
+ # Create models
+ generator, discriminator = build_models(config)
+ print('Generator params: %d' % count_trainable_parameters(generator))
+ print('Discriminator params: %d, channels: %d' % (count_trainable_parameters(discriminator), discriminator.nc))
+ print(generator.render_kwargs_train['network_fn'])
+ print(discriminator)
+
+ # Put models on gpu if needed
+ generator = generator.to(device)
+ discriminator = discriminator.to(device)
+
+ g_optimizer, d_optimizer = build_optimizers(
+ generator, discriminator, config
+ )
+
+ # input transform
+ img_to_patch = ImgToPatch(generator.ray_sampler, hwfr[:3])
+
+ # Register modules to checkpoint
+ checkpoint_io.register_modules(
+ discriminator=discriminator,
+ g_optimizer=g_optimizer,
+ d_optimizer=d_optimizer,
+ **generator.module_dict # treat NeRF specially
+ )
+
+ # Get model file
+ model_file = config['training']['model_file']
+ stats_file = 'stats.p'
+
+ # Logger
+ logger = Logger(
+ log_dir=path.join(out_dir, 'logs'),
+ img_dir=path.join(out_dir, 'imgs'),
+ monitoring=config['training']['monitoring'],
+ monitoring_dir=path.join(out_dir, 'monitoring')
+ )
+
+ # Distributions
+ ydist = get_ydist(1, device=device) # Dummy to keep GAN training structure in tact
+ y = torch.zeros(batch_size) # Dummy to keep GAN training structure in tact
+ zdist = get_zdist(config['z_dist']['type'], config['z_dist']['dim'],
+ device=device)
+
+ # Save for tests
+ n_test_samples_with_same_shape_code = config['training']['n_test_samples_with_same_shape_code']
+ ntest = batch_size
+ x_real = get_nsamples(train_loader, ntest)
+ ytest = torch.zeros(ntest)
+ ztest = zdist.sample((ntest,))
+ ptest = torch.stack([generator.sample_pose() for i in range(ntest)])
+ if n_test_samples_with_same_shape_code > 0:
+ ntest *= n_test_samples_with_same_shape_code
+ ytest = ytest.repeat(n_test_samples_with_same_shape_code)
+ ptest = ptest.unsqueeze_(1).expand(-1, n_test_samples_with_same_shape_code, -1, -1).flatten(0, 1) # (ntest x n_same_shape) x 3 x 4
+
+ zdim_shape = config['z_dist']['dim'] - config['z_dist']['dim_appearance']
+ # repeat shape code
+ zshape = ztest[:, :zdim_shape].unsqueeze(1).expand(-1, n_test_samples_with_same_shape_code, -1).flatten(0, 1)
+ zappearance = zdist.sample((ntest,))[:, zdim_shape:]
+ ztest = torch.cat([zshape, zappearance], dim=1)
+
+ utils.save_images(x_real, path.join(out_dir, 'real.png'))
+
+ # Test generator
+ if config['training']['take_model_average']:
+ generator_test = copy.deepcopy(generator)
+ # we have to change the pointers of the parameter function in nerf manually
+ generator_test.parameters = lambda: generator_test._parameters
+ generator_test.named_parameters = lambda: generator_test._named_parameters
+ checkpoint_io.register_modules(**{k+'_test': v for k, v in generator_test.module_dict.items()})
+ else:
+ generator_test = generator
+
+ # Evaluator
+ evaluator = Evaluator(fid_every > 0, generator_test, zdist, ydist,
+ batch_size=batch_size, device=device, inception_nsamples=33)
+
+ # Initialize fid+kid evaluator
+ if fid_every > 0:
+ fid_cache_file = os.path.join(out_dir, 'fid_cache_train.npz')
+ kid_cache_file = os.path.join(out_dir, 'kid_cache_train.npz')
+ evaluator.inception_eval.initialize_target(val_loader, cache_file=fid_cache_file, act_cache_file=kid_cache_file)
+
+ # Train
+ tstart = t0 = time.time()
+
+ # Load checkpoint if it exists
+ try:
+ load_dict = checkpoint_io.load(model_file)
+ except FileNotFoundError:
+ it = epoch_idx = -1
+ fid_best = float('inf')
+ kid_best = float('inf')
+ else:
+ it = load_dict.get('it', -1)
+ epoch_idx = load_dict.get('epoch_idx', -1)
+ fid_best = load_dict.get('fid_best', float('inf'))
+ kid_best = load_dict.get('kid_best', float('inf'))
+ logger.load_stats(stats_file)
+
+ # Reinitialize model average if needed
+ if (config['training']['take_model_average']
+ and config['training']['model_average_reinit']):
+ update_average(generator_test, generator, 0.)
+
+ # Learning rate anneling
+ d_lr = d_optimizer.param_groups[0]['lr']
+ g_lr = g_optimizer.param_groups[0]['lr']
+ g_scheduler = build_lr_scheduler(g_optimizer, config, last_epoch=it)
+ d_scheduler = build_lr_scheduler(d_optimizer, config, last_epoch=it)
+ # ensure lr is not decreased again
+ d_optimizer.param_groups[0]['lr'] = d_lr
+ g_optimizer.param_groups[0]['lr'] = g_lr
+
+ # Trainer
+ trainer = Trainer(
+ generator, discriminator, g_optimizer, d_optimizer,
+ gan_type=config['training']['gan_type'],
+ reg_type=config['training']['reg_type'],
+ reg_param=config['training']['reg_param']
+ )
+
+ print('it {}: start with LR:\n\td_lr: {}\tg_lr: {}'.format(it, d_optimizer.param_groups[0]['lr'], g_optimizer.param_groups[0]['lr']))
+
+ # Training loop
+ print('Start training...')
+ while True:
+ epoch_idx += 1
+ print('Start epoch %d...' % epoch_idx)
+
+ for x_real in train_loader:
+ t_it = time.time()
+ it += 1
+ generator.ray_sampler.iterations = it # for scale annealing
+
+ # Sample patches for real data
+ rgbs = img_to_patch(x_real.to(device)) # N_samples x C
+
+ # Discriminator updates
+ z = zdist.sample((batch_size,))
+ dloss, reg = trainer.discriminator_trainstep(rgbs, y=y, z=z)
+ logger.add('losses', 'discriminator', dloss, it=it)
+ logger.add('losses', 'regularizer', reg, it=it)
+
+ # Generators updates
+ if config['nerf']['decrease_noise']:
+ generator.decrease_nerf_noise(it)
+
+ z = zdist.sample((batch_size,))
+ gloss = trainer.generator_trainstep(y=y, z=z)
+ logger.add('losses', 'generator', gloss, it=it)
+
+ if config['training']['take_model_average']:
+ update_average(generator_test, generator,
+ beta=config['training']['model_average_beta'])
+
+ # Update learning rate
+ g_scheduler.step()
+ d_scheduler.step()
+
+ d_lr = d_optimizer.param_groups[0]['lr']
+ g_lr = g_optimizer.param_groups[0]['lr']
+
+ logger.add('learning_rates', 'discriminator', d_lr, it=it)
+ logger.add('learning_rates', 'generator', g_lr, it=it)
+
+ dt = time.time() - t_it
+ # Print stats
+ if ((it + 1) % config['training']['print_every']) == 0:
+ g_loss_last = logger.get_last('losses', 'generator')
+ d_loss_last = logger.get_last('losses', 'discriminator')
+ d_reg_last = logger.get_last('losses', 'regularizer')
+ print('[%s epoch %0d, it %4d, t %0.3f] g_loss = %.4f, d_loss = %.4f, reg=%.4f'
+ % (config['expname'], epoch_idx, it + 1, dt, g_loss_last, d_loss_last, d_reg_last))
+
+ # (ii) Sample if necessary
+ if ((it % config['training']['sample_every']) == 0) or ((it < 500) and (it % 100 == 0)):
+ rgb, depth, acc = evaluator.create_samples(ztest.to(device), poses=ptest)
+ logger.add_imgs(rgb, 'rgb', it)
+ logger.add_imgs(depth, 'depth', it)
+ logger.add_imgs(acc, 'acc', it)
+
+ # (v) Compute fid if necessary
+ if fid_every > 0 and ((it + 1) % fid_every) == 0:
+ fid, kid = evaluator.compute_fid_kid()
+ logger.add('validation', 'fid', fid, it=it)
+ logger.add('validation', 'kid', kid, it=it)
+ torch.cuda.empty_cache()
+ # save best model
+ if save_best=='fid' and fid < fid_best:
+ fid_best = fid
+ print('Saving best model...')
+ checkpoint_io.save('model_best.pt', it=it, epoch_idx=epoch_idx, fid_best=fid_best, kid_best=kid_best)
+ logger.save_stats('stats_best.p')
+ torch.cuda.empty_cache()
+ elif save_best=='kid' and kid < kid_best:
+ kid_best = kid
+ print('Saving best model...')
+ checkpoint_io.save('model_best.pt', it=it, epoch_idx=epoch_idx, fid_best=fid_best, kid_best=kid_best)
+ logger.save_stats('stats_best.p')
+ torch.cuda.empty_cache()
+
+ # (vi) Create video if necessary
+ if ((it+1) % config['training']['video_every']) == 0:
+ N_samples = 4
+ zvid = zdist.sample((N_samples,))
+
+ basename = os.path.join(out_dir, '{}_{:06d}_'.format(os.path.basename(config['expname']), it))
+ evaluator.make_video(basename, zvid, render_poses, as_gif=False)
+
+ # (i) Backup if necessary
+ if ((it + 1) % backup_every) == 0:
+ print('Saving backup...')
+ checkpoint_io.save('model_%08d.pt' % it, it=it, epoch_idx=epoch_idx, fid_best=fid_best, kid_best=kid_best)
+ logger.save_stats('stats_%08d.p' % it)
+
+ # (vi) Save checkpoint if necessary
+ if time.time() - t0 > save_every:
+ print('Saving checkpoint...')
+ checkpoint_io.save(model_file, it=it, epoch_idx=epoch_idx, fid_best=fid_best, kid_best=kid_best)
+ logger.save_stats('stats.p')
+ t0 = time.time()
+
+ if (restart_every > 0 and t0 - tstart > restart_every):
+ exit(3)