-
Notifications
You must be signed in to change notification settings - Fork 116
/
Copy patheval_meshes.py
165 lines (140 loc) · 5.18 KB
/
eval_meshes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import argparse
import os
from tqdm import tqdm
import pandas as pd
import trimesh
import torch
from src import config, data
from src.eval import MeshEvaluator
from src.utils.io import load_pointcloud
parser = argparse.ArgumentParser(
description='Evaluate mesh algorithms.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
parser.add_argument('--eval_input', action='store_true',
help='Evaluate inputs instead.')
args = parser.parse_args()
cfg = config.load_config(args.config, 'configs/default.yaml')
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
device = torch.device("cuda" if is_cuda else "cpu")
# Shorthands
out_dir = cfg['training']['out_dir']
generation_dir = os.path.join(out_dir, cfg['generation']['generation_dir'])
if not args.eval_input:
out_file = os.path.join(generation_dir, 'eval_meshes_full.pkl')
out_file_class = os.path.join(generation_dir, 'eval_meshes.csv')
else:
out_file = os.path.join(generation_dir, 'eval_input_full.pkl')
out_file_class = os.path.join(generation_dir, 'eval_input.csv')
# Dataset
points_field = data.PointsField(
cfg['data']['points_iou_file'],
unpackbits=cfg['data']['points_unpackbits'],
multi_files=cfg['data']['multi_files']
)
pointcloud_field = data.PointCloudField(
cfg['data']['pointcloud_chamfer_file'],
multi_files=cfg['data']['multi_files']
)
fields = {
'points_iou': points_field,
'pointcloud_chamfer': pointcloud_field,
'idx': data.IndexField(),
}
print('Test split: ', cfg['data']['test_split'])
dataset_folder = cfg['data']['path']
dataset = data.Shapes3dDataset(
dataset_folder, fields,
cfg['data']['test_split'],
categories=cfg['data']['classes'],
cfg=cfg
)
# Evaluator
evaluator = MeshEvaluator(n_points=100000)
# Loader
test_loader = torch.utils.data.DataLoader(
dataset, batch_size=1, num_workers=0, shuffle=False)
# Evaluate all classes
eval_dicts = []
print('Evaluating meshes...')
for it, data in enumerate(tqdm(test_loader)):
if data is None:
print('Invalid data.')
continue
# Output folders
if not args.eval_input:
mesh_dir = os.path.join(generation_dir, 'meshes')
pointcloud_dir = os.path.join(generation_dir, 'pointcloud')
else:
mesh_dir = os.path.join(generation_dir, 'input')
pointcloud_dir = os.path.join(generation_dir, 'input')
# Get index etc.
idx = data['idx'].item()
try:
model_dict = dataset.get_model_dict(idx)
except AttributeError:
model_dict = {'model': str(idx), 'category': 'n/a'}
modelname = model_dict['model']
category_id = model_dict['category']
try:
category_name = dataset.metadata[category_id].get('name', 'n/a')
# for room dataset
if category_name == 'n/a':
category_name = category_id
except AttributeError:
category_name = 'n/a'
if category_id != 'n/a':
mesh_dir = os.path.join(mesh_dir, category_id)
pointcloud_dir = os.path.join(pointcloud_dir, category_id)
# Evaluate
pointcloud_tgt = data['pointcloud_chamfer'].squeeze(0).numpy()
normals_tgt = data['pointcloud_chamfer.normals'].squeeze(0).numpy()
points_tgt = data['points_iou'].squeeze(0).numpy()
occ_tgt = data['points_iou.occ'].squeeze(0).numpy()
# Evaluating mesh and pointcloud
# Start row and put basic informatin inside
eval_dict = {
'idx': idx,
'class id': category_id,
'class name': category_name,
'modelname': modelname,
}
eval_dicts.append(eval_dict)
# Evaluate mesh
if cfg['test']['eval_mesh']:
mesh_file = os.path.join(mesh_dir, '%s.off' % modelname)
if os.path.exists(mesh_file):
try:
mesh = trimesh.load(mesh_file, process=False)
eval_dict_mesh = evaluator.eval_mesh(
mesh, pointcloud_tgt, normals_tgt, points_tgt, occ_tgt, remove_wall=cfg['test']['remove_wall'])
for k, v in eval_dict_mesh.items():
eval_dict[k + ' (mesh)'] = v
except Exception as e:
print("Error: Could not evaluate mesh: %s" % mesh_file)
else:
print('Warning: mesh does not exist: %s' % mesh_file)
# Evaluate point cloud
if cfg['test']['eval_pointcloud']:
pointcloud_file = os.path.join(
pointcloud_dir, '%s.ply' % modelname)
if os.path.exists(pointcloud_file):
pointcloud = load_pointcloud(pointcloud_file)
eval_dict_pcl = evaluator.eval_pointcloud(
pointcloud, pointcloud_tgt)
for k, v in eval_dict_pcl.items():
eval_dict[k + ' (pcl)'] = v
else:
print('Warning: pointcloud does not exist: %s'
% pointcloud_file)
# Create pandas dataframe and save
eval_df = pd.DataFrame(eval_dicts)
eval_df.set_index(['idx'], inplace=True)
eval_df.to_pickle(out_file)
# Create CSV file with main statistics
eval_df_class = eval_df.groupby(by=['class name']).mean()
eval_df_class.to_csv(out_file_class)
# Print results
eval_df_class.loc['mean'] = eval_df_class.mean()
print(eval_df_class)