-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
169 lines (138 loc) · 5.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""
Author:
Ahmed Telili
"""
import argparse
import datetime
import os
import random
import time
import cv2
import h5py
import numpy as np
import pandas as pd
import PIL
import sklearn
import tensorflow as tf
from keras import backend as K
from keras.activations import sigmoid, softmax
from keras.callbacks import (Callback, EarlyStopping, ModelCheckpoint,
ReduceLROnPlateau, TensorBoard)
from keras.layers import Layer
from keras.models import load_model
from PIL import Image
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
from tensorflow import keras
from tensorflow.keras import (Input, applications, initializers, layers,
models, optimizers)
from tensorflow.keras.layers import (AveragePooling2D, Bidirectional,
Concatenate, Conv2D, Dense, Dropout,
Flatten, GlobalAveragePooling2D,
GlobalMaxPooling2D, LSTM, Lambda,
MaxPooling2D, Reshape, TimeDistributed,
concatenate)
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing import image
from tensorflow_addons.metrics import RSquare
from tensorflow_addons.optimizers import AdamW
from tqdm import tqdm
from tqdm.keras import TqdmCallback
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
tf.config.experimental.set_memory_growth(gpus[0], True)
tf.keras.backend.clear_session()
def logistic_func(X, bayta1, bayta2, bayta3, bayta4):
# 4-parameter logistic function
logistic_part = 1 + np.exp(-np.divide(X - bayta3, np.abs(bayta4)))
yhat = bayta2 + np.divide(bayta1 - bayta2, logistic_part)
return yhat
def root_mean_squared_error(y_true, y_pred):
return K.sqrt(K.mean(K.square(y_pred - y_true)))
def build_model(batch_shape):
model = models.Sequential()
model.add(TimeDistributed(LSTM(32, return_sequences=True,
kernel_initializer='random_normal',
recurrent_initializer='random_normal',
dropout=0.4, recurrent_dropout=0),
input_shape=batch_shape))
model.add(TimeDistributed(Flatten()))
model.add(LSTM(16, return_sequences=True,
kernel_initializer='random_normal',
recurrent_initializer='random_normal',
dropout=0.4, recurrent_dropout=0))
model.add(Flatten())
model.add(Dense(32, activation='relu',
kernel_initializer='random_normal'))
model.add(layers.Dropout(rate=0.5))
model.add(layers.Dense(1, activation='relu',
kernel_initializer='random_normal'))
model.compile(optimizer=optimizers.Adam(), loss=root_mean_squared_error,
metrics='mae')
model.summary()
return model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="End2End_train")
parser.add_argument('-nf', '--num_frames', default=30, type=int,
help='Number of cropped frames per video.')
parser.add_argument('-nb', '--num_blocks', default=16, type=int,
help='Number of blocks per frame.')
parser.add_argument('-np', '--num_patches', default=156, type=int,
help='Number of cropped patches per frame.')
parser.add_argument('-b', '--batch_size', default=1, type=int,
help='Batch size.')
if not os.path.exists('./models'):
os.makedirs('./models')
args = parser.parse_args()
# For reproducibility
idx = [7]
l = os.listdir('./label')
l.sort()
lab_y = np.zeros((196, 3))
for i in range(len(l)):
feat = np.load('./label/' + l[i])
lab_y[i, :] = feat
np.save('label.npy', lab_y)
l = os.listdir('./features_X')
l.sort()
dens_X = np.zeros((196, 2048)) # 2048: ResNet50 output dim.
for i in range(len(l)):
feat = np.load('./features_X/' + l[i])
dens_X[i, :] = feat
np.save('features_X.npy', dens_X)
X = np.load('./features_X.npy')
y = np.load('./label.npy')
label_P1 = y[:, 0]
# Initialization of metrics lists
score_r2_P1 = []
score_srocc_P1 = []
score_plcc_P1 = []
start_time = time.time()
for i in idx:
md = ModelCheckpoint(filepath='./models/vmaf/model.h5', monitor='val_loss', mode='auto',
save_best_only=True, verbose=1)
rd = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=15, min_lr=1e-11, verbose=1, mode='min')
ear = EarlyStopping(monitor='val_loss', mode='min', patience=50, verbose=1)
callbacks_k = [md, rd, ear]
tf.keras.backend.clear_session()
X_train, X_test, y_train, y_test = train_test_split(X, label_P1, test_size=0.2, random_state=i)
model = build_model((args.num_blocks, args.num_patches, 2048))
history = model.fit(X_train, y_train, epochs=200, validation_data=(X_test, y_test),
verbose=2, shuffle=True, callbacks=callbacks_k, batch_size=args.batch_size)
del model
model = load_model('./models/vmaf/model.h5', compile=False)
y_pred = model.predict(X_test)
del model
y_test = y_test.reshape(y_test.shape[0])
y_pred = y_pred.reshape(y_pred.shape[0])
score_r2_P1.append(r2_score(y_test, y_pred))
score_srocc_P1.append(spearmanr(y_pred, y_test)[0])
score_plcc_P1.append(pearsonr(y_pred, y_test)[0])
end_time = time.time()
print('Time elapsed:', end_time - start_time)
print('R2 scores:', score_r2_P1)
print('SROCC scores:', score_srocc_P1)
print('PLCC scores:', score_plcc_P1)