-
-
a) Markov's inequality states:
$P(X \ge a) \le \frac{E(X)}a$ .Let
$X$ be a random variable where $P(X = x) = \begin{cases} 1/2 & x = 5 \ 1/2 & x = 5 \end{cases}$(Incorrectly) applying Markov's inequality,
$P(X \ge 1) \le \frac{E(X)}{1}$ . Since$E(X) = 0$ , this implies that$P(X \ge 1) 0$ . This is not true since$P(X = 5) = 1/2$ .This is an example of how markov's bound can't be applied to negative random variables.
-
b) Given that
$Z$ is a r.v. such that,$P(Z \ge -10)=1$ and$E(Z) = 0$ . Let$Y = Z + 10$ meaning$E(Y) = 10$ . Applying Markov's on$Y$ :$$P(Y \ge 15) \le \frac{E(Y)}{15} \le \frac{10}{15} \le \frac23$$ Since
$P(Z \ge 5) = P(Y \ge 15)$ , we know$P(Z \ge 5) \le \frac23$ .
-
-
Let
$X$ be the random variable for the sum off all$200$ dice. We want to find$P(X > 800)$ . Applying Chebyshev's:$P(X > 800) \le P(|X - 700| \ge 101) \le \frac{\text{Var}(X)}{101^2}$ . Since$X = \sum_{i=1}^{200} X_i$ and$\text{Var}(X_i) = \frac{35}{12}$ ,$\text{Var}(X) = 200 \times \frac{35}{12} = \frac{1750}{3}$ . Substituting in,$\frac{\text{Var}(X)}{101^2} = \frac{1750}{3 \times 10201} \approx 0.057$ . -
$P(5 \le X \le 15) = 1 - P(X < 5) + P(X > 15) = 1 - P(|X - 10| > 5)$ Applying Chebyshev's,$P(5 \le X \le 15) \ge 1 - \frac{\text{Var}(X)}{5^2}$ . Since its given that$\text{Var}(X) = 15$ ,$P(5 \le X \le 15) \ge 1 - \frac{15}{25} \ge \frac25$ . -
-
a) Using Markov's:
$$P(X \ge 135000) \le \frac{E(X)}{135000} \le \frac{100000}{135000} \le \frac{20}{27}$$ -
b) Let
$X$ be a random variable so that $P(X = s) = \begin{cases} \frac{20}{27} & s = 135000 \ \frac{7}{27} & s = 0 \end{cases}$. Here,$E(X) = \frac{20}{27} \times 135000 + \frac7{27} \times 0 = 100000$ . Thus the above bound is tight since$P(X \ge 135000) = \frac{20}{27}$ . -
c) Let
$Y$ be a random variable so that$Y = X - 70000$ . We know that$Y$ is non-negative since$P(X \ge 70000) = 1$ . Note: Since$E(X) = 100000$ , we know that$E(Y) = E(X) - 70000 = 30000$ . Applying Markov's:$P(X \ge 135000) = P(Y \ge 65000) \le \frac{E(T)}{65000} \le \frac{30000}{65000} \le \frac{6}{13}$ .Consider when: $P(X = s) = \begin{cases} \frac{6}{13} & s = 135000 \ \frac{7}{13} & s = 70000 \end{cases}$. Here
$E(X) = 100000$ and$P(X \ge 135000) = \frac{6}{13}$ , when proves that the bound is tight. -
d) Given that the standard deviation of
$X$ is$5$ , we know that$\text{Var}(X) = 25$ . Again, let$Y = X - 70000$ . The same observation as in part c) can be applied to$Y$ . In addition, we know$\text{Var}(X) = \text{Var}(Y) = 25$ . Applying Chebyshev's:$P(X \ge 135000) = P(Y \ge 65000) \le P(|Y - 30000| \ge 35000) \le \frac{\text{Var}(Y)}{35000^2} \le \frac{25}{35000^2} \le \frac1{49e6}$ .
-
-
- a) Let
$X_i$ be a random variable that is$1$ or$0$ depending on weather or not the$i^\text{th}$ edge is in the max cut. Using linearity of expectation:$E(X) = \sum_i E(X_i) = \sum_i P(X_i = 1) = \sum_i \frac12$ . Let$m$ be$|E|$ , or the number of edges. Since$m \ge \text{OPT}$ ,$E(X) = \frac{m}2 \ge \frac{\text{OPT}}2$ . - b - d) Not sure how to answer these questions.
- e) Run the algorithm until the answer received is
$\ge \frac{49}{100} \text{OPT}$ . The expected number of iterations is$51$ since$p \ge \frac{1}{51}$ .
- a) Let
-
Let
$S$ be the event that the merchant is sleazy and$H$ be the event that it is honest. Note:$P(S) + P(H) = 1$ . Then,$$P(X = 1) = P(X = 1 \cap S) + P(X = 1 \cap H) \ = P(S)P(X = 1 \mid S) + P(H)P(X = 1 \mid H) \ = 0.9 \times \frac1{20} + 0.1 \times \frac1{1000} \ = \frac{451}{10^4}$$ Note that
$P(Y=1)$ also$= \frac{451}{10000}$ for the exact same reason as above.$$P(X = 1 \cap Y = 1) = P(X = 1 \cap Y = 1 \cap S) + P(X = 1 \cap Y = 1 \cap H) \ = P(S)P(X = 1 \cap Y = 1 \mid S) + P(H)P(X = 1 \cap Y = 1 \mid H) \ = 0.9 \times \left(\frac1{20}\right)^2 + 0.1 \times \left(\frac1{1000}\right)^2 \ = \frac{2251}{10^7}$$ Since
$P(X = 1)P(Y = 1) \neq P(X = 1 \cap Y = 1)$ , we know that$X$ and$Y$ are not independent. -
Let
$X$ be the random variable denoting how many students show up for the test. We want to find$P(X \le 50)$ :$$P(X \le 50) = 1 - P(X = 51) + P(X = 52)$$ Since each student has a
$90%$ chance of showing up:$$P(X \le 50) = 1 - \binom{52}{51}(0.95)^{51}0.05^1 - \binom{52}{52}(0.95)^{52}0.05^0 \ = 1 - (52)(0.95)^{52}(0.05) - (0.95)^52 \ \approx 0.741$$ -
Not sure, read the solution.