-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecon_cb.py
130 lines (114 loc) · 5.28 KB
/
recon_cb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
'''
INFERENCE CODE FOR VIDEO RECONSTRUCTION FROM CODED-BLURRED IMAGE PAIR
'''
import os
import torch
import glob
import argparse
import numpy as np
from sensor import C2B
from attention import AttentionNet
from unet import UNet
import utils
# parse arguments
parser = argparse.ArgumentParser()
parser.add_argument('--savepath', type=str, default=None, help='path to save results')
args = parser.parse_args()
# create directory to save results
if args.savepath is not None:
if not os.path.exists(args.savepath):
os.makedirs(os.path.join(args.savepath, 'frames'))
os.makedirs(os.path.join(args.savepath, 'gifs'))
os.makedirs(os.path.join(args.savepath, 'images'))
# input params
im_height = 720
im_width = 1200
subframes = 9
# load test videos
data_path = os.path.join(os.getcwd(), 'data', 'test_videos', 'seq*', '*.png')
image_paths = sorted(glob.glob(data_path))
print('Test videos: %d'%(len(image_paths)//subframes))
assert len(image_paths) % subframes == 0
# load weights
c2b = C2B(code_size=int(np.sqrt(subframes)))
attn_net = AttentionNet(in_channels=subframes, out_channels=128)
unet = UNet(in_channel=2*128, out_channel=subframes)
if torch.cuda.is_available():
print('Running inference on GPU...')
c2b = c2b.cuda()
attn_net = attn_net.cuda()
unet = unet.cuda()
weights = torch.load(os.path.join('weights', 'coded-blurred-inp-attn.pth'))
else:
print('Running inference on CPU...')
weights = torch.load(os.path.join('weights', 'coded-blurred-inp-attn.pth'),
map_location=lambda storage, loc: storage)
attn_net.load_state_dict(weights['attn_net_state_dict'])
unet.load_state_dict(weights['unet_state_dict'])
attn_net.eval()
unet.eval()
# inference
# image size must be divisible by code size
csize = int(np.sqrt(subframes))
if im_height % csize != 0:
im_height -= im_height % csize
if im_width % csize != 0:
im_width -= im_width % csize
psnr_sum = 0.
ssim_sum = 0.
psnr_mid_sum = 0
ssim_mid_sum = 0
if args.savepath is not None:
log = open(os.path.join(args.savepath, 'log.txt'), 'w')
with torch.no_grad():
for seq in range(len(image_paths)//subframes):
vid = []
for sf in range(subframes):
sframe = utils.read_image(image_paths[seq*subframes+sf], im_height, im_width)
vid.append(sframe)
vid = torch.stack(vid, dim=0).unsqueeze(0)
b1, b0, blurred = c2b(vid)
lowres_vid = utils.solve_constraints(b1, b0, c2b.code)
blurred_shuffled = utils.reverse_pixel_shuffle(blurred, factor=csize)
attn_out, attn_map = attn_net(lowres_vid, blurred_shuffled)
highres_vid = unet(attn_out).clamp(0,1)
psnr, ssim = utils.compute_psnr_ssim(highres_vid[0], vid[0])
psnr_sum += psnr
ssim_sum += ssim
print('Test video: %d PSNR: %.2f SSIM: %.3f'%(seq+1, psnr, ssim))
mid_idx = (subframes-1)//2
psnr_mid, ssim_mid = utils.compute_psnr_ssim(highres_vid[0,mid_idx:mid_idx+1,:,:],
vid[0,mid_idx:mid_idx+1,:,:])
psnr_mid_sum += psnr_mid
ssim_mid_sum += ssim_mid
print('Mid frame PSNR: %.2f SSIM: %.3f'%(psnr_mid, ssim_mid))
# save results
if args.savepath is not None:
log.write('Test video: %d PSNR: %.2f SSIM: %.3f\n'%(seq+1, psnr, ssim))
log.write('Mid frame PSNR: %.2f SSIM: %.3f\n'%(psnr_mid, ssim_mid))
utils.save_image(b1[0],
os.path.join(args.savepath, 'images', 'seq_%.2d_codedInput.png'%(seq+1)))
utils.save_image(blurred[0],
os.path.join(args.savepath, 'images', 'seq_%.2d_blurredInput.png'%(seq+1)))
# utils.save_image(attn_map[0],
# os.path.join(args.savepath, 'images', 'seq_%.2d_attentionMap.png'%(seq+1)))
utils.save_gif(vid[0],
os.path.join(args.savepath, 'gifs', 'seq_%.2d_groundTruth.gif'%(seq+1)))
utils.save_gif(highres_vid[0],
os.path.join(args.savepath, 'gifs', 'seq_%.2d_recon.gif'%(seq+1)))
for sf in range(subframes):
utils.save_image(highres_vid[0,sf,:,:],
os.path.join(args.savepath, 'frames', 'seq_%.2d_recon%.1d.png'%(seq+1, sf+1)))
utils.save_image(vid[0,sf,:,:],
os.path.join(args.savepath, 'frames', 'seq_%.2d_groundTruth%.1d.png'%(seq+1, sf+1)))
print('\nAverage PSNR: %.2f'%(psnr_sum/(len(image_paths)//subframes)))
print('Average SSIM: %.3f'%(ssim_sum/(len(image_paths)//subframes)))
print('Mid frame average PSNR: %.2f'%(psnr_mid_sum/(len(image_paths)//subframes)))
print('Mid frame average SSIM: %.3f'%(ssim_mid_sum/(len(image_paths)//subframes)))
if args.savepath is not None:
log.write('\nAverage PSNR: %.2f\n'%(psnr_sum/(len(image_paths)//subframes)))
log.write('Average SSIM: %.3f\n'%(ssim_sum/(len(image_paths)//subframes)))
log.write('Mid frame average PSNR: %.2f\n'%(psnr_mid_sum/(len(image_paths)//subframes)))
log.write('Mid frame average SSIM: %.3f\n'%(ssim_mid_sum/(len(image_paths)//subframes)))
log.close()
print('Saved results to %s'%args.savepath)