-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinverse_fourier.py
43 lines (33 loc) · 1.04 KB
/
inverse_fourier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# -*- coding: utf-8 -*-
"""
Created on Thu May 23 15:29:10 2019
@author: AshKing
"""
from math import sin,cos
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
img = cv.imread('images/fourier analysis/messi5.jpg',0)
def plot(img,title="Image"):
plt.figure()
plt.imshow(img,cmap="gray")
plt.title(title)
def inverse(a,b):
angle=np.angle(b[:,:,0]+b[:,:,1])
copy=np.zeros_like(a,np.complex64)
for i in range(a.shape[0]):
for k in range(a.shape[1]):
copy[i][k]=a[i][k]*cos(angle[i][k])+a[i][k]*sin(angle[i][k])*1j
f_ishift = np.fft.ifftshift(copy)
img_b=np.fft.ifft2(f_ishift)
return np.abs(img_b)
dft=cv.dft(np.float32(img),flags=cv.DFT_COMPLEX_OUTPUT) #2.53 ms ± 459 µs per loop
dft_s=np.fft.fftshift(dft)
#mag,angle=cv.cartToPolar(dft_s[:,:,0],dft_s[:,:,1])
magnitude_spectrum = 20*np.log(cv.magnitude(dft_s[:,:,0],dft_s[:,:,1]))
mag=np.array(magnitude_spectrum,dtype=np.float32)
mag_c=np.array(mag)
mag_c[mag_c<100]=1
im_back=inverse(mag_c,dft_s)
plot(img)
plot(im_back)